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Abstract

Classification-trees were used to model forest type groups and
forest types for the conterminous United States and Alaska.
The predictor data were a geospatial data set with a spatial
resolution of 250 m developed by the U.S. Department of
Agriculture Forest Service (USFS). The response data were plot
data from the USFS Forest Inventory and Analysis program.
Overall accuracies for the conterminous U.S. for the forest
type group and forest type were 69 percent (Kappa = 0.66)
and 50 percent (Kappa = 0.57), respectively. The overall
accuracies for Alaska for the forest type group and forest type
were 78 percent (Kappa = 0.69) and 67 percent (Kappa =
0.61), respectively. This is the first forest type map produced
for the U.S. The forest type group map is an update of a
previous forest type group map created by Zhu and Evans
(1994).
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Introduction

The United States Department of Agriculture Forest Service
(UsFs) Forest Inventory and Analysis (FIA) program has been
in continuous operation since 1930. The mission of FIA is to
inventory the renewable forest and rangeland resources of
the U.S. To inventory these resources, FIA has placed plots
throughout the U.S. at an intensity of approximately one
plot per 2,000 ha (6,000 acres) (Forest Inventory and Analy-
sis, 2004). FIA uses an annual rotating panel system where
between 10 to 20 percent of each state’s FIA plots are sampled
every year. From this plot data, the FIA program produces
annual reports in the form of tabular data at the county and
state level. This information is freely available to the public,
but the original plot locations are not available due to provi-
sions of the Food Security Act of 1985 (7 U.S.C. 2276).

FIA is legally required to provide summarized or
analyzed data that are readily available and targeted at
different audiences. One of the ways to accomplish this
objective is to provide geospatial modeled products using
FIA plot data and remote sensing imagery. Blackard et al.
(2008) developed a forest/non-forest map and an above-
ground live forest biomass map for the conterminous U.S.,
Alaska, and Puerto Rico derived from modeling FIA plot
forest/non-forest and biomass variables as functions of
250 m resolution geo-spatial database. Observed biomass
values from an independent test data set were favorably
correlated to the predicted biomass values with correla-
tion coefficients ranging between 0.40 to 0.78. Addition-
ally, 21 States’ modeled biomass estimates fell within
10 percent of the plot-based biomass estimates. Classifica-
tion accuracies for the forest/non-forest product ranged
from 80 to 98 percent. Thus, modeling FIA plot attributes
as functions of remote sensing images and GIS data layers
effectively scales plot-based forest attributes to national
maps.

Blackard et al. (2008) used classification and regression-
trees (CART) to model biomass and forest/non-forest. Using
CART for land-cover classification is becoming popular
(DeFries and Chan, 2000; DeFries et al., 1998; Friedl and
Brodley, 1997; Friedl et al., 1999; Hansen and DeFTies,
1996). CART procedures have several advantages over more
traditional classification procedures, such as, supervised and
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unsupervised algorithms (Lillesand and Kiefer, 2000; Pal
and Mather, 2003). Classification-trees are non-parametric,
and as such, do not require assumptions about data distribu-
tions and can handle non-linear relationships between
variables. They can also allow for missing data values,
handle both numerical and categorical data, and incorporate
many different data layers. The hierarchal structure of
classification-trees makes interactions between data layers
easier to interpret. Classification-trees are significantly less
labor intensive than other classification techniques and can
be used efficiently for large land-cover classifications (Friedl
et al., 1999; DeFries et al., 1998). With quality training data,
the accuracies of classification-trees are either similar to or
better than supervised and unsupervised classification tech-
niques (Lawrence and Wright, 2001; Friedl et al., 1999;
Friedl and Brodley, 1997; Hansen et al., 1996).

Others have used remote sensing imagery and FIA plot
data to create national mapping products. Zhu and Evans
(1994) produced a forest type group map covering the entire

United States and Puerto Rico. This forest type group map
was produced using Advanced Very High Resolution
Radiometer (AVHRR) imagery collected in 1992 and FIA plot
data, which was the first attempt to create a forest type
group map of the U.S. The procedure used to create the
forest type group map involved several iterations of unsu-
pervised classification algorithms, spectral signature evalua-
tion, masking, and recoding.

