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Abstract 

Conventional compression strength formulas for corrugated fiberboard boxes are limited to 
geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in 
squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This 
study employs a finite element model, instead of actual experiments, to generate experimentally designed 
data and a smoothed model. Results lead to a better understanding of how to unify elastic and inelastic 
failure data and form a more general box strength formula. 

The objective of this study is to determine if the postbuckling formula advocated in a previous 
review of some historical data on box compression, including subsets of elastic and inelastic buckling, is 
supported by more pertinent experiments and can thus constitute a mechanistically rational more general 
box compression formula. The review revealed that a combination of elastic and inelastic postbuckling 
theory can be universally applied to the data, with different constants for each data source, provided that 
nonlinear material characterization is introduced and that an empirical correction is applied to panel 
stiffness. 

Thorough experimental replication and inclusion of all geometry and material variables would be 
prohibitively expensive. Therefire, our approach is to numerically generate postbuckling data with finite 
element analysis (FEA) of buckling stress and then apply the previous formula. We it makes some sense 
to terminate the analysis with the FEA predictions, having a simpler, yet mechanistic, strength formula can 
provide the basis for actual experimental confirmation and practitioner use. 

Various smoothed models were fit to the finite element predictions. An empirical correction for 
panel stiffness input to a broadened form of an elastic-inelastic postbuckling model gave the best results. 
The finite element predictions corroborate previous experiments, and results are applicable to box geometry 
beyond the range of what has previously been investigated. 

Objective and Scope 

The objective of this study is to determine if the postbuckling formula advocated in previous work 
(Urbanik 1996) for combined elastic and inelastic failure is supported by more pertinent experiments and 
can thus constitute a mechanistically rational basis for a more general box compression formula. In the 
previous study (Urbanik 1996), the best model of box strength was obtained with each panel characterized 
by the following two-part formula: 

(1) 

together with the empirical correction 
(2) 
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using an apparent stiffness Sa instead of S in the calculation of scr. Two postbuckling constants, a and h, 
appear m Equation (1). A third material postbuckling constant q0 and a fourth constant t are embedded 
implicitly m the calculation of scr. Fits to data with calculations of a, based on nonlinear material theory 
(Johnson and Urbanik 1987) were more accurate than fits to data based on linear material theory. 

Experimental Design 

The theory of finite length plates (Urbanik 1996), representing box panels and used to determine 
^ scr has five filndamental non-dimensional inputs: q0, S, f, v, and c . In a 25 factorial design of these 

variables low and high values of each variable were selected to represent the scope of the overall 
characterization of box compression data utilized m our previous study (Urbanik 1996). 

Physical properties representing a standard 205 g/mm2, C-flute corrugated fiberboard, as was 
investigated in a previous study (Urbanik 2001), were adjusted for isotropic behavior such that the 
computed S and f of a plate would remain the same for both isotropic and anisotropic cases. The non-
dimensional inputs combined with the standard corrugated fiberboard result m physical properties that 
provide the material and geometry inputs for FEA characterization. 

Finite Element Procedure 

Our finite element postbuckling analyses used 8-noded isoparametric shell elements. Eight 
elements per buckled shape (sinusoidal half-wave) were used in typical mesh sizes. This mesh size was 
chosen based on mesh refinement exercises. Isotropic material characterization enabled input of the exact 
stress-strain curve, s = c1 tanh(c2e/c1). 

To more realistically simulate experimental laboratory results, the postbuckling analysis imposed 
a downward displacement at the top of the panel, which simulated the head movement of a testing machine. 
The bottom of the panel was not allowed to translate vertically. All edges were restrained from out-of-plane 
movement, but they were free to rotate. As the top of the panel was forced downward, the panel bulged 
outward into a number of half-sine waves. Stresses increased throughout the analysis, until convergence 
could no longer be achieved. Maximum out-of-plane displacement was recorded throughout the analysis, as 
was the final number of half-sine waves. The total force along the loaded edge was recorded throughout the 
analysis. Typical results for applied and out-of-plane displacement are shown below for run 5 (sf ³ scr) 
and run 10 (sf £ s cr). Note the difference m displacement scales. For run 5, the maximum average stress 
was approximately 586 kPa even though the panel had not yet collapsed. Final collapse occurred shortly 
afterwards, at 520 kPa 
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Results 

Various forms of Equation (1) were fit to the data. 

(3) 

(4) 

(5) 

(6) 

A summary of the models obtained from Equations (3) to (6) is given m Table 1. For comparison, the first 
model is simply the McKee formula from McKee et al. (1963) rearranged into Equation (3) with constants 
a and h taken from Urbanik (1997). Results of the best fitting model 8 are shown m the following graphs. 

Table I—Parameter values of 15 models fit to ANSYS data 

U £ Ub U ³ Ub 

Law Model t a h Ub a h 
Ave. 

|error| r2 

(%) 

McKee 1 0 0.394 0.254 — 0.394 0.254 25.7 0.669 
Linear Eq.(5) 2 0 0.606 0.126 — 0.606 0.126 18.5 0.764 

3 0 — 0 1 0.835 0.494 17.9 0.715 
4 0 0.695 0.082 1 0.695 0.353 10.8 0.860 
5 0 0.696 0.078 1.314 0.620 0.290 9.78 0.867 

Hybrid Eq.(6) 6 0.555 0.607 0.147 — 0.607 0.147 16.4 0.813 
7 0.600 0.716 0.088 1 0.716 0.419 9.59 0.912 
8 0.554 0.684 0.093 1.136 0.644 0.330 7.85 0.915 

Nonlinear Eq.(3) 9 0 0.705 0.126 — 0.705 0.126 23.8 0.766 
10 0 — 0 1 0.850 0.494 16.8 0.767 
11 0 0.766 0.08 1 1 0.766 0.288 15.3 0.821 
12 0 0.749 0.080 1.613 0.614 0.288 13.8 0.767 

Nonlinear Eq.(4) 13 0.555 0.727 0.162 — 0.727 0.162 22.4 0.788 
14 0.600 0.708 0.147 1 0.708 0.415 9.77 0.878 
15 0.565 0.743 0.088 1.276 0.654 0.351 9.19 0.900 

Conclusions 

The postbuckling of plates with nonlinear material and subjected to axial compression was 
analyzed with a finite element model. Various smoothed models were fit to the finite element predictions to 
determine a practitioner form of a more general strength formula applicable to corrugated containers. An 
empirical correction for plate stiffness input to a broadened form of an elastic-inelastic postbuckling model 
gave the best results. The finite element predictions corroborate previous experiments, and results are 
applicable to box geometry beyond the range of conventional strength formulas. 
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