# FINAL

## Upland Cotton: An Economic Assessment of Providing Cost of Production Insurance

#### **Prepared For:**

Risk Management Agency COTR: Ron Lundine USDA/RMA/RED 6501 Beacon Drive Kansas City, MO 64133 (816) 926-3854

#### **Prepared By:**

AgriLogic, Inc. P.O. Box 9990 College Station, TX 77845

> Point of Contact: Dr. Michael Fanning (979) 690-2106

Contract # 53-3151-1-00009 Task Order # 43-3151-1-8093 Deliverable # 4.1.3

## **Table of Contents**

| Introduction                              | 1  |
|-------------------------------------------|----|
| Pilot Counties                            | 1  |
| Economic Significance                     | 4  |
| Cropland Acres                            | 4  |
| Value of the Crop                         | 6  |
| Value of All Crops in the Area            | 9  |
| Farm Characteristics                      | 10 |
| Supply and Demand                         | 12 |
| Prices                                    | 13 |
| Economic Significance for Next Five Years | 14 |
| Operation of Model                        | 17 |
| Cotton Production                         | 19 |
| Cultural Factors                          | 19 |
| Description of the Crop                   | 19 |
| Varieties                                 | 20 |
| Tillage                                   | 21 |
| Other Field Preparations                  | 22 |
| Propagation                               | 22 |
| Planting                                  | 22 |
| Irrigation                                | 22 |
| Rotations                                 | 25 |
| Soils                                     | 25 |
| Nutrients and Fertilizers                 | 25 |
| Climate                                   | 25 |
| Life Cycle of the Crop                    | 27 |
| Planting Dates                            | 27 |
| Stages of Development                     | 27 |
| Harvesting                                |    |
| Alternate-year Bearing                    | 29 |
| Cotton Marketing                          |    |
| Post-harvest Movement                     | 30 |
| Producer to Buyer                         | 30 |
| Labor, Equipment, and Facilities          | 30 |
| Post-harvest Damage                       | 30 |
| Pricing Mechanisms                        | 30 |
| Price History                             | 31 |
| Contracts                                 | 33 |
| Marketing Season                          | 34 |
| Seasonal Cotton Prices                    |    |
| Grading Standards                         |    |
| Marketing Orders                          |    |
| Crop Utilization                          |    |
| Facilities                                |    |
| Handling of Crop                          | 36 |

| Risk Profile and Analysis                            | 37 |
|------------------------------------------------------|----|
| Natural Perils                                       |    |
| Weather                                              |    |
| Weeds                                                |    |
| Insects                                              |    |
| Nematodes                                            |    |
| Diseases                                             | 40 |
| Economic Perils                                      | 41 |
| Price                                                | 41 |
| Loss Potential                                       | 42 |
| Loss Valuation                                       | 43 |
| Quality Deficiencies                                 | 43 |
| Alternative Uses                                     | 44 |
| Production Budgets                                   | 45 |
| Timing of Inputs                                     | 45 |
| Loss Control Techniques                              | 46 |
| Specific Techniques                                  | 46 |
| Initial Insurability Requirements                    | 47 |
| Cost of Production Information                       | 47 |
| Yield Estimation                                     | 47 |
| Potential Impact of the Proposed Program             | 48 |
| General Impact                                       | 48 |
| Impact on Producers                                  | 48 |
| Impact on Small Producers                            | 48 |
| History of Disaster Payments and Other Programs      | 49 |
| Similar Insurance Programs                           | 50 |
| Participation and Loss                               | 50 |
| Appendix A: Grading Standards                        | 51 |
| Appendix B: Historical Causes of Loss                | 64 |
| Appendix C: Potential Losses                         | 67 |
| Appendix D: Production Budgets                       | 68 |
| Appendix E: Participation and Loss for Upland Cotton | 70 |
| Appendix F: Cotton Ginning                           | 76 |
| Appendix G: References                               | 77 |

## Tables

| 2  |
|----|
| 5  |
| 6  |
| 7  |
| 8  |
| 9  |
| 0  |
| 1  |
| 2  |
| 3  |
| 3  |
| 7  |
| 1  |
| 4  |
| 6  |
| 6  |
| 7  |
| 8  |
| 1  |
| 2  |
| 2  |
| 6  |
| 6  |
| -1 |
| 2  |
| 3  |
| 4  |
| 5  |
| 9  |
| 0  |
|    |

## Figures

| 1 Sui os                                            |    |
|-----------------------------------------------------|----|
| Figure 1. Cotton pilot counties                     | 2  |
| Figure 2: U.S. Cotton Price                         | 14 |
| Figure 3: Cotton Production by State                | 15 |
| Figure 4: Cotton Production by State (II)           | 15 |
| Figure 5: Value of Production by State              | 16 |
| Figure 6: Value of Production by State (II)         | 16 |
| Figure 7: Plant Development                         | 27 |
| Figure 8: Point of Sale Price Comparisons           | 31 |
| Figure 9: Effects of Change in Supply on Prices     | 33 |
| Figure 10: Percent of U.S. Cotton Marketed by Month | 34 |
| Figure 11: Monthly U.S. Cotton Prices               | 34 |
|                                                     |    |

#### Introduction

Cotton is a dual use crop, making contributions to both the food and fiber industries. The lint is used in the textile industry and the cottonseed is crushed to make vegetable oil, with the seed by-products used in feed for livestock and poultry. Over 12 million acres of cotton are harvested most years. This equates to production of around 17 million bales of cotton on an annual basis. Economically, the cotton crop is one of the top agricultural contributors to the U.S. economy. On the farm alone, cotton production involves more than \$5 billion worth of goods and services purchased to include seed, fertilizers, agricultural chemicals, equipment, fuel, and farm labor. Altogether, the National Cotton Council estimates that the cotton crop generates about \$120 billion in business revenue on an annual basis. Cotton is also one of the largest export crops both in finished goods and raw fiber. Over \$2 billion worth of raw fiber cotton is sold on an annual basis. Over 3.5 million bale equivalents are exported in the form of finished goods, mainly in the form of manufactured textile products. Over the past 10 years, the U.S. supplied, on average, approximately 6.8 million bales of the world's cotton exports, accounting for about 30% of the total world export market.

Cotton is one of the most versatile agricultural products as evidenced by its many uses and almost 100% consumption, including the seed. The contribution to the U.S. economy is massive, and is expected to grow in the decades to come. Over the past few years, cotton prices have decreased. Although the lowest prices previously seen were in 1999, cotton prices are currently rivaling that low. Both domestic consumption of textile products and exports have decreased. With a strong dollar, U.S. products are more expensive to purchase. Adverse weather conditions across the Cotton Belt lowered the quality and value of the cotton produced. Texas and other states suffered several years of drought that had previously not been seen in decades.

There are two different types of cotton grown in the United States: Upland and Extra Long Staple (ELS). Upland cotton is produced in every cotton-growing state and accounts for the vast majority of cotton grown in the United States. Upland cotton is harvested on about 12 million acres across the U.S. There are several types of Upland cotton including Acala, American Upland, and California Upland, as well as over fifty different seed varieties, most of which are named after the respective cottonseed company. These varieties are planted across the southern United States and may be irrigated or non-irrigated. Although all varieties have similar insect and disease resistance characteristics, they may be managed differently according to locale and irrigation practice. Of the two types of cotton, Upland is the coarser, shorter staple (fiber length), more "grainy" cotton and is normally lower priced.

Acala is a type of Upland cotton grown in the western states, predominantly California. Acala's longer, stronger fibers are of a slightly higher quality than other Upland cotton and receive a slightly higher price. Until a couple of years ago, California producers were not permitted to grow traditional Upland cotton and therefore, could only grow ELS or Acala cotton.

As mentioned above, ELS cotton is the second type of cotton. ELS cotton gets its name from its extra long and fine fiber. It is also often referred to as Pima cotton. ELS cotton typically earns at least 25 cents more per pound than Upland cotton. This type of cotton is only grown in a handful of states on about 280,000 acres.

This document will discuss all pertinent aspects of providing Cost of Production Insurance to Upland cotton producers in the recommended pilot areas. It includes an in-depth economic analysis of cotton acreages and values, the industry, common methods of production, production perils, structural characteristics of cotton farms, the estimated impact of the program on producers, and the economic importance of cotton over the next five years.

### **Pilot Counties**

Although there are numerous cotton producing areas in the United States, only a percentage of these have been proposed as pilots for the Cost of Production Insurance program. Table 1 lists the counties selected for the cotton pilot program and Figure 1 displays the location of the pilot areas within the United States.

| Alabama        | Autauga      | Texas | Bailey       |
|----------------|--------------|-------|--------------|
|                | Dallas       |       | Brazos       |
|                | Elmore       |       | Burleson     |
|                | Lawrence     |       | Cameron      |
|                | Limestone    |       | Castro       |
|                | Madison      |       | Cochran      |
| Arizona        | Maricopa     |       | Fisher       |
|                | Pinal        |       | Hale         |
| California     | Fresno       |       | Haskell      |
|                | Kern         |       | Hidalgo      |
|                | Kings        |       | Hockley      |
|                | Madera       |       | Jones        |
|                | Merced       |       | Knox         |
|                | Tulare       |       | Lamb         |
| Georgia        | Colquitt     |       | Lubbock      |
|                | Mitchell     |       | Milam        |
|                | Worth        |       | Mitchell     |
| Louisiana      | Concordia    |       | Nueces       |
|                | East Carroll |       | Parmer       |
|                | Franklin     |       | Robertson    |
|                | Tensas       |       | San Patricio |
| Mississippi    | Coahoma      |       | Scurry       |
|                | Leflore      |       | Swisher      |
|                | Yazoo        |       | Willacy      |
| North Carolina | Halifax      |       | Williamson   |
|                | Martin       |       |              |
|                | Northampton  |       |              |

 Table 1: Cotton Pilot Counties



#### Figure 1. Cotton pilot counties.

Multiple factors were considered when selecting these pilot areas.

• Percent acreage in pilot area relative to total US acreage: Acreage represented a major element considered. We did not want the included acreage to grow too large as to become unmanageable in the pilot stage, yet we wanted the regions selected to be representative of the commodity production throughout all producing regions

- Proximity to other pilot counties: Once a particular area or region was selected, neighboring or nearby counties were often included as well. This would allow regional listening sessions to be held as well as provide insurance agents with a potential larger customer base for the COP product.
- Proximity to other pilot crops: In some instances, where similarity in production practices exist, counties for one commodity were selected based on counties for another commodity (i.e., Corn/Soybean). This also provides insurance agents in the pilot regions with a potentially larger customer base.
- Degree of grower interest: After holding listening session throughout the production areas, the degree of grower interest also influenced pilot selection.
- Loss history: While regions with demonstrated loss histories were targeted for inclusion in the pilot regions, regions with minimal loss history were considered as well to enhance the diversity of the production regions included in the pilot.
- Inclusion of underserved areas: Throughout the pilot selection, regions with little or no crop insurance programs were considered
- Representation of agriculture diversity: In the selection of pilot regions, the inclusion of as many regions as possible would give a better picture of how the COP insurance program will operate nationwide.

Often, these factors were in conflict with each other, in which case subjective analysis taking in the characteristics and needs of the individual commodity was required to arrive at the final pilot areas. While information in this report is representative of the entire domestic cotton industry, the remainder of this report will specifically address those issues pertinent to the selected pilot areas.

## **Economic Significance**

Seventeen states in the United States report cotton production to the National Agricultural Statistics Service (NASS.) Cotton was one of the five most valuable commodities in nine states and was among the top five crops -in terms of cropland acres in fifteen of the seventeen states. Cotton is a major commodity in the South.

All counties, states, and regions referred to throughout the rest of this document are the recommended pilot areas for the Cotton Cost of Production Pilot Program.

## **Cropland Acres**

Table 2 presents the percentage of pilot county cropland acres that are dedicated to cotton production. For many areas, cotton farming represents a significant portion of crop production. The data in Table 1 was obtained from the 1997 Census of Agriculture as the Census provided more information regarding total cropland acres. Table 2 lists 1999 cotton acreage for the pilot counties, which was the most recent data that we could collect from NASS.

#### Table 2: Percent of Acreage in Cotton

| County       | Total Crop   | % Cotton | County        | Total Crop          | % Cotton |
|--------------|--------------|----------|---------------|---------------------|----------|
|              | Acres        |          |               | Acres               |          |
| North        | nern Alabama |          |               | North Carolina      |          |
| Lawrence     | 71,093       | 34.8     | Halifax       | 104,435             | 54.5     |
| Limestone    | 90,163       | 24.4     | Martin        | 74,588              | 49.8     |
| Madison      | 88,621       | 6.2      | Northampton   | 94,286              | 58.3     |
| Total        | 249,877      | 20.9     | Total         | 273,309             | 54.5     |
| South        | iern Alabama |          | ,             | Texas Brazos Valle  | y        |
| Autauga      | 26,702       | 37.3     | Brazos        | 104,318             | 5.7      |
| Dallas       | 44,832       | 32.7     | Burleson      | 57,174              | 26.9     |
| Elmore       | 34,685       | 55.9     | Milam         | 133,998             | 10.7     |
| Total        | 106,219      | 41.4     | Robertson     | 72,041              | 16.8     |
|              | Arizona      |          | Williamson    | 196,545             | 16.9     |
| Maricopa*    | 296,150      | 38.1     | Total         | 564,076             | 14.4     |
| Pinal*       | 226,588      | 52.4     | 1             | Texas Coastal Ben   | d        |
| Total        | 522,738      | 44.3     | Nueces        | 323,287             | 31.1     |
| (            | California   |          | San Patricio  | 244,824             | 33.4     |
| Fresno*      | 1,157,357    | 30.1     | Total         | 568,111             | 32.1     |
| Kern*        | 893,221      | 29.7     |               | Texas Plains        |          |
| Kings*       | 445,537      | 44       | Bailey        | 165,550             | 44.5     |
| Madera*      | 294,706      | 12.5     | Castro        | 409,173             | 14.3     |
| Merced*      | 434,074      | 17.2     | Cochran       | 181,629             | 64.2     |
| Tulare*      | 639,578      | 12.7     | Hale          | 372,956             | 55.7     |
| Total        | 3,864,473    | 25.9     | Hockley       | 294,552             | 75.2     |
|              | Georgia      |          | Lamb          | 293,937             | 59.8     |
| Colquitt     | 111,343      | 62.6     | Lubbock       | 333,727             | 83.7     |
| Mitchell     | 114,609      | 51       | Parmer        | 309,629             | 19.8     |
| Worth        | 107,704      | 53       | Swisher       | 201,823             | 27.3     |
| Total        | 333,656      | 55.5     | Total         | 2,562,976           | 48.7     |
| I            | Louisiana    |          | ,             | Texas Rolling Plain | IS       |
|              |              |          | Fisher        | 575,095             | 11.6     |
| Concordia    | 207,952      | 20.9     | Haskell       | 199,497             | 42.7     |
| East Carroll | 175,093      | 25.1     | Jones         | 164,420             | 45.9     |
| Franklin     | 188,414      | 46.4     | Knox          | 135,696             | 18.6     |
|              |              |          | Mitchell      | 541,253             | 11.1     |
|              |              |          | Scurry        | 478,576             | 12.6     |
| Tensas       | 184,122      | 45.1     | Total         | 2,094,537           | 23.8     |
| Total        | 755,581      | 34.1     | 1 South Texas |                     |          |
| Ν            | Iississippi  |          | Hidalgo       | 344,665             | 18       |
| Coahoma      | 244,620      | 33       | Cameron       | 190,935             | 27.2     |
| Leflore      | 215,952      | 32.3     | Willacy       | 210,535             | 40.9     |
| Yazoo        | 174,241      | 37       | Total         | 746,135             | 26.8     |
| Total        | 634,813      | 33.9     |               |                     |          |

(1997 Census of Agriculture.)

\*Includes ELS acreage because the Census does not separate acreage out by type of cotton.

| County       | Upland Acres | County Upland Acres |           |  |  |
|--------------|--------------|---------------------|-----------|--|--|
| Northern A   | labama       | North Carolina      |           |  |  |
| Lawrence     | 40,100       | Halifax             | 51,000    |  |  |
| Limestone    | 69,200       | Martin              | 42,400    |  |  |
| Madison      | 44,400       | Northampton         | 57,500    |  |  |
| Total        | 153,700      | Total               | 150,900   |  |  |
| Southern A   | labama       | Texas Brazo         | s Valley  |  |  |
| Autauga      | 11,200       | Brazos              | 6,000     |  |  |
| Dallas       | 14,000       | Burleson            | 12,700    |  |  |
| Elmore       | 13,000       | Milam               | 10,300    |  |  |
| Total        | 38,200       | Robertson           | 16,000    |  |  |
| Arizo        | na           | Williamson          | 28,900    |  |  |
| Maricopa     | 83,700       | Total               | 73,900    |  |  |
| Pinal        | 106,300      | Texas Coast         | al Bend   |  |  |
| Total        | 190,000      | Nueces              | 109,100   |  |  |
| Califor      | rnia         | San Patricio        | 103,900   |  |  |
| Fresno       | 185,000      | Total               | 213,000   |  |  |
| Kern         | 137,000      | Texas Plains        |           |  |  |
| Kings        | 112,000      | Bailey              | 71,900    |  |  |
| Madera       | 26,000       | Castro              | 59,700    |  |  |
| Merced       | 61,000       | Cochran             | 104,900   |  |  |
| Tulare       | 55,000       | Hale                | 261,600   |  |  |
| Total        | 576,000      | Hockley             | 166,700   |  |  |
| Georg        | gia          | Lamb                | 169,500   |  |  |
| Colquitt     | 65,000       | Lubbock             | 253,300   |  |  |
| Mitchell     | 51,000       | Parmer              | 80,600    |  |  |
| Worth        | 50,000       | Swisher             | 72,800    |  |  |
| Total        |              | Total               | 1,241,000 |  |  |
| Louisi       | ana          | Texas Rolling       | g Plains  |  |  |
|              |              | Fisher              | 67,300    |  |  |
| Concordia    | 41,700       | Haskell             | 79,100    |  |  |
| East Carroll | 41,600       | Jones               | 61,500    |  |  |
| Franklin     | 64,500       | Knox                | 24,000    |  |  |
|              |              | Mitchell            | 39,700    |  |  |
|              |              | Scurry              | 42,800    |  |  |
| Tensas       | 96,500       | Total               | 314,400   |  |  |
| Total        | 244,300      | ) South Texas       |           |  |  |
| Mississ      | ippi         | Cameron             | 68,000    |  |  |
| Coahoma      | 93,900       | Hidalgo             | 70,400    |  |  |
| Leflore      | 89,700       | Willacy             | 77,800    |  |  |
| Yazoo        | 102,600      | Total               | 216,200   |  |  |
| Total        | 286,200      |                     |           |  |  |

Table 3: Acres of Upland Cotton Harvested in 1999, by County

Source: National Agricultural Statistics Service, 1999.

#### Value of the Crop

The value of Upland cotton in our pilot counties ranges from \$2.32 million in Brazos County, Texas, to \$138 million in Fresno County, California as seen in Table 4. While the production numbers are based on a county level, they are multiplied by the state-average price, as county level prices are unavailable. Table 5 indicates that the value per pilot state varies as well, from almost \$150 million in Alabama to close to \$1 billion in Texas.

| County       | Production<br>(480lb.<br>Bales) | Price<br>(\$ per<br>pound)* | Value of<br>Production (\$) | County         | Production<br>(480lb.<br>Bales) | Price<br>(\$ per<br>pound)* | Value of<br>Production (\$) |
|--------------|---------------------------------|-----------------------------|-----------------------------|----------------|---------------------------------|-----------------------------|-----------------------------|
|              | Northern A                      | Alabama                     |                             |                | North Ca                        | arolina                     |                             |
| Lawrence     | 36,600                          | 0.478                       | 8,397,504                   | Halifax        | 50,200                          | 0.475                       | 11,445,600                  |
| Limestone    | Limestone 79,000                |                             | 18,125,760                  | Martin         | 47,800                          | 0.475                       | 10,898,400                  |
| Madison      | 51,500                          | 0.478                       | 11,816,160                  | Northampton    | 70,300                          | 0.475                       | 16,028,400                  |
| Total        | 167,100                         |                             | 38,339,424                  | Total          | 168,300                         |                             | 38,372,400                  |
|              | Southern A                      | Alabama                     |                             |                | Texas Braz                      | os Valley                   | 7                           |
| Autauga      | 12,200                          | 0.478                       | 2,799,168                   | Brazos         | 11,800                          | 0.410                       | 2,322,240                   |
| Dallas       | 17,700                          | 0.478                       | 4,061,088                   | Burleson       | 26,000                          | 0.410                       | 5,116,800                   |
| Elmore       | 15,600                          | 0.478                       | 3,579,264                   | Milam          | 13,900                          | 0.410                       | 2,735,520                   |
| Total        | 45,500                          |                             | 10,439,520                  | Robertson      | 24,600                          | 0.410                       | 4,841,280                   |
|              | Arizo                           | ona                         |                             | Williamson     | 39,500                          | 0.410                       | 7,773,600                   |
| Maricopa     | 224,500                         | 0.439                       | 47,306,640                  | Total          | 115,800                         |                             | 22,789,440                  |
| Pinal        | 294,800                         | 0.439                       | 62,120,256                  |                | Texas Coas                      | stal Bend                   |                             |
| Total        | 519,300                         |                             | 109,426,896                 | Nueces         | 172,000                         | 0.410                       | 33,849,600                  |
|              | Califo                          | rnia                        |                             | San Patricio   | 189,200                         | 0.410                       | 37,234,560                  |
| Fresno       | 515,000                         | 0.562                       | 138,926,400                 | Total          | 361,200                         |                             | 71,084,160                  |
| Kern         | 378,400                         | 0.562                       | 102,077,184                 |                | Texas F                         | Plains                      |                             |
| Kings        | 240,100                         | 0.562                       | 64,769,376                  | Bailey         | 70,800                          | 0.410                       | 13,933,440                  |
| Madera       | 64,000                          | 0.562                       | 17,264,640                  | Castro         | 83,500                          | 0.410                       | 16,432,800                  |
| Merced       | 175,500                         | 0.562                       | 47,342,880                  | Cochran        | 107,800                         | 0.410                       | 21,215,040                  |
| Tulare       | 123,300                         | 0.562                       | 33,261,408                  | Hale           | 352,300                         | 0.410                       | 69,332,640                  |
| Total        | 1,496,300                       |                             | 403,641,888                 | Hockley        | 149,600                         | 0.410                       | 29,441,280                  |
|              | Geor                            | gia                         |                             | Lamb           | 209,000                         | 0.410                       | 41,131,200                  |
| Colquitt     | 95,000                          | 0.453                       | 20,656,800                  | Lubbock        | 220,500                         | 0.410                       | 43,394,400                  |
| Mitchell     | 70,000                          | 0.453                       | 15,220,800                  | Parmer         | 109,100                         | 0.410                       | 21,470,880                  |
| Worth        | 61,000                          | 0.453                       | 13,263,840                  | Swisher        | 105,600                         | 0.410                       | 20,782,080                  |
| Total        | 226,000                         |                             | 49,141,440                  | Total          | 1,408,200                       |                             | 277,133,760                 |
|              | Louisi                          | iana                        |                             |                | Texas Rolli                     | ng Plains                   |                             |
|              |                                 |                             |                             | Fisher         | 33,700                          | 0.410                       | 6,632,160                   |
| Concordia    | 74,600                          | 0.444                       | 15,898,752                  | Haskell        | 34,100                          | 0.410                       | 6,710,880                   |
| East Carroll | 67,300                          | 0.444                       | 14,342,976                  | Jones          | 22,500                          | 0.410                       | 4,428,000                   |
| Franklin     | 94,200                          | 0.444                       | 20,075,904                  | Knox           | 22,700                          | 0.410                       | 4,467,360                   |
|              |                                 |                             |                             | Mitchell       | 18,600                          | 0.410                       | 3,660,480                   |
|              |                                 |                             |                             | Scurry         | 22,600                          | 0.410                       | 4,447,680                   |
| Tensas       | 157,000                         | 0.444                       | 33,459,840                  | Total          | 119,600                         |                             | 30,346,560                  |
| Total        | Total 393,100 83,777,472        |                             |                             | 72 South Texas |                                 |                             |                             |
|              | Missis                          | sippi                       |                             | Cameron        | 83,300                          | 0.410                       | 16,393,440                  |
| Coahoma      | 141,800                         | 0.451                       | 30,696,864                  | Hidalgo        | 74,400                          | 0.410                       | 14,641,920                  |
| Leflore      | 142,000                         | 0.451                       | 30,740,160                  | Willacy        | 78,400                          | 0.410                       | 15,429,120                  |
| Yazoo        | 161,000                         | 0.451                       | 34,853,280                  | Total          | 195,800                         |                             | 46,464,480                  |
| Total        | 444.800                         |                             | 96,290,304                  |                |                                 |                             |                             |

Table 4: Value of Upland Cotton Production per County, 1999

(National Agricultural Statistics Service, 1999) 1999 state average price.

|                | Production              | Price          | Value of Production |
|----------------|-------------------------|----------------|---------------------|
| State          | (1000s of 480lb. bales) | (\$ per pound) | (\$1000s)           |
| 1999           |                         |                |                     |
| Alabama        | 625                     | 0.478          | 143,400             |
| Arizona        | 716                     | 0.439          | 150,876             |
| California     | 1,580                   | 0.562          | 426,221             |
| Georgia        | 1,567                   | 0.453          | 340,728             |
| Louisiana      | 901                     | 0.444          | 192,021             |
| Mississippi    | 1,731                   | 0.451          | 374,727             |
| North Carolina | 816                     | 0.475          | 186,048             |
| Texas          | 5,050                   | 0.410          | 993,840             |
| 2000           |                         |                |                     |
| Alabama        | 540                     | 0.543          | 140,746             |
| Arizona        | 760                     | 0.598          | 218,150             |
| California     | 2,200                   | 0.694          | 732,864             |
| Georgia        | 1,640                   | 0.575          | 452,640             |
| Louisiana      | 910                     | 0.541          | 236,309             |
| Mississippi    | 1,730                   | 0.501          | 416,030             |
| North Carolina | 1,440                   | 0.610          | 421,632             |
| Texas          | 3,950                   | 0.514          | 974,544             |
| 2001           |                         |                |                     |
| Alabama        | 935                     | *              | *                   |
| Arizona        | 730                     | *              | *                   |
| California     | 1850                    | *              | *                   |
| Georgia        | 2110                    | *              | *                   |
| Louisiana      | 1220                    | *              | *                   |
| Mississippi    | 2570                    | *              | *                   |
| North Carolina | 1480                    | *              | *                   |
| Texas          | 4400                    | *              | *                   |

Table 5: Value of All Cotton Production by State

(National Agricultural Statistics Service, 2001.) Note: \* indicates data is not yet available from NASS

## Value of All Crops in the Area

Table 6 illustrates the total monetary value of all agricultural crops grown within the pilot areas.

| County       | Value (\$1000s) | County        | Value (\$1000s) |  |  |
|--------------|-----------------|---------------|-----------------|--|--|
| Northern     | Alabama         | North (       | Carolina        |  |  |
| Lawrence     | 14,893          | Halifax       | 53,218          |  |  |
| Limestone    | 23,097          | Martin        | 53,903          |  |  |
| Madison      | 17,381          | Northampton   | 41,584          |  |  |
| Total        | 55,371          | Total         | 148,705         |  |  |
| Southern     | Alabama         | Texas Bra     | zos Valley      |  |  |
| Autauga      | 6,932           | Brazos        | 7,771           |  |  |
| Dallas       | 15,438          | Burleson      | 12,525          |  |  |
| Elmore       | 13,374          | Milam         | 18,581          |  |  |
| Total        | 35,744          | Robertson     | 11,204          |  |  |
| Ariz         | zona            | Williamson    | 31,610          |  |  |
| Maricopa     | 382,451         | Total         | 81,691          |  |  |
| Pinal        | 190,214         | Texas Coa     | astal Bend      |  |  |
| Total        | 572,665         | Nueces        | 63,110          |  |  |
| Calif        | ornia           | San Patricio  | 57,257          |  |  |
| Fresno       | 2,116,147       | Total         | 120,367         |  |  |
| Kern         | 1,786,994       | Texas         | Plains          |  |  |
| Kings        | 369,277         | Bailey        | 36,526          |  |  |
| Madera       | 507,829         | Castro        | 89,798          |  |  |
| Merced       | 577,894         | Cochran       | 37,051          |  |  |
| Tulare       | 1,122,523       | Hale          | 116,637         |  |  |
| Total        | 6,480,664       | Hockley       | 67,569          |  |  |
| Geo          | rgia            | Lamb          | 100,811         |  |  |
| Colquitt     | 93,140          | Lubbock       | 94,436          |  |  |
| Mitchell     | 69,253          | Parmer        | 100,222         |  |  |
| Worth        | 56,407          | Swisher       | 46,450          |  |  |
| Total        | 218,800         | Total         | 689,500         |  |  |
| Loui         | siana           | Texas Rol     | ling Plains     |  |  |
|              |                 | Fisher        | 18,197          |  |  |
| Concordia    | 53,652          | Haskell       | 28,482          |  |  |
| East Carroll | 61,128          | Jones         | 22,000          |  |  |
| Franklin     | 67,875          | Knox          | 15,454          |  |  |
|              |                 | Mitchell      | 12,890          |  |  |
|              |                 | Scurry        | 14,048          |  |  |
| Tensas       | 70,436          | Total         | 111,071         |  |  |
| Total        | 253,091         | 1 South Texas |                 |  |  |
| Missi        | ssippi          | Cameron       | 69,651          |  |  |
| Coahoma      | 92,072          | Hidalgo       | 181,134         |  |  |
| Leflore      | 84,282          | Willacy       | 45,120          |  |  |
| Yazoo        | 58,754          | Total         | 295,905         |  |  |
| Total        | 235,108         |               |                 |  |  |

Table 6: Value of All Agricultural Crops Grown

(1997 Census of Agriculture.)

