Vegetative Treatment Systems for Control of Beef Feedlot Runoff: ISU Project Update

Heartland Fall Workshop October 1, 2008

Dr. Robert T. Burns, P.E.

IOWA STATE UNIVERSITY Agricultural and Biosystems Engineering

Presentation Outline

- Introduction
- Review of Iowa VTS performance data
 2006, 2007, 2008
- Lessons Learned
- Discussion

Research Site Locations

Initiation of VTS monitoring

- Central IA 1 July 2006
- Central IA 2 July 2006
- NW IA 1 August 2006
- NW IA 2 August 2006
- SW IA 1– September 2007
- SW IA 2 April 2007

- VIB Bermed area with tile lines below surface, designed for max. infiltration
 - Planted and managed in dense vegetation (theoretically)
 - VIB effluent discharged to VTA

Example SSB to VTA

Example SSB to VIB to VTA

VTS Performance Summary

	2006 (Start of monitoring – Oct.)		2007 (April – Oct.)			2008 (April – Sept.)			
	# of Rain Events *	Max. Storm (inch)	# of VTA Releases	# of Rain Events*	Max. Storm (inch)	# of VTA Releases	# of Rain Events*	Max. Storm (inch)	# of VTA Releases
NW IA 1	5	1.72	2	17	1.62	4	26	1.1	4
NW IA 2	6	2.53	5	22	2.13	1	28	1.85	17
Central IA 1	14	1.86	2	16	4.07	12	24	3.1	8
Central IA 2	22	3.02	5	17	3.19	12	22	3.81	21
SW IA 1				5	4.94	3	31	4.81	2
SW IA 2				20	5.05	4	28	3.2	11

*Rainfall events may consist of multiple rainfalls over the release period

VTS and ELG releases (2006 & 2007)

Site	Rainfa Monitori (inc	ll During ng Period :hes)	# of Mo VTS Re	nitored leases	# of Modeled ELG Releases	
	2006	2007	2006	2007	2006	2007
Central IA 1	11	49	2	26	0	7
Central IA 2	14.5	37	5	15	0	2
NW IA 1	9	25	2	13	0	0
NW IA 2	9	26	5	1	0	0
SW IA 1 2007 (Sept – Oct.)	-	17	-	3	-	4
SW IA 2		32	-	4	_	9

The time period of the release may be greater than 24 hrs; the release time period is from release initiation to release termination.

Annual Release Volume

	2006	2007
	(ft ³)	(ft ³)
Central IA 1	65	415,159
Central IA 2	1,119	56,939
NW IA 1	334	104,629
NW IA 2	160	777
SW IA 1		
SW IA 2		149,637

Nutrient Mass released (2007)

Mass Released (kg)	CIA 2	CIA 1	NW IA 1	NW IA 2	2 SW IA 2
VTS TKN	21	1,397	506	9	279
ELG TKN	4	508	0	0	378
VTS NH4	7	687	212	2	83
ELG NH4		385	0	0	245
VTS Total P	9	429	135	1	130
ELG Total P	3	151	0	0	98
VTS Total Solids	934	27,830	14,007	196	10,638
ELG Total Solids	329	15,149	0	0	<u>9,795</u>
VTS COD	364	22,498	8,602	179	4,925
ELG COD	436	20,073	0	0	12,978

2006 VTA releases

- Settling basins were managed passively
- All VTA releases associated with settling basin release
- 2007 VTA releases

 2 sites actively managed settling basins
 ~50% of the releases were associated with basin releases
- 2008 VTA releases

 All 6 sites actively managing settling basins

Central Iowa 1

- Added valve to better control basin discharge
- Hold runoff until VTA achieves non-saturated conditions (when possible)

Northwest Iowa 1

- Added valves to better control basin discharge
- Hold runoff until VTA achieves non-saturated conditions (when possible)

Flow weighted P concentration – Central IA 1

Flow weighted TKN concentration -Central IA 1

Soil P vs. Date – Central IA 1

Date

Soil P vs. Distance – Central IA 1

NO₃-N Concentration in Groundwater at Central IA 1

Flow weighted P concentration – Central IA 2

Flow weighted TKN concentration – Central IA 2

Soil P vs. Distance – Central IA 2

NO₃-N Concentration in Groundwater at Central IA 2

What have we learned so far ?