Forest type group and forest type are two FIA plot
variables. Eyer (1980) defined 145 forest types, which
are aggregations or pure stands of forest trees. The FIA
program uses a modified version of Eyer’s (1980) forest type
classification scheme. FIA combined some of the Eyer (1980)
forest types and others were redefined for a total of 142
forest types (Table 1). Eyer (1980) grouped the forest types
into 20 forest type groups, which classification scheme came
from the USFs Renewable Resources Evaluation Group
program. FIA uses a similar forest type group classification
scheme. FIA defined eight new forest type groups for a

TaBLE 1. List oF THE USDA FOREST SERVICE FOREST INVENTORY AND ANALYSIS FOREST TYPE GROUPS AND FOREST TYPES WITH THEIR ASSOCIATED CODES
White/Red/Jack Pine Group 100 Blue Spruce 269
Jack Pine 101 Mountain Hemlock 270
Red Pine 102 Alaska-yellow-cedar 271
Eastern White Pine 103 Lodgepole Pine Group 280
Eastern White Pine/Eastern Hemlock 104 Lodgepole Pine 281
Eastern Hemlock 105 Hemlock/Sitka Spruce Group 300
Spruce/Fir Group 120 Western Hemlock 301
Balsam Fir 121 Western Red Cedar 304
White Spruce 122 Sitka Spruce 305
Red Spruce 123 Western Larch Group 320
Red Spruce/Balsam Fir 124 Western Larch 321
Black Spruce 125 Redwood Group 340
Tamarack 126 Redwood 341
Northern White-cedar 127 Giant Sequoia 342
Longleaf/Slash Pine Group 140 Other Western Softwoods Group 360
Longleaf Pine 141 Knobcone Pine 361
Slash Pine 142 Southwest White Pine 362
Loblolly/Shortleaf Pine Group 160 Bishop Pine 363
Loblolly Pine 161 Monterey Pine 364
Shortleaf Pine 162 Foxtail Pine/Bristlecone Pine 365
Virginia Pine 163 Limber Pine 366
Sand Pine 164 Whitebark Pine 367
Table-mountain Pine 165 Misc. Western Softwoods 368
Pond Pine 166 California Mixed Conifer Group 370
Pitch Pine 167 California Mixed Conifer 371
Spruce Pine 168 Exotic Softwoods Group 380
Pinyon/Juniper Group 180 Scotch Pine 381
Eastern Red Cedar 181 Australian Pine 382
Rocky Mountain Juniper 182 Other Exotic Softwoods 383
Western Juniper 183 Norway Spruce 384
Juniper Woodland 184 Introduced Larch 385
Pinyon Juniper Woodland 185 Oak/Pine Group 400
Douglas-fir Group 200 Eastern White Pine/Northern Red Oak/White Ash 401
Douglas-fir 201 Eastern Redcedar/Hardwood 402
Port Orford Cedar 202 Longleaf Pine/Oak 403
Ponderosa Pine Group 220 Shortleaf Pine/Oak 404
Ponderosa Pine 221 Virginia Pine/Southern Red Oak 405
Incense Cedar 222 Loblolly Pine/Hardwood 406
Jeffrey Pine/Coulter Pine/Bigcone Douglas Fir 223 Slash Pine/Hardwood 407
Sugar Pine 224 Other Pine/Hardwood 409
Western White Pine Group 240 Oak/Hickory Group 500
Western White Pine 241 Post Oak/Blackjack Oak 501
Fir/Spruce/Mountain Hemlock Group 260 Chestnut Oak 502
White Fir 261 White Oak/Red Oak/Hickory 503
Red Fir 262 White Oak 504
Noble Fir 263 Northern Red Oak 505
Pacific Silver Fir 264 Yellow-poplar/White Oak/Northern Red Oak 506
Engelmann Spruce 265 Sassafras/Persimmon 507
Engelmann Spruce/Subalpine Fir 266 Sweetgum/Yellow-poplar 508
Grand Fir 267 Bur Oak 509
Subalpine Fir 268 Scarlet Oak 510
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Yellow-poplar 511

Black Walnut 512
Black Locust 513
Southern Scrub Oak 514
Chestnut Oak/Black Oak/Scarlet Oak 515
Red Maple/Oak 519
Mixed Upland Hardwoods 520
Oak/Gum/Cypress Group 600
Swamp Chestnut Oak/Cherrybark Oak 601
Sweetgum/Nuttall Oak/Willow Oak 602
Overcup Oak/Water Hickory 605
Atlantic White-cedar 606
Baldcypress/Water Tupelo 607
Sweetbay/Swamp Tupelo/Red Maple 608
Elm/Ash/Cottonwood Group 700
Black Ash/American Elm/Red Maple 701
River Birch/Sycamore 702
Cottonwood 703
Willow 704
Sycamore/Pecan/American Elm 705
Sugarberry/Hackberry/Elm/Green Ash 706
Silver Maple/American Elm 707
Red Maple/Lowland 708
Cottonwood/Willow 709
Oregon Ash 722
Maple/Beech/Birch Group 800
Sugar Maple/Beech/Yellow Birch 801
Black Cherry 802
Cherry/Ash/Yellow-poplar 803
Hard Maple/Basswood 805
Elm/Ash/Locust 807
Red Maple/Upland 809
Aspen/Birch Group 900
Aspen 901