## **Farm Characteristics**

Cotton farms vary in several ways. The prime example is farm size. As indicated in Table 7, farms in the pilot counties have from about 170 acres to 880 acres of cotton. According to the 1997 Census of Agriculture, the national average cotton acreage per farm is 433 acres.

| County       | Farm Size (acres) | County         | Farm Size (acres) |  |  |
|--------------|-------------------|----------------|-------------------|--|--|
| Northern     | Alabama           | North Carolina |                   |  |  |
| Lawrence     | 576.0             | Halifax        | 403.4             |  |  |
| Limestone    | 406.5             | Martin         | 168.8             |  |  |
| Madison      | 181.9             | Northampton    | 248.5             |  |  |
| Southern     | Alabama           | Texas Bra      | zos Valley        |  |  |
| Autauga      | 343.3             | Brazos         | 395.9             |  |  |
| Dallas       | 564.0             | Burleson       | 480.5             |  |  |
| Elmore       | 510.3             | Milam          | 243.9             |  |  |
| Ari          | zona              | Robertson      | 431.5             |  |  |
| Maricopa*    | 609.2             | Williamson     | 192.9             |  |  |
| Pinal*       | 539.1             | Texas Coa      | astal Bend        |  |  |
| Calif        | ornia             | Nueces         | 591.7             |  |  |
| Fresno*      | 607.3             | San Patricio   | 501.1             |  |  |
| Kern*        | 717.5             | 5 Texas Plains |                   |  |  |
| Kings*       | 784.4             | Bailey         | 420.9             |  |  |
| Madera*      | 379.4             | Castro         | 247.2             |  |  |
| Merced*      | 405.5             | Cochran        | 863.5             |  |  |
| Tulare*      | 318.0             | Hale           | 404.8             |  |  |
| Geo          | orgia             | Hockley        | 654.9             |  |  |
| Colquitt     | 316.9             | Lamb           | 401.6             |  |  |
| Mitchell     | 445.8             | Lubbock        | 538.0             |  |  |
| Worth        | 328.0             | Parmer         | 230.4             |  |  |
| Loui         | siana             | Swisher        | 318.2             |  |  |
| Concordia    | 482.7             | Rolling        | g Plains          |  |  |
|              |                   | Fisher         | 417.9             |  |  |
| East Carroll | 338.1             | Haskell        | 350.3             |  |  |
| Franklin     | 330.8             | Jones          | 414.8             |  |  |
| Tensas       | 664.1             | Knox           | 356.4             |  |  |
|              |                   | Mitchell       | 541.7             |  |  |
|              |                   | Scurry         | 372.7             |  |  |
| Missi        | ssippi            | South          | Texas             |  |  |
| Coahoma      | 877.9             | Cameron        | 283.9             |  |  |
| Leflore      | 651.2             | Hidalgo        | 479.8             |  |  |
| Yazoo        | 631.8             | Willacy        | 724.3             |  |  |

**Table 7: Average Size of Farms** 

(1997 Census of Agriculture.)

\*Includes ELS acres because the Census does not report acreage by type of cotton.

Many other crops are grown in the same areas as cotton. Table 8 illustrates some of the crops grown in each area along with the number of acres of each according to the 1997 Census of Agriculture. In addition to these crops, rice, tobacco, peanuts, and sugarcane are crops that may also be grown in these areas.

#### **Table 8: Other Crop Acreage in Pilot Areas**

| Region                      | Barley<br>Acres | Corn<br>Acres | Cotton<br>Acres | Hay<br>Acres | Sorghum<br>Acres | Soybean<br>Acres | Wheat<br>Acres | Orchard<br>Acres | Vegetable<br>Acres |
|-----------------------------|-----------------|---------------|-----------------|--------------|------------------|------------------|----------------|------------------|--------------------|
| Northern Alabama            | 0               | 31,582        | 52,176          | 62,861       | 0                | 92,434           | 18,159         | 0                | 0                  |
| Southern Alabama            | 0               | 7,214         | 44,013          | 34,046       | 0                | 11,527           | 33,065         | 0                | 0                  |
| Arizona                     | 55,976          | 7,822         | 231,314         | 104,735      | 0                | 0                | 56,349         | 26,219           | 28,092             |
| California                  | 42,927          | 0             | 1,002,088       | 592,084      | 0                | 0                | 230,525        | 1,383,145        | 322,792            |
| Georgia                     | 0               | 18,785        | 185,171         | 10,399       | 0                | 8,316            | 7,272          | 0                | 0                  |
| Louisiana                   | 0               | 0             | 257,739         | 9,271        | 24,569           | 281,225          | 17,083         | 0                | 0                  |
| Mississippi                 | 0               | 53,518        | 214,890         | 8,390        | 7,496            | 316,379          | 23,146         | 0                | 0                  |
| North Carolina              | 0               | 22,537        | 148,947         | 4,522        | 0                | 25,940           | 9,666          | 0                | 0                  |
| Texas Brazos Valley         | 0               | 100,654       | 80,970          | 174,536      | 107,937          | 5,197            | 25,156         | 0                | 0                  |
| Texas Coastal Bend          | 0               | 36,708        | 182,282         | 14,795       | 328,492          | 0                | 4,168          | 0                | 0                  |
| Texas Plains                | 0               | 298,127       | 1,249,029       | 64,506       | 318,418          | 46,663           | 379,742        | 0                | 0                  |
| <b>Texas Rolling Plains</b> | 0               | 0             | 185,918         | 63,392       | 30,299           | 628              | 289,605        | 0                | 0                  |
| South Texas                 | 0               | 63,045        | 200,030         | 18,363       | 336,470          | 5,474            | 4,931          | 0                | 0                  |
| Total                       | 98,903          | 639,992       | 4,034,567       | 1,130,301    | 1,145,496        | 793,783          | 1,063,824      | 1,409,364        | 350,884            |

(1997 Census of Agriculture.) \*Includes ELS acres because the Census does not separate acreage out by type of cotton. Zeros indicate no data available in the 1997 Census County Highlights.

Northern Alabama: Lawrence, Limestone, Madison

Southern Alabama: Autauga, Dallas, Elmore

Arizona: Maricopa, Pinal

California: Fresno, Kern, Kings, Madera, Merced, Tulare

Georgia: Colquitt, Mitchell, Worth

Louisiana: Concordia, East Carroll, Franklin, Tensas

Mississippi: Coahoma, Leflore, Yazoo

North Carolina: Halifax, Martin, Northampton Texas Brazos Valley: Brazos, Burleson, Milam, Robertson, Williamson

Texas Coastal Bend: Nueces, San Patricio

Texas Plains: Bailey, Castro, Cochran, Hale, Hockley, Lamb, Lubbock, Parmer, Swisher

Texas Rolling Plains: Fisher, Haskell, Jones, Knox, Mitchell, Scurry

South Texas: Cameron, Hidalgo, Willacy

Farmers or operators may have primary occupations that do not relate to the farm production. Table 9 shows the number of operators whose principal occupation is farming and the number of operators whose occupation is something other than farming.

|              | Principal Occupation of |            |              | Principal O          | Principal Occupation of |  |
|--------------|-------------------------|------------|--------------|----------------------|-------------------------|--|
|              | Operator (a             | all farms) |              | Operator             | (all farms)             |  |
| County       | Farming                 | Other      | County       | Farming              | Other                   |  |
| Nor          | thern Alabama           |            |              | North Carolina       |                         |  |
| Lawrence     | 426                     | 861        | Halifax      | 254                  | 92                      |  |
| Limestone    | 375                     | 752        | Martin       | 276                  | 113                     |  |
| Madison      | 371                     | 602        | Northampton  | 235                  | 107                     |  |
| Total        | 1,172                   | 2,215      | Total        | 765                  | 312                     |  |
| Sou          | thern Alabama           |            |              | Texas Brazos Valley  | y                       |  |
| Autauga      | 167                     | 181        | Brazos       | 380                  | 704                     |  |
| Dallas       | 187                     | 248        | Burleson     | 562                  | 775                     |  |
| Elmore       | 205                     | 355        | Milam        | 740                  | 915                     |  |
| Total        | 559                     | 784        | Robertson    | 520                  | 769                     |  |
|              | Arizona                 |            | Williamson   | 85                   | 1,199                   |  |
| Maricopa     | 776                     | 867        | Total        | 2,287                | 4,362                   |  |
| Pinal        | 369                     | 172        |              | Texas Coastal Bend   | 1                       |  |
| Total        | 1,145                   | 1,039      | Nueces       | 282                  | 287                     |  |
|              | California              |            | San Patricio | 284                  | 212                     |  |
| Fresno       | 4,108                   | 2,484      | Total        | 566                  | 499                     |  |
| Kern         | 1,274                   | 723        |              | Texas Plains         |                         |  |
| Kings        | 671                     | 408        | Bailey       | 299                  | 142                     |  |
| Madera       | 977                     | 696        | Castro       | 371                  | 118                     |  |
| Merced       | 1,752                   | 1,079      | Cochran      | 184                  | 92                      |  |
| Tulare       | 3,022                   | 2,424      | Hale         | 577                  | 263                     |  |
| Total        | 11,804                  | 7,814      | Hockley      | 424                  | 251                     |  |
|              | Georgia                 |            | Lamb         | 550                  | 315                     |  |
| Colquitt     | 326                     | 308        | Lubbock      | 591                  | 477                     |  |
| Mitchell     | 247                     | 217        | Parmer       | 444                  | 155                     |  |
| Worth        | 243                     | 163        | Swisher      | 317                  | 212                     |  |
| Total        | 816                     | 688        | Total        | 3,757                | 2,025                   |  |
|              | Louisiana               |            |              | Texas Rolling Plains | 5                       |  |
|              |                         |            | Fisher       | 316                  | 287                     |  |
| Concordia    | 212                     | 80         | Haskell      | 347                  | 264                     |  |
| East Carroll | 193                     | 51         | Jones        | 387                  | 48                      |  |
| Franklin     | 434                     | 298        | Knox         | 174                  | 122                     |  |
|              |                         |            | Mitchell     | 177                  | 201                     |  |
|              |                         |            | Scurry       | 292                  | 314                     |  |
| Tensas       | 156                     | 46         | Total        | 1,693                | 1,236                   |  |
| Total        | 995                     | 475        |              | South Texas          |                         |  |
| Mississippi  |                         | Cameron    | 434          | 468                  |                         |  |
| Coahoma      | 150                     | 31         | Hidalgo      | 624                  | 749                     |  |
| Leflore      | 184                     | 62         | Willacy      | 163                  | 80                      |  |
| Yazoo        | 226                     | 198        | Total        | 1,221                | 1,297                   |  |
| Total        | 560                     | 291        |              |                      |                         |  |

#### Table 9: Occupation of Operator

(1997 Census of Agriculture.)

### Supply and Demand

Table 10 summarizes world cotton production for the past six years. At the time of this report, reporting for the 2000/01crop year is almost complete with an expected U.S. production level of 17.2 million bales. World production

(including the U.S.) is expected to be 88 million bales, thus the U.S. share would remain at a level 19.5 percent of the world market.

| Area                       |         | Production per Year (million bales) |         |         |         |         |  |  |  |
|----------------------------|---------|-------------------------------------|---------|---------|---------|---------|--|--|--|
|                            | 1995/96 | 1996/97                             | 1997/98 | 1998/99 | 1999/00 | 2000/01 |  |  |  |
|                            |         |                                     |         |         |         | (July)  |  |  |  |
| United States              | 17.9    | 18.9                                | 18.8    | 13.9    | 17.0    | 17.2    |  |  |  |
| World                      | 93.1    | 89.6                                | 91.6    | 84.9    | 87.4    | 88.0    |  |  |  |
| U.S. % of world production | 19.2    | 21.1                                | 20.5    | 16.4    | 19.5    | 19.5    |  |  |  |
| (0, u) = 1 (1.0001)        |         |                                     |         |         |         |         |  |  |  |

#### Table 10: Foreign and Domestic Production

(Cotton Incorporated, 2001)

The USDA's July 2001 report reflects a net increase of 200,000 bales in this year's domestic production and a 100,000 bale decrease in imports as compared with the 1999/2000 crop year. Supply is relatively unchanged with only a 100,000 bale increase over the prior year.

Demand is expected to decline 1.5 million bales from the 1999/2000 levels. The major culprit here is mill use. This is attributed to competition from textile imports that have offset much of the growth in domestic retail demand. Mill use is seen declining 1.3 million bales to 8.9 million, the lowest mill use seen since 1990. Demand, at 15.5 million bales, is unchanged from June's estimate, resulting in ending stocks of 5.6 million bales and a stocks-to-use ratio of 36.1%.

| 11 0               |         |         | ,       |                 |
|--------------------|---------|---------|---------|-----------------|
|                    | 1997/98 | 1998/99 | 1999/00 | 2000/01<br>July |
|                    |         |         |         |                 |
| Beginning Stocks   | 4.0     | 3.9     | 3.9     | 3.9             |
| Production         | 18.8    | 13.9    | 17.0    | 17.2            |
| Imports            | 0.0     | 0.4     | 0.1     | 0.0             |
| Supply             | 22.8    | 18.2    | 21.0    | 21.1            |
|                    |         |         |         |                 |
| U.S. Mill Use      | 11.3    | 10.4    | 10.2    | 8.9             |
| Exports            | 7.5     | 4.3     | 6.8     | 6.6             |
| Demand             | 18.8    | 14.7    | 17.0    | 15.5            |
|                    |         |         |         |                 |
| Ending Stocks      | 3.9     | 3.9     | 3.9     | 5.6             |
|                    |         |         |         |                 |
| Stocks/Use Ratio   | 20.7%   | 26.5%   | 22.9%   | 36.1%           |
| (Cotton, Inc., 200 | 1.)     |         |         |                 |

#### Table 11: Supply and Demand (million bales)

#### Prices

Cotton prices have exhibited a downward turn in recent years. This is attributed to the decrease in domestic consumption of textile products and a decrease in exports. The dollar has been strong in comparison with other currencies, making American products more expensive to purchase. In addition, China has emerged as a major competitor in the world cotton market, producing nearly 20 million bales per year. Adverse weather conditions suffered by farmers have also affected prices. In some areas, an increase in insect and disease problems proved detrimental to product quality. Cotton was placed into lower than normal grades, which in turn earned lower prices.

Because of the small rebound in price in year 2000, cotton producers were optimistic about increasing prices going into the 2001 crop year. As mentioned above, producers responded by increasing production acreage by more than 800,000 acres. At planting time, producers viewed the cotton crop as having relatively favorable net returns over competing crops when considering the cotton marketing loan program and the crop insurance program. Producers could not have been more wrong. As of July 2001, producers are seeing spot market quotes in some areas in the low 40-cent range per pound of cotton, which is some of the lowest prices on record.

Figure 2 depicts the trend in national prices over the past 10 years.



(Source: National Agricultural Statistics Service, 2001) Figure 2: U.S. Cotton Price

## **Economic Significance for Next Five Years**

According to the extension agents and agronomists that were interviewed, cotton is a very substantial industry, both within states and pilot counties. In most of the pilot areas, cotton is either the top or one of the top commodities in production acreage and value.

Cotton is the largest, most significant commodity in the Arizona pilot areas. While agricultural lands have begun to be incorporated into the Phoenix metropolitan area, cotton acreage is continuing to grow and cotton specialists expect it will remain that way for at least the next five years.

Cotton specialists in California say that if cotton in the San Joaquin Valley is in trouble, the rest of the valley is also. California is unique due to its numerous specialty crops. Cotton affects the markets of these specialty crops, because if a producer chooses to get out of cotton production, he/she will most likely begin producing vegetables or perennials. The increases in production of those crops, which are not able to be stored, may easily create excesses and drive down their market prices.

Specialists in Louisiana, Georgia, North Carolina and Texas indicate that cotton will always be significant to their areas. In many of the areas, cotton is the top commodity and there are not any other feasible alternatives due to average rainfall and potential profitability. For this reason, they conclude that cotton will continue to be significant in their regions. However, there may be some changes due to price fluctuations in cotton and other primary crops in the region.

The following graphs depict the trends in production and value of production in the pilot states over the past ten years. The majority of areas saw an increase in production and value for multiple years, peaking in 1995. The industry dipped severely in 1998. Figure 3, Figure 4, Figure 5, and Figure 6 show production and value trends by state for the last 10 years. Georgia and Texas show the greatest fluctuations in production and value. The Texas cotton industry is especially erratic in its movements.



(Source: National Agricultural Statistics Service, 2001) Figure 3: Cotton Production by State



(Source: National Agricultural Statistics Service, 2001) Figure 4: Cotton Production by State (II)



(Source: National Agricultural Statistics Service, 2001) **Figure 5: Value of Production by State** 



(Source: National Agricultural Statistics Service, 2001) Figure 6: Value of Production by State (II)

Table 12 utilizes AgriLogic's proprietary econometric models to forecast future trends within the cotton industry. Production over the next five years is expected to decrease initially, and will then remain relatively flat to increasing as the current lower levels of demand eventually stabilize with the current high levels of supply. Planted and harvested acres are also projected to decrease initially, and should then remain relatively constant to increasing for the same reasons. Yields are projected to increase 5% over the five-year period, as producers utilize more efficient methods of production. Disappearance is projected to follow the same pattern as production and acreage—an initial decrease, then a leveling out to possibly increasing trend. Price is projected to remain within a \$0.51 to \$0.55 range over the period. Stock-to-Use ratio is expected to decrease slightly through 2004, and should then begin to increase in correlation with the minor increase in production.

| Major Crops Supply/Use                   |         |           |         |         |         |
|------------------------------------------|---------|-----------|---------|---------|---------|
|                                          | 2002    | 2003      | 2004    | 2005    | 2006    |
| Cotton                                   |         |           |         |         |         |
|                                          |         |           |         |         |         |
| Production (mil 480 lb. bales)           | 18.6    | 18.4      | 17.7    | 17.7    | 17.8    |
| Acres planted (mil. acres)               | 14.9    | 14.7      | 14.1    | 14.0    | 14.0    |
| Acres harvested (mil. acres)             | 14.2    | 13.9      | 13.3    | 13.2    | 13.3    |
| Yield per harvested acre                 | 629.3   | 633.2     | 637.6   | 641.3   | 645.6   |
| Supply:                                  |         |           |         |         |         |
| Beginning stocks (mil. 480 lb. bales)    | 8.7     | 9.6       | 10.1    | 9.9     | 9.9     |
| Production (mil. 480 lb. bales)          | 18.6    | 18.4      | 17.7    | 17.7    | 17.8    |
| Total supply                             | 27.2    | 27.9      | 27.8    | 27.6    | 27.7    |
|                                          |         |           |         |         |         |
| Disappearance:                           |         |           |         |         |         |
| Mill use (mil. 480 lb. bales)            | 8.7     | 8.9       | 8.9     | 8.9     | 8.9     |
| Other use (mil. 480 lb. bales)           | 0.0     | 0.0       | 0.0     | 0.0     | 0.0     |
| Total domestic use                       | 8.7     | 8.9       | 8.9     | 8.9     | 8.9     |
| Net exports (mil. 480 lb. bales)         | 8.9     | 8.9       | 8.9     | 8.9     | 8.9     |
| Ending total stocks (mil. 480 lb. bales) | 9.6     | 10.1      | 9.9     | 9.9     | 10.0    |
| Total disappearance                      | 27.2    | 27.9      | 27.8    | 27.6    | 27.7    |
|                                          |         |           |         |         |         |
| Price of cotton (\$/lb.)                 | \$0.49  | \$0.49    | \$0.51  | \$0.52  | \$0.53  |
| Loan rate (\$/lb.)                       | \$0.52  | \$0.52    | \$0.52  | \$0.52  | \$0.52  |
|                                          | 54.4001 | 5.5.0.504 | 55 5001 | 55.500  | 56.0.00 |
| Stock-to-Use ratio                       | 54.43%  | 56.26%    | 55.72%  | 55.63%  | 56.06%  |
| Value of Production                      | \$ 9.11 | \$ 9.02   | \$ 9.03 | \$ 9.20 | \$ 9.43 |

#### Table 12: AgriLogic's U.S. Cotton Projections

(Source: AgriLogic, Inc.)

### Operation of Model

These forecasts were generated using AgriLogic's econometric model, NATMOD. NATMOD is a fully simultaneous model, which weighs all supply and demand conditions for each segment of the agricultural industry. The industry segments range from crucial input sectors such as land, fertilizer, and chemicals, to the commodity markets in which the products are marketed. The model forecasts future market conditions based on the combined characteristics of all influencing factors, from macroeconomic conditions to projected future market supply conditions.

The initial step in the execution of the model is to develop a projection of future supply and demand conditions based on current environmental circumstances within each respective agricultural market. The process begins with an estimation of the relative supply conditions for the upcoming year. The supply for each commodity is determined as a combination of historical acreage and shifts deemed necessary due to variation in profitability between commodities. The relationships between all model elements (acreage, yield, commodities, etc) were established through an examination and correlation of historical data.

Once a supply of commodities is established, the next step is to evaluate its effect on the commodity markets. The demand for these crops is established as a summation of all potential markets' demands for a crop and its byproducts. NATMOD categorizes demand into several segments, specifying utilization as food, feed, seed, net exports, ending stocks, or any other statistically significant use of the commodity. Market demands are quantified as a series of regressions on historic and current market relationships and conditions. The model then uses the supply and demand calculated in combination with the Newton Rapson method to identify an appropriate market-clearing price for each commodity. The Newton Rapson method is a recursive process adjusting price levels up or down until the intersection is discovered between the supply and demand curves. The Newton Rapson method solves numerically for an appropriate combination of market clearing prices, which cannot be obtained algebraically due to current market prices' non-linear relationship with demand and supply functions. In addition, the price assignment method is constrained by the demand side equations that define the relationships between the various markets. Once the intersection is discovered simultaneously for all crop and livestock markets, a combination of the forecast prices are assigned to the respective commodities. Each individual commodity's forecasted price, supply, and demand is then available for review.

## **Cotton Production**

## **Cultural Factors**

#### Description of the Crop

The cotton plant is usually considered a perennial, although it is planted annually where it is grown commercially. The woody, herbaceous plant has a long taproot and attains a height of two to five feet or taller under favorable conditions. Cotton grows best with high temperatures and adequate soil moisture and fertility. Air temperatures in the 90° to 95° F range are considered optimum for growth. Little or no growth can be expected at 60° F or below. Temperatures in excess of 100° F for several days can be unfavorable, especially if soil moisture becomes deficient. The taproot grows downward into moist soil at a rate of about one inch per day for five weeks or longer. During the growing season the daily growth rate of roots may average half an inch.

When cotton plant emerges, the first leaf structures are called cotyledon or seed leaves. They appear on the lowest node and are borne on opposite sides of the main stem. The nodes above the seed leaves bear a single true leaf. These leaves have a spiral arrangement around the stem. The true leaves have five or more clearly defined lobes. At the base of each main stem leaf, in the angle between the leaf and the stem, there are two to three buds. They are called axillary buds and give rise to the vegetative and fruiting branches. The vegetative branches are normally restricted to the lower nodes on the stem. In most American Upland cottons, the first fruiting branch begins developing at the fifth or sixth node above the seedling leaves. The fruiting branches produce floral buds, called cotton squares, which develop into bolls. Flowers (blooms) are creamy white when they first open. Fertilization occurs on the day that the flowers open, and turn pink the day after anthesis (the period of opening of a flower). Boll development begins shortly thereafter. The interval between corresponding nodes on successive fruiting branches (vertical flowering interval) is two to three days, and the interval between successive flowers on the same fruiting branch (horizontal fruiting interval) is five to six days.

Flowering usually begins about seven to eleven weeks after planting. Determinate varieties stop growing after boll development. In contrast, indeterminate varieties are usually late maturing and continue flowering until halted by frost, drought, insect attack, or some other cause. The flower bud is usually discernible three to four weeks before the flower opens. Many of the squares, flowers, or developing bolls drop off naturally. This is called shedding. As a result, it is estimated that only 35% to 40% of the squares produce mature bolls under normal conditions. The most critical time for developing fruit is three to ten days after pollination. The period between flowering and opening of mature bolls is six to eight weeks, depending on growing conditions. Cloudy conditions and below normal temperatures during this period can increase the boll maturation period.

Fruit of the cotton plant is the enlarged three to five-loculed ovary commonly referred to as a cotton boll. Mature bolls vary in size and shape depending on the variety and environmental conditions but are usually one and a half to two inches in diameter. Bolls that set during the first three weeks of fruiting are usually the largest and contain the highest quality fiber. Normally, late set bolls are smaller and may contain finer and less mature fiber, depending on temperature and moisture levels during the boll maturation period. Normally, 65 to 90 bolls are required to produce one pound of seed cotton. However, some varieties produce relatively small bolls that may require 100 bolls or more to produce one pound of seed cotton.

Fiber length development is determined during the first three weeks after flowering. Increases in micronaire value, as well as fiber strength, occurs during the next three to four week period after length is established. Moisture stress during the first three weeks after flowering can restrict fiber length. Adequate temperature is a critical factor in determining the strength and maturity of lint.

The cotton plant can adapt to different environmental stresses. In a severe drought, the plant may be only six inches high but still capable of producing several bolls. A plant of the same variety grown under adequate moisture or irrigation may be five feet in height and produce 40 to 50 bolls. Depending on other stresses, the number of bolls that develop is kept in balance with the vegetative growth of the plant. The fruiting-vegetative balance is affected by several factors. A shift in vegetative growth is associated with excess nitrogen and soil moisture, coupled with cool, cloudy conditions. This shift is intensified even further if initial fruit set is poor or if excessive shedding has

taken place. Warm, sunny weather, adequate, but not excessive moisture, nitrogen, and minimal insect stress encourage fruiting.

A population of 30,000 to 65,000 plants per acre is the optimum range for maximum yield. Although the cotton plant can adjust to variable spacing, uniform distribution of plants in the row produces the highest yields. Under dryland conditions a plant population in the lower range is desirable, especially in low rainfall areas.

Cottonseed is frequently planted at rates higher than necessary to achieve adequate stands. A dense stand results in crowding in the drill-row. High plant population encourages fruit set at a higher position on the plant, which contributes to delayed maturity. Severe crowding can result in barren plants that function as weeds because they compete for moisture and nutrients.

Planting date, variety, available moisture, and temperature during the fruiting period influences the time required for specific growth and development stages in the cotton plant. Other factors such as soil type and the level of insect, weed and disease pressure can also alter the time required to reach various growth and fruiting stages.

