Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Biodegradation of Perfluorinated Organic Compounds

EPA Grant Number: F5A20157
Title: Biodegradation of Perfluorinated Organic Compounds
Investigators: Rhoads, Kurt R.
Institution: Stanford University
EPA Project Officer: Thompson, Delores
Project Period: September 1, 2005 through August 1, 2008
Project Amount: $111,344
RFA: STAR Graduate Fellowships (2005)
Research Category: Academic Fellowships

Description:

Objective:

Recently, perfluoronated bioaccumulative and toxic chemicals such as perfluorooctanesulfonate (PFOS) have been found in fish, birds, marine mammals, and humans. Suspected sources of PFOS include perfluoroalkyl chemicals (PFACs), used as surface treatments for carpets, upholstery, paper, and cardboard. Initial results suggest that microbes present in wastewater sludge have the capability to transform model PFACs to products including PFOS. The objectives of this project are to:

  1. determine the likely biotransformation pathways and endproducts of PFACs under both aerobic and anaerobic conditions;
  2. estimate biotransformation rates in wastewater treatment plants;
  3. and determine if altering the microbial community within a reactor can increase biotransformation rates.

Approach:

Batch studies will be performed using both aerobic activated sludge and anaerobic digester sludge to determine biotransformation pathways of PFACs and initial kinetic parameters. Additional kinetic studies will be performed using continuously stirred reactors with cell retention (porous pot reactors) to approximate activated sludge treatment. In an attempt to shift microbial community structure towards increased PFAC degradation rates, actively-degrading cultures will be successively transferred to new medium containing PFACs. Microbial communities will be assessed using terminal restriction length fragment polymorphism (T-RFLP).

Expected Results:

The results of this study will indicate key biotransformation products of PFACs, including some those that are bioaccumulative and/or toxic. In addition, kinetic parameters determined in this study will allow for prediction of biotransformation rates. Together, these two sets of information will help explain the global distribution of PFACs and their transformation products. Finally, the alteration of microbial communities within treatment plants may allow for enhanced transformation of PFACs.

Supplemental Keywords:

Perfluorochemicals, perfluoronated, perfluoroalkyl, perfluorooctanesulfonate, PFOS, microbial communities, microbial degradation, biotransformation, T-RFLP, , Water, TREATMENT/CONTROL, Scientific Discipline, Waste, Wastewater, Water Pollution Control, Chemical Engineering, Environmental Engineering, Environmental Chemistry, Treatment Technologies, Bioremediation, industrial wastewater, wastewater treatment, biodegradation, biotransformation, microbial degradation, bioacummulation, wastewater remediation, pefluorinated organic compounds, degradation, PFACs, PFOS

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.