Paper Birch 902
Gray Birch 903
Balsam Poplar 904
Alder/Maple Group 910
Bigleaf Maple 912
Western Oak Group 920
Gray Pine 921
California Black Oak 922
Oregon White Oak 923
Blue Oak 924
Deciduous Oak Woodland 925
Evergreen Oak 926
Coast Live Oak 931
Canyon Live Oak/Interior Live Oak 932
Tanoak/Laurel Group 940
Tanoak 941
California Laurel 942
Giant Chinkapin 943
Other Western Hardwoods Group 950
Pacific Madrone 951
Mesquite Woodland 952
Cerocarpus Woodland 953
Intermountain Maple Woodland 954
Misc. Western Hardwood Woodlands 955
Tropical Hardwoods Group 980
Sable Palm 981
Mangrove 982
Other Tropical 989
Exotic Hardwoods Group 990
Paulownia 991
Melaluca 992
Eucalyptus 993
Other Exotic Hardwoods 995

total of 28 forest type groups (Table 1). The forest type
group and forest type are determined for a plot in the
following manner. Each tree on the plot is placed into an
appropriate forest type group. The stocking values, which
are individual trees’ contributions to the total stocking of the
stand, of the trees within the forest type groups are summed.
Using a decision tree, the final forest type is assigned to
each plot (Arner et al., 2003). Since the forest type group
and forest type classification schemes are hierarchical, the
final forest group is determined by the forest type.

The main objective of this study was to examine the
feasibility of using low resolution imagery, such as 250 m
Terra MODIS imagery, and FIA plot data to produce national
mapping products in a timely, efficient, and accurate man-
ner. The FIA plot variables chosen for this project were forest
type group and forest type. Even though the forest type
group is determined by the forest type, and thus, the forest
type group can be obtained by simply aggregating the forest
types, the variables were modeled separately. Since the
forest type group is a more general classification scheme
than the forest type classification scheme, the forest type
group final result was expected to have higher accuracy
than the forest type final result. If only the forest types
were modeled and the forest type groups were created by
aggregating the forest types, the inaccuracies of the forest
types will be compounded negatively affecting the forest
type group accuracies. For instance, it is expected that the
forest types in the oak/hickory group to have low accuracies
due to the spectral similarities between the types in that
group. If the oak/hickory forest type group was created by
aggregating the types within that group, the oak/hickory
forest type group would have low accuracy as well. How-
ever, the forest type group might have a high accuracy value
if classified separately. Furthermore, the forest type group
and forest type products might be used by different groups
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for different purposes. For these reasons, forest type groups
and forest types were modeled separately creating two
completely independent products. This means that a forest
type pixel might not correspond to the forest type group
assigned to the same pixel. If this is a concern or presents a
problem to users, users can simply aggregate the forest types
creating their own forest type group product.

Because CART does have the capability to handle large
datasets and produce accuracies similar to other techniques,
CART was chosen to model forest type groups and forest
types for Alaska and the conterminous U.S. If the techniques
developed for creating these spatial products are effective,
perhaps additional FIA variables can be modeled and made
available to the public.

Methods

The area of each FIA plot is categorized into a single condi-
tion or multi-conditions based on owner class and land
class, which includes forest, non-forest, and water (Forest
Inventory and Analysis, 2004). If an FIA plot is comprised of
multi-conditions, the proportion of each condition occurring
within the plot is calculated. For this study, all FiA plots
with at least 50 percent of the plot area categorized into the
land class forest condition were used for the modeling
procedure. The land class forest condition is defined as
greater than 0.4 ha (1 acre) in size, greater than 37 m

(120 feet) in width, having or has been at least 10 percent
stocked by trees of any size in the past or where stocking
cannot be determined (e.g., western woodlands), having or
has been at least five percent crown cover by trees of any
size in the past, having an undisturbed understory, and not
subjected to uses that prevent normal tree regeneration and
succession (Forest Inventory and Analysis, 2004). According
to this definition, transitional plots (i.e., plots temporarily
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cleared of trees) are categorized under the forest condition
even though few or no trees currently exist on the plot.
Transitional plots were used in the modeling procedure. It is
unknown exactly how many transitional plots were actually
used, but transitional plots probably comprised less than
one percent of the total number of plots.

For the mapping of the forest type group and forest type,

the FIA plot data were collected between 1978 and 2004.
The majority of the plot data (55 percent) were collected
between 2000 and 2004; 36 percent of the plot data were
collected between 1990 and 1999, and nine percent were
collected pre-1990.

A geospatial data set consisting of 269 remote sensing
images and GIS layers with a spatial resolution of 250 m
served as the predictor variables in the modeling of the
forest type group and forest type for the conterminous
U.S. All images and layers were projected to the Albers
Conical Equal Area NAD27 projection. For Alaska, 19 geospa-
tial remote sensing images and GIS layers were available, and
most of the images and layers had a native spatial resolution
of 250 m. Those with a native spatial resolution greater than
250 m underwent either nearest neighbor resampling if the
data were categorical or bilinear interpolation resampling if
the data were continuous.