#### Varieties

Transgenic varieties accounted for approximately 72% of all upland cotton planted in the U.S. in 2000. Transgenic varieties are genetically modified to be resistant to herbicides (BXN and Roundup Ready), pests (Bt), or both (stacked.)

Varieties grown in the Arizona pilot areas are anywhere from 70% to 80% transgenic, being mostly Bt. Around 25% of all Upland in California (including both California Upland and Acala) is of transgenic variety. In Georgia and Louisiana, stacked varieties are predominant. Approximately 30% of producers in North Carolina continue to use the conventional varieties. The other 70% prefer Roundup Ready, but have not been able to get it the last couple of years and therefore, are using more stacked varieties. Some areas of Texas also utilize mostly transgenic varieties with as much as 80% to 90% in the Brazos Valley, 60% to 75% in the Rolling Plains (which is mostly Roundup Ready), and over 70% in the Plains. However, transgenic varieties have not yet dominated some areas such as the Texas Coastal Bend, where the most common varieties are conventional varieties, and in South Texas, where only approximately 10% of the cotton is transgenic. Some of the resistance to growing transgenic varieties is due to the belief that they provide less yield potential and poorer quality than conventional varieties.

The USDA Agricultural Marketing Service reported that more than 23 seed companies, including Deltapine, Paymaster, Stoneville, Sure-Grow, California Planting Cotton Seed Distributors (CPCSD), and Aventis, marketed more than 180 cotton varieties in 2000.

Deltapine-owned varieties were the most popular Upland cotton planted in the U.S. in 2000, accounting for 39% of all U.S. acreage. Deltapine varieties led in Alabama, Arizona, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and Virginia. Deltapine's most popular varieties were transgenic varieties, which contributes to the high percentage of genetically altered cottonseed that was planted last year. The DP 451 B/RR variety accounted for 6.4% of all Upland cotton planted, and the DP 458 B/RR variety accounted for 5.7%.

The second most popular is the Paymaster brand. In 2000 almost 32% of U.S. cotton acreage was planted using Paymaster varieties. Paymaster cotton led in Oklahoma, Tennessee, and Texas. The most popular Paymaster varieties were also transgenic varieties. The PM 2326 RR variety accounted for 9.5%. The PM 1218 BG/RR variety was second with 5.9%, while the PM 2200 RR variety followed with 5.4%.

Stoneville-owned varieties were the third most popular, accounting for 11.9% of the U.S. acreage in 2000. Stoneville varieties were the most commonly used in Missouri and the second most common in Arkansas, Louisiana, and Mississippi. The BXN 47 variety, the most popular Stoneville variety, accounted for 6.6% of the U.S. acreage.

The Sure-Grow brand was the fourth most popular variety last year, accounting for 8.3%, followed by CPCSD with 2.6% of total acreage. CPCSD varieties were the leading variety planted in California covering almost 62% of Upland acreage in the state.

Table 13 lists the most popular variety in each state and the percentage of acreage it covers.

| Pilot State    | Variety                 | % of Acreage |
|----------------|-------------------------|--------------|
| Alabama        | Deltapine DP 458 B/RR   | 14           |
| Arizona        | Deltapine Nucotton 33   | 26           |
| California     | CPCSD Acala MAXXA       | 32           |
| Georgia        | Deltapine DP 458 B/RR   | 15           |
| Louisiana      | Deltapine Nucotton 33 B | 21           |
| Mississippi    | Deltapine DP 451 B/RR   | 27           |
| North Carolina | Stoneville BXN 47       | 12           |
| Texas          | Paymaster PM 2326 RR    | 26           |

Table 13: Most Popular Varieties for 2000 by State

(Cotton Incorporated, 2001.)

## <u>Tillage</u>

## Conventional Tillage

Tilling is the process of loosening and turning the soil over to prepare for planting. A machine, usually a disk plow, breaks up soil. The objective is to provide a firm, moist, weed-free seedbed that will not constrict roots. Fertilizers, herbicides, and micronutrients are often added to the soil at this time. This method requires additional trips across the field, which results in higher costs for the farmer. This method disturbs the soil's entire surface and is performed prior to and/or during planting.

## Conservation Tillage

Conservation tillage is a tilling system that strives to minimize soil erosion, nutrient loss, crop damage, and decreased water storage capacity. This is accomplished by leaving residue cover on the surface of the soil after planting. At least 30% of crop residue must be left after planting to qualify as a conservation tillage system. Crop residue is the leftover stalks and leaves of the crop left on the field after harvest. The soil is left virtually undisturbed from harvest to planting. Weeds are controlled using herbicides, cover crops, and limited cultivation.

Conservation tillage provides many benefits to farmers including reduced labor requirements, fewer work hours, and reduced fuel costs. The field has increased water infiltration into the soil, reduced erosion, and improved long-term productivity. This method is gaining popularity across the country.

### No Tillage

Some farmers choose not to till their fields at all; instead they rely on burn-down chemicals to rid the fields of weeds prior to planting and follow with pre-emerge or post-emerge herbicides. No-till systems are considered a form of conservation tillage. This practice is used mainly in areas where soil erosion is a problem. However, yields are not quite as large when using this method.

### Utilized Tillage by Area

Over the past few years, increasingly more reduced or no-till practices have been used in various regions of the United States. The pilot areas are no exception. There is limited reduced till in Arizona pilot areas, and due to a mandatory state plow-down program for pink bollworm in California's San Joaquin Valley, tilling is almost entirely performed using conventional practices. In Northeast Louisiana, approximately 90% of the acreage is worked using some type of reduced tillage. Over half of the North Carolina pilot area uses strip till, and the rest of the state continues to use conventional practices. Texas provides a wide variety of practices. In the Brazos Valley, there is little no-till, but there is not as much conventional tilling as in the past. The Coastal Bend is another area that has not yet adopted many reduced tillage practices. While little residue management has been performed in the Rolling Plains, specialists are anticipating more reduced till in 2001. In South Texas the producers have adopted conservational tillage practices although in some cases it has created difficulties in killing the cotton plant and increased boll weevil problems.

## **Other Field Preparations**

Vast differences in field preparations are used on cotton acreage. In Arizona, fields are plowed, leveled, and shaped. California conducts its bed preparations in winter and irrigates before planting in order to plant into moisture. Narrow rows are more prevalent in the Texas Coastal Bend. Producers in the Rolling Plains of Texas typically perform bed preparations early and then reshape to plant. Many South Texas farmers begin preparations early as well, by applying herbicides in September or October and then fertilizing. Some growers in the Plains of Texas plant small grains as ground cover to reduce potential erosion.

## **Propagation**

Cotton originated as a perennial crop in tropical climates. However, it has been bred and adapted for use as an annual in temperate climates. This means that all plants are removed from a field after harvest, and new plants are grown from seeds planted each year. Farmers choose the type of seed based on their needs and their growing conditions.

### Planting

Cool weather is an important factor influencing Upland cotton seedling vigor and stand establishment. An early planting date is essential for early harvest and potential maximum yield realization. An optimum planting date takes into account soil temperature, weather conditions, and the seedling variety being planted. Optimum soil temperatures for planting are 65°F at 8 a.m. with a favorable five-day forecast (no cool fronts or storms).

Cotton is generally planted in rows 30 to 40 inches apart. The typical interval is 38 inches. Planting concentrations range from 25,000 to 60,000 plants per acre. This breaks down to between two to five plants per row foot. Planting concentrations vary according to climate conditions, soil types, and production efficiencies.

Skip-row planting patterns are common non-irrigated planting practices for cotton in many areas of Texas. This practice consists of a pattern of alternating rows of cotton and idle land throughout the field. Skip-row crops grown under irrigation require less fallow area than dryland crops. Furrow irrigation of a skip-row pattern is more efficient than sprinkler irrigation, since sprinklers irrigate the entire planted and fallow area. On clay soils, less fallow area is desirable than on a sandy soil since the lateral root growth is less extensive.

Too many plants in an area decrease chemical effectiveness, resulting in later fruiting, and cause excessive vegetative growth. Conversely, having too few plants reduces efficiency and often results in excessive weed growth. Producers should plant based on seeds per foot versus pounds per acre due to differences in the number of seeds per pound for each variety. Populations should be adjusted for row width. One practice that is used in North Carolina and the Texas Coastal Bend is to plant 3 seeds every 12 to 14 inches rather than to plant evenly spaced seeds. This is practiced to reduce seed costs.

No-till practices are often used in conjunction with ultra-narrow row (UNR) layout. Rows are spaced only 7.5 to 10 inches apart, allowing for more cotton to be grown per acre. This practice is intended to reduce mid-season herbicide treatments as well, because the high concentration of cotton plants chokes out any weeds.

Cotton can be planted in either furrows or raised beds. Soil temperatures tend to be 3°F to 4°F higher in beds than in furrows. Some farmers, like those in the Texas Brazos Valley, the Coastal Bend, and South Texas, find that raised bed planting leads to an increased germination rate, more uniformity in development, and greater ease and efficiency in pest control and other production operations.

Liming and fertilizer recommendations should always be based on a soil test. The lower limit of pH on clay soils is 5.6 and 5.8 on lighter, sandier soils, and the upper limit is approximately 6.5 for most soil types.

### **Irrigation**

Moisture management is considered the key to increased production. Each plant requires roughly 0.1 inches of water per day until squares form. When blooming starts, each plant needs between 0.25 and 0.4 inches of water per day. Water needs are reduced as the first open bolls appear. Plants may require less water if irrigation is timed to provide plants with water at critical demand periods.

Too much water may cause problems such as decreased growth rates and reduced fiber quality. Therefore, irrigation systems are customized to the needs of an area. Center pivot, furrow, sprinkler, and Low Energy Precision Application (LEPA) systems provide farmers with choices as to which system best benefits the crops in that region. Furrow systems are used in heavier soils, like those in the Lower Rio Grande Valley. LEPA systems allow farmers to apply water at ground level, which decreases evaporation and increases efficiency.

Preferred irrigation practices vary across the country and often even within a county or region depending on type and availability of water. None of the cotton produced in Georgia and North Carolina irrigated while all cotton grown in Arizona and California is irrigated. Arizona and California producers practice mainly furrow irrigation, but there is some sprinkler or flat-planted flood irrigation. Louisiana and Texas' Brazos Valley are also predominantly furrowed, but also have quite a bit of center pivot irrigation. While 60% of South Texas produces dryland cotton, nearly all the acreage that is irrigated is furrow irrigation. San Patricio County, which is in the Texas Coastal Bend, is experiencing an increase in irrigation. While several irrigation practices are represented in the county, most of the irrigation is center pivot. Mostly dryland cotton is grown in Texas' Rolling Plains. The acreage that is irrigated displays a variety of practices such as drip, furrow, and center pivot. In the Plains of Texas, about half of the cotton is irrigated and producers typically use center pivot or LEPA systems, which are encouraged in order to maximize water use capacity.

Table 14 shows the amount of irrigated and dryland acreage in each pilot area.

| County       | Irrigated<br>Cotton | Dryland<br>Cotton | County          | Irrigated<br>Cotton  | Dryland<br>Cotton |
|--------------|---------------------|-------------------|-----------------|----------------------|-------------------|
|              | Acres               | Acres             |                 | Acres                | Acres             |
| Nor          | thern Alaban        | 18                | North Carolina  |                      |                   |
| Lawrence     | **                  | 24.769            | Halifax         | 1.000                | 55.876            |
| Limestone    | 2.127               | 19.824            | Martin          | **                   | 37.139            |
| Madison      | **                  | 5,456             | Northampton     | 484                  | 54,445            |
| Total        | 2,127               | 50,049            | Total           | 1,484                | 147,460           |
| Sou          | thern Alaban        | na                | Texas           | Brazos Valle         | ey .              |
| Autauga      | **                  | 9,956             | Brazos          | 3,106                | 2,833             |
| Dallas       | 193                 | 14,471            | Burleson        | 9,692                | 5,684             |
| Elmore       | **                  | 19,393            | Milam           | **                   | 14,391            |
| Total        | 193                 | 43,820            | Robertson       | 10,243               | 1,839             |
|              | Arizona             |                   | Williamson      | **                   | 33,182            |
| Maricopa*    | 3,338               | 0                 | Total           | 23,041               | 57,929            |
| Pinal*       | 1,223               | 0                 | Texas           | Coastal Ben          | d                 |
| Total        | 4,561               | 0                 | Nueces          | **                   | 100,597           |
|              | California          |                   | San Patricio    | 1,277                | 80,408            |
| Fresno*      | 348,003             | 0                 | 0 Total 1,277 1 |                      |                   |
| Kern*        | 265,462             | 0                 | 0 Texas Plains  |                      |                   |
| Kings*       | 196,108             | 0                 | Bailey          | 25,753               | 47,898            |
| Madera*      | 36,806              | 0                 | Castro          | 50,946               | 7,384             |
| Merced*      | 74,620              | 0                 | Cochran         | 51,468               | 65,100            |
| Tulare*      | 81,089              | 0                 | Hale            | 170,085              | 37,589            |
| Total        | 1,002,088           | 0                 | Hockley         | 107,422              | 113,936           |
|              | Georgia             |                   | Lamb            | 125,247              | 50,647            |
| Colquitt     | 18,427              | 51,282            | Lubbock         | 177,922              | 101,283           |
| Mitchell     | 14,818              | 43,576            | Parmer          | 48,740               | 12,553            |
| Worth        | 11,132              | 45,936            | Swisher         | 39,869               | 15,187            |
| Total        | 44,377              | 140,794           | Total           | 797,452              | 451,577           |
|              | Louisiana           |                   | Texas           | <b>Rolling Plair</b> | IS                |
|              |                     |                   | Fisher          | 2,400                | 77,000            |
| Concordia    | 625                 | 42,818            | Haskell         | 9,072                | 76,051            |
| East Carroll | 12,570              | 31,381            | Jones           | **                   | 1,205             |
| Franklin     | 34,254              | 53,082            | Knox            | 13,542               | 11,759            |
| Tensas       | 5,440               | 77,569            | Total           | 22,614               | 89,015            |
| Total        | 52,889              | 204,850           | So              | outh Texas           |                   |
|              | Mississippi         |                   | Hidalgo         | 38,649               | 23,241            |
| Coahoma      | 38,053              | 42,713            | Cameron         | 26,717               | 25,235            |
| Leflore      | 32,151              | 37,532            | Willacy         | 3,394                | 82,794            |
| Yazoo        | 6,037               | 58,404            | Total           | 68,760               | 131,270           |
| Total        | 76,241              | 138,649           |                 |                      |                   |

**Table 14: Irrigated and Dryland Cotton Acres** 

(1997 Census of Agriculture.)

\*Includes ELS acreage because the Census does not separate acreage out by type of cotton. \*\*Indicate acreage numbers were not provided in the Census.

#### **Rotations**

A three-year rotation of cotton, grain sorghum, and other small grains is typically the recommended schedule in most states. Some soil building crops may be used, but these are not as common due to moisture limitations in many cotton-producing areas. Chemical residues, root rot, and other contaminants may affect rotation timing and the type of crops planted, depending on what is needed to combat the problem.

However, grains used in the rotation vary between regions. Rotations with corn and sorghum are common, but rotations with wheat, barley, alfalfa, soybeans, tobacco, and peanuts may also be seen. Some areas in Arizona, North Carolina, and the Rolling Plains of Texas grow continuous cotton.

#### Soils

Cotton is grown in a myriad of coarse soil types, including clay, sand, and loam. This crop prefers warm soil temperatures, at least 60°F, although some varieties grow best if soil temperatures are in the 80's. This is especially true when planting. The soil must reach temperatures of at least 65° F (tested at 8:00 am) for three consecutive days and should have a favorable five-day weather forecast before planting. This temperature depends on variety. A favorable forecast is dry weather with high temperatures between 80 and 90° F and the lows above the upper 40's.

Cotton is a very pH sensitive crop. It grows best in the pH range of 5.8 to 6.5, preferably toward the higher end of this range. Liming is a very common method for combating low pH levels. Adding lime to the soil increases the uptake and utilization of soil nutrients essential to plant growth.

#### Nutrients and Fertilizers

Nitrogen, potassium, and phosphorous are necessary macronutrients for cotton. Nitrogen controls growth rate, as it does in many plants. Nitrogen deficient plants exhibit yellowish leaves that dry up and turn brown. Fruit set also decreases. Recommended nitrogen levels range from 50 to 70 pounds per acre, depending on the region.

Phosphorous regulates the energy exchange within the plant. A deficiency is closely related to low soil pH. Soil testing and proper placement of the plants are the best methods for preventing a deficiency. Symptoms include stunted growth and darker than normal color.

Potassium is not as easily lost as nitrogen through leaching, but it still requires replenishment. Leaching losses can usually be corrected by an addition of 25 to 30 pounds of potash per acre. Potassium loss results in mottling and curling of leaves and eventual leaf loss.

Cotton also requires an array of secondary nutrients and micronutrients. These include calcium, magnesium, sulfur, boron, copper, manganese, and zinc. Each of these elements affects plant growth, health, and yields. Farmers are encouraged to test the soil before planting to ensure proper mineral levels and to have adequate time to plan fertilizer schedules for the upcoming season.

Fertilizer types and application schedules depend upon the needs of the soil in a particular area. Some fields need less nitrogen and more boron, while others require sulfur and potassium. Local extension agents have information specific to the region available to farmers.

#### Climate

Cotton production is reported in 17 states across the U.S., and each varies greatly in climate. As seen in Table 15, the proposed pilot areas also vary in climate. Temperatures, rain levels, and freeze conditions all differ, even within the states themselves. However, cotton generally prefers warm weather and requires a long growing season for fruiting and fiber maturation. Irrigation requirements are determined based upon normal rainfall and groundwater supplies for an area. Some areas may receive upwards of 25 inches of rain per year, on average, but the crops may still require some irrigation because of variation and duration in temperature from year to year.

Table 16 gives the average number of growing days and the dates of the first and last frost.

#### **Table 15: Historical Climate**

| Pilot County Areas:  | Avg. Mean<br>Temp. (F) | Avg. High<br>Temp. (F) | Avg. Low<br>Temp. (F) | Avg. Total<br>Precip.<br>(Inches) | Avg. Num.<br>of Days<br>Above<br>Freezing |
|----------------------|------------------------|------------------------|-----------------------|-----------------------------------|-------------------------------------------|
| Northern Alabama     | 59                     | 71                     | 46.9                  | 57.6                              | 299                                       |
| Southern Alabama     | 66                     | 78                     | 55                    | 51.1                              | 338                                       |
| Arizona              | 73                     | 86                     | 59                    | 7.7                               | 356                                       |
| San Joaquin Valley   | 63                     | 76                     | 50                    | 10.9                              | 342                                       |
| Georgia              | 68                     | 78                     | 58                    | 45.6                              | 351                                       |
| Louisiana            | 62                     | 73                     | 53                    | 51.3                              | -                                         |
| Mississippi          | 64                     | 76                     | 53                    | 52.6                              | 329                                       |
| North Carolina       | 61                     | 73                     | 50                    | 43.7                              | 304                                       |
| Texas Coastal Bend   | 72                     | 81                     | 63                    | 30.4                              | 359                                       |
| Texas Plains         | 59                     | 74                     | 45                    | 20.7                              | 248                                       |
| Texas Rolling Plains | 62                     | 77                     | 48                    | 20                                | 283                                       |
| Texas Brazos Valley  | 68                     | 80                     | 57                    | 35.4                              | 352                                       |
| South Texas          | 74                     | 85                     | 63                    | 106                               | 364                                       |
|                      | L                      |                        |                       |                                   |                                           |

(Weatherbase, 2001)

Northern Alabama: Lawrence, Limestone, Madison

Southern Alabama: Autauga, Dallas, Elmore

San Joaquin Valley: Fresno, Kern, Kings, Madera, Merced, Tulare Texas Coastal bend: Nueces, San Patricio

Texas Plains: Bailey, Castro, Cochran, Hale, Hockley, Lamb, Lubbock, Parmer, Swisher

Texas Rolling Plains: Fisher, Haskell, Jones, Kent, Mitchell, Scurry,

Texas Brazos Valley: Brazos, Burleson, Milam, Robertson, Williamson

South Texas: Cameron, Hidalgo, Willacy Blank cells indicate data was not available.

| Region               | <b>Growing Season</b> | Last Frost | <b>First Frost</b> |
|----------------------|-----------------------|------------|--------------------|
| Northern Alabama     | 196                   | 15-Apr     | 15-Oct             |
| Southern Alabama     | 262                   | 15-Mar     | 15-Nov             |
| Arizona              | 303                   | 15-Feb     | 15-Dec             |
| San Joaquin Valley   | 303                   | 15-Feb     | 15-Dec             |
| Georgia              | 230                   | 30-Mar     | 31-Oct             |
| Louisiana            | 262                   | 15-Mar     | 15-Nov             |
| Mississippi          | 230                   | 30-Mar     | 31-Oct             |
| North Carolina       | 196                   | 15-Apr     | 15-Oct             |
| Texas Coastal Bend   | 303                   | 15-Feb     | 15-Dec             |
| Texas Plains         | 180                   | 30-Apr     | 15-Oct             |
| Texas Rolling Plains | 230                   | 30-Mar     | 31-Oct             |
| Texas Brazos Valley  | 262                   | 15-Mar     | 15-Nov             |
| South Texas          | 303                   | 15-Feb     | 15-Dec             |

#### Table 16: Growing Season Days & Dates of First and Last Frost

(Source: WeatherBase, 2001)

## Life Cycle of the Crop

The commercially grown cotton plant is considered an annual in the United States, although it is truly a perennial plant. In its native habitat, cotton does not die in the fall. Instead, the plant becomes dormant during periods of drought and resumes growth with the return of favorable weather conditions. The commercially grown plant is planted on an annual basis. Planting occurs during early spring. At crop maturation, the plant is defoliated, and then the lint and cottonseed are harvested. The plant is usually destroyed during field preparation for the next growing season.

### Planting Dates

Table 17 presents the planting dates for the pilot states. Planting dates will vary because of the climatic differences among the growing regions. An early planting date is essential for early harvest and potential maximum yield realization. The optimum planting date takes into account soil temperature, weather conditions, and the seedling variety being planted.

| Pilot State | Begin  | Most Active     | End    |
|-------------|--------|-----------------|--------|
| AL          | 12-Apr | Apr 24 - May 24 | 6-Jun  |
| AZ          | 15-Mar | Apr 1 - Apr 30  | 15-May |
| CA          | 1-Apr  | Apr 15 - Apr 30 | 15-May |
| GA          | 20-Apr | Apr 25 - May 25 | 5-Jun  |
| LA          | 17-Apr | Apr 26 - May 16 | 2-Jun  |
| MS          | 14-Apr | Apr 28 - May 28 | 9-Jun  |
| NC          | 21-Apr | May 1 - May 20  | 8-Jun  |
| TX          | 10-Mar | May 5 - Jun 6   | 30-Jun |

#### Table 17: Planting Dates by State

(National Agriculture Statistics Service, 1997.)

### Stages of Development

Cotton planting begins as early as February in South Texas and as late as June in northern areas of the Cotton Belt such as in the Plains of Texas. Seedlings emerge from the soil within one to two weeks after planting. Growers cultivate the rows of young cotton to provide a 6-to 8-week weed-free period following planting. Approximately 45-60 days after planting, depending on temperature, the cotton begins to bloom. Cotton first produces a small square (flower bud), which produces a white bloom. The white bloom turns pink after one day and then falls off as the bolls develop. Approximately 30 days after bloom, the boll is mature but not open. Under normal weather conditions, an open boll ready for harvest is produced approximately 65 days after bloom. Plant maturity can be determined by using a sharp knife to cut into the bolls. If the boll is watery or jelly-like on the inside, it is immature. If boll development is such that the knife cannot slice through the lint, the boll is nearly mature. If the seed coating is tan-colored and the seed leaves (cotyledons) are fully developed, the boll is mature.



Figure 7: Plant Development

### Planting

As mentioned previously, cotton is often planted in rows 30 to 40 inches apart. The typical interval is 38 inches. Planting concentrations range from 25,000 to 60,000 plants per acre. Planting concentrations vary according to climate conditions, soil types, and production efficiencies. Depending on the variety and seed depth planted, cotton emerges from the ground as early as five or as late as twenty days after planting. Seedling leaves appear on the day of cotton emergence. True leaves will appear seven to ten days later. After 30 to 35 days of vegetative growth, the first square will be formed on a fruiting branch (branch producing a boll) arising from the axial (node) of the fifth to seventh true leaf. This important event marks the visible beginning of reproductive growth. The plant will normally

continue to produce additional fruiting branches in an orderly manner up the main stem. Fruiting branches are distinguished by their zigzag appearance, where a leaf and square are formed at each angle.

Each fruiting branch may produce several squares. However, over 90% of the harvestable bolls will be found at either the first or second position on a fruiting branch. When plant populations are high, 90% of the harvestable bolls may be found at the first position on the fruiting branch.

#### **Bloom Period**

Cotton normally blooms for 7 or 8 weeks. Stresses associated with drought, nematodes, and fertility can shorten the bloom period significantly. The bloom period also can be lengthened by poor fruit retention or excess nitrogen with adequate rainfall.

## **Boll Opening Period**

The boll-opening period is a time that requires more monitoring of the crop than during the growth stage. The number of open bolls allows the producer to gauge the time schedule for defoliation and determine whether boll openers (chemicals to split the hulls on the bolls) are justified. Boll opening refers to the outer hull of the cotton boll splitting open revealing the white lint of the cotton inside. This event represents a fully matured cotton boll that is ready for picking once the lint has dried and reached the proper moisture level. Cotton is generally considered safe to defoliate when 60% to 75% of the bolls are open, preferably the latter. Percentage open is simply determined by counting the number of open and closed harvestable bolls on a sample of several plants in a field.

## Defoliation

Defoliation generally refers to removal of the green leaves from the plant to aid in harvest. Timing of defoliation is critical to ensure optimum yield and fiber quality. Several factors can be used to determine the proper time for harvest-aid application. The first is the traditional method of counting open and unopened bolls. Defoliation should proceed when at least 60% (preferably 75%) of bolls are open. A second indicator involves slicing bolls with a sharp knife. Bolls are considered mature -- and ready for harvest aid applications -- when bolls cannot be sliced without "stringing" the lint. Bolls are mature when the seed embryo contains only tiny folded leaves (no "jelly" within the developing seed) and the seed coat begins to turn yellow or tan. Assuming the crop is uniformly fruited in the upper canopy, 4 bolls above the uppermost cracked boll are mature and ready for defoliation.

### Harvesting

Cotton is an annual crop in the U.S., harvested mostly once per year. Like planting dates, harvest dates will vary dramatically across the U.S. because of the regional climatic differences.

Table 18 lists the normal harvesting periods for each of the pilot states.

| State | Begin  | Most Active     | End    |
|-------|--------|-----------------|--------|
| AL    | 22-Sep | Sep 20 - Oct 20 | 15-Dec |
| AZ    | 15-Sep | Oct 10 - Nov 10 | 25-Dec |
| CA    | 1-Oct  | Oct 15 - Nov 1  | 15-Nov |
| GA    | 20-Sep | Oct 5 - Nov 15  | 15-Dec |
| LA    | 15-Sep | Sep 28 - Oct 20 | 13-Nov |
| MS    | 15-Sep | Oct 6 - Nov 3   | 17-Nov |
| NC    | 27-Sep | Oct 7 - Nov 15  | 15-Dec |
| TX    | 10-Aug | Oct 1 - Dec 2   | 28-Dec |

#### Table 18: Harvesting Dates by State

(National Agriculture Statistics Service, 1997.)

Cotton harvesting typically involves two pieces of equipment: a cotton harvester and a cotton module builder. A cotton harvester picks cotton from the plants, while a cotton module builder compresses the cotton into large bales. Strippers and pickers are the two basic types of harvesters. Stripper-type harvesters strip the entire plant of both open and unopened bolls along with many leaves and stems. Special devices at the gin then remove any unwanted material. Strippers work most satisfactorily after defoliation, or when a frost has killed the green vegetative growth. Picker machines, which are often referred to as spindle-type harvesters and may be used for multiple harvests,

remove the cotton from open bolls and leave the bur on the plant. The spindles, which rotate at a high speed, are attached to a drum that also turns, causing the spindles to enter the plant. The cotton fiber is wrapped around the moistened spindles and then taken off by a special device called the doffer, from which the cotton is delivered to a large basket carried above the machine.

