Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Dendritic Nanoscale Chelating Agents: Synthesis, Characterization, Molecular Modeling and Environmental Applications

EPA Grant Number: R829626
Title: Dendritic Nanoscale Chelating Agents: Synthesis, Characterization, Molecular Modeling and Environmental Applications
Investigators: Diallo, Mamadou S. , Balogh, Lajos , Goddard, William A. , Johnson, James H.
Institution: Howard University , California Institute of Technology , University of Michigan
Current Institution: California Institute of Technology , Howard University , University of Michigan
EPA Project Officer: Savage, Nora
Project Period: May 1, 2002 through April 30, 2005
Project Amount: $400,000
RFA: Exploratory Research: Nanotechnology (2001)
Research Category: Nanotechnology , Hazardous Waste/Remediation

Description:

Dendrimers are monodisperse and highly branched nanostructures with controlled composition and architecture. Poly(amidoamine) (PAMAM) dendrimers possess functional nitrogen and amide groups arranged in regular "branched upon branched" patterns. This high density of nitrogen ligands enclosed within a nanoscale container makes PAMAM dendrimers particularly attractive as high capacity chelating agents for toxic metal ions [Cu(II)], electron transfer mediators [Fe(II)], redox active metal clusters [FeS] and metal clusters with catalytic properties [Pt (II)]. PAMAM dendrimers can also be functionalized with surface groups that make them soluble in appropriate media or bind onto appropriate surfaces. This project explores the fundamental science of metal ion uptake by PAMAM dendrimers in aqueous solutions and assesses the extent to which this fundamental knowledge can be used to develop:
  1. high capacity and reusable chelating agents for industrial and environmental separations; and
  2. FeS laden nanoparticles with enhanced reactivity, selectivity and longevity for reductive detoxification of PCE in aqueous solutions and subsurface formations.

Approach:

To achieve these objectives, we propose an integrated project that combines: 1) materials synthesis and characterization; 2) bench scale measurements of metal ion [Cu(II), Fe(II), Co(II), Ni(II), Cd(II) and Ag(I)] uptake by PAMAM dendrimers in aqueous solutions; 3) X-ray absorption spectroscopic (XAS) investigations of metal ion-PAMAM dendrimer complexes in aqueous solutions; 4) bench scale measurements and spectroscopic investigations of the reduction of PCE by water soluble FeS-PAMAM dendrimer nanocomposites and solid particles coated with FeS-PAMAM dendrimer nanocomposites; and 5) molecular modeling of (i) metal ion uptake by PAMAM dendrimers in aqueous solutions and (ii) PCE reductive dechlorination by FeS clusters.

Expected Results:

The successful completion of this research is expected to result in 1) more effective functional materials for recovering precious metal ions [e.g., Ag (I)] and toxic metal ions [e.g., Cu (II)] from industrial wastewater solutions by low cost membrane based processes [e.g., ultrafiltration], and 2) more effective reactive media for reductive detoxification of PCE in aqueous solutions and subsurface formations.

Publications and Presentations:

Publications have been submitted on this project: View all 29 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 7 journal articles for this project

Supplemental Keywords:

water, soil, heavy metals, DNAPL, nanotechnology, waste reduction, waste minimization, pollution prevention, environmental chemistry and modeling. , Water, Sustainable Industry/Business, Scientific Discipline, RFA, Technology for Sustainable Environment, Sustainable Environment, Engineering, Chemistry, & Physics, Civil/Environmental Engineering, Ecological Risk Assessment, Biochemistry, Environmental Engineering, Environmental Chemistry, Chemistry and Materials Science, New/Innovative technologies, industrial wastewater, membrane technology, membranes, nanotechnology, environmentally applicable nanoparticles, environmental sustainability, membrane-based, groundwater, detoxification, ultrafiltration system, dendrimers, sustainability, reductive detoxification, PCE, nanoscale chelating agents, innovative technology, innovative technologies

Progress and Final Reports:
2002 Progress Report
2003 Progress Report
Final Report

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.