The National Land Cover Database (NLCD), elevation,
slope, and aspect data were at 30 m spatial resolution. NLCD
was recoded into five classes: deciduous, developed, ever-
green forest, mixed forest, shrubland, and woody wetland
(Vogelmann et al., 2001). To rescale the NLCD to 250 m, the
percent of each of these NLCD classes occurring within a
250 m pixel was calculated.

The 30 m elevation data set was rescaled to 90 m. Mean
elevation was calculated for a 3 X 3 window resulting in a
270 m mean elevation data set, which was resampled to
250 m using bilinear interpolation. Slope and aspect were
derived from the 90 m elevation data set. The 90 m slope
data set was resampled to 250 m using bilinear interpolation.
The aspect data set was recoded into four categories: (a) 0 to
90 degrees, (b) 91 to 180 degrees, (c) 181 to 270 degrees, and
(d) 271 to 360 degrees. The maximum aspect for a 3 X 3
window was calculated resulting in a 270 m dominant
aspect product, which was resampled to 250 m using nearest
neighbor. Using the 90 m recoded aspect data set, a focal
variety aspect data set was produced by calculating the
number of unique values within a 3 X 3 window, resulting
in a 270 m product, which was resample to 250 m using
nearest neighbor.

Soils (STATSGO), climate, and ecoregions variables were
also included in the geo-spatial data set. The soils GIS layers
were obtained from the National Resources Conservation
Services (Miller and White, 1998). The climate data were
obtained from DAYMET (Thornton et al., 1997). The DAYMET
variables used were annual and monthly average precipita-
tion, monthly maximum and minimum temperature, and
annual and monthly average temperature. The climate data
resolution was 1 km. The climate data were rescaled to 250 m
resolution using bilinear interpolation. For the contermi-
nous U.S., Bailey’s ecoregions (Bailey, 1989; Bailey and
Hogg, 1986) were used and for Alaska, unified ecoregions
of Alaska (Nowacki et al., 2001) were used. The STATSGO,
Bailey’s ecoregions, and unified ecoregions of Alaska vector
data were converted to raster data and scaled to 250 m.

The rest of the data layers consisted of Terra MODIS
eight-day, Terra MODIS 32-day, and Terra MODIS-derived
products such as enhanced vegetation index (EvI), normal-
ized difference vegetation index (NDVI), and Terra MODIS
vegetation continuous fields from 2001 (Hansen et al., 2003).
To capture phenology changes, each of these MODIS prod-
ucts, except for the Terra MODIS 32-day imagery, came from
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three time periods: spring, summer, and fall. Because of the
difficulty in finding cloud-free MODIS eight-day imagery,
several 32-day MODIS images were used that covered spring,
summer, and fall. Because of striping in band 5 in all the
Terra MODIS eight-day and 32-day imagery, all Terra MODIS
band 5 layers were excluded from analyses.

Many of these data layers are correlated. However,
classification-trees can handle complex relationships bet-
ween variables and can determine which data layers most
accurately predict classes. Even though two data layers are
correlated, there are differences between them. Classification-
trees have the capability to use variations in data layers to
develop models. The models that result are often complex.
However, complex models are appropriate when the goal
of a classification is accuracy rather than characterizing
the relationships between the classes and the data layers.
Consequently, correlated variables can be used.

All imagery, except for Alaska, was pre-stratified in
order to prevent errors such as an eastern U.S. forest type
occurring in the western U.S. The imagery was stratified
using the USGS NLCD 65 mapping zones for the contermi-
nous U.S. (Homer and Gallant, 2001). The reason why the
NLCD mapping zones were chosen as opposed to Bailey’s or
Omernik ecoregions (Omernik, 1987) is because the NLCD
mapping zones, which are loosely based on Omernik ecore-
gions, were developed specifically for remote sensing class-
ification. The NLCD mapping zones takes into account the
spectral variability occurring within each mapping zone.
Thus, using NLCD mapping zones for pre-stratification seems
more appropriate than other ecoregions. Alaska was modeled
separately from the conterminous U.S. and was not further
stratified. The reason why Alaska was not stratified is FIA
data does not exist for large portions of Alaska. If Alaska was
stratified, there would be many strata with few or no points.