## Modules

The module builder permits the harvest operation to be independent of trailer availability and ginning capacity. This allows cotton harvest to proceed uninterrupted during favorable weather conditions. Cotton is usually stored in the field prior to ginning in a module. In general terms, a module is a stack of un-ginned cotton with a tarp over the top to repel rain. The modules are created by the module builder using hydraulics to compress and form the un-ginned cotton into a large rectangular shape. Modules should contain approximately 14 bales, or 21,000 pounds, of seed cotton. Several factors have an impact on the effectiveness of the module system. The most important factor is moisture. Cotton should be at or below 12% moisture at harvest. The cotton is normally monitored by temperature for 7 days to ensure no temperature rise that would signal decomposition. Modules are also placed where water will drain away from the module. Making modules too large causes handling problems.

## Ricking

A practice that was more widely used in the past, but is not used as much any more is ricking. Ricking is the storage of seed cotton on the ground on the turnrow. Plastic is required to protect seed cotton in ricks from rain, but must be monitored for condensation of moisture on the underside of the plastic. Ricks should be placed on high, well-drained soils. Ricked seed cotton can be kept until the end of the gin season. Front-end loaders are used to pick up seed cotton and place it in trailers to be transported to the gin. Ricking is not used in humid, high-moisture areas.

### Alternate-year Bearing

Cotton is not known as an alternate-year bearing crop, because it is destroyed and replanted the following year with the exception of rotations.

## **Cotton Marketing**

When all the proper conditions are met utilizing the module storage system, seed cotton can be stored up to six months, if necessary, with little or no reduction in lint and seed quality. Ricks are typically removed from the field as soon as possible during the harvest.

#### **Post-harvest Movement**

#### Producer to Buyer

From the cotton field, the ginner usually picks up modules so that the ginner can maintain their schedule of operations during their "heavy traffic" portion of the season. The ginner usually receives the cottonseed as payment for both ginning and delivery of the cotton to the gin. Though agreements vary from region to region, this arrangement is the most prevalent.

After the ginning is complete, the lint fiber is baled into 480 to 500 pound bales wrapped in plastic. A sample is taken from every bale and delivered to the USDA classing office for that region. Once the cotton has been classed, or graded, the cotton can be marketed. If the cotton is not sold immediately at the current market price, the producer may store it for sale at a later date. The cottonseed is almost always sold immediately at the gin or storage facility as it is marketed directly at harvest.

#### Labor, Equipment, and Facilities

Availability of labor during harvest does not seem to be a limiting factor because of the nature of the cotton harvest. The cotton harvester and cotton stripper are single person operated pieces of equipment. While some farming operations run several harvesters at a time, most have made preparations well in advance to have labor available. Because many farms are family-owned operations, they are completely operated "within the family," making labor readily available.

The equipment is typically owned by the individual farmer and is well maintained both during the harvest and with preparatory maintenance prior to harvest. Some producers will choose to lease equipment if necessary.

Because the gins haul the cotton to their facilities and handle the process from that point forward, the producer isn't responsible for labor, equipment, or facilities beyond harvest.

#### Post-harvest Damage

Cotton can become damaged at several points after harvest, and moisture is the key to most of this damage. While still in the field, the cotton must be monitored closely for temperature changes in the modules. A significant temperature rise indicates decomposition is taking place. Once the temperature rise has been detected, the cotton must be immediately transported to the gin for ginning, or damage in the form of staining and weakened fiber will result. The cotton may also suffer mold and mildew damage if it is allowed to remain in the field. This in turn will result in a lower grade of cotton upon grading.

Moisture also presents a potential risk to the cotton module left in the field. The cotton must be kept dry and free of moisture and humidity, otherwise the cotton can suffer severe decreases in quality. If the module is placed in a poorly drained area or if the tarp leaks or is damaged during a storm, the cotton quality may be significantly reduced. When damage of this type occurs in the module, the producer suffers an economic loss. Cotton that may have earned \$0.65 per pound when originally harvested would now likely only earn \$0.55, resulting in a loss of \$0.10 per pound. If this producer had a yield of 1,000 lb. he would basically lose \$100 per acre.

### **Pricing Mechanisms**

The cash market is the market where most growers normally sell their crop. Most producers contract with their local cotton buyers before harvest to sell their cotton at market price upon delivery. Cotton producers have several other options including:

- placing the lint cotton in an approved warehouse and obtaining a government loan, redeeming it at a later date for cash sale or forfeit title to the government;
- placing the lint cotton in a warehouse to hold for cash sale at some later date;

- contracting the crop to a buyer before harvest under specific terms that may vary;
- "hedging" using cotton futures and options and at harvest selling the lint cotton for cash or placing it in the government loan for future sale;
- and delivering to a producer-owned marketing organization.

Prices fluctuate throughout the various points of sale. Slight differences may be observed in farm price, spot price, and mill price. The following table and chart give a ten-year history of average farm, spot, and mill prices throughout the United States. The difference in the farm price and mill price can be attributed to the cost of hanging, trucking, shipping, etc. These additional expenses increase the mill price. Table 19 and Figure 8 illustrate the difference in prices at different points of sale at a national level. Prices in the pilot regions follow a similar pattern.

| Tuble 197 Tollit of Sule Trice Comparisons |            |            |            |  |  |  |  |
|--------------------------------------------|------------|------------|------------|--|--|--|--|
| Crop Year                                  | Farm Price | Spot Price | Mill Price |  |  |  |  |
| 1990                                       | 67.10      | 74.80      | 84.06      |  |  |  |  |
| 1991                                       | 56.80      | 56.68      | 64.69      |  |  |  |  |
| 1992                                       | 53.70      | 54.10      | 63.01      |  |  |  |  |
| 1993                                       | 58.10      | 66.12      | 71.24      |  |  |  |  |
| 1994                                       | 72.00      | 88.14      | 95.04      |  |  |  |  |
| 1995                                       | 75.4       | 83.03      | 89.58      |  |  |  |  |
| 1996                                       | 69.30      | 71.59      | 78.37      |  |  |  |  |
| 1997                                       | 65.20      | 67.79      | 74.44      |  |  |  |  |
| 1998                                       | 60.20      | 60.12      | 67.66      |  |  |  |  |

 Table 19: Point of Sale Price Comparisons

Average crop year prices for base quality upland cotton

Source: Compiled from reports of the Agricultural Marketing Service



(Source: Economic Research Service, 1999) Figure 8: Point of Sale Price Comparisons

### Price History

Table 20 shows historic prices of Upland cotton for the past 10 years by state. While we have mentioned that Acala cotton generally earns an average of 5 cents more per pound, due to quality, it is not separated from all other Upland prices in the NASS data represented in the table. However, average California prices are higher than other state averages. We conclude this is due to the Acala prices received, and the large portion of Acala production in California. Other than the differences in Acala prices, there are no price differences based on variety. Cotton prices are based on quality.

| Year |       | (\$ per pound) |       |       |       |       |       |       |  |
|------|-------|----------------|-------|-------|-------|-------|-------|-------|--|
|      | AL    | AZ             | CA    | GA    | LA    | MS    | NC    | ТХ    |  |
| 1990 | 0.690 | 0.692          | 0.769 | 0.694 | 0.661 | 0.654 | 0.690 | 0.632 |  |
| 1991 | 0.566 | 0.604          | 0.666 | 0.600 | 0.531 | 0.552 | 0.593 | 0.536 |  |
| 1992 | 0.562 | 0.530          | 0.606 | 0.557 | 0.526 | 0.526 | 0.574 | 0.491 |  |
| 1993 | 0.571 | 0.581          | 0.657 | 0.599 | 0.577 | 0.575 | 0.577 | 0.535 |  |
| 1994 | 0.691 | 0.706          | 0.803 | 0.733 | 0.685 | 0.717 | 0.727 | 0.696 |  |
| 1995 | 0.729 | 0.729          | 0.821 | 0.766 | 0.732 | 0.734 | 0.783 | 0.746 |  |
| 1996 | 0.709 | 0.697          | 0.765 | 0.705 | 0.655 | 0.680 | 0.719 | 0.656 |  |
| 1997 | 0.673 | 0.647          | 0.732 | 0.677 | 0.649 | 0.649 | 0.659 | 0.601 |  |
| 1998 | 0.606 | 0.547          | 0.678 | 0.614 | 0.572 | 0.604 | 0.649 | 0.561 |  |
| 1999 | 0.478 | 0.439          | 0.562 | 0.453 | 0.444 | 0.451 | 0.475 | 0.410 |  |
| 2000 | 0.543 | 0.598          | 0.694 | 0.575 | 0.541 | 0.501 | 0.610 | 0.514 |  |

Table 20: Upland Cotton Price per Pound

(National Agricultural Statistics Service, 2000.)

 Table 21: Effect of Change in Cotton Supply on Price

| Year | Production (1000 bales) | Price | % Change<br>Production | % Change<br>Price |
|------|-------------------------|-------|------------------------|-------------------|
| 1990 | 15147                   | 0.671 |                        |                   |
| 1991 | 17216                   | .568  | 14%                    | -15%              |
| 1992 | 15710                   | .537  | -9%                    | -5%               |
| 1993 | 15764                   | .581  | 0%                     | 8%                |
| 1994 | 19324                   | .72   | 23%                    | 24%               |
| 1995 | 17532                   | 0.75  | -9%                    | 4%                |
| 1996 | 18414                   | 0.64  | 5%                     | -15%              |
| 1997 | 18245                   | 0.65  | -1%                    | 2%                |
| 1998 | 13476                   | 0.60  | -26%                   | -8%               |
| 1999 | 16294                   | 0.45  | 21%                    | -25%              |
| 2000 | 16799                   | 0.56  | 3%                     | 24%               |

(National Agricultural Statistics Service, 2001.)


(Source: National Agricultural Statistics Service, 2000) Figure 9: Effects of Change in Supply on Prices

From Table 21 and Figure 9, there is a recognizable trend. Typically, when production decreases, price increases, and vice versa. This is the case in all years with the exception of 1992, 1993, 1994, and 1997. On average, a 2.1% increase in production over the last ten years was associated with a 9% decline in price.

#### Contracts

Producers have options in planning their marketing program for cotton. Available risk management tools include both forward contracts and futures markets. In our research, we have found that in some areas, these tools are used frequently and effectively, and in other areas, they are not used at all. The following section outlines the basic options available to cotton producers:

*Cash Market* – When a producer sells on the cash market, the producer is simply selling the crop at the current market price when the cotton "crosses the scales." This is the simplest method of crop delivery, and requires no out of pocket costs or margin money up front. The major disadvantage is that the producer is at the mercy of the current market price and will never know if he or she will make a profit until the crop is harvested and delivered. Even if the producer stores cotton for later sale, which occurs frequently in the northern states where on-farm storage is abundant, the producer is still speculating and could potentially lose more money if prices continue to decline.

*Cash Contract* – With a cash contract, commonly called forward contract, the producer is promising to deliver a specific amount of cotton at a specific price at harvest. The advantages of this method are that the producer knows the exact delivery price well in advance, no margin money is required, and that it is simpler and less costly than hedging in the futures market. The major disadvantage is flexibility, because the market price at the time of sale is rarely equal to the contracted price. Because of the contract, the price is locked in, and if market prices are above the contracted price, the producer must sell at the lower, already agreed upon price, forgoing potential profits. If the producer has a low yield crop year, and does not produce the contracted amount of cotton, the producer will have to buy the cotton on the open market to fulfill the contract. He could possibly pay more than the contracted price by buying it on the open market and have to assume a loss by selling at the contracted price.

Futures Market – The futures market offers the producer maximum flexibility, but at a higher price. The producer can buy put options that require someone to buy the cotton at a set price. If the price moves up, the producer can always sell at the higher price, and simply loses the premium he paid for the put option. If the price moves down, the put option purchased guarantees a floor price that the producer will receive. The producer can re-evaluate the situation throughout the season as the price changes and potentially lock in a better position. The major drawback is that futures and options cost money up front and sometimes require margin money depending on the particular type.

#### Marketing Season

Cotton is not a commodity that is restricted by marketing windows. However, more of the crop is marketed at certain times than at others. Figure 10 shows the monthly percent of cotton marketed across the nation for two years. As expected, peak time for marketing cotton is November through January just after the cotton is ginned.



(Source: Economic Research Service, 2000) Figure 10: Percent of U.S. Cotton Marketed by Month

#### Seasonal Cotton Prices

Figure 11 illustrates the changes in monthly prices that cotton producers received for two different years. While this is not a large sample of data, a price pattern can still be recognized. Prices are highest before harvest and decline during the months of peak marketing.



(Source: National Agricultural Statistics Service, 2000) Figure 11: Monthly U.S. Cotton Prices

#### Grading Standards

Cotton, like most other commodities, is subject to grading standards published by the USDA. Appendix A contains the standards for grading and colors for Upland cotton. The written form of these standards is not very informative unless the actual samples provided by the USDA are available to visually inspect. Quality determination and control is particularly important in cotton marketing. Government classing offices categorize cotton samples based on grade, fiber length, uniformity, fineness, strength and whiteness. Variations of these characteristics within each bale

of cotton are extremely costly to most producers, since the low end of the range for each characteristic is the accepted basis for trading. Grading standards and quality deficiencies are discussed in greater detail within the Loss Valuation section of the report.

#### Sampling

At the gin, cotton fibers are separated from the seed, cleaned to remove plant residue and other foreign material, and pressed into bales of about 480 to 500 pounds. A licensed sampling agent takes a sample of at least 4 ounces from each side of the bale and the 8-ounce total sample is delivered by the agent or designated hauler to the USDA classing facility serving the area. Gin and warehouse operators serve as licensed sampling agents and perform this function under USDA supervision.

Upon arrival at the USDA classing facility, samples are conditioned to bring the moisture content to specified ranges before the classing process begins. Samples are delivered to classing stations by conveyor. Fiber measurement results are electronically sent to the classing facility's computerized database and are immediately available to the customer. At this point, the producer can market the cotton. The classing process stays abreast of the ginning of the crop, providing producers and buyers with crucial quality information at time of sale. At the peak of the season, USDA classes and provides data on as many as 2 million bales per week, nationwide. USDA operates 13 cotton classing facilities in the regions of the U.S. that produce cotton and are referred to as the Cotton Belt. The facilities are designed specifically for cotton classification and are staffed exclusively with USDA personnel. USDA sells sample remnants, with proceeds applied to classification costs.

#### Marketing Orders

Cotton is not marketed under any state or federal marketing orders.

## **Crop Utilization**

U.S. textile mills annually mill over 5 billion pounds of cotton fiber. More than half of this quantity (64%) goes into apparel, 28% into home furnishings and 8% into industrial products.

According to the cotton market outlook of the Economic Research Service, as competition from textile and apparel imports has forced restructuring in the U.S. mill industry, cotton consumption by mills has declined 2 million bales since the near-record 11.3 million in 1997/98. While the North American Free Trade Agreement (NAFTA) has hastened this change, the United States remains a key supplier of both semiprocessed products and raw cotton to Mexico. U.S. exports of raw cotton have generally accounted for about 25 percent of global trade in recent years. However, the downturn in U.S. total cotton demand in 2000/01 has generated more than a million-bale production surplus, pushing U.S. stocks to their highest level in 12 years. According to the USDA's Agricultural Baseline Projections to 2010, structural adjustments in the U.S. textile and apparel industry reflect full phaseout of the Multi-Fiber Arrangement's import quotas on textiles and apparel, scheduled to be complete in 2005. Following full liberalization of these restrictions, the United States is expected to import more processed cotton products, primarily apparel. Consequently, U.S. upland cotton mill use declines slightly throughout the baseline period.

Upland cotton exports increase after 2004/05, but export gains do not completely offset the decline in mill use.

Annual cottonseed production averages 5.7 million tons. More than 9 billion pounds of whole cottonseed and cottonseed meal are used in feed for livestock, dairy cattle, and poultry. More than 154 million gallons of cottonseed oil are used for food products, ranging from margarine to salad dressing.

Table 22 depicts crop utilization from 1989 to 1999. Domestic mill use is greatly affected by two factors, textile imports, and domestic retail demand. The table reflects a small range of fluctuation in mill use. Exports are affected by a much wider array of forces including foreign production, strength of the U.S. dollar, and foreign policy. This is reflected in the table below with a much wider range of fluctuation in export cotton.

| Crop<br>Year | Mill Use | Exports | Total  |
|--------------|----------|---------|--------|
| 1989         | 8,759    | 7,694   | 16,453 |
| 1990         | 8,657    | 7,793   | 16,450 |
| 1991         | 9,613    | 6,646   | 16,259 |
| 1992         | 10,250   | 5,201   | 15,451 |
| 1993         | 10,418   | 6,862   | 17,280 |
| 1994         | 11,198   | 9,402   | 20,600 |
| 1995         | 10,647   | 7,675   | 18,322 |
| 1996         | 11,126   | 6,865   | 17,991 |
| 1997         | 11,349   | 7,500   | 18,849 |
| 1998         | 10,401   | 4,344   | 14,745 |
| 1999         | 10,200   | 5,700   | 15,900 |

Table 22: Cotton Utilization (bales)

(Source: Economic Research Service, 2000.)

#### **Facilities**

There are numerous facilities involved in moving cotton from harvest to the consumer. They can be privately owned by producers and others or they can be producer-owned cooperatives. The first is the cotton gin. The principal function of the cotton gin is to separate lint from seed, but the gin must also be equipped to remove foreign matter, moisture, and other contaminants that significantly reduce the value of the ginned lint. Gins must produce a quality of lint that brings the grower maximum value, while meeting the demands of the spinner and consumer.

Warehouses are necessary to store the baled cotton from the gin and the cottonseed, on occasions when storage is necessary. Most of the time, the cottonseed is directly marketed from the gin and shipped to the processor. Once the cotton is in bale form, it may be stored indefinitely. Almost all warehouses are owned by producer cooperatives, most of which are the same as the gin producer cooperatives.

Large corporations, such as consumer products retailers and livestock feed retailers, typically privately own the cottonseed processors. While the producer is responsible for the cotton bales, even in storage, the cottonseed is marketed directly from the gin and the producer's identity is lost immediately.

#### Handling of Crop

The National Agricultural Statistics Service published data detailing the quantity of cotton ginned in the United States. Table 23 summarizes the year 2000 ginning data on a state level. Appendix F breaks down ginnings by county, however, data is unavailable in some instances. The information is withheld in order to avoid disclosing individual gins and their capacity. Most information relating to processing capacity is kept strictly confidential.

| Pilot State    | Bales (480 lbs.) |
|----------------|------------------|
| Alabama        | 551,750          |
| Arizona        | 761,000          |
| California     | 2,239,800        |
| Georgia        | 1,669,000        |
| Louisiana      | 936,150          |
| Mississippi    | 1,707,000        |
| North Carolina | 1,452,400        |
| Texas          | 3,978,700        |

| Table 23: Bales | Ginned i | in 2000 |
|-----------------|----------|---------|
|-----------------|----------|---------|

("Cotton Ginnings," NASS, 2001.)

## **Risk Profile and Analysis**

#### **Natural Perils**

Every cotton-producing state has suffered various types of losses. These types and their loss values are listed in tables in Appendix B. They are listed according to the significance of economic damage.

#### Weather

#### Drought

Cotton is considered one of the most drought-tolerant field crops grown in the United States. However, according to the article "Drought Management for Cotton Production," published by North Carolina Cooperative Extension, the Federal Crop Insurance Corporation rates drought as the greatest cause of disasters of cotton crops. This statement is also substantiated by the information contained in the Causes of Loss tables in Appendix BAppendix B. Drought before bloom can reduce the number of fruiting branches by first bloom. As the crop begins to bloom, it must begin filling bolls. This process causes the plant's demand for water to rise dramatically. Drought will not only slow down plant development, but will also cause the plant to shed small bolls and squares due to this increased demand for water. Drought following the bloom has the greatest effect on cotton yield and lint quality.

Heat and winds often accompany a season of drought, increasing the severity of the drought. In addition to contributing to drought, winds can strip cotton plants of their leaves and bolls and even break stalks. Winds can also be responsible for decreasing the effectiveness of irrigation and sprays by causing drift during application, as well as causing erosion.

#### Hail

Hail is one of the most prevalent natural perils for farmers. Hailstorms are responsible for beating and stripping cotton plants of leaves, branches, and the cotton bolls. Hail can cause a cotton farmer to suffer reduced or no yield, as well as reducing the quality of the crop.

#### Rain

While rain is a very important element for a successful crop, poorly timed rain can be detrimental to it. Rain on open bolls that are ready for harvest can delay harvest because the lint is too moist. It can also cause a reduction in the quality of the crop.

#### Weeds

Managing weeds is critical for successful cotton production. Cotton grows more slowly early in the season and is less competitive with weeds than other row crops. This often makes weed control more difficult than with crops like soybeans. Also, herbicide options are more limited than those of other crops. However, technological advancements have increased the weed management options for cotton. Cotton must compete against weeds for space, light, nutrients, and water. In addition to the effects of competition, trash, and stains caused by weeds reduce harvesting efficiency and negatively impact lint quality.

#### Insects

The management of insect pests is an integral part of any cotton production system. It increases producers' profits and reduces the amount of environmental contamination from pesticides. Protecting early fruit from insects sets the stage for a proper vegetative-fruiting balance during the remainder of the season. Failure to have proper scouting and/or poor timing of insecticide applications will ultimately result in reduced returns from each insecticide dollar.

#### Aphids

Aphids are slow moving, soft-bodied insects. Adult cotton aphids are approximately 1/10 of an inch long and roughly pear shaped. Aphids damage cotton by sucking juices from the plant and secreting honeydew. The secreted honeydew falls onto open cotton, and a black, sooty mold, which develops on the contaminated lint, may stain the

lint. High populations on young cotton plants cause the leaves to curl down or crinkle. Plants may also become stunted and die, especially when they are young.

#### Beet Armyworm

The beet armyworm can cause a wide range of damage including damaged blooms, squares, small bolls, and may even bore into the stalk. Beet armyworm moths deposit eggs in masses, usually on the bottom of leaves. The newly hatched larvae feed en masse, skeletonizing leaves near their birthplace. As they mature, they disperse, eating the fruit and foliage.

#### Boll Weevil

The adult boll weevil is a brown to grayish-brown beetle. The larva is a small, legless grub with a brownish head and chewing mouthparts. Although adult boll weevil feeding causes little damage, it indicates the presence of weevils and that egg laying will soon follow. Most of the damage is due to larval development inside squares and bolls. Feeding larvae eventually cause cotton squares and small bolls to shed or damage developing lint in larger bolls. Heavily infested cotton may produce much foliage, but few mature bolls. The boll weevil has been a major pest of cotton for more than a century in the United States, seriously impacting cotton production and competitiveness in the international market. Boll weevil eradication has been in effect for several years, with eradication being achieved in the southeast and western cotton producing states. Ongoing programs are being conducted in the mid-south and southwest states with new regions adopting eradication programs every year.

#### Bollworm and Tobacco Budworm

Two of the most common cotton pests are the bollworm and the tobacco budworm. They are different insects, but the larvae are nearly identical when observed in the cotton field. The two insects are easily distinguishable during the adult (moth) stages. Newly hatched larvae usually begin feeding on tender leaf surfaces, younger squares and other tender vegetation before attacking the terminals. Larger larvae feed on the terminals and may even devour the contents of large bolls. Feeding damages or destroys the squares, blooms, and bolls. Injured squares flare and drop from plants usually within 5 to 7 days. Large larvae feed on bolls, squares, and pollen in open flowers.

#### Cabbage Loopers

Cabbage Loopers are light green insects that feed upon leaf foliage, with feeding occurring on the leaf area between the leaf veins, leaving a net-like appearance. Severe feeding while immature bolls are in the field reduces yield significantly, while feeding damage late in the season may not cause any loss of yield.

#### Cotton Fleahopper

The adult cotton fleahopper is approximately 1/8 inch long. It is flat with an elongated, oval outline and prominent antennae with a yellowish-green body. The cotton fleahopper feeds on anthers of small squares and sucks sap from leaf buds. Its feeding causes the squares to turn brown and die, resulting in a "blasted" appearance. When fleahoppers are abundant, heavy bud loss may occur on preflowering plants. The cotton fleahopper prefers terminal bud clusters including young leaves and tiny squares. The piercing, sucking habit of nymphs and adults interferes with normal growth patterns in cotton.

#### Cotton Leafworm

The cotton leafworm damages cotton by destroying the foliage and staining the fiber. Feeding patterns of cotton leafworms are characteristic because they feed on the underside of leaves between the veins, skeletonizing them. The skeletonizing of leaves causes a reduction in photosynthetic potential. Although this insect is essentially a leaf feeder, it can attack squares and small bolls.

#### Cutworms

Several species of cutworms attack cotton in the seedling stage causing wilted plants, or plants that are cut off at the ground. The larvae usually feed at night and hide in the soil or under leaf trash during the day. The larvae vary in color, are often greasy-looking, and curl up into a ball when touched.

#### Fall Armyworms

Fall armyworm larvae have distinct body hairs, are light to medium brown, and have a smooth appearance. Fall armyworms prefer blooms and bolls and can feed on mature bolls that are normally resistant to bollworm penetration. When abundant, they generally eat all available foliage and then crawl in armies to adjoining fields. Fall armyworms are general feeders and do not confine themselves to cotton.

#### Tarnished Plant Bug (Lygus Bug)

These insects feed by inserting their needle-like mouthparts into the tender plant parts and sucking sap. Small squares usually turn dark and drop off, while bolls may develop abnormally. Feeding on squares and small bolls usually causes fruit shed. The most important period of plant susceptibility is during the first 3 weeks of squaring with the first week being the most critical. During heavy infestations fruit removal can be excessive and of economic importance. Occasionally, damaged squares and bolls do not shed. Although squares may bloom, floral parts are damaged and show evidence of feeding. If an injured boll does not shed, it opens abnormally and may have lint damage.

#### Spider Mites

Mites damage cotton by feeding on the sap of leaves, stems and squares. Since they suck sap and chlorophyll from the leaves, it reduces the photosynthetic area and interferes with normal maturation of the cotton plant. Leaves may turn reddish when the infestation becomes heavy. Spider mites cause more harm to cotton plants during hot, dry weather and usually attack cotton in the latter part of the season.

#### Stink Bugs

Stink bugs begin invading cotton in early to mid-July and can build to damaging levels in August. They feed by inserting their long, piercing mouthparts and sucking out the plant juices, thereby injuring squares and bolls. This may cause small bolls to fall from the plants. Although larger bolls commonly remain on the plant, feeding injury results in hardened, dry locks. At each feeding site there is a hardened spot. Lint beneath the feeding spot may be stained or reduced in grade. Boll-rotting organisms also are associated with the feeding of these insects.

#### Thrips

Thrips are small insects that feed on the cotton plant, resulting in reduced yield, reduction in stand, stunting, and delay of plant growth. Adult and larval forms of thrips feed on young leaves, terminals, and other plant parts. Thrips are early season pests of seedling cotton. They may be a problem under cool, wet conditions when plant growth is slowed. They may be especially numerous in cotton grown near maturing small grains. Thrips damage cotton leaves and terminal buds. Their feeding ruptures cells that cause stunted plants and crinkled leaves that curl upward. During severe infestations, terminal buds may be destroyed, causing excessive branching of the plants and delaying plant growth.

#### Whiteflies

The adult whitefly is about 1/16 inch long and snowy white. These moth-like insects are very active and fly readily when disturbed. These insects are easily observable when flying about the cotton plant. They excrete honeydew much like aphids. Infested leaves lack vigor, wilt, and may turn yellow.

#### <u>Nematodes</u>

Nematodes are a plant parasite that attack the root system of the cotton plant, resulting in stunting, wilting, and reduced yields. Nematode populations build up during the growing season and are usually highest in August or September. Nematodes can be managed, but are rarely ever eliminated from a crop.

#### Root-knot Nematode

This nematode is fairly widespread throughout cotton growing regions, is usually found in spots or areas within a field, and is rarely found in the entire field. Root-knot nematodes are normally limited to sandy soils. Galls on the root are the trademarks of the root-knot nematode.

#### Reniform Nematode

Reniform nematodes may start out as spots in a field but quickly spread through the entire field. This nematode is almost impossible to recognize on the roots, as it does not present any distinctive symptom.

#### Diseases

#### Ascochyta or Wet Weather Blight

Both seedlings and older plants are susceptible to Ascochyta and wet-weather blights, but younger cotton is more seriously injured. An entire stand may be lost as a result of the fungus attacking the hypocotyl and killing the plant. Serious outbreaks of the disease may follow extended rainy periods with serious defoliation occurring. The damage is generally spotty and many plants recover when dry, warmer weather returns. The disease occurs on the leaves, stems, and branches.

#### Bacterial Blight

Bacterial Blight is also known as angular leaf spot, vein blight, black arm and boll rot, depending on the portion of the plant infected. This organism affects all above ground parts of the cotton plant during any stage of its growth. Infected leaves shed from seedlings and older plants. Occasionally, a black, water-soaked area occurs along a large vein in a leaf. Spots on bolls appear as round, water-soaked areas, but later turn dark brown or black. Spotted bolls may fail to open and lint may be discolored with a yellow stain. Before boll rot is evident, dark, irregularly shaped spots can be found on bracts surrounding the lower portion of the boll. Black spots or cankers may occur on the stems or branches (black arm) causing girdling and death of some branches.

#### Cotton Root Rot

Root rot appears suddenly, starting in early summer. It causes rapid wilting, followed by death of the plants within a few days. Usually, the leaves of the plant are not shed, but remain attached. The disease kills plants in circular areas ranging from a few square yards to an acre or more in size. The root system of affected plants decays. Scraping the taproot reveals darkened, reddish to wine-colored stain. If examined soon after death, the stems will be near normal color internally. Vascular streaking is not present as in the wilt diseases. Fine, light brown strands of fungal threads (rhizomorphs) are usually found on the roots. Under moist conditions, spore mats may appear on the soil surface near diseased plants.

#### Seed Rot

A number of organisms in the soil and on or in the seed cause seed decay, a soft watery rot. Seed deterioration can also result from improper handling of seed during harvest.

#### Vascular Wilt Diseases

Vascular wilt diseases are caused by soil borne fungi. Since the symptoms of both Fusarium and Verticillium wilts are similar, they are quite often confused in the field. Examining the internal discoloration of the stem is the best way to determine which wilt is present.

**Fusarium Wilt disease** - This fungus may attack cotton seedlings, but the disease usually appears when the plants are more mature. Seeds from diseased plants can become infected and serve to spread the fungus. Affected plants are first darker green and stunted, followed by yellowing of the leaves and loss of foliage. First, symptoms appear on lower leaves around the time of first flower. The leaf margins wilt, turn yellow, then brown, and move inward. Infected plants fruit earlier than normal with smaller bolls that open prematurely. Wilting occurs rapidly following a rain preceded by a dry spell. Soils in which Fusarium wilt occurs also favor root knot nematodes and the two are often found together. Control of nematodes is of major importance in reducing Fusarium wilt.

**Verticillium Wilt disease** - Young plants infected with Verticillium wilt show yellow leaves and stunting, and often die. Following the seedling stage, older plants exhibit a chlorotic mottling on the leaf margins and between the major veins. Plants attacked during later stages of growth display a mottling on the lower leaves first, later progressing toward the top of the plant as the season progresses. Often a single branch shows symptoms in the early stages of disease. Yellow progresses inward, followed by brown, and the leaf finally dies. Severely affected plants shed all their leaves and most of their young bolls. The fungus causing Verticillium wilt can survive in the soil as

small, dark resting bodies called sclerotia. The sclerotia can withstand adverse environmental conditions. Susceptible plants growing in Verticillium infested soil may not be severely attacked if environmental conditions are not suitable for fungal growth. The disease is more prevalent during periods of cool, wet weather.

#### **Economic Perils**

As with any commodity, the cotton industry faces numerous economic perils such as:

- Imports increased imports increases domestic supply
- Exports decreased exports increases domestic supply
- Consumer Spending decreased spending reduces cotton mill use, which reduces cotton demand
- Monetary Exchange Rates unfavorable exchanges rates for the US dollar can reduce exports
- Supply an increase in supply drives price down
- Demand a decrease in demand drives prices down
- Input Costs an increase in input costs increases production costs

While this list reflects numerous perils, their impact can be reduced to impacts on gross income and expenses. With respect to income, income is derived from price, which is ultimately determined by the levels of supply and demand. As for expenses, any changes to input costs are directly reflected in the production costs.

So to the individual producer, the greatest economic perils derive from price changes and production / input cost changes. Accordingly, impact on a producer's economic risk can be illustrated by relating these two variables as shown in Table 24. The conclusions from this table is that whenever prices fall or production costs increase, the cotton producer runs a greater risk of loss as the change increases the chance that income will not cover expenses. The greatest risk occurs when production costs increase and price decreases.

|       | _ | Producti | on Costs |
|-------|---|----------|----------|
|       |   | 1        | ₽        |
| Drico | 1 | -        | ₽        |
| rrice | ₽ | 1        | -        |

 Table 24: Impact of Price and Production Costs on Risk

The USDA ERS provides economic outlooks for various commodities. As published in the ERS' Cotton and Wool Outlook Reports, cotton producers have faced the economic peril of declining prices over the past six years (Table 25). There has been a decline in price even though acreage has remained relatively constant and production has declined as well. This can be attributed to a decline in net exports over the past six years resulting in ending stocks of cotton increasing from 1995 to 1996 and remaining relatively constant through 2000. With the supply of cotton not decreasing and demand not increasing (mill use declined as well), the price for cotton has not been able to rebound to breakeven levels. If the current market situation persists, cotton producers will continue to face economic uncertainty.

| COTTON          | Units            | 1995    | 1996    | 1997    | 1998    | 1999    | 2000    |
|-----------------|------------------|---------|---------|---------|---------|---------|---------|
| Price           | \$/Ib.           | 0.77    | 0.71    | 0.66    | 0.65    | 0.45    | 0.40    |
|                 |                  |         |         |         |         |         |         |
| Acres Planted   | mil acre         | 13.89   | 14.64   | 13.89   | 13.39   | 14.87   | 15.35   |
| Acres Harvested | mil acre         | 13.33   | 12.87   | 13.41   | 10.68   | 13.42   | 13.37   |
|                 |                  |         |         |         |         |         |         |
| Production      | mil Ibs          | 8755.20 | 8640.00 | 9019.20 | 6681.60 | 8145.60 | 8197.92 |
|                 |                  |         |         |         |         |         |         |
| Imports         | mil 480 lb bales | 0.40    | 0.41    | 0.01    | 0.44    | 0.10    | 0.55    |
| Exports         | mil 480 lb bales | 0.89    | 0.80    | 0.69    | 0.62    | 0.60    | 0.71    |
| Net Exports     | mil 480 lb bales | 0.49    | 0.39    | 0.68    | 0.18    | 0.50    | 0.16    |
|                 | mil Ibs          | 235.20  | 187.20  | 326.40  | 86.40   | 240.00  | 78.00   |
|                 |                  |         |         |         |         |         |         |
| Ending Stocks   | mil Ibs          | 1636.80 | 1905.60 | 1857.60 | 1891.20 | 1881.60 | 1789.92 |
|                 |                  |         |         |         |         |         |         |
| Mill Use        | mil Ibs          | 5376.00 | 5342.40 | 5448.00 | 4992.00 | 4915.20 | 4780.80 |

Table 25: Economic Information of U.S. Cotton from 1995 through 2000.

#### **Loss Potential**

When assessing the significance of both natural and economic perils, for purposes of Cost of Production Insurance, the total possible losses are more important than the cause of the loss. Under COP, the cause of loss (unless uninsurable) has no bearing on the indemnity paid. The presiding factor is whether or not the expenses actually incurred by the producer are greater than the income from that crop, minus the deductible. If expenses are greater than income, then the producer receives an indemnity payment. The following analysis by AgriLogic, Inc., estimates potential losses by region by estimating average loss per county and total county/region loss. The following methodology was used:

Attempts were made to obtain a historical data set of producer yields for each county from the Farm Service Agency's (FSA) national databases. However, there was inconsistency in the available data sets and the producer-level yields could not be utilized, therefore county-level yields were used. AgriLogic recognizes the less variable nature of county yields and therefore has incorporated variability in yields by applying the standard deviation in the average historical county yield. In performing the potential loss calculations, the standard deviations were applied to the county average yield to account for producer-level yield variability.

A normal distribution was assumed in order to allocate a percentage of the producers to each yield distribution. AgriLogic made the assumption that the majority of the producers would have an average yield. The distribution was 50% of the producers have an average yield, 20% of the producers would have an increase in yield of one standard deviation and 5% of the producers would have an increase in yield of two standard deviations. The converse was used as well, 20% of the producers would have a decrease in yield of one standard deviation and 5% of the producers would have a decrease in yield of one standard deviation and 5% of the producers would have a decrease in yield of one standard deviation and 5% of the producers would have a decrease in yield of two standard deviations.

To estimate loss, three elements are necessary: yield, price, and cost of production. First, county-level yields were collected from 1991-2000 in each of the regions to reflect the yield pattern for the last ten years. If there was more than one county in the particular region, the yields were averaged. The yields were then adjusted using two standard deviations above and two standard deviations below the base yield. Yields were adjusted to take into consideration producers in the region with above and below normal yields. Next, state-level prices were used for the same time period to reflect a similar price pattern. The expenses per acre (cost) of growing the commodity were then determined using the region's average cost of production. These expenses were based on average enterprise budgets in a given year. For each year after the budget was dated, a 2.031% rate of inflation [average annual rate of inflation for the Gross Domestic Product (GDP) from 1991 – 2000] was factored in and for each year prior to the representative budgeted year, the expenses were decreased 2.031%.

To begin the calculation, the 10-year average yield was multiplied by the 10-year average state price to determine the average expected gross income per acre. For any years that the average cost of production expenses were greater than the expected gross income, the expected gross income was used in place of the expenses. When the expenses were less than the expected gross income, the expenses were used, and were inflated or deflated at a rate of 2.031%, up to the expected gross income. This calculation was preformed to ensure that a producer was not guaranteeing an indemnity payment. (Under COP insurance, producers are only allowed to insure expenses up to their expected

gross income for the year). Next, to determine the potential loss, the production expenses were multiplied by the coverage level elected and the result was subtracted from the expected gross income. If the resulting number was positive, no loss occurred. If the amount was negative, the potential loss was the absolute value of the resulting number. The loss for each year was determined by taking into account the percentage of producers who were expected to fall within each of the deviations. Again, this was done to take into account the potential loss for average producers and producers who fall above or below the posted average yield. The losses for each of the ten years were added together, and divided by ten, to calculate the average payout per acre, per year. To determine the total area payout, the average payout was multiplied by the number of insured acres in the area, according to the Federal Crop Insurance Corp. 2000 Crop Year Statistics Business Summary. A sample potential indemnity calculation used to estimate loss is provided in Appendix C.

Table 26 summarizes the AgriLogic, Inc. estimates of loss for each region.

|                      | Average   | Average    |           | County Payout     |
|----------------------|-----------|------------|-----------|-------------------|
|                      | Liability | Payout Per | Insured   | For Insured       |
| Region               | Per Acre  | Acre       | Acreage   | Acreage           |
| Northern Alabama     | \$292.83  | (20.76)    | 169,774   | (\$3,524,919.05)  |
| Southern Alabama     | \$246.72  | (24.26)    | 38,415    | (\$931,948.91)    |
| Arizona              | \$573.56  | (4.96)     | 189,888   | (\$942,320.03)    |
| San Juaquin Valley   | \$536.21  | (2.75)     | 625,737   | (\$1,722,973.21)  |
| Georgia              | \$333.23  | (9.04)     | 170,968   | (\$1,545,615.59)  |
| Louisiana            | \$330.96  | (6.38)     | 269,370   | (\$1,717,597.70)  |
| Mississippi          | \$350.56  | (12.07)    | 301,451   | (\$3,638,854.84)  |
| North Carolina       | \$190.99  | (0.67)     | 153,060   | (\$102,472.02)    |
| Texas Coastal Bend   | \$258.06  | (21.92)    | 222,015   | (\$4,867,469.65)  |
| Texas Plains         | \$248.66  | (16.33)    | 1,628,930 | (\$26,602,885.26) |
| Texas Rolling Plains | \$119.27  | (13.86)    | 356,905   | (\$4,945,869.06)  |
| Texas Brazos Valley  | \$188.09  | (0.20)     | 78,208    | (\$15,947.30)     |
| South Texas          | \$234.25  | (16.56)    | 251,638   | (\$4,167,595.09)  |

 Table 26: Potential Indemnity Payouts

(Source: AgriLogic, Inc., 2001)

(Source: \*Federal Crop Insurance Corp. 2000 Crop Year Statistics as of 9/23/01)

Based on these estimates, those regions with low estimated losses could expect lower premiums under the proposed Cost of Production program.

#### **Loss Valuation**

Loss valuation and grading standards go hand in hand. Cotton is unique in that if the crop can be harvested, it can be utilized in some form or another. Higher-grade cotton is utilized for fine fabric, while lower grade cotton may be used in bed mattresses.

#### **Quality Deficiencies**

Quality deficiencies that lead to lower prices are derived from the cotton grading standards as published by the USDA. When the cotton is graded below the highest standard for each category listed below, the cotton receives a lower grade, and is then marketed for a lower price.

*Color*-- Cotton must fall within a range of color standards established by the USDA. Essentially, the whiter the color is, the higher the grade. The grading standards are attached as Appendix A. Unless producers have obtained an official sample from the USDA to visually observe, understanding the written standards is difficult at best. The color of cotton fibers can be affected by rainfall, freezes, insects, fungi, and by staining through contact with soil, grass, or the cotton plant's leaf. Excessive moisture and temperature levels can also affect color while cotton is being stored, both before and after ginning.

*Strength* -- Fiber strength is largely determined by variety. However, it may be affected by plant nutrient deficiencies and weather. To test for strength, a "beard" of cotton is clamped in two sets of jaws, one-eighth inch

apart, and the amount of force required to break the fibers is determined. There is a high correlation between fiber strength and yarn strength. Also, cotton with high fiber strength is more likely to withstand breakage during the manufacturing process.

*Length* -- The cotton plant's exposure to extreme temperatures, water stress, or nutrient deficiencies may shorten the fiber length. Excessive cleaning and/or drying at the gin may also result in shorter fiber length. Fiber length affects yarn strength, yarn evenness, and the efficiency of the spinning process at the textile mill.

*Micronaire* -- Micronaire is a measure of fiber fineness and maturity. An airflow instrument is used to measure the air permeability of a constant mass of cotton fibers compressed to a fixed volume. Fiber fineness affects processing performance and the quality of the end product in several ways. Yarns made from finer fiber result in more fibers per cross-section, which in turn produces stronger yarns. Dye absorbency and retention varies with the maturity of the fibers. The greater the maturity, the better the absorbency and retention.

*Trash--* Any trash (plant leaves, stems, etc.) in the harvested cotton degrades the quality of the cotton. Trash also holds much more moisture than the cottonseed and lint; therefore deductions in grade are quite severe as the amount of measurable trash increases.

Table 27 depicts the quality of Upland cotton for the 2000 crop year. On average, approximately 50% of the cotton was of the highest grade, with 82% of the cotton scoring in the higher quality "white grade."

|                |      | PERCENT OF BALES                  |      |      |      |      |       |       |        |        |
|----------------|------|-----------------------------------|------|------|------|------|-------|-------|--------|--------|
|                | V    | WHITE GRADES LIGHT SPOTTED GRADES |      |      |      |      | RADES | OTHER | BARKY  |        |
| CLASSING       |      |                                   |      |      |      |      |       |       |        |        |
| OFFICE         | MID+ | SLM                               | LM-  | ТОТ  | MID+ | SLM  | LM-   | ТОТ   | GRADES | GRADES |
| Florence, SC   | 72.7 | 23.7                              | 0.8  | 97.2 | 1    | 1.4  | 0.1   | 2.5   | 0.3    | 2.5    |
| Macon, GA      | 30.3 | 43.5                              | 11.8 | 85.6 | 0.9  | 8.5  | 4.1   | 13.5  | 0.9    | 3      |
| Birmingham, AL | 53.1 | 28.4                              | 5.4  | 86.9 | 4.1  | 6.2  | 1.6   | 11.9  | 1.2    | 2.6    |
| Rayville, LA   | 39.3 | 38.8                              | 4.1  | 82.2 | 5.7  | 8.9  | 2.4   | 17    | 0.8    | 0.3    |
| Memphis, TN    | 56.8 | 27.7                              | 1.7  | 86.2 | 5.4  | 7.2  | 1     | 13.6  | 0.2    | 0.4    |
| Dumas, AR      | 32.1 | 38.3                              | 3.1  | 73.5 | 5.6  | 16.5 | 3.6   | 25.7  | 0.8    | 0.4    |
| C. Christi, TX | 63.4 | 14.6                              | 1.9  | 79.9 | 11.2 | 7.2  | 1.1   | 19.5  | 0.6    | 1.8    |
| Abilene, TX    | 52.2 | 5.7                               | 4.2  | 62.1 | 16.4 | 5.7  | 8.2   | 30.3  | 7.6    | 21.6   |
| Lubbock, TX    | 34.8 | 24.9                              | 1.5  | 61.2 | 12   | 21.8 | 1.6   | 35.4  | 3.4    | 33.8   |
| Lamesa, TX     | 46.6 | 17.8                              | 0.6  | 65   | 16.3 | 15.2 | 0.6   | 32.1  | 2.9    | 20.8   |
| Phoenix, AZ    | 62.5 | 28.7                              | 4.1  | 95.3 | 3    | 0.7  | 0.4   | 4.1   | 0.6    | 6.4    |
| Visalia, CA    | 81.7 | 15.2                              | 0.7  | 97.6 | 1.6  | 0.3  | 0.1   | 2     | 0.4    | 0.2    |
|                |      |                                   |      |      |      |      |       |       |        |        |
| AVERAGE        | 52.4 | 27.2                              | 3.1  | 82.8 | 5.6  | 8.6  | 1.8   | 16    | 1.2    |        |

| Table 2  | 7: Ouality | Summarv | of Upland | Cotton |
|----------|------------|---------|-----------|--------|
| I ubic 2 | . Quanty   | Summary | or opiana | Cotton |

(Cotton Incorporated, 2001.)

#### Legend

MID+ Percentage of bales classified as Middling, Strict Middling, and Good Middling

**SLM** Percentage of bales classified as Strict Low Middling

LM- Percentage of bales classified as Low Middling, Strict Good Ordinary, and Good Ordinary

**TOT** Total percentage of bales classified as "White."

Other Grades Percentage of bales classed as "Spotted," "Tinged," "Yellow- Stained," or "Below Grade." Barky Grade Percentage of bales from each classing office containing bark.

#### Alternative Uses

No real alternative uses exist for cotton. Virtually all cotton that is harvested is utilized in some form. The particular use of the cotton depends on the grade, color, fiber length, and fiber strength. For example, high-grade

cotton would probably be spun at a textile mill into cloth to be used for garments, sheets, etc. Lower grade cotton that is damaged with poor quality color will more than likely be used in the making of products such as bed mattresses, or something else less visible to the naked eye. Prices received for the cotton is strictly determined by the grade of cotton. The typical range from the highest to lowest grade is 15 to 20 cents per pound of cotton.

#### Production Budgets

Budgets have been collected from extension, Farm Credit Banks, and individual producers. To date, AgriLogic has collected approximately 199 cotton budgets. Multiple budgets should be collected throughout a given year to make accurate comparisons. In some cases, expense categories vary so the categories were organized into three general categories: fixed, variable, and land. Averages and standard deviations were calculated to help explain discrepancies between expenses. Appendix D contains a sample budget form listing individual expense categories. A table providing the averages and standard deviations is also provided in Appendix D.

In Alabama, 13 Farm Credit Bank budgets were used to find an average cost and standard deviation ranging in date from 1992-2000 and fourteen producer budgets were used ranging in date from 1998-2000. In Arizona, 4 extension, 6 Farm Credit Bank, and 1 producer budgets were used ranging from 1996-2001 in date. For California, AgriLogic used 31 producer budgets and 6 extension budgets ranging from 1995-2001. One 2000 producer budget was used for Georgia. For Louisiana, 3 Farm Credit Bank budgets and one producer budget was used; they were all for 2001. One 2000 North Carolina producer budget was used, and in Texas 44 Farm Credit Bank budgets and 3 producer budgets were used. For Texas the budgets ranged from 1991-2000.

#### Timing of Inputs

Table 28 gives an estimate of typical input times. It should be noted that pilot regions in South Texas would have slightly earlier input times for most expenses. All other pilot regions follow about the same timeline.

| Expense                                | Time of Input                                                                                                                                                           |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fertilizer                             | Before planting                                                                                                                                                         |
| Chemicals                              | Some before planting; mid April to mid May through July                                                                                                                 |
| Seed                                   | April                                                                                                                                                                   |
| Fuel, Lube, Utilities                  | Mid March through first week of July                                                                                                                                    |
| Repairs & Maintenance                  | Many producers do annual maintenance work in the winter;<br>other repairs and maintenance are ongoing                                                                   |
| Hired Labor                            | Mid March through August                                                                                                                                                |
| Other Labor                            | Mid March through August                                                                                                                                                |
| Custom Applications                    | Some fertilizer custom applications are done prior to planting;<br>most other custom applications are done mid May through<br>August                                    |
| Harvesting/Picking                     | Mid September through October                                                                                                                                           |
| Ginning                                | Mid September through October; ginning costs are usually<br>covered by seed costs; in the event that seed costs exceed<br>ginning costs, the producer receives a rebate |
| Irrigation                             | June - August 20                                                                                                                                                        |
| Other Variable Costs                   | Throughout season                                                                                                                                                       |
| <b>Operating Loan Interest Expense</b> | Increase throughout the season                                                                                                                                          |
| Land Fees                              | Cash rent - April; Share rent - after harvest                                                                                                                           |
| Commodity Insurance                    | End of season                                                                                                                                                           |
| Capital Replacement                    | Throughout season                                                                                                                                                       |
| Other Fixed Expenses                   | Year round                                                                                                                                                              |

#### Table 28: Timing of Inputs

## **Loss Control Techniques**

Cotton producers have several management tools available that can prevent losses throughout the production cycle. Most are considered common sense practices that must be carried out during the seasons as a part of good farming practices.

#### Specific Techniques

#### Variety Selection

Variety selection is one of the first steps in planting a successful crop. Different regions have different soil characteristics, different weather patterns, and several other area specific characteristics that must be considered when selecting the variety.

#### Planting Date

Another key factor early in the season that will determine the degree of success is timely planting. Achieving an early stand paves the way for a uniform crop that will grow rapidly in favorable weather conditions during early spring. An early crop also allows the cotton plants to achieve a good root system before weeds and grass set in. Another benefit is an earlier harvest, because more favorable weather is generally associated with an early harvest. The probability of fewer harvesting delays will result in less weight loss in the field.

#### Planting Methods

It is important that cotton is planted on ground that will allow for a good stand. This ground needs to be free of living vegetation. Most planting is done on flat or raised beds. However, in Texas, some planting is done in furrows to allow the cotton optimum moisture levels; according to one Texas producer, this practice is usually unsuccessful and should not be considered a good management practice. Ultra narrow planting is still in a trial phase and should not be a producer's only method of loss control. Skip row planting is common, and usually has good results.

#### Early Season Insect Control

The first 3 to 4 weeks of fruiting represents 75% or more of the total crop yield as well as the highest quality fiber. These early fruit positions are critical to a good crop yield and must be protected by spraying when necessary. Cotton producers must scout their fields closely to make sure the insect population is under control and the crop is making adequate progress.

#### Fertilizer Program

Plant nutrients must be available in sufficient quantities for proper growth and development. On heavier-textured soils, all fertilizer materials may be applied before planting. On sandy soils, half the nitrogen and all the phosphate are typically applied preplant. The remaining nitrogen is usually applied, sometimes through the irrigation system, before squaring. The peak use of nutrients occurs during the fruiting period. Moderate to high phosphate levels must be available in soils surrounding the seed zone to encourage germination and rapid seedling emergence, especially during sub-optimum planting conditions. Rapid emergence and continued growth of healthy seedlings plays a key role in determining the health of the crop. Adequate nitrogen levels are highly important early in the planting season, but should be low or near depletion at the end of the season. This makes the plant less attractive to insects and conditions the plants to be more responsive to the harvest-aid program or defoliation.

#### **Cost of Production Insurance Loss Control Techniques**

Cost of Production (COP) Insurance is intended to cover against losses relating to price (be it due to market or quality issues) in addition to yield. Under most other insurance programs, growers are primarily concerned with causes relating to yield loss (CAT and MPCI) or loss in income (AGR), but not both. Therefore, loss control techniques recommended under the COP Insurance program would utilize a combination of the loss control methods implemented under yield and revenue programs. However, other than situations where the commodity can be contracted, low prices due to the commodity market are generally out of the grower's hands. Therefore, growers should concentrate on implementing control techniques that ensure against loss in quality and yield. Producers who can contract their commodity for a specific price and do so would be implementing a loss control technique against low market prices

#### Initial Insurability Requirements

The following requirements will be included in the Basic Provisions of the Cotton COP Insurance provisions:

- (a) Insured must have share of the crop,
- (b) The crop is not (unless allowed by the Special Provisions or by written agreement):
  - (1) Colored cotton lint;
  - (2) Planted into an established grass or legume;
  - (3) Inter-planted with another spring planted crop;
  - (4) Grown on acreage from which a hay crop was harvested in the same calendar year unless the acreage is irrigated; or
  - (5) Grown on acreage on which a small grain crop reached the heading stage in the same calendar year unless the acreage is irrigated or adequate measures are taken to terminate the small grain crop prior to heading and less than 50% of the small grain plants reach the heading stage.

#### Cost of Production Information

The COP Insurance Program allows producers to insure their costs of production against multiple perils and causes of loss. Therefore, costs of production budgets are necessary for the development of this program.

#### Availability of Records

Many avenues have been explored in efforts to collect this data on state, county, and producer levels. Not only have we contacted producer cooperatives, commodity associations, marketing groups, extension services, and universities, but we have also made requests to the producers themselves at the commodity listening sessions. Budget forms are available from our office or on our website. These budgets contain information on specific costs per acre to produce commodities in the pilot areas. These costs may include fuel, fertilizer, labor, packing and selling expenses, and equipment, among others. For COP Insurance purposes, the expenses are divided into variable, fixed, and land expense categories. A categorized list of insurable expenses for the COP Insurance program is provided Appendix D.

Quality and availability of this data is of importance. As the scope of data collection narrows toward an individual producer level, data becomes less available. Some producers are reluctant to provide information about their operations because of competition. The same can be said of Farm Business Associations, cooperatives, and other organizations, many of which have strict confidentiality policies.

These budgets will be used as guides to establish limitations on budget expenses. The reliance on gathering budgets diminishes, even disappears, as the program begins the pilot phase. First, a requirement of the policy is to never insure expenses greater than expected gross income. Under current economic conditions, expected gross income rarely exceeds production costs. Accordingly, for purposes of estimating risk, expected gross income will be the value used in determining potential liability. Secondly, the producers, at the time of application and at time of claim (if applicable) will be providing budget information necessary to establish the database for production costs to be used in the rating of the policy. All producers who take out a COP Insurance policy will provide their expenditures at the time of application. Eventually, producer information provided at time of application would become the database and the information used in rating. Therefore, the program becomes self-sustaining.

Cotton is measured in pounds or bales per acre. One bale is equivalent to 480 pounds of cotton lint, although actual bale weights often range from 480 to 500 pounds. About two thirds of the harvested crop is composed of the seed, which is crushed to separate its three products—oil, meal and hulls. The cottonseed makes up about 15% of the total financial return to the farmer, which is typically "traded" for the ginning costs. Fiber is the most important factor, but the cottonseed's value is high enough to ensure great interest in cottonseed economics, since 15% can be more than the margin of profit in many farming operations.

#### Yield Estimation

Yield estimates are not necessary for Cost of Production Insurance, unless the crop produced will not be harvested. In that case, the adjustment methods found in the Cotton Cost of Production Loss Adjustment Manual will be used to determine yield.