Some evidence suggests that increasing sample sizes
increases classification-tree accuracy (Pal and Mather, 2003).
Seventeen NLCD mapping zones had fewer than 200 FIA
forested plots. To increase the number of FIA plots for these
NLCD mapping zones, these 17 zones were merged with
adjacent NLCD mapping zones creating a total of 43 mapping
zones (Figure 1). Instead of re-ordering the mapping zones
from 1 to 43, the original NLCD mapping zones numbers
were retained because the numbers are nominal data and
frequent users of the NLCD mapping zones associate the
numbers to specific geographic areas. When merging the
17 zones, the lowest NLCD mapping zone number was
retained, while the other numbers were eliminated. Even
though Figure 1 displays mapping zones 1 to 66, there are
actually only 43 mapping zones. Each mapping zone and
Alaska was modeled independently of each other.

For each mapping zone and Alaska, the FIA plot data
were intersected with the geo-spatial data set creating a
modeling data set. For the conterminous U.S., 83,519 FIA
forested plots were used, and 5,392 FIA forested plots were
used for Alaska. A random ten percent of the plots were
withheld from model development and were used for accu-
racy assessment purposes.

Rulequest’s See5® software package (http:/www.
rulequest.com), which is a commercial version of C4.5
(Quinlan, 1993), was used to develop the classification-trees
for the forest type group and forest type classifications.
Classification-trees recursively divide data into smaller
groups on the basis of tests performed at the nodes in the
trees. The tests used are learning algorithms developed
within the pattern-recognition and machine-learning com-
munities. At the ends of the trees, a value is assigned.

Boosting can significantly increase classification-trees
accuracies (Friedl et al., 1999; Pal and Mather, 2003).
Boosting creates multiple iterations of classification-trees.
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Figure 1. Forest Type Group and Forest Type Mapping Zones. The thicker black lines outline the
43 mapping zones, which were used to model forest type and forest type group for the conterminous
United States. The mapping zone numbers are nominal, and thus, are not meant to be sequential.

For the first iteration, no weighting occurs. For all the other
iterations, weights are assigned to each training observation.
The weights assigned are based upon the misclassifications
from the previous iteration. Each iteration tries to correct the
errors from the previous iteration. Voting is used to generate
the final classifier (DeFries and Chan, 2000; Freund and
Schapire, 1996; Quinlan, 1996; Friedl et al., 1999). Various
studies have found 10 iterations to be the recommended
number for both remote sensing studies and non-remote
sensing studies (Friedl et al., 1999; Freund and Schapire,
1997; Pal and Mather, 2003). For this study, the boosting
option was set at 10 iterations.

Classification-trees can grow very large and complex,
causing the classification-trees to overfit the training data.
This can lead to poor accuracies when the classification-
trees are applied if there were errors or noise in the training
data. To alleviate this problem, classification-trees are
pruned making them more general and flexible when
classifying data not included in the training data set. The
methodology See5® uses to prune is error-based pruning
(Hall et al., 2003; Mingers, 1989; Quinlan, 1987; Quinlan,
1993). To control the amount of pruning, the user can set
the “pruning certainty factor.” Changing this value affects
the size and accuracy of the classification-tree. For this
project the pruning certainty factor was set at 25, which is
the recommended value determined by Quinlan (1993), and
corroborated by Hall et al. (2003).

Forest type group and forest type classifications were
created from the See5® classification-trees and the geo-
spatial data set by integrating the See5® public domain code
available from http://www.rulequest.com with ERDAS
Imagine® software (version 8.6). The See5® public domain
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code has the ability to produce confidence values, which are
expressions of the confidence of the classifications produced
from the See5® models. Spatial confidence products for the
forest type group and forest type were produced for the
conterminous U.S. and Alaska. These spatial data products
produced from See5®, covered the conterminous U.S. and
Alaska regardless of the presence of forest. The non-forest
areas were masked using the forest/non-forest mask pro-
duced by FIA scientists (Blackard et al., 2008).

If a testing data set is specified, See5® creates standard
error matrices (Congalton and Green, 1999). Using these
matrices, overall accuracies and kappas were calculated for
each zone and for Alaska. As an additional accuracy assess-
ment, using FIA’s mapmaker program (http:/ncrs2.fs.fed.us/
4801/fiadb) the current FIA state summaries of forest type
group and forest type areas were compared to state sum-
maries generated from the See5® modeled forest type group
and forest type classifications.

Results and Discussion

The conterminous U.S. and Alaska forest type group classifi-
cations are shown in Plates 1 and 2. The conterminous U.S.
and Alaska forest type classifications are not shown due to
the amount of detail, but they along with the forest type
group map, the confidence maps, associated metadata, and
accuracy tables for each mapping zone are available at
http://fsgeodata.fs.fed.us.

For the western U.S., the most abundant forest type group
was pinyon/juniper group (22 million hectares) followed by
Douglas-fir group (20 million hectares). The pinyon/juniper
group occurred throughout the arid western U.S. and the
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Plate 1. Forest type group map for the conterminous United States.