#### **Potential Impact of the Proposed Program**

The proposed Cost of Production Insurance program is being designed to enhance the basic insurance program by providing an alternative to Catastrophic (CAT) level insurance and another risk management tool for the producer. The program can also provide capital preservation to the farmer, ensure the stability of lending institutions, and encourage opportunities for minority, small, and new or beginning farmers by allowing the producer to insure up to 90% of his variable costs, fixed cost and his land cost. The COP Insurance program could also establish a permanent safety net for producers by covering his cost of production and allowing him to survive some bad times without being financially ruined. This should reduce the exodus of capital and people from the rural communities and ensure agricultural land stays in production.

#### General Impact

When new programs are developed for a commodity, it is often feared that it will encourage many additional producers to shift into production of that commodity, resulting in increased production and decreased price. Cost of Production Insurance is a "non-revenue enhancing" program similar to car insurance and does not provide any economic incentive to plant a crop. It covers only the costs that a producer actually incurs. A producer must incur a loss to receive an indemnity payment, and will still be responsible for a percentage of the loss incurred. However, the loss suffered is a fraction of what it would be without the insurance. As discussed above, there is little incentive for producers to increase production or for producers of other commodities to transfer to cotton production.

The Cost of Production program will also have an impact on farm lenders. Because a producer can insure a percentage of his/her costs, a lender thereby has an implicit guarantee (up to 90%) on that loan. Such a guarantee would potentially lower interest rates for producers insured under Cost of Production.

#### Impact on Producers

The immediate impact of the proposed program is a lower level of risk assumed by producers. The incentive still remains to produce a marketable crop, as the producer must incur a loss to receive an indemnity payment. Since the program is "non-revenue enhancing," there will most likely be no shift from producing other commodities to cotton production.

Producers in other insurance programs, who experience several years of adverse weather resulting in low production, may be unable to obtain enough insurance to cover their costs of production. The coverage they can buy is linked to and limited by their actual production history. In many cases, farmers find their insurable yields declining and their premium rates increasing. The recent approval of providing an option to producers to limit their low yields to 60% of the county "T" Yield has been of some assistance in this area.

Uninsured growers in some areas may find Cost of Production an economical form of protection when they may not have viewed other programs as such. This program may also reduce the number of producers utilizing other insurance products. Because the program is individually rated, producers with a low to moderate loss history will be drawn to the program. The premiums for those producers will be lower than those with more extensive loss histories. Therefore, riskier producers will probably remain insured under other insurance programs. This may require an increase in premium under those programs to accommodate the higher overall risk levels and to remain actuarially sound.

COP insurance provisions have also eliminated the use of optional units. This allows for reduction in premiums across the board and helps mitigate potential fraud and abuse. The elimination of optional units is a vital step towards providing a low cost program in terms of premiums paid by producers and indemnities paid by the government.

Producers that are currently uninsured, or purchasing catastrophic coverage, may find Cost of Production insurance a more attractive option than the current federal crop insurance programs.

#### Impact on Small Producers

Long term, we anticipate a "sustaining effect" as limited resource and small producers will be able to remain in business longer than they might have been able to under current programs. Cost of Production will most likely prove to be a lower cost product for these producers, and may in turn increase insurance participation within this

group. It will most likely improve the chance of obtaining a loan for the small producers since there is an implicit 90% guarantee.

With COP, cotton producers will have some economic incentive to increase production, but not any more than what exists with current insurance programs, such as GRP and MPCI at a CAT coverage level. COP is designed to be an additional risk management tool for producers. In fact, some producers may choose to take advantage of COP's safety net and insure the acreage they already farm under COP. For farmers of uninsured crops, the economic incentive to switch to cotton may be tempered by the need for a substantial up-front investment, such as specialized equipment. According to ERS, 90% of the US eligible acreage of cotton is covered under an existing program. Therefore, there is only a small number of cotton producers who do not currently have some form of coverage.

The COP premiums are individually rated based on the producer's production history. Without adequate history, the new producer's premiums would likely be too high and would discourage production of a new commodity. If the producer chooses to participate in COP, and the production costs are more than the expected gross income, depending on the level of coverage chosen, the producer has the potential to recover up to 90% of their production costs.

#### History of Disaster Payments and Other Programs

According to the Farm Service Agency's History of Budgetary Expenditures of the Commodity Credit Corporation (CCC), report from April 2001, there was one disaster payment made for upland cotton. In 1990, \$17,000 in disaster payments was paid to producers. While CCC does not publish payments at a state or county level, payments for all commodities on a national level are provided in Table 29

| Tuble 2711 | tuble 2). Historical Disuster Fayments |           |           |         |           |           |  |
|------------|----------------------------------------|-----------|-----------|---------|-----------|-----------|--|
| (\$1000)   |                                        |           |           |         |           |           |  |
| 1987       | 1988                                   | 1989      | 1990      | 1991    | 1992      | 1993      |  |
| 556,470    | 15,403                                 | 3,408,218 | 1,460,167 | 8,667   | 959,065   | 872,150   |  |
|            |                                        |           |           |         |           |           |  |
| 1994       | 1995                                   | 1996      | 1997      | 1998    | 1999      | 2000      |  |
| 2,461,491  | 577,086                                | 14,077    | 2,250     | (-1868) | 1,913,183 | 1,251,309 |  |
| a a        | 11. 0                                  |           | 1005      | 2001    |           |           |  |

#### Table 29: Historical Disaster Payments

(Source: Commodity Credit Corporation, 1987-2001.)

With the 1996 Farm Bill, disaster payments in their current form were redefined and producers received other forms of government payments. These include AMTA Payments (previously Production Flexibility Contract Payments), Loan Deficiency (LDP) Payments, and Marketing Loss Assistance (MLA) Payments. As seen in Table 30, since the 1996 Farm Bill has been in effect, Upland Cotton producers have benefited significantly from these programs. While AMTA payments have declined over the last five years, both LDP and MLA payments have increased significantly.

| Year  | Р            | Program Payments for Upland Cotton (\$1000's) |                         |  |  |  |  |
|-------|--------------|-----------------------------------------------|-------------------------|--|--|--|--|
|       | AMTA         | Loan Deficiency Payments                      | Marketing Loss Payments |  |  |  |  |
| 1996  | \$ 687,311   | \$ 0                                          | \$ 0                    |  |  |  |  |
| 1997  | \$ 605,163   | \$ 5                                          | \$ 0                    |  |  |  |  |
| 1998  | \$ 640,932   | \$ 2,766                                      | \$ 0                    |  |  |  |  |
| 1999  | \$ 616,049   | \$ 326,620                                    | \$ 316,229              |  |  |  |  |
| 2000  | \$ 571,862   | \$ 668,037                                    | \$ 1,224,609            |  |  |  |  |
| Total | \$ 3,121,317 | \$ 997,428                                    | \$ 1,540,838            |  |  |  |  |

 Table 30: Upland Cotton Program Payments for 1996-2000

(Source: FSA: History of Budgetary Expenditures of the Commodity Credit Corporation, April, 2001)

#### Similar Insurance Programs

#### Yield-Based Coverage

#### MPCI (Multiple Peril Crop Insurance)

This program provides comprehensive protection from weather related loss and other unavoidable natural hazards. This program provides buy-up and CAT (catastrophic risk protection) and provides protection against poor quality, low yields, prevented planting, and replanting costs. Farmers can insure up to 75% of their yield in all areas and up to 85% in many areas. They can also insure up to 100% of the expected market price of the crop.

#### CAT (Catastrophic Risk Protection)

Catastrophic crop insurance protects producers from major crop losses due to unavoidable events such as drought, flooding, hail, insects, disease, etc. It guarantees 50% of the producer's average yield and currently pays 55% of the expected market price for any yield shortfall.

#### **GRP** (Group Risk Plan)

The Group Risk Plan is designed to insure against the widespread loss of production of a crop within a specific county. This is based on the assumption that when a county's yield is low, so is the individual farmer's yield. Producers may insure up to 90% of the expected county yield. Farmers whose crop losses follow the county pattern typically select this type of insurance. Producers may not purchase GRP and MPCI coverage for the same crop in the same year.

#### **Revenue Protection**

#### **CRC** (Crop Revenue Coverage)

This coverage protects producer income based on expectations for both price and yield. Should either or both fall and cause the crop revenue to fall below the guarantee, then losses are paid based upon the higher of an early season price or a harvest season price.

#### **IP** (Income Protection)

This program protects against drops in gross income when price and/or yield declines from early-season expectations.

#### Participation and Loss

Appendix E contains a table that summarizes historical participation and losses paid for several insurance programs during the past ten years. These programs include CAT, CRC, IP, and MPCI.

United States Department of Agriculture

Agricultural Marketing Service

Cotton Division

# United States Standards for the Leaf Grade of American Upland Cotton

Effective August 5, 1993

#### 1 **United States Standards for Cotton**

CFR 7 - Part 28 - Cotton Classing, Testing, and Standards

Subpart C – Standards

Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton

4 4

| Index                                |               |   |
|--------------------------------------|---------------|---|
| Section Page                         |               |   |
| 28.461 Leaf Grade 1                  | 2             |   |
| 28.462 Leaf Grade 2                  | 2             |   |
| 28.463 Leaf Grade 3                  | 2             |   |
| 28.464 Leaf Grade 4                  | 2             |   |
| 28.465 Leaf Grade 5                  | 2             |   |
| 28.466 Leaf Grade 6                  | 3             |   |
| 28.467 Leaf Grade 7                  | 3             |   |
| 28.471 Below Leaf Grade Cotton       |               | 3 |
| 28.480 General                       |               | 3 |
| 28.481 Alternate title for standards |               | 4 |
| 28.482 United States Cotton Future   | s Act         | 4 |
| 28.525 (b) Symbols and Code numl     | bers used for |   |
| Leaf Grades of American Upland C     | Cotton        | 4 |
|                                      |               |   |

#### 2

# **United States Standards for Cotton**

# OFFICIAL COTTON STANDARDS OF THE UNITED STATES FOR THE LEAF GRADE OF AMERICAN UPLAND COTTON

AUTHORITY: Sections 28.461 to 28.482 issued under Sec. 10, 42 Stat. 1519; (7 U.S.C. 61). Section 28482 also issued under Sec. 3c, 50 Stat. 62 (7 U.S.C. 473) and 90 Stat. 1841-1846 as amended (7 U.S.C. 15b). Interpret or apply Sec. 6, 42 Stat. 1518, as amended; (7 U.S.C. 56), unless otherwise noted.

#### LEAF GRADES

SOURCE: 57 FR 34498, Aug. 5, 1992, unless otherwise noted.

#### §28.461 Leaf Grade 1.

Leaf Grade 1 is leaf which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Good Middling, effective July 1, 1987."

#### §28.462 Leaf Grade 2.

Leaf Grade 2 is leaf which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Strict Middling, effective July 1, 1987."

#### §28.463 Leaf Grade 3.

Leaf Grade 3 is leaf which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland,, Middling, effective July 1, 1987.

#### §28.464 Leaf Grade 4.

Leaf Grade 4 is leaf which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Strict Low Middling, effective July 1, 1987."

#### §28.465 Leaf Grade 5.

Leaf Grade 5 is leaf which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Low Middling, effective July 1, 1987."

#### <sup>3</sup> **United States Standards for Cotton**

#### §28.466 Leaf Grade 6.

Leaf Grade 6 is leaf which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Strict Good Ordinary, effective July 1, 1987."

#### §28.467 Leaf Grade 7.

Leaf Grade 7 is leaf which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Good Ordinary, effective July 1, 1987."

#### BELOW LEAF GRADE COTTON

#### §28.471 Below Leaf Grade Cotton.

Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf Grade 7. In cotton classification, the official designation for such cotton is Below Leaf Grade. Other additional explanatory terms considered necessary to describe adequately the condition of the cotton may be entered on classification memorandums or certificates.

[57 FR 34499, Aug. 5, 1992]

#### GENERAL

#### §28.480 General.

(a) American Upland cotton which in color is within the range of the color standards established in this part shall be designated according to the color standard irrespective of the leaf content. American Upland cotton which in leaf is within the leaf standards established in this part shall be designated according to the leaf standard irrespective of the color.

(b) The term preparation is used to describe the degree of smoothness or roughness with which cotton is ginned and the relative neppiness or nappiness of the ginned lint. Normal preparation for any color grade of American Upland cotton for which there is a physical color standard shall be that found in the physical color standard. Normal preparation for any color grade of the American Upland cotton for which there is a descriptive color standard shall be that found in the physical standard shall be that found in the physical standard shall be that found in the physical standards for color used to define the descriptive color grade. Explanatory terms considered necessary to adequately describe the preparation of cotton may be entered on classification memorandums or certificates.

[57 FR 34499, Aug. 5, 1992]

#### 4 **United States Standards for Cotton**

#### §28.481 Alternate title for standards.

Since these standards have been agreed upon and accepted by the leading European cotton associations and exchanges, they may also be termed and referred to as the "Universal Standards for American Cotton."

#### [24 FR 5171, June 25, 1959]

#### §28.482 United States Cotton Futures Act.

The cotton standards contained in §28.301 through §28.603 of this part shall be effective for purposes of the United States Cotton Futures Act (7 U.S.C. 15b) and the regulations thereunder (7 CFR part 27). [45 FR 46783, July 11, 1980]

#### §28.525 Symbols and Code Numbers.

For administrative convenience, the symbols and code numbers prescribed in this section may be used in lieu of leaf grades.

(b) Symbols and Code Numbers used for Leaf Grades of American Upland Cotton.

Leaf Grade Symbol Code No.

| Leaf Grade 1     | LG1 1 |
|------------------|-------|
| Leaf Grade 2     | LG2 2 |
| Leaf Grade 3     | LG3 3 |
| Leaf Grade 4     | LG4 4 |
| Leaf Grade 5     | LG5 5 |
| Leaf Grade 6     | LG6 6 |
| Leaf Grade 7     | LG7 7 |
| Below Leaf Grade | BLG 8 |
|                  |       |

United States Department of Agriculture

Agricultural Marketing Service

Cotton Division

# United States Standards for the Color Grade of American Upland Cotton

Effective August 5, 1993

#### <sup>1</sup> United States Standards for Cotton

CFR 7 - Part 28 - Cotton Classing, Testing, and Standards Subpart C - Standards Official Cotton Standards of the United States for the Color Grade of American Upland Cotton

# Index

| Section                                                                             | Page |
|-------------------------------------------------------------------------------------|------|
| 28.401 Good Middling Color                                                          | 2    |
| 28.402 Strict Middling Color                                                        | 2    |
| 28.403 Middling Color                                                               | 2    |
| 28.404 Strict Low Middling Color                                                    | 2    |
| 28.405 Low Middling Color                                                           | 2    |
| 28.406 Strict Good Ordinary Color                                                   | 3    |
| 28.407 Good Ordinary Color                                                          | 3    |
| 28.4ll Good Middling Light Spotted Color                                            | 3    |
| 28.412 Strict Middling Light Spotted Color                                          | 3    |
| 28.413 Middling Light Spotted Color                                                 | 3    |
| 28.414 Strict Low Middling Light Spotted Color                                      | 3    |
| 28.415 Low Middling Light Spotted Color                                             | 3    |
| 28.416 Strict Good Ordinary Light Spotted Color                                     | 4    |
| 28.421 Good Middling Spotted Color                                                  | 4    |
| 28.422 Strict Middling Spotted Color                                                | 4    |
| 28.423 Middling Spotted Color                                                       | 4    |
| 28.424 Strict Low Middling Spotted Color                                            | 4    |
| 28.425 Low Middling Spotted Color                                                   | 4    |
| 28.426 Strict Good Ordinary Spotted Color                                           | 5    |
| 28.431 Strict Middling Tinged Color                                                 | 5    |
| 28.432 Middling Tinged Color                                                        | 5    |
| 28.433 Strict Low Middling Tinged Color                                             | 5    |
| 28.434 Low Middling Tinged Color                                                    | 5    |
| 28.441 Strict Middling Yellow Stained Color                                         | 5    |
| 28.442 Middling Yellow Stained Color                                                | 6    |
| 28.451 Below Color Grade Cotton                                                     | 6    |
| 28.525 (a) Symbols and Code Numbers used for Color Grades of American Upland Cotton | 7    |

#### <sup>2</sup> **United States Standards for Cotton**

# OFFICIAL COTTON STANDARDS OF THE UNITED STATES FOR THE COLOR GRADE OF AMERICAN UPLAND COTTON

AUTHORITY: Section 28.401 to 28.451 issued under Sec. 10, 42 Stat. 1519; (7 U.S.C. 61). Interpret or apply Sec. 6, 42 Stat. 1518, as amended; (7 U.S.C. 56), unless otherwise noted.

SOURCE: 57 FR 34497, Aug. 5, 1992, unless otherwise noted.

#### §28.401 Good Middling Color.

Good Middling Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Good Middling, effective July 1, 1987."

#### §28.402 Strict Middling Color.

Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Strict Middling, effective July 1, 1987."

#### §28.403 Middling Color.

Middling Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Middling, effective July 1, 1987."

#### §28.404 Strict Low Middling Color.

Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Strict Low Middling, effective July 1, 1987."

#### §28.405 Low Middling Color.

Low Middling Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked, "Original Official Cotton Standards of the United States, American Upland, Low Middling, effective July 1, 1987."

#### <sup>3</sup> **United States Standards for Cotton**

#### §28.406 Strict Good Ordinary Color.

Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Strict Good Ordinary, effective July 1, 1987."

#### §28.407 Good Ordinary Color.

Good Ordinary Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Good Ordinary, effective July 1, 1987."

#### LIGHT SPOTTED COTTON

SOURCE: 57 FR 34497, Aug. 5, 1992, unless otherwise noted.

#### §28.411 Good Middling Light Spotted Color.

Good Middling Light Spotted Color is color which in spot or color, or both, is between Good Middling Color and Good Middling Spotted Color.

#### §28.412 Strict Middling Light Spotted Color.

Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color.

#### §28.413 Middling Light Spotted Color.

Middling Light Spotted Color is color which in spot or color, or both, is between Middling Color and Middling Spotted Color.

#### §28.414 Strict Low Middling Light Spotted Color.

Strict Low Middling Light Spotted Color is color which in spot or color, or both, is between Strict Low Middling Color and Strict Low Middling Spotted Color.

#### §28.415 Low Middling Light Spotted Color.

Low Middling Light Spotted Color is color which in spot or color, or both, is between Low Middling Color and Low Middling Spotted Color.

# **United States Standards for Cotton**

#### §28.416 Strict Good Ordinary Light Spotted Color.

Strict Good Ordinary Light Spotted Color is color which in spot or color, or both, is between Strict Good Ordinary Color and Strict Good Ordinary Spotted Color.

#### SPOTTED COTTON

SOURCE: 57 FR 34498, Aug. 5, 1992, unless otherwise noted.

#### §28.421 Good Middling Spotted Color.

Good Middling Spotted Color is color which is better than Strict Middling Spotted Color. 828 422 Strict Middling Spotted Color

## **§28.422 Strict Middling Spotted Color.**

Strict Middling Spotted Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official

Cotton Standards of the United States, American Upland, Strict Middling Spotted, effective July 1, 1987." **§28.423 Middling Spotted Color.** 

# Middling Spotted Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked

"Original Official Cotton Standards of the United States, American Upland, Middling Spotted, effective July 1, 1987."

#### §28.424 Strict Low Middling Spotted Color.

Strict Low Middling Spotted Cotton is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Strict Low Middling Spotted, effective July 1, 1987."

#### §28.425 Low Middling Spotted Color.

Low Middling Spotted Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Low Middling Spotted, effective July 1, 1987."

#### <sup>5</sup> **United States Standards for Cotton**

#### §28.426 Strict Good Ordinary Spotted Color.

Strict Good Ordinary Spotted Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Strict Good Ordinary Spotted, effective July 1, 1987."

#### TINGED COTTON

SOURCE: 57 FR 34498, Aug. 5, 1992, unless otherwise noted.

#### §28.431 Strict Middling Tinged Color.

Strict Middling Tinged Color is color which is better than Middling Tinged Color.

#### §28.432 Middling Tinged Color.

Middling Tinged Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked

"Original Official Cotton Standards of the United States, American Upland, Middling Tinged, effective July 1, 1987."

#### §28.433 Strict Low Middling Tinged Color.

Strict Low Middling Tinged Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Strict Low Middling Tinged, effective July 1, 1987."

#### §28.434 Low Middling Tinged Color.

Low Middling Spotted Color is color which is within the range represented by a set of samples in the custody of the United States Department of Agriculture in a container marked "Original Official Cotton Standards of the United States, American Upland, Low Middling Tinged, effective July 1, 1987."

#### YELLOW STAINED COTTON

#### **§28.441** Strict Middling Yellow Stained Color.

Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992]

## 6 **United States Standards for Cotton**

§28.442 Middling Yellow Stained Color.

Middling Yellow Stained Color is American Upland cotton which in color is deeper than Middling Tinged Color. [57 FR 34498, Aug. 5, 1992]

#### BELOW COLOR GRADE COTTON

#### §28.451 Below Color Grade Cotton.

Below color grade cotton is American Upland cotton which is lower in color grade than Good Ordinary, or Strict Good Ordinary Light Spotted, or Strict Good Ordinary Spotted, or Low Middling Tinged or Middling Yellow Stained. In cotton classifications, the official designation for such cotton is Below Color Grade. The term Below Good Ordinary Color, or Below Strict Good Ordinary Light Spotted Color, or Below Strict Good Ordinary Spotted Color, or Below Low Middling Tinged Color, or Below Low Middling Yellow Stained Color and other additional explanatory terms considered necessary to describe adequately the condition of the cotton may be entered on classification memorandums or certificates.

[57 FR 34498, Aug. 5, 1992]

#### 7 **United States Standards for Cotton**

#### §28.525 Symbols and Code Numbers.

For administrative convenience, the symbols and code numbers prescribed in this section may be used in lieu of the color grades.

(a) Symbols and Code numbers used for Color Grades of American Upland Cotton.

| Color Grade Symbol Code No.                                   |
|---------------------------------------------------------------|
| Good Middling GM 11                                           |
| Strict Middling SM 21                                         |
| Middling Mid 31                                               |
| Strict Low Middling SLM 41                                    |
| Low Middling LM 51                                            |
| Strict Good Ordinary SGO 61                                   |
| Good Ordinary GO 71                                           |
| Good Middling Light Spotted GM Lt SP 12                       |
| Strict Middling Light Spotted SM Lt Sp 22                     |
| Middling Light Spotted Mid Lt Sp 32                           |
| Strict Low Middling Light Spotted SLM Lt Sp 42                |
| Low Middling Light Spotted LM Lt Sp 52                        |
| Strict Good Ordinary Light Spotted SGO Lt Sp 62               |
| Good Middling Spotted GM Sp 13                                |
| Strict Middling Spotted SM Sp 23                              |
| Middling Spotted Mid Sp 33                                    |
| Strict Low Middling Spotted SLM Sp 43                         |
| Low Middling Spotted LM Sp 53                                 |
| Strict Good Ordinary Spotted SGO Sp 63                        |
| Strict Middling Tinged SM Tg 24                               |
| Middling Tinged Mid Tg 34                                     |
| Strict Low Middling Tinged SLM Tg 44                          |
| Low Middling Tinged LM Tg 54                                  |
| Strict Middling Yellow Stained SM YS 25                       |
| Middling Yellow Stained Mid YS 35                             |
| Below Grade-(Below Good BG 81 Ordinary).                      |
| Below Grade-(Below Strict Good BG 82 Ordinary Light Spotted). |
| Below Grade-(Below Strict Good BG 83 Ordinary Spotted).       |
| Below Grade-(Below Low BG 84 Middling Tinged).                |
| Below Grade-(Below Middling Yellow BG 85 Stained).            |

# Appendix B: Historical Causes of Loss

The data in this table was taken from Rain and Hail Insurance Service only. Although this information does not include data from all insurance services, it is a strong indicator of overall losses as Rain and Hail is the largest and one of the most widespread crop insurance companies.

| Voor | Stata | Causa              | Loss (\$)   | % of<br>year<br>total | Voor | Stata | Causa               | Loss (\$)   | % of<br>year<br>total |
|------|-------|--------------------|-------------|-----------------------|------|-------|---------------------|-------------|-----------------------|
| 1999 |       | Total              | 15 177 357  | total                 | 1998 |       | Total               | 21 851 632  | total                 |
| 1999 | AL.   | Drought            | 13 649 330  | 89.9                  | 1998 | AL    | Drought             | 12 390 289  | 56.7                  |
| 1999 | AL    | Heat               | 1,132,821   | 7.5                   | 1998 | AL    | Tropical Depression | 7.374.936   | 33.8                  |
| 1999 | AL    | Excessive Moisture | 307 338     | 2.0                   | 1998 | AL    | Excessive Moisture  | 1 959 950   | 9.0                   |
| 1999 | AL    | All Others         | 87,868      | 0.6                   | 1998 | AL    | All Others          | 126.457     | 0.6                   |
| 1999 | AZ    | Total              | 9 076 586   | 0.0                   | 1998 | AZ    | Total               | 3 136 688   |                       |
| 1999 | AZ    | Cold Wet Weather   | 6.351.130   | 70.0                  | 1998 | AZ    | Cold Wet Weather    | 1,268,625   | 40.4                  |
| 1999 | AZ    | All Others         | 749,396     | 8.3                   | 1998 | AZ    | Hot Wind            | 804.897     | 25.7                  |
| 1999 | AZ    | Excessive Moisture | 627,952     | 6.9                   | 1998 | AZ    | Wind                | 292.974     | 9.3                   |
| 1999 | AZ    | Heat               | 517.617     | 5.7                   | 1998 | AZ    | Excessive Moisture  | 246.718     | 7.9                   |
| 1999 | AZ    | Hail               | 502.869     | 5.5                   | 1998 | AZ    | Hail                | 221.819     | 7.1                   |
| 1999 | AZ    | Decline In Price   | 327.622     | 3.6                   | 1998 | AZ    | Insects             | 183.711     | 5.9                   |
| 1999 | CA    | Total              | 1.064.874   | 510                   | 1998 | AZ    | Heat                | 117.944     | 3.8                   |
| 1999 | CA    | Excessive Moisture | 586.085     | 55.0                  | 1998 | CA    | Total               | 20.441.515  |                       |
| 1999 | CA    | Cold Wet Weather   | 221.844     | 20.8                  | 1998 | CA    | Excessive Moisture  | 9.827.067   | 48.1                  |
| 1999 | CA    | Wind               | 156.095     | 14.7                  | 1998 | CA    | Flood               | 9,177,361   | 44.9                  |
| 1999 | CA    | All Others         | 100.850     | 9.5                   | 1998 | CA    | Cold Wet Weather    | 938.314     | 4.6                   |
| 1999 | GA    | Total              | 92.816.863  | 710                   | 1998 | CA    | All Others          | 498,773     | 2.4                   |
| 1999 | GA    | Drought            | 70.893.835  | 76.4                  | 1998 | GA    | Total               | 48.297.030  |                       |
| 1999 | GA    | Heat               | 18,462,373  | 19.9                  | 1998 | GA    | Drought             | 44.658.633  | 92.5                  |
| 1999 | GA    | Excessive Moisture | 1,907,541   | 2.1                   | 1998 | GA    | Heat                | 3,034,812   | 6.3                   |
| 1999 | GA    | Plant Disease      | 1.553.114   | 1.7                   | 1998 | GA    | All Others          | 603,585     | 1.2                   |
| 1999 | LA    | Total              | 8,062,013   |                       | 1998 | LA    | Total               | 3,984,201   |                       |
| 1999 | LA    | Excessive Moisture | 3,500,038   | 43.4                  | 1998 | LA    | Drought             | 3,049,939   | 76.6                  |
| 1999 | LA    | Drought            | 3,370,989   | 41.8                  | 1998 | LA    | Heat                | 625.833     | 15.7                  |
| 1999 | LA    | Heat               | 992,859     | 12.3                  | 1998 | LA    | All Others          | 308,429     | 7.7                   |
| 1999 | LA    | All Others         | 198,127     | 2.5                   | 1998 | MS    | Total               | 6,748,623   |                       |
| 1999 | MS    | Total              | 18,124,664  |                       | 1998 | MS    | Drought             | 3,524,682   | 52.2                  |
| 1999 | MS    | Drought            | 9,169,706   | 50.6                  | 1998 | MS    | Tropical Depression | 1,076,751   | 16.0                  |
| 1999 | MS    | Heat               | 6,232,778   | 34.4                  | 1998 | MS    | Excessive Moisture  | 793,547     | 11.8                  |
| 1999 | MS    | Decline In Price   | 1,677,653   | 9.3                   | 1998 | MS    | Flood               | 792,949     | 11.8                  |
| 1999 | MS    | All Others         | 1,044,527   | 5.8                   | 1998 | MS    | All Others          | 560,694     | 8.3                   |
| 1999 | ТХ    | Total              | 210,844,365 |                       | 1998 | ТХ    | Total               | 285,187,048 |                       |
| 1999 | ΤX    | Hail               | 119,411,169 | 56.6                  | 1998 | TX    | Drought             | 250,406,073 | 87.8                  |
| 1999 | ΤХ    | Drought            | 48,905,598  | 23.2                  | 1998 | ΤХ    | Heat                | 11,755,574  | 4.1                   |
| 1999 | TX    | Excessive Moisture | 24,628,833  | 11.7                  | 1998 | TX    | Hot Wind            | 9,252,121   | 3.2                   |
| 1999 | ΤX    | All Others         | 6,660,227   | 3.2                   | 1998 | ΤX    | Hail                | 8,498,734   | 3.0                   |
| 1999 | ΤХ    | Heat               | 5,894,976   | 2.8                   | 1998 | TX    | Wind                | 3,811,801   | 1.3                   |
| 1999 | ΤХ    | Wind               | 5,343,562   | 2.5                   | 1998 | ΤХ    | All Others          | 1,462,745   | 0.5                   |