Douglas-fir group was prevalent in the Pacific Northwest and
the northern Rocky Mountains. Other predominant western
forest type groups included fir/spruce/mountain hemlock
group (15 million hectares), ponderosa pine group (12 million
hectares), and lodgepole pine group (7 million hectares).

The most abundant forest type in the western
U.S. was Douglas-fir (22 million hectares) followed by
pinyon/juniper woodland (18 million hectares). Other pre-
dominant western U.S. forest types were ponderosa pine
(12 million hectares), lodgepole pine (7 million hectares), and
California mixed conifer (5 million hectares). Note that the
California mixed conifer forest type consists of a conglomerate
of conifers including Douglas-fir (Pseudotsuga menziesii),
ponderosa pine (Pinus ponderosa), sugar pine (Pinus lamber-
tiana), incense cedar (Libocedrus decurrens), and white fir
(Abies concolor). F1A only recognizes this type in California.
Even though these tree species occur in neighboring states of
California, the tree species are grouped into other types.

For the eastern U.S., the most abundant forest type
group was oak/hickory group (67 million hectares) followed
by loblolly/shortleaf pine group (31 million hectares), and
maple/beech/birch group (24 million hectares). The oak/
hickory group occurred throughout the eastern U.S., but
primarily in the mid-eastern states. The loblolly/shortleaf pine
group was predominant in the south and the maple/beech/
birch group was predominant in the northeast. Other
common eastern forest type groups included aspen/birch
group (13 million hectares), oak/gum/cypress group
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(11 million hectares), and oak/pine group (8 million hectares).
The most abundant forest type in the eastern U.S. was
loblolly pine (34 million hectares) followed by white oak/red
oak/hickory (29 million hectares).

For Alaska, the most abundant forest type group was
spruce/fir group (49 million hectares) followed by aspen/birch
group (8 million hectares) and hemlock/Sitka spruce group
(4 million hectares). The spruce/fir group and aspen/birch
group occurred throughout the interior of Alaska and hem-
lock/Sitka spruce group occurred mainly in southeastern
Alaska. The most abundant forest type in Alaska was white
spruce (28 million hectares) followed by black spruce (20 mil-
lion hectares) and paper birch (7 million hectares). All of
these forest types occurred primarily in the interior of Alaska.

For the conterminous U.S., most forest type groups
and forest types had low confidence values. The forest
type group with the highest confidence was the pinyon/
juniper group, which had 80 percent of the pixels with
greater than 70 percent confidence. The next highest was
the oak/hickory group with 61 percent of the pixels with
greater than 70 percent confidence. That was followed
by the maple/beech/birch group with 54 percent of the
pixels with greater than 70 percent confidence. The forest
type with the highest confidence was pinyon juniper
woodland with 76 percent of the pixels with greater than
70 percent confidence. The next highest forest type was
mesquite with 58 percent of the pixels with greater than
70 percent confidence.
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Plate 2. Forest type group map for Alaska.

For Alaska, the confidence values were higher. The
forest type group with the highest confidence was the
spruce/fir group, which had 85 percent of the pixels with
greater than 70 percent confidence. The next highest was the
hemlock/Sitka spruce group with 68 percent of the pixels
greater than 70 percent confidence. That was followed by the
fir/spruce/mountain hemlock group with 62 percent of the
pixels greater than 70 percent confidence. The forest type
with the highest confidence was Sitka spruce with 73 percent
of the pixels with greater than 70 percent confidence. The
next highest was mountain hemlock with 69 percent of the
pixels with greater than 70 percent confidence. This was
followed by white spruce with 64 percent of the pixels with
greater than 70 percent confidence.

One of the advantages of using classification-trees is the
ease of interpretation of the relationships between the
independent variables and the dependent variable. For this
project, the See5® output produced 88 classification-trees: a
forest type group classification-tree and a forest type classifi-
cation-tree for Alaska and for each of the 43 mapping zones.
Each of these 88 classification-tree outputs consisted of
ten classification-trees produced by the boosting option.
Each individual classification tree consisted of more than
20 levels, and each of the 88 classification tree outputs are
over 50 pages in length. Thus, the amount of data prohibits
detailed examination of these classification-trees. For
those interested in the models, they are available from the
principal author. It is possible, however, to present
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general summaries of the mapping zones and Alaska
classification-trees.

For the forest type groups occurring in the western
U.S., topography variables were the most frequently used
variables in the classification-trees followed by the spring
and fall dates of the MODIS EVI imagery and percent tree
cover from the MODIS vegetation continuous fields. It is well
known that temperature and precipitation play vital roles in
the distribution and growth of vegetation (Burns and
Honkala, 1990a; Burns and Honkala, 1990b). Topography in
the western U.S. has a strong influence on precipitation and
temperature. Topography variables should be prevalent in
the classification-trees for the western U.S. mapping zones.

Topographical relief in the eastern U.S. is relatively
minor compared to the western U.S., and climate is less
influenced by topography in the eastern U.S. Variables
associated with plant growth such as climate and soils
should be used more frequently in the classification-trees for
the eastern U.S. than the topography variables. However,
instead of the climate variables being the most frequently
used, the spring, summer, and fall dates of the MODIS EVI
imagery as well as the fall date of the MODIS NDVI image
were the most frequently used variables in the forest type
group classification-trees for the eastern U.S. Topography
variables were the second most frequently used variables in
the classification-trees. NDVI indicates density of plant
growth and is frequently used in vegetation mapping. EVI is
similar to NDVI, but EVI optimizes the vegetation signal
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improving sensitivity in high plant density regions. The
differences in the EVI between the spring, summer, and fall
could be surrogates for climatic data and this could explain
the abundance of these variables in the forest type group
classification-trees for the eastern U.S.

The forest type classification-trees for the western
U.S. showed similar variable usage as the forest type group
classification-trees for the western U.S. The topography
variables were the most frequently used variables in the
classification-trees followed by the spring, summer, and
fall MoDIS EVI imagery.

The topography variables were the most frequently
used variables for the forest type classification-trees for the
eastern U.S. This was unexpected because the topography
variables were not expected to have a large influence in
the eastern U.S. The second most frequently used variables
for the forest type classification-trees for the eastern U.S.
was the spring, summer, and fall MODIS EVI imagery, which

were also significant variables for the forest type group
classification-trees for the eastern U.S.

For Alaska, the most frequently used variables for both
the forest type group classification-trees and the forest type
classification-trees were the topography variables. Alaska
does have high topographical relief. The elevation ranges
from 6,200 m (20,000 feet) to 0 m. Topography is expected
to have a large influence in the forest type groups and forest
type. The second most frequently used variable in both
classification-trees was the unified ecoregions.

Table 2 shows the forest type group and forest type
accuracies along with the associated kappas for each mapping
zone. The highest forest type accuracy was 81 percent and
the lowest was 34 percent. All of the mapping zones, except
for one, with forest type accuracy greater than or equal to
75 percent occurred in the sparsely forested arid western
U.S. All of the mapping zones with forest type accuracy less
than 40 percent occurred in the northeast U.S., an area high

TABLE 2. FOREST TYPE GROUP AND FOREST TYPE OVERALL ACCURACIES AND KAPPAS FOR THE
43 MAPPING ZONES AND ALASKA. THE MAPPING ZONES REFER TO THE MAPPING ZONES
IN FIGURE 1
Zone Forest Type Kappa Forest Type Kappa
Group Overall Overall
Accuracy Accuracy

Alaska 78% 0.69 67% 0.61
1 66% 0.50 56% 0.38
2 66% 0.24 66% 0.19
3 52% 0.36 55% 0.40
4 71% 0.42 41% 0.25
5 60% 0.46 51% 0.38
7 69% 0.61 64% 0.56
8 61% 0.49 57% 0.47
10 54% 0.33 53% 0.37
12 92% 0.63 81% 0.54
15 78% 0.59 73% 0.60
16 62% 0.55 49% 0.42
19 60% 0.44 63% 0.49
20 75% 0.57 75% 0.59
21 62% 0.50 57% 0.46
22 86% 0.67 79% 0.64
24 88% 0.34 81% 0.48
25 80% 0.67 73% 0.60
28 66 % 0.60 55% 0.48
32 79% 0.52 56% 0.38
35 70% 0.56 63% 0.47
40 67% 0.47 47% 0.34
41 70% 0.58 62% 0.48
45 66% 0.45 47% 0.35
46 55% 0.40 51% 0.38
47 72% 0.34 60% 0.44
48 69% 0.52 53% 0.47
49 52% 0.18 42% 0.23
50 66% 0.55 56% 0.50
51 66% 0.46 54% 0.38
53 86% 0.10 51% 0.41
54 79% 0.67 77% 0.67
55 75% 0.67 66% 0.60
56 59% 0.42 45% 0.29
57 84% 0.52 42% 0.31
58 68% 0.54 62% 0.49
59 70% 0.54 62% 0.56
60 65% 0.46 50% 0.41
61 79% 0.45 34% 0.16
62 69% 0.17 37% 0.09
63 66% 0.27 35% 0.13
64 67% 0.32 43% 0.19
65 64% 0.46 37% 0.23
66 63% 0.42 39% 0.09
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in tree species diversity. The eastern U.S. has a variety of
pines and hardwoods, which are probably difficult to distin-
guish spectrally at a scale of 250 meters. The forest type
group and forest type classification schemes were not
designed for spectral analysis. There are forest types that are
pure forest stands of a species, such as the longleaf pine
forest type. These same species can also occur in mixed
forests and be assigned a different forest type, such as the
longleaf pine/oak forest type. These aforementioned forest
types and others like them certainly reduced the accuracy.
Forest type group and forest type classification schemes that
considers spectral separability between classes would greatly
improve the accuracy of these maps.