|      |       |                    |            | % of  |      |       |                    |             | % of  |
|------|-------|--------------------|------------|-------|------|-------|--------------------|-------------|-------|
| Year | State | Cause              | Loss (\$)  | total | Year | State | Cause              | Loss (\$)   | total |
| 1997 | AL    | Total              | 39,771,396 |       | 1996 | AL    | Total              | 6,430,316   |       |
| 1997 | AL    | Cold Wet Weather   | 22,185,181 | 55.8  | 1996 | AL    | Drought            | 4,772,097   | 74.2  |
| 1997 | AL    | Drought            | 8,599,367  | 21.6  | 1996 | AL    | Excessive Moisture | 1,397,397   | 21.7  |
| 1997 | AL    | Excessive Moisture | 5,013,201  | 12.6  | 1996 | AL    | All Others         | 260,822     | 4.1   |
| 1997 | AL    | Plant Disease      | 3,638,796  | 9.2   | 1996 | AZ    | Total              | 3,654,170   |       |
| 1997 | AL    | All Others         | 334,851    | 0.8   | 1996 | AZ    | Wind               | 915,798     | 25.1  |
| 1997 | AZ    | Total              | 5,441,663  |       | 1996 | AZ    | Insects            | 875,194     | 24.0  |
| 1997 | AZ    | Excessive Moisture | 1,845,454  | 33.9  | 1996 | AZ    | Heat               | 712,398     | 19.5  |
| 1997 | AZ    | Insects            | 1,547,452  | 28.4  | 1996 | AZ    | Freeze             | 568,231     | 15.6  |
| 1997 | AZ    | Heat               | 1,113,551  | 20.5  | 1996 | AZ    | Hail               | 513,697     | 14.1  |
| 1997 | AZ    | Wind               | 692,979    | 12.7  | 1996 | AZ    | All Others         | 68,852      | 1.8   |
| 1997 | AZ    | All Others         | 242,227    | 4.5   | 1996 | CA    | Total              | 729,945     |       |
| 1997 | CA    | Total              | 6,833,203  |       | 1996 | CA    | Heat               | 425,539     | 58.3  |
| 1997 | CA    | Flood              | 5,914,948  | 86.6  | 1996 | CA    | Excessive Moisture | 173,424     | 23.8  |
| 1997 | CA    | Excessive Moisture | 530,569    | 7.8   | 1996 | CA    | Insects            | 94,832      | 13.0  |
| 1997 | CA    | All Others         | 387,686    | 5.7   | 1996 | CA    | All Others         | 36,150      | 5.0   |
| 1997 | GA    | Total              | 24,308,172 |       | 1996 | GA    | Total              | 10,055,621  |       |
| 1997 | GA    | Drought            | 18,274,830 | 75.2  | 1996 | GA    | Drought            | 8,418,336   | 83.7  |
| 1997 | GA    | Excessive Moisture | 4,867,257  | 20.0  | 1996 | GA    | Excessive Moisture | 1,130,605   | 11.2  |
| 1997 | GA    | All Others         | 1,166,085  | 4.8   | 1996 | GA    | All Others         | 506,680     | 5.0   |
| 1997 | LA    | Total              | 976,304    |       | 1996 | LA    | Total              | 2,201,521   |       |
| 1997 | LA    | Excessive Moisture | 766,856    | 78.6  | 1996 | LA    | Excessive Moisture | 1,533,836   | 69.7  |
| 1997 | LA    | Drought            | 113,459    | 11.6  | 1996 | LA    | Drought            | 171,812     | 7.8   |
| 1997 | LA    | All Others         | 95,989     | 9.8   | 1996 | LA    | Flood              | 164,312     | 7.5   |
| 1997 | MS    | Total              | 3,198,265  |       | 1996 | LA    | Insects            | 114,672     | 5.2   |
| 1997 | MS    | Excessive Moisture | 1,641,728  | 51.3  | 1996 | LA    | Heat               | 111,817     | 5.1   |
| 1997 | MS    | Drought            | 1,022,470  | 32.0  | 1996 | LA    | All Others         | 105,072     | 4.8   |
| 1997 | MS    | Flood              | 436,123    | 13.6  | 1996 | MS    | Total              | 4,758,069   |       |
| 1997 | MS    | All Others         | 97,944     | 3.1   | 1996 | MS    | Drought            | 2,341,554   | 49.2  |
| 1997 | ТХ    | Total              | 77,334,813 |       | 1996 | MS    | Flood              | 1,276,417   | 26.8  |
| 1997 | ΤХ    | Hail               | 36,536,245 | 47.2  | 1996 | MS    | Excessive Moisture | 557,530     | 11.7  |
| 1997 | ΤХ    | Excessive Moisture | 21,173,010 | 27.4  | 1996 | MS    | Hail               | 399,615     | 8.4   |
| 1997 | ΤХ    | Wind               | 8,519,079  | 11.0  | 1996 | MS    | All Others         | 182,953     | 3.8   |
| 1997 | ΤХ    | Drought            | 7,913,037  | 10.2  | 1996 | ТХ    | Total              | 240,814,764 |       |
| 1997 | ΤХ    | All Others         | 3,193,442  | 4.1   | 1996 | ΤХ    | Drought            | 182,498,548 | 75.8  |
|      |       |                    |            |       | 1996 | ΤХ    | Hail               | 30,908,787  | 12.8  |
|      |       |                    |            |       | 1996 | ΤХ    | Wind               | 9,502,702   | 4.0   |
|      |       |                    |            |       | 1996 | ΤХ    | Excessive Moisture | 4,939,751   | 2.1   |
|      |       |                    |            |       | 1996 | ΤХ    | Hot Wind           | 3,692,945   | 1.5   |
|      |       |                    |            |       | 1996 | ТХ    | Heat               | 3,337,022   | 1.4   |
|      |       |                    |            |       | 1996 | ТХ    | Freeze             | 3,078,797   | 1.3   |
|      |       |                    |            |       | 1996 | ΤХ    | All Others         | 2,856,212   | 1.2   |

| Year | State | Cause               | Loss (\$)  | % of<br>year<br>total | Year | State | Cause              | Loss (\$)   | % of<br>year<br>total |
|------|-------|---------------------|------------|-----------------------|------|-------|--------------------|-------------|-----------------------|
| 1995 | AL    | Total               | 28,652,534 |                       | 1995 | LA    | Total              | 5,297,855   |                       |
| 1995 | AL    | Insects             | 13,468,812 | 47.0                  | 1995 | LA    | Heat               | 1,464,972   | 27.7                  |
| 1995 | AL    | Tropical Depression | 11,528,815 | 40.2                  | 1995 | LA    | Lightning          | 1,028,223   | 19.4                  |
| 1995 | AL    | Drought             | 3,096,480  | 10.8                  | 1995 | LA    | Wildlife           | 836,016     | 15.8                  |
| 1995 | AL    | All Others          | 558,427    | 1.9                   | 1995 | LA    | Drought            | 530,910     | 10.0                  |
| 1995 | AZ    | Total               | 5,097,093  |                       | 1995 | LA    | Flood              | 498,790     | 9.4                   |
| 1995 | AZ    | Insects             | 3,135,304  | 61.5                  | 1995 | LA    | Excessive Moisture | 474,314     | 9.0                   |
| 1995 | AZ    | Wildlife            | 1,513,631  | 29.7                  | 1995 | LA    | Insects            | 464,630     | 8.8                   |
| 1995 | AZ    | Cold Wet Weather    | 406,292    | 8.0                   | 1995 | MS    | Total              | 17,025,677  |                       |
| 1995 | AZ    | Wind                | 41,866     | 0.8                   | 1995 | MS    | Insects            | 11,918,403  | 70.0                  |
| 1995 | CA    | Total               | 3,280,997  |                       | 1995 | MS    | Flood              | 2,505,969   | 14.7                  |
| 1995 | CA    | Cold Wet Weather    | 1,334,439  | 52.3                  | 1995 | MS    | Drought            | 2,468,678   | 14.5                  |
| 1995 | CA    | Insects             | 838,480    | 32.9                  | 1995 | MS    | All Others         | 132,627     | 0.8                   |
| 1995 | CA    | Hail                | 378,133    | 14.8                  | 1995 | ТХ    | Total              | 185,202,331 |                       |
| 1995 | GA    | Total               | 18,348,844 |                       | 1995 | ΤХ    | Insects            | 85,599,099  | 46.2                  |
| 1995 | GA    | Heat                | 5,318,207  | 29.0                  | 1995 | ΤХ    | Wind               | 24,948,250  | 13.5                  |
| 1995 | GA    | Tropical Depression | 5,029,731  | 27.4                  | 1995 | ΤХ    | Erosion            | 24,847,409  | 13.4                  |
| 1995 | GA    | Wind                | 3,518,746  | 19.2                  | 1995 | ΤХ    | Hot Wind           | 15,834,720  | 8.6                   |
| 1995 | GA    | Excessive Moisture  | 2,537,442  | 13.8                  | 1995 | ΤХ    | Plant Disease      | 9,901,597   | 5.4                   |
| 1995 | GA    | Drought             | 1,512,229  | 8.2                   | 1995 | ΤХ    | Cold Wet Weather   | 9,571,293   | 5.2                   |
| 1995 | GA    | All Others          | 432,489    | 2.4                   | 1995 | ТХ    | Excessive Moisture | 9,452,746   | 5.1                   |
|      |       |                     |            |                       | 1995 | ΤХ    | All Others         | 2,910,706   | 1.6                   |
|      |       |                     |            |                       | 1995 | ΤХ    | Drought            | 2,136,511   | 1.2                   |

(Rain and Hail Insurance Service, 2001.)

# Appendix C: Potential Losses

| Northern Alabama                                             |                  |              |                |          |                |          |                |              |                 |
|--------------------------------------------------------------|------------------|--------------|----------------|----------|----------------|----------|----------------|--------------|-----------------|
| Base (no standard deviations)                                | 4004             | 4000         | 4002           | 4004     | 4005           | 4000     | 4007           | 4000         | 4000            |
|                                                              | 1991             | 1992         | 1993           | 1994     | 1995           | 1996     | 1997           | 1998         | 1999            |
| Yields - Ibs<br>Adjusted Vield (Dece)                        | 618              | 800          | 559            | 875      | 365            | 870      | 520            | 747          | 514             |
| Adjusted field (Base)                                        | 618              | 800          | 559            | 8/5      | 365            | 870      | 520            | 747          | 514             |
| Price - \$                                                   | 0.57             | 0.56         | 0.57           | 0.69     | 0.73           | 0.71     | 0.67           | 0.61         | 0.48            |
| COSL- »                                                      | 296.16           | 302.30       | 308.56         | 314.96   | 321.48         | 328.15   | 334.94         | 341.89       | 348.97          |
| Potential Indemnity - \$                                     | 0.90             | 0.90         | 0.90           | 0.90     | -23.01         | 0.90     | 0.90           | 0.90         | -68.22          |
| r otentiai indeninity - \$                                   | 0.00             | 0.00         | 0.00           | 0.00     | -23.01         | 0.00     | 0.00           | 0.00         | -00.22          |
| Minus one standard deviation                                 |                  |              |                |          |                |          |                |              |                 |
|                                                              | 1991             | 1992         | 1993           | 1994     | 1995           | 1996     | 1997           | 1998         | 1999            |
| Yields - Ibs                                                 | 618              | 800          | 559            | 875      | 365            | 870      | 520            | 747          | 514             |
| Adjusted Yield (-1 STDEV)                                    | 448.78           | 630.78       | 389.11         | 705.78   | 195.78         | 700.78   | 350.44         | 577.11       | 344.78          |
| Price - \$                                                   | 0.57             | 0.56         | 0.57           | 0.69     | 0.73           | 0.71     | 0.67           | 0.61         | 0.48            |
| Cost - \$                                                    | 296.16           | 302.30       | 308.56         | 314.96   | 321.48         | 328.15   | 334.94         | 341.89       | 348.97          |
| Insurance Coverage - \$                                      | 0.90             | 0.90         | 0.90           | 0.90     | 0.90           | 0.90     | 0.90           | 0.90         | 0.90            |
| Potential Indemnity - \$                                     | -12.54           | 0.00         | -55.53         | 0.00     | -146.61        | 0.00     | -65.60         | 0.00         | -149.27         |
|                                                              |                  |              |                |          |                |          |                |              |                 |
|                                                              |                  |              |                |          |                |          |                |              |                 |
| Minus two standard deviations                                |                  |              |                |          |                |          |                |              |                 |
|                                                              | 1991             | 1992         | 1993           | 1994     | 1995           | 1996     | 1997           | 1998         | 1999            |
| Yields - Ibs                                                 | 618              | 800          | 559            | 875      | 365            | 870      | 520            | 747          | 514             |
| Adjusted Yield (-2 STDEV)                                    | 279.22           | 461.22       | 219.55         | 536.22   | 26.22          | 531.22   | 180.89         | 407.55       | 175.22          |
| Price - \$                                                   | 0.57             | 0.56         | 0.57           | 0.69     | 0.73           | 0.71     | 0.67           | 0.61         | 0.48            |
| Cost - \$                                                    | 296.16           | 302.30       | 308.56         | 314.96   | 321.48         | 328.15   | 334.94         | 341.89       | 348.97          |
| Insurance Coverage - \$                                      | 0.90             | 0.90         | 0.90           | 0.90     | 0.90           | 0.90     | 0.90           | 0.90         | 0.90            |
| Potential Indemnity - \$                                     | -108.51          | -12.86       | -152.34        | 0.00     | -270.22        | 0.00     | -179.71        | -60.72       | -230.32         |
|                                                              |                  |              |                |          |                |          |                |              |                 |
| Plus one standard deviations                                 |                  |              |                |          |                |          |                |              |                 |
|                                                              | 1991             | 1992         | 1993           | 1994     | 1995           | 1996     | 1997           | 1998         | 1999            |
| Yields - Ibs                                                 | 618              | 800          | 559            | 875      | 365            | 870      | 520            | 747          | 514             |
| Adjusted Yield (+1 STDEV)                                    | 787.89           | 969.89       | 728.22         | 1,044.89 | 534.89         | 1,039.89 | 689.56         | 916.22       | 683.89          |
| Price - \$                                                   | 0.57             | 0.56         | 0.57           | 0.69     | 0.73           | 0.71     | 0.67           | 0.61         | 0.48            |
| Cost - \$                                                    | 296.16           | 302.30       | 308.56         | 314.96   | 321.48         | 328.15   | 334.94         | 341.89       | 348.97          |
| Insurance Coverage - \$                                      | 0.90             | 0.90         | 0.90           | 0.90     | 0.90           | 0.90     | 0.90           | 0.90         | 0.90            |
| Potential Indemnity - \$                                     | 0.00             | 0.00         | 0.00           | 0.00     | 0.00           | 0.00     | 0.00           | 0.00         | 0.00            |
|                                                              |                  |              |                |          |                |          |                |              |                 |
| Plus two standard deviations                                 |                  |              |                |          |                |          |                |              |                 |
|                                                              | 1991             | 1992         | 1993           | 1994     | 1995           | 1996     | 1997           | 1998         | 1999            |
| Yields - Ibs                                                 | 618              | 800          | 559            | 875      | 365            | 870      | 520            | 747          | 514             |
| Adjusted Yield (+2 STDEV)                                    | 957.45           | 1,139.45     | 897.78         | 1,214.45 | 704.45         | 1,209.45 | 859.11         | 1,085.78     | 853.45          |
| Price - \$                                                   | 0.57             | 0.56         | 0.57           | 0.69     | 0.73           | 0.71     | 0.67           | 0.61         | 0.48            |
| Cost - \$                                                    | 296.16           | 302.30       | 308.56         | 314.96   | 321.48         | 328.15   | 334.94         | 341.89       | 348.97          |
| Insurance Coverage - \$                                      | 0.90             | 0.90         | 0.90           | 0.90     | 0.90           | 0.90     | 0.90           | 0.90         | 0.90            |
| Potential Indemnity - \$                                     | 0.00             | 0.00         | 0.00           | 0.00     | 0.00           | 0.00     | 0.00           | 0.00         | 0.00            |
| Total Devent for Fack Vaca                                   | 404.05           | 40.00        | 007.07         | 0.00     | 400.04         | 0.00     | 045.00         | co 70        | 447.04          |
| Total Payout for Each Teal                                   | -121.05          | -12.00       | -207.87        | 0.00     | -439.04        | 0.00     | -240.02        | -00.72       | -447.01         |
| Weighted Average per year                                    | (1.346.878.66)   | (109.203.10) | (3.178.563.45) | -        | (9.225.136.19) | -        | (3.753.029.07) | (515.425.31) | (12.814.552.75) |
| ·····g································                       | (.,,,            | (,,          | (-,,,-)        |          | (0,), 000, 00) |          | (0,000,00000)  | (0.0,0.0, .) | (,,             |
| Average Payout per acre per year                             | (7.93)           | (0.64)       | (18.72)        | -        | (54.34)        | -        | (22.11)        | (3.04)       | (75.48)         |
|                                                              | (00.70)          |              |                |          |                |          |                |              |                 |
| Average payout for 1991-2000                                 | (20.76)          |              |                |          |                |          |                |              |                 |
| Total Liability per Acre<br>10 Yr Average Liability per Acre | 266.55<br>292.83 | 272.07       | 277.71         | 283.46   | 289.34         | 295.33   | 301.45         | 307.70       | 314.07          |
| Insured Acreage                                              | 100 77 1 00      |              |                |          |                |          |                |              |                 |

# **Appendix D: Production Budgets**

| ariable Expenses"                   | _ |      |
|-------------------------------------|---|------|
| Chemicals                           | _ |      |
| Fertilizer                          |   |      |
| Seed or Plants                      |   |      |
| Fuel, Lube, and Utilities           |   |      |
| Repairs and Maintenance             |   |      |
| Hired Labor                         |   |      |
| Other Labor                         |   |      |
| Custom Operations                   |   |      |
| Harvesting                          |   |      |
| Irrigation                          |   |      |
| Crop Specific Post-Harvest Expenses |   |      |
| Operating Loan Interest             |   |      |
| Other Variable Costs                |   |      |
| Variable Cost Sub-Total             |   |      |
| Fixed Costs                         | - |      |
| Capital Replacement                 |   |      |
| Term Loan Interest                  |   | <br> |
| Other Fixed Costs                   |   |      |
| Owner Labor                         |   |      |
| Fixed Cost Sub-Total                |   |      |
| and Fee                             |   |      |
| fotal Expenses                      |   |      |
|       | Re        | presentative Budget Ex | penditures for the Pro | posed Cotton Pilot Sta | tes         |
|-------|-----------|------------------------|------------------------|------------------------|-------------|
|       |           |                        |                        |                        | -           |
| State | Statistic | Variable Costs         | Fixed Costs            | Land Cost              | Total Costs |
| AL    | Average   | \$288.02               | \$59.98                | \$33.45                | \$381.45    |
|       | St. Dev.  | \$70.42                | \$37.75                | \$14.04                | \$68.62     |
| 47.   | Average   | \$710.84               | \$223.50               | \$77.46                | \$1,011,79  |
|       | St. Dev.  | \$159.29               | \$123.91               | \$29.99                | \$218.61    |
|       |           |                        |                        |                        |             |
| CA    | Average   | \$784.91               | \$138.86               | \$173.41               | \$1,097.18  |
|       | St. Dev.  | \$190.08               | \$82.90                | \$83.61                | \$236.67    |
| GA    | Average   | \$404.12               | \$144.46               | \$55.83                | \$604.41    |
| 011   | St. Dev.  | \$50.53                | \$71.49                | \$22.68                | \$98.41     |
|       |           |                        |                        |                        |             |
| LA    | Average   | \$387.23               | \$101.69               | \$89.92                | \$578.83    |
|       | St. Dev.  | \$55.18                | \$47.20                | \$27.23                | \$97.60     |
| MS    | Average   | \$332.29               | \$78.61                | \$68.16                | \$479.07    |
|       | St. Dev.  | \$67.17                | \$33.01                | \$30.06                | \$85.67     |
|       |           |                        |                        |                        |             |
| NC    | Average   | \$272.43               | \$24.29                | \$49.52                | \$346.24    |
|       | St. Dev.  | \$91.05                | \$42.07                | \$0.83                 | \$49.81     |
| TX    | Average   | \$330.35               | \$45.56                | \$64.84                | \$440.75    |
|       | St. Dev.  | \$153.84               | \$44.63                | \$31.81                | \$169.21    |

# **Appendix E: Participation and Loss for Upland Cotton**

The information contained in these tables covers all participation within the state and not solely the recommended pilot area. This data is provided by the Risk Management Agency.

| Alabama |       |           |          |             |            |            |            |
|---------|-------|-----------|----------|-------------|------------|------------|------------|
|         |       | Insurance | Policies | Liabilities | Total      | Indemnity  |            |
| Year    | State | Plan      | Sold     | (\$)        | Premium    | (\$)       | Loss Ratio |
| 2000    | AL    | CRC       | 326      | 17,162,872  | 2,231,756  | 3,548,492  | 1.59       |
| 2000    | AL    | MPCI      | 3,148    | 110,595,606 | 13,229,650 | 28,576,045 | 2.16       |
| 2000    | AL    | CAT       | 490      | 6,782,652   | 520,479    | 369,540    | 0.71       |
| 1999    | AL    | CRC       | 156      | 8,402,928   | 935,193    | 1,292,465  | 1.38       |
| 1999    | AL    | MPCI      | 3,095    | 117,320,244 | 13,092,466 | 14,044,125 | 1.07       |
| 1999    | AL    | CAT       | 529      | 8,378,275   | 624,057    | 86,971     | 0.14       |
| 1999    | AL    | IP        | 1        | 22,500      | 0          | 0          | 0.00       |
| 1998    | AL    | CRC       | 23       | 923,219     | 126,909    | 48,488     | 0.38       |
| 1998    | AL    | MPCI      | 2,949    | 102,946,434 | 10,561,339 | 21,468,436 | 2.03       |
| 1998    | AL    | CAT       | 694      | 13,414,882  | 981,571    | 355,132    | 0.36       |
| 1998    | AL    | IP        | 3        | 25,208      | 0          | 0          | 0.00       |
| 1997    | AL    | CAT       | 964      | 14,874,856  | 1,051,273  | 697,571    | 0.66       |
| 1997    | AL    | IP        | 7        | 972,633     | 98,589     | 390,058    | 3.96       |
| 1997    | AL    | MPCI      | 2,700    | 109,718,018 | 10,786,417 | 38,807,810 | 3.60       |
| 1996    | AL    | CAT       | 1000     | 13,927,243  | 1,012,688  | 60,925     | 0.06       |
| 1996    | AL    | MPCI      | 2,661    | 96,365,409  | 10,128,942 | 6,391,916  | 0.63       |
| 1995    | AL    | CAT       | 1,683    | 28,368,995  | 1,860,303  | 4,217,637  | 2.27       |
| 1995    | AL    | MPCI      | 2,337    | 100,566,901 | 8,938,323  | 25,157,316 | 2.81       |
| 1994    | AL    | MPCI      | 1,487    | 56,113,381  | 5,055,705  | 3,072,871  | 0.61       |
| 1993    | AL    | MPCI      | 930      | 44,062,802  | 3,807,607  | 4,069,912  | 1.07       |
| 1992    | AL    | MPCI      | 976      | 42,756,074  | 3,793,546  | 1,675,495  | 0.44       |
| 1991    | AL    | MPCI      | 1,151    | 40,546,056  | 3,392,092  | 2,233,598  | 0.66       |

| Arizona |       |           |          |             |           |           |            |
|---------|-------|-----------|----------|-------------|-----------|-----------|------------|
|         |       | Insurance | Policies | Liabilities | Total     | Indemnity |            |
| Year    | State | Plan      | Sold     | (\$)        | Premium   | (\$)      | Loss Ratio |
| 2000    | AZ    | CAT       | 345      | 23,814,342  | 618,641   | 63,356    | 0.10       |
| 2000    | AZ    | CRC       | 27       | 13,713,601  | 1,330,667 | 1,583,436 | 1.19       |
| 2000    | AZ    | MPCI      | 325      | 69,046,759  | 4,238,979 | 6,650,011 | 1.57       |
| 1999    | AZ    | CAT       | 384      | 24,294,200  | 756,383   | 20,641    | 0.03       |
| 1999    | AZ    | CRC       | 26       | 15,720,691  | 1,104,304 | 5,789,764 | 5.24       |
| 1999    | AZ    | MPCI      | 278      | 51,060,385  | 2,766,831 | 3,190,223 | 1.15       |
| 1998    | AZ    | CAT       | 447      | 35,453,870  | 1,043,692 | 16,944    | 0.02       |
| 1998    | AZ    | CRC       | 5        | 1,030,405   | 91,597    | 42,365    | 0.46       |
| 1998    | AZ    | MPCI      | 225      | 38,390,083  | 1,855,476 | 3,054,526 | 1.65       |
| 1997    | AZ    | CAT       | 497      | 47,831,438  | 1,495,875 | 10,687    | 0.01       |
| 1997    | AZ    | CRC       | 9        | 2,663,002   | 237,527   | 818,481   | 3.45       |
| 1997    | AZ    | MPCI      | 207      | 41,708,341  | 2,314,598 | 4,564,890 | 1.97       |
| 1996    | AZ    | CAT       | 678      | 28,138,146  | 879,388   | 6,798     | 0.01       |
| 1996    | AZ    | MPCI      | 223      | 41,577,739  | 2,326,048 | 3,647,371 | 1.57       |
| 1995    | AZ    | CAT       | 700      | 62,119,882  | 1,818,776 | 47,286    | 0.03       |
| 1995    | AZ    | MPCI      | 216      | 45,925,168  | 2,348,778 | 5,750,579 | 2.45       |
| 1994    | AZ    | MPCI      | 239      | 37,310,460  | 2,017,353 | 635,314   | 0.31       |
| 1993    | AZ    | MPCI      | 328      | 55,914,548  | 2,682,422 | 4,642,939 | 1.73       |
| 1992    | AZ    | MPCI      | 74       | 13,340,011  | 678,955   | 3,024,820 | 4.46       |
| 1991    | AZ    | MPCI      | 71       | 11,005,244  | 463,794   | 714,079   | 1.54       |