The highest forest type group mapping zone accuracy
was 92 percent and the lowest was 52 percent. The forest
type group mapping zone accuracies were always higher
than the forest type mapping zone accuracies except for four
mapping zones. The forest type groups are probably more
easily distinguishable spectrally than the forest types. The
forest type group accuracies showed no west to east trend of
increasing accuracy.

The overall forest type group and forest type accuracies
for the conterminous U.S. were 69 percent and 50 percent,
respectively. For Alaska, the overall forest type group and
forest type accuracies were 78 percent and 67 percent,
respectively. To further verify the results, the total area for
each forest type group and forest type was calculated for each
state. These state area summaries were compared to FIA state
summary tables. For the conterminous U.S., eight percent
(40 out of 512) of the forest type groups and four percent
(70 out of 1,777) of the forest types differed by more than
ten percent in area between the FIA state summaries and the
classification area estimates. For Alaska, three of the seven
forest type groups and five of the 15 forest types differed by
more than ten percent in area between the FIA state sum-
maries and the classification area estimates. Thus, these forest
type group and forest type mapping products compares
favorably with other data sets at least at the state level.

The forest type group map produced by this project was
compared to the forest type group map produced by Zhu and
Evans (1994). Table 3 shows the percent agreement between
the two forest type group maps. The oak/hickory forest type
group had the high percent agreement at 74.38 percent

TABLE 3. PERCENT AGREEMENT BETWEEN THE ZHU AND EVANS (1994) FOREST

TyPE GROUP MAP AND THE NEw FOREST TYPE GRouP MaAP

Forest Type Group Name Percent Agreement

Oak/Hickory 74.38%
Pinyon/Juniper 69.01%
Maple/Beech/Birch 64.16%
Fir/Spruce/Mountain Hemlock 58.45%
Douglas-fir 57.59%
Loblolly/Shortleaf Pine 56.87%
Aspen/Birch 46.90%
Longleaf/Slash Pine 45.30%
Spruce/Fir 39.31%
Oak/Gum/Cypress 34.89%
Ponderosa Pine 32.70%
Hemlock/Sitka Spruce 32.24%
Lodgepole Pine 31.70%
Redwood 27.51%
Elm/Ash/Cottonwood 16.16%
White/Red/Jack Pine 15.64%
Oak/Pine 8.53%
Western Larch 3.58%
Other Western Hardwoods 2.21%
Western White Pine 0.01%
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and the western white pine forest type group had the lowest
percent agreement at 0.01 percent. The western white pine
forest type group is associated with forest types found within
the Douglas-fir and the fir/spruce/mountain hemlock forest
type groups (Forest Inventory and Analysis, 2004). The forest
type group map produced by this project classified the western
white pine forest type group into these other associated type
groups. This occurred with all the other forest type groups
with disagreements; the forest type groups were classified into
other associated forest type groups. The Zhu and Evans (1994)
forest type group map had a spatial resolution of 1 km.

This new forest type group map with a spatial resolution

of 250 m is able to distinguish finer differences in the forest

type groups.

Conclusions

The forest type map is the first national forest type map.
This map along with the forest type group map can be
used for many different applications such as assisting in
pre-stratification for other vegetation mapping projects,
habitat analyses, and assisting policy and decision makers.
One application for the forest type group map involves the
updating of the forest risk maps. The Zhu and Evans
(1994) forest type group map was one of the key compo-
nents for the development of the forest risk maps pub-
lished in 2000 by the USFS Forest Health Monitoring (FHM)
program (Lewis, 2002). The forest risk maps were non-site-
specific and identified broad areas that had potential high
risk of forest mortality or growth/volume loss from insects
and diseases. The intent of these forest risk maps was

to provide national scale information to policy makers to
help determine national priorities. The forest type group
map developed as part of this project will also aid in

the development and improvement of forest risk maps.
Because this new forest type group map is at a higher
resolution (250 m) than the Zhu and Evans (1994) forest
type group map, which had a resolution of 1 km, this
new forest type group map will allow future forest risk
maps to be used more specifically at larger scales and
finer grain analyses.

This project effectively demonstrated the possibility of
deriving national mapping products using FIA data and a
geo-spatial database. Software programs were written to
facilitate communication between ERDAS Imagine and the
See5® software, which greatly enhanced the development of
these national mapping products. See5® produced highly
accurate forest type group maps. The forest type maps were
less accurate because of some of the difficulty in separating
out types which have similar spectral signatures. The forest
type maps were still fairly accurate especially at the state
level where the area of the forest types were similar to the
area estimated by FIA.
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