### California

| Year | State | Insurance<br>Plan | Policies<br>Sold | Liabilities<br>(\$) | Total<br>Premium | Indemnity<br>(\$) | Loss Ratio |
|------|-------|-------------------|------------------|---------------------|------------------|-------------------|------------|
| 2000 | CA    | CRC               | 30               | 4,497,986           | 296,944          | 303,678           | 1.02       |
| 2000 | CA    | MPCI              | 1,676            | 176,254,116         | 6,028,716        | 1,623,788         | 0.27       |
| 1999 | CA    | CAT               | 1,344            | 90,788,060          | 2,519,267        | 27,644            | 0.01       |
| 1999 | CA    | CRC               | 14               | 1,813,720           | 112,256          | 78,496            | 0.70       |
| 1999 | CA    | MPCI              | 250              | 44,583,580          | 1,911,459        | 1,002,227         | 0.52       |
| 1998 | CA    | CAT               | 1,473            | 110,067,475         | 2,887,975        | 2,196,697         | 0.76       |
| 1998 | CA    | CRC               | 1                | 1,142,093           | 52,137           | 66,504            | 1.28       |
| 1998 | CA    | MPCI              | 157              | 52,406,163          | 3,370,636        | 18,691,058        | 5.55       |
| 1997 | CA    | CAT               | 2,225            | 115,486,703         | 2,981,923        | 39,115            | 0.01       |
| 1997 | CA    | MPCI              | 107              | 57,977,542          | 2,558,468        | 6,842,503         | 2.67       |
| 1996 | CA    | CAT               | 2,221            | 159,937,059         | 4,099,816        | 142,979           | 0.03       |
| 1996 | CA    | MPCI              | 132              | 22,627,849          | 1,047,632        | 464,789           | 0.44       |
| 1995 | CA    | CAT               | 2,957            | 241,078,129         | 6,103,373        | 1,330,198         | 0.22       |
| 1995 | CA    | MPCI              | 56               | 8,846,161           | 347,341          | 1,577,911         | 4.54       |
| 1994 | CA    | MPCI              | 80               | 9,959,812           | 365,774          | 536,782           | 1.47       |
| 1993 | CA    | MPCI              | 132              | 14,724,901          | 532,170          | 695,270           | 1.31       |
| 1992 | CA    | MPCI              | 67               | 5,352,186           | 189,369          | 74,659            | 0.39       |
| 1991 | CA    | MPCI              | 80               | 8,956,357           | 353,006          | 164,189           | 0.47       |

| Georgia |       |                   |                  |                     |                  |                   |            |
|---------|-------|-------------------|------------------|---------------------|------------------|-------------------|------------|
| Year    | State | Insurance<br>Plan | Policies<br>Sold | Liabilities<br>(\$) | Total<br>Premium | Indemnity<br>(\$) | Loss Ratio |
| 2000    | GA    | CAT               | 2,050            | 45,128,788          | 3,543,685        | 498,064           | 0.14       |
| 2000    | GA    | CRC               | 825              | 52,353,922          | 8,767,219        | 14,459,695        | 1.65       |
| 2000    | GA    | IP                | 16               | 1,398,957           | 101,080          | 534,663           | 5.29       |
| 2000    | GA    | MPCI              | 5,054            | 243,627,835         | 33,901,671       | 62,085,396        | 1.83       |
| 1999    | GA    | CAT               | 2,423            | 59,426,082          | 4,720,232        | 1,396,713         | 0.30       |
| 1999    | GA    | CRC               | 628              | 36,252,506          | 5,358,954        | 10,647,989        | 1.99       |
| 1999    | GA    | IP                | 10               | 1,507,921           | 146,230          | 1,011,257         | 6.92       |
| 1999    | GA    | MPCI              | 4,373            | 229,476,939         | 30,433,129       | 82,231,221        | 2.70       |
| 1998    | GA    | CAT               | 3,040            | 90,796,051          | 7,888,285        | 1,908,648         | 0.24       |
| 1998    | GA    | CRC               | 136              | 6,684,641           | 1,029,507        | 2,688,665         | 2.61       |
| 1998    | GA    | IP                | 6                | 591,723             | 88,978           | 259,510           | 2.92       |
| 1998    | GA    | MPCI              | 3,595            | 167,306,641         | 20,520,920       | 43,180,617        | 2.10       |
| 1997    | GA    | CAT               | 3,372            | 84,973,239          | 7,824,051        | 726,147           | 0.09       |
| 1997    | GA    | CRC               | 134              | 9,647,901           | 1,501,700        | 2,536,333         | 1.69       |
| 1997    | GA    | IP                | 15               | 2,555,861           | 318,045          | 912,872           | 2.87       |
| 1997    | GA    | MPCI              | 3,358            | 161,503,690         | 20,516,466       | 20,554,938        | 1.00       |
| 1996    | GA    | CAT               | 3,556            | 75,243,045          | 7,025,898        | 200,643           | 0.03       |
| 1996    | GA    | MPCI              | 3,510            | 152,963,794         | 20,015,522       | 9,854,979         | 0.49       |
| 1995    | GA    | CAT               | 4,282            | 100,386,641         | 8,877,706        | 964,374           | 0.11       |
| 1995    | GA    | MPCI              | 3,215            | 167,645,794         | 20,160,300       | 17,824,178        | 0.88       |
| 1994    | GA    | MPCI              | 1,796            | 47,932,219          | 7,547,870        | 1,506,901         | 0.20       |
| 1993    | GA    | MPCI              | 1,112            | 35,489,985          | 5,803,300        | 7,909,419         | 1.36       |
| 1992    | GA    | MPCI              | 1,177            | 30,291,498          | 4,987,111        | 846,449           | 0.17       |
| 1991    | GA    | MPCI              | 1,233            | 27,437,153          | 3,894,487        | 1,012,748         | 0.26       |

| Louisiana | ı        |           |          |             |            |            |            |
|-----------|----------|-----------|----------|-------------|------------|------------|------------|
|           | <b>G</b> | Insurance | Policies | Liabilities | Total      | Indemnity  |            |
| Year      | State    | Plan      | Sold     | (\$)        | Premium    | (\$)       | Loss Ratio |
| 2000      | LA       | CAT       | 2,760    | 39,710,133  | 2,227,475  | 554,761    | 0.25       |
| 2000      | LA       | CRC       | 97       | 4,220,408   | 558,658    | 1,321,668  | 2.37       |
| 2000      | LA       | MPCI      | 1,634    | 111,977,630 | 9,160,922  | 19,928,049 | 2.18       |
| 1999      | LA       | CAT       | 3,282    | 67,879,743  | 7,186,359  | 581,376    | 0.08       |
| 1999      | LA       | CRC       | 179      | 10,136,262  | 1,491,596  | 2,181,418  | 1.46       |
| 1999      | LA       | MPCI      | 554      | 23,724,839  | 3,416,489  | 5,393,490  | 1.58       |
| 1998      | LA       | CAT       | 3,410    | 70,512,022  | 7,679,702  | 2,171,612  | 0.28       |
| 1998      | LA       | CRC       | 2        | 107,062     | 13,633     | 36,217     | 2.66       |
| 1998      | LA       | MPCI      | 426      | 4,818,055   | 712,268    | 1,858,683  | 2.61       |
| 1997      | LA       | CAT       | 3,778    | 72,750,231  | 8,581,342  | 244,676    | 0.03       |
| 1997      | LA       | MPCI      | 437      | 8,102,975   | 1,298,258  | 749,830    | 0.58       |
| 1996      | LA       | CAT       | 4,639    | 88,496,261  | 11,044,405 | 335,933    | 0.03       |
| 1996      | LA       | MPCI      | 576      | 17,666,601  | 2,702,049  | 1,865,569  | 0.69       |
| 1995      | LA       | CAT       | 6,212    | 120,845,628 | 13,786,480 | 721,039    | 0.05       |
| 1995      | LA       | MPCI      | 807      | 36,380,205  | 5,431,895  | 4,601,736  | 0.85       |
| 1994      | LA       | MPCI      | 1,293    | 32,027,509  | 4,771,263  | 4,120,506  | 0.86       |
| 1993      | LA       | MPCI      | 997      | 32,235,905  | 4,294,352  | 6,315,194  | 1.47       |
| 1992      | LA       | MPCI      | 1,140    | 38,566,072  | 5,105,708  | 9,378,615  | 1.84       |
| 1991      | LA       | MPCI      | 1,447    | 50,197,540  | 5,849,056  | 16,669,581 | 2.85       |

#### Mississippi

|      | ~     | Insurance | Policies | Liabilities | Total      | Indemnity  |            |
|------|-------|-----------|----------|-------------|------------|------------|------------|
| Year | State | Plan      | Sold     | (\$)        | Premium    | (\$)       | Loss Ratio |
| 2000 | MS    | CAT       | 2,365    | 83,984,619  | 3,413,025  | 276,885    | 0.08       |
| 2000 | MS    | CRC       | 166      | 23,610,650  | 4,131,983  | 6,262,458  | 1.52       |
| 2000 | MS    | MPCI      | 1,438    | 250,080,394 | 23,396,021 | 60,744,528 | 2.60       |
| 1999 | MS    | CAT       | 2,743    | 122,687,279 | 8,421,490  | 279,531    | 0.03       |
| 1999 | MS    | CRC       | 207      | 39,133,571  | 4,668,633  | 10,373,949 | 2.22       |
| 1999 | MS    | GRP       | 1        | 1,082,711   | 32,481     | 141,835    | 4.37       |
| 1999 | MS    | MPCI      | 730      | 60,661,434  | 6,246,385  | 7,575,629  | 1.21       |
| 1998 | MS    | CAT       | 3,085    | 129,756,841 | 8,714,519  | 451,568    | 0.05       |
| 1998 | MS    | CRC       | 6        | 1,026,063   | 93,427     | 133,356    | 1.43       |
| 1998 | MS    | MPCI      | 812      | 38,721,516  | 3,847,319  | 6,177,358  | 1.61       |
| 1997 | MS    | CAT       | 3,366    | 128,580,387 | 8,913,713  | 309,766    | 0.03       |
| 1997 | MS    | MPCI      | 777      | 44,512,010  | 4,554,275  | 3,262,016  | 0.72       |
| 1996 | MS    | CAT       | 3,873    | 146,960,774 | 11,347,987 | 932,051    | 0.08       |
| 1996 | MS    | MPCI      | 976      | 49,833,670  | 5,210,549  | 3,826,017  | 0.73       |
| 1995 | MS    | CAT       | 4,932    | 191,866,744 | 12,965,198 | 5,939,768  | 0.46       |
| 1995 | MS    | MPCI      | 804      | 51,986,914  | 5,092,180  | 11,397,941 | 2.24       |
| 1994 | MS    | MPCI      | 1,201    | 38,247,925  | 3,552,507  | 4,045,958  | 1.14       |
| 1993 | MS    | MPCI      | 634      | 28,257,703  | 2,613,823  | 6,894,226  | 2.64       |
| 1992 | MS    | MPCI      | 563      | 29,639,008  | 2,903,703  | 4,315,248  | 1.49       |
| 1991 | MS    | MPCI      | 1040     | 33,535,077  | 2,850,846  | 4,605,882  | 1.62       |

| <b>X</b> 7 |       | Insurance | Policies | Liabilities | Total      | Indemnity  | I D (      |
|------------|-------|-----------|----------|-------------|------------|------------|------------|
| Year       | State | Plan      | Sold     | (\$)        | Premium    | (\$)       | Loss Ratio |
| 2000       | NC    | CAT       | 1,623    | 32,633,465  | 2,182,064  | 29,593     | 0.01       |
| 2000       | NC    | CRC       | 309      | 20,032,453  | 2,632,221  | 1,490,562  | 0.57       |
| 2000       | NC    | MPCI      | 2,247    | 108,678,697 | 12,295,532 | 4,652,011  | 0.38       |
| 1999       | NC    | CAT       | 1,685    | 38,870,805  | 2,814,025  | 648,214    | 0.23       |
| 1999       | NC    | CRC       | 192      | 15,503,250  | 1,983,721  | 4,975,390  | 2.51       |
| 1999       | NC    | MPCI      | 1,738    | 84,558,266  | 9,307,196  | 27,794,080 | 2.99       |
| 1998       | NC    | CAT       | 1,990    | 41,747,572  | 2,994,466  | 65,333     | 0.02       |
| 1998       | NC    | CRC       | 5        | 483,235     | 0          | 0          | 0.00       |
| 1998       | NC    | MPCI      | 1,371    | 58,583,475  | 5,550,879  | 5,698,080  | 1.03       |
| 1997       | NC    | CAT       | 2,157    | 40,081,689  | 3,018,708  | 84,557     | 0.03       |
| 1997       | NC    | MPCI      | 1,349    | 51,155,358  | 5,106,198  | 3,578,171  | 0.70       |
| 1996       | NC    | CAT       | 2,946    | 40,202,633  | 3,042,388  | 240,730    | 0.08       |
| 1996       | NC    | MPCI      | 1,345    | 51,669,177  | 5,270,852  | 5,076,164  | 0.96       |
| 1995       | NC    | CAT       | 3,849    | 61,580,541  | 4,902,332  | 1,780,975  | 0.36       |
| 1995       | NC    | MPCI      | 1,020    | 42,887,003  | 4,093,002  | 8,857,669  | 2.16       |
| 1994       | NC    | MPCI      | 640      | 14,598,068  | 1,532,596  | 432,334    | 0.28       |
| 1993       | NC    | MPCI      | 344      | 9,287,177   | 881,374    | 1,185,511  | 1.35       |
| 1992       | NC    | MPCI      | 367      | 8,290,265   | 888,034    | 1,085,981  | 1.22       |
| 1991       | NC    | MPCI      | 396      | 7,924,725   | 916,636    | 583,482    | 0.64       |

### North Carolina

| Texas |       |           |          |             |             |             |            |
|-------|-------|-----------|----------|-------------|-------------|-------------|------------|
|       |       | Insurance | Policies | Liabilities | Total       | Indemnity   |            |
| Year  | State | Plan      | Sold     | (\$)        | Premium     | (\$)        | Loss Ratio |
| 2000  | TX    | CAT       | 5,089    | 22,676,646  | 2,766,766   | 2,156,382   | 0.78       |
| 2000  | TX    | CRC       | 2,461    | 55,372,202  | 11,292,139  | 28,497,555  | 2.52       |
| 2000  | TX    | GRP       | 151      | 14,825,971  | 1,532,562   | 4,856,328   | 3.17       |
| 2000  | TX    | MPCI      | 38,659   | 898,052,052 | 177,475,621 | 251,223,669 | 1.42       |
| 1999  | TX    | CAT       | 5,848    | 30,001,355  | 3,983,571   | 2,103,861   | 0.53       |
| 1999  | TX    | CRC       | 2,183    | 65,345,745  | 10,737,317  | 15,757,843  | 1.47       |
| 1999  | TX    | GRP       | 50       | 7,613,811   | 780,103     | 342,265     | 0.44       |
| 1999  | TX    | MPCI      | 36,228   | 911,547,315 | 172,933,421 | 197,541,329 | 1.14       |
| 1998  | TX    | CAT       | 9,687    | 70,301,052  | 9,858,050   | 18,223,716  | 1.85       |
| 1998  | TX    | CRC       | 549      | 15,503,936  | 2,678,579   | 6,204,765   | 2.32       |
| 1998  | TX    | MPCI      | 33,168   | 812,469,657 | 135,229,700 | 261,382,306 | 1.93       |
| 1997  | TX    | CAT       | 11,752   | 67,227,248  | 9,372,826   | 1,843,524   | 0.20       |
| 1997  | TX    | CRC       | 879      | 29,314,421  | 5,265,977   | 3,907,279   | 0.74       |
| 1997  | TX    | MPCI      | 32,979   | 768,448,650 | 130,377,785 | 73,238,252  | 0.56       |
| 1996  | TX    | CAT       | 13,170   | 71,598,025  | 9,225,953   | 8,895,908   | 0.96       |
| 1996  | TX    | MPCI      | 34,629   | 813,720,509 | 141,482,144 | 231,974,780 | 1.64       |
| 1995  | TX    | CAT       | 15,966   | 115,693,927 | 13,205,101  | 15,712,517  | 1.19       |
| 1995  | TX    | MPCI      | 33,385   | 810,195,295 | 134,676,209 | 171,357,987 | 1.27       |
| 1994  | TX    | MPCI      | 35,439   | 603,380,959 | 96,819,872  | 62,021,361  | 0.64       |
| 1993  | TX    | MPCI      | 30,247   | 583,207,129 | 79,397,285  | 68,360,442  | 0.86       |
| 1992  | TX    | MPCI      | 25,761   | 516,172,665 | 66,003,159  | 251,420,739 | 3.81       |
| 1991  | TX    | MPCI      | 26,105   | 571,182,443 | 66,306,811  | 138,719,345 | 2.09       |

# **Appendix F: Cotton Ginning**

#### **Cotton Ginnings**, 2000

| County       | Bales (480 lbs.) | County         | Bales (480 lbs.) |  |  |
|--------------|------------------|----------------|------------------|--|--|
| Northern A   | labama           | North Carolina |                  |  |  |
| Autauga      | *                | Halifax        | 98,028           |  |  |
| Dallas       | *                | Martin         | *                |  |  |
| Elmore       | *                | Northampton    | 96,532           |  |  |
|              |                  |                |                  |  |  |
| Southern A   | labama           | Texas Brazos   | Valley           |  |  |
| Lawrence     | *                | Brazos         | *                |  |  |
| Limestone    | 88,873           | Burleson       | *                |  |  |
| Madison      | 46,119           | Milam          | *                |  |  |
|              |                  | Robertson      | 22,666           |  |  |
| Arizor       | na               | Williamson     | 27,497           |  |  |
| Maricopa     | 289,527          |                |                  |  |  |
| Pinal        | 276,012          | Texas Coasta   | l Bend           |  |  |
|              |                  | Nueces         | 158,813          |  |  |
| Californ     | nia              | San Patricio   | 257,596          |  |  |
| Fresno       | 887,870          |                |                  |  |  |
| Kern         | 460,402          | Texas Pla      | ins              |  |  |
| Kings        | 533,324          | Bailey         | 76,528           |  |  |
| Madera       | *                | Castro         | 89,532           |  |  |
| Merced       | 192,210          | Cochran        | *                |  |  |
| Tulare       | 293,398          | Hale           | 318,911          |  |  |
|              |                  | Hockley        | 166,111          |  |  |
| Georg        | ia               | Lamb           | 242,588          |  |  |
| Colquitt     | 201,665          | Lubbock        | 211,699          |  |  |
| Mitchell     | *                | Parmer         | 131,214          |  |  |
| Worth        | *                | Swisher        | 75,141           |  |  |
|              |                  |                |                  |  |  |
| Louisia      | na               | Texas Rolling  | Plains           |  |  |
|              |                  | Fisher         | *                |  |  |
| Concordia    | 71,484           | Haskell        | *                |  |  |
| East Carroll | 101,345          | Jones          | 1,131            |  |  |
| Franklin     | 140,383          | Knox           | *                |  |  |
|              |                  | Mitchell       | *                |  |  |
| Tensas       | 115,135          | Scurry         | *                |  |  |
|              |                  | South Tex      | kas              |  |  |
| Mississi     | ррі              | Cameron        | 58,026           |  |  |
| Coahoma      | 134,952          | Hidalgo        | 82,285           |  |  |
| Leflore      | 153,890          | Willacy        | 140,002          |  |  |
| Yazoo        | 193,393          |                |                  |  |  |
|              |                  |                |                  |  |  |

\*Not published to avoid disclosing individual gins. (Cotton Incorporated, 2001.)

## **Appendix G: References**

2000 Delta Agricultural Digest. "Cotton Insect Pests." Pp. 57-74.

Agricultural Marketing Service, U.S.D.A. "Cotton Varieties Planted 2000 Crop." Sept. 2000.

Agricultural Statistics Board. "Crop Values 1999 Summary." (Feb. 2000). 8 Feb. 2001. <a href="http://usda.mannlib.cornell.edu/reports/nassr/price/zcv-bb/">http://usda.mannlib.cornell.edu/reports/nassr/price/zcv-bb/</a>

Alexander, U.U., Willis B. Gass, Emory P. Boring III, and Thomas W. Fuchs. "Keys to Profitable Cotton Production in the Rolling Plains." (no date). 6 Feb. 2001. <<u>http://entowww.tamu.edu/cotton/11.htm</u>>

Anderson, Carl G. "Much Larger China Crop Expected." (12 Jan. 2001). 7 Feb. 2001. <<u>http://agecoext.tamu.edu/publications/cotton\_mkt/2001/jan/01-12-01.html</u>>

Barnett, John W. Louisiana Cooperative Extension Service. "Cotton." Interview with author. Mar. 2001.

Baughman, Todd. Texas Agricultural Extension Service. "Cotton." Interview with author. Mar. 2001.

Boman, Randal K. Texas Agricultural Extension Service. "Cotton." Interview with author. Mar. 2001.

Brown, Steven M. University of Georgia Rural Development Center. "Cotton." Interview with author. Mar. 2001.

Clay, Patrick. "Cotton." Interview with author. Mar. 2001.

Cleveland Jr., O.A. "Developing a Cotton Marketing Plan." (no date). 7 Feb. 2001. <<u>http://www.msucares.com/pubs/pub1141.htm</u>>

Commodity Credit Corporation, U.S.D.A. "Commodity Estimates Book FY 2002 President's Budget." 9 Apr. 2001.

Conservation for Agriculture's Future. "Benefits of High-Residue Farming." (no date). 8 Feb. 2001. <<u>http://www.ctic.purdue.edu/Core4/CT/Checklist/Page4.html</u>>

Conservation for Agriculture's Future. "Definitions." (5 Oct. 2000). 8 Feb. 2001. <<u>http://www.ctic.purdue.edu/Core4/CT/Definitions.html</u>>

Cotton Incorporated. "Fiber Quality: The Classification of Cotton." (2001). 14 May 2001. <<u>http://www.cottoninc.com/CottonClassification/homepage.cfm?page=658</u>>

Cotton Incorporated. "Most Popular Varieties for 2000 by State." (2001). 17 May 2001. <a href="http://www.cottoninc.com/FiberQuality/homepage.cfm?page=2518">http://www.cottoninc.com/FiberQuality/homepage.cfm?page=2518</a>

Cotton Incorporated. "U.S. Cotton Market." (15 Jan. 2001). 7 Feb. 2001. <a href="http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2631...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2631...>

Cotton Incorporated. "U.S. Cotton Market." (12 Jul. 2001). 2 Aug. 2001. <a href="http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.com/monthlyeconews/homepage.cfm?PAGE=2826#wcp...>">http://www.cottoninc.

Economic Research Service, U.S.D.A. http://www.ers.usda.gov

Economic Research Service, U.S.D.A. "Cotton and Wool Outlook." 1995. http://www.ers.usda.gov

Economic Research Service, U.S.D.A. "Cotton and Wool Outlook." 1996. http://www.ers.usda.gov

Economic Research Service, U.S.D.A. "Cotton and Wool Outlook." 1997. http://www.ers.usda.gov

Economic Research Service, U.S.D.A. "Cotton and Wool Outlook." 1998. http://www.ers.usda.gov

Economic Research Service, U.S.D.A. "Cotton and Wool Outlook." 1999. http://www.ers.usda.gov

Economic Research Service, U.S.D.A. "Cotton and Wool Outlook." 2000. http://www.ers.usda.gov

Economic Research Service, U.S.D.A. "Cotton and Wool Outlook." July, 2001. http://www.ers.usda.gov

Economic Research Service, U.S.D.A. "Cotton and Wool Outlook." September, 2001. http://www.ers.usda.gov

Edmisten, Keith L. North Carolina Cooperative Extension Service. "Cotton." Interview with author. Mar. 2001.

Garden Pursuits. "Zone Maps." (2000). 17 September 2001. http://www.gardenpursuits.com Hodges, Steven C. "2001 Cotton Information: Fertilization." (2001). 6 Feb. 2001. <<u>http://ipmwww.ncsu.edu/Production\_Guides/Cotton/chptr7.html</u>>

Hutmacher, Robert B. University of California Cooperative Extension. "Cotton." Interview with author. Mar. 2001.

Lemon, Robert G. Texas Agricultural Extension Service. "Cotton." Interview with author. Mar. 2001.

Livingston, Steve. Texas Agricultural Extension Service. "Cotton." Interview with author. May 2001.

Louisiana State University Ag Center. "Cotton Market." (31 July 2000). 7 Feb. 2001. <<u>http://www.agctr.lsu.edu/agcenter/cotton/cotmark.htm</u>>

Monks, Dale, Charles Burmester, and Dennis Delaney. "General Basics of Cotton Production." (no date). 6 Feb. 2001. <<u>http://www.aces.edu/department/cotton/cotbasics.html</u>>

National Agricultural Library. "Conservation Tillage." (1996). 7 Feb. 2001. <<u>http://www.nal.usda.gov/afsic/AFSIC\_pubs/srb9902.htm</u>>

National Agricultural Statistics Service. "Agricultural Prices 1999 Summary." Jul. 2000.

National Agricultural Statistics Service. "Cotton Ginnings." (23 March 2001). 11 May 2001. http://www.nass.usda.gov

National Agricultural Statistics Service. "Usual Planting and Harvesting Dates for U.S. Field Crops." December 1997. http://www.usda.gov/nass/pubs/uph97.htm.

National Cotton Council. 2001.

National Cotton Council. "Texas Skip Row Cotton Provision." (June 2000.) 2 August 2001. http://www.econcentral.com/CropIns/skiprow.htm.

Norman, John. Texas Agricultural Extension Service. "Cotton." Interview with author. May 2001.

North Carolina Cooperative Extension Service. "2001 North Carolina Cotton Production Guide." (2001). 7 Feb. 2001. <a href="http://ipmwww.ncsu.edu/production\_guides/cotton/contents.html">http://ipmwww.ncsu.edu/production\_guides/cotton/contents.html</a>

North Carolina Cooperative Extension Service. "Drought Management for Cotton Production." (Dec. 1994). 7 Feb. 2001. <<u>http://www.ces.ncsu.edu/disaster/drought/dro-17.html</u>>

North Carolina State University. "Crop Profile for Cotton in Alabama." (Dec. 1999). 7 Feb. 2001. <a href="http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=208...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID

North Carolina State University. "Crop Profile for Cotton in Arizona." (no date). 7 Feb. 2001. <a href="http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=160...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=1

North Carolina State University. "Crop Profile for Cotton in Arkansas." (Aug. 2000). 7 Feb. 2001. <a href="http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=328...>">http://pestdata.ncsu.edu/cropprofiles/Detail.cfM?FactSheets\_RecordI

North Carolina State University. "Crop Profile for Cotton in Missouri." (Aug. 2000). 7 Feb. 2001. <a href="http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordI

North Carolina State University. "Crop Profile for Cotton in North Carolina." (Nov. 1999). 7 Feb. 2001. <a href="http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=59...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=50...]</a>

North Carolina State University. "Crop Profile for Cotton in Tennessee." (no date). 7 Feb. 2001. <a href="http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=18....>">http://pestdat

North Carolina State University. "Crop Profile for Cotton in Texas." (no date). 7 Feb. 2001. <a href="http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327...>">http://pestdata.ncsu.edu/cropprofiles/Detail.CFM?FactSheets\_RecordID=327

Texas A&M University. "Cotton Disease Index." (Sept. 1996). 7 Feb. 2001. <<u>http://cygnus.tamu.edu/Texlab/Fiber/Cotton/cottop.html</u>>

Texas Agricultural Extension Service. "Production Decisions Offer Opportunities for Reducing Cotton Input Costs." (no date). 8 Feb. 2001. <<u>http://entowww.tamu.edu/cotton/19.htm</u>>

University of Arizona. "Planting Date Management." (March 1998). 6 Feb. 2001. <<u>http://ag.arizona.edu/cotton/planting\_date.html</u>>

University of Georgia. "Cotton in Georgia: Defoliation, Harvesting and Storage." (1997). 6 Feb. 2001. <<u>http://www.griffin.peachnet.edu/caes/cotton/97/dhs.html</u>>

University of Georgia Cooperative Extension Service. "Plant Development." (1999.) 6 Feb. 2001. <<u>http://www.griffin.peachnet.edu/caes/cotton/99/99plantdev.html</u>>

University of Georgia Extension. "Cotton in Georgia: Fertilization." (1997). 5 Feb. 2001. <<u>http://www.griffin.peachnet.edu/caes/cotton/97/fertilization.html</u>>

University of Georgia Extension. "Cotton in Georgia: Weed Control." (1997). 5 Feb. 2001. <<u>http://www.griffin.peachnet.edu/caes/cotton/97/weed\_control.html</u>>

Warrick, Billy E. Texas Agricultural Extension Service. "Cotton." Interview with author. Mar. 2001.

Young, Ray. Coalition of American Agricultural Producers. Interview. September 2001.