- Good solids removal before VTS is very important
 - Basin design must provide significant solids removal
 - Basins must be actively managed
- Larger basin sizing (more water storage) increases management flexibility and improves system performance
- Channeling is a continual problem minimize cut and fill.
- The better the vegetation the better the system performance

Good solids removal is very important

 Basin design must provide significant solids removal

Basins must be actively managed

Solids Build Up in VIB – Northwest IA 2

Ability to hold water before VTS provides needed management flexibility

Small Basin – low flexibility

Larger basin sizing (more water storage) increases management flexibility and improves system performance

Large Basin – Greater flexibility

Channeling is a continual problem – minimize cut and fill

Illustration of Uneven Flow

Ridges in VTA to Hold Water – Southwest IA 2

Good vegetation is a must

The better the vegetation the better the system performance

Multi-State CIG 11/20/07 – 10/21/2009

Nebraska – 2 sites

- NE Cattleman and Univ. of Nebraska, Lincoln
- Rockville, NE (1200 hd); constructed, vegetated, & data collection initiated
- Spalding, NE (5000 hd); constructed, vegetation started, & preparing to collect data

• South Dakota – 2 sites

- University of South Dakota
- Brandon, SD; constructed, needs vegetation
- 2nd site is having permitting issues

• Minnesota – 1 site

- University of South Dakota
- Morris, MN; constructed, vegetated, and data collection initiated

• Illinois – 1 site

- University of Illinois, Urbana-Champagne
- Yet to be determined

Rockville, NE

http://www.abe.iastate.edu/wastemgmt/beef-at-systems.html

	IOWA STATE UNIX College of Engineeri College of Agricultu Department of Agricultural W Waste Management Home Anaerobic Digestion	VERSITY ing ure and Life Sciences f Agricultural and aste Manageme Non-Bas Demo	Site Index A B C D E F G Login Contact us d Biosystems En nt sin Technologies fo nstration, Impleme	r Open Feedlot Runation, and Modeli	JVWXYZ <u>ISUIndex</u> ABE Width Font noff:	Print (Alt+R	ז
	TSP Certification CNMP Curriculum Agricultural Waste Management Laboratory Available Jobs Conferences Solids Separation Recent Presentations	Project Leaders Dr. Robert Burns, Lara Mood Muhlbauer, John Lester, Dr. Project Background CAFO rules released by the Technologies proved to be a	y, Carl Pederson, Dan Anders Matt Helmers, and Dr. John La EPA in 2003 include verbiage f s effective as traditional basin	en, Ishadeep Khanijo, Laura F wrence or use of modeled and tested systems. The technologies in	Pepple, Ross Alternative this study are settling		E
	Publications Beef Vegetative Treatment Systems VTS Models VTS Publications Low Cost Monitoring System	settling basins releasing to vegetate settling basins releasing to 't traditional containment syste	A minimulation Basins (MBs) conv (TAs. The results are being co erms. This work is continued from	mpared to potential annual co m a project started by Jeff Lor	ntrol attainable with imor.		
			Settling Basin and a Veget	ated Treatment Area			
		Project Objectives: Evaluate through field using the developed Assess feasibility of Assess feasibility of Quantify contaminant feedlot runoff.	I monitoring, performance of V models. VIBs and VTAs as alternative s he models for design of future concentrations and annual m		V		
w 🗷 🏉 » 🗌	O Inbox - Microsoft Out	🗁 W:\Beef Project Pictu	Heartland VTS Updat	6 Beef Vegetative Trea	باً سِ	😜 Internet 🗿 🔁 📣 🧧 🤦 🗐 💙 🥝	🔍 100% 🔹 🤢

🛃 start

0 🕑

ISU VTS Publications

- L.M. Pepple, R.V. Muhlbauer, R.T. Burns, L.B. Moody, C. Pedersen, D.S. Andersen, T.A. Shepherd. Validation of a Low Cost Monitoring Vegetative Treatment System Performance. 2008 Proceedings: 2008 ASABE Annual International Meeting. June 29-July 2, 2008.
- D. Andersen, R. Burns, L. Moody, C. Pedersen. The Use of Soil-Plant-Air-Water Model to Predict the Hydraulic Performance of Vegetative Treatment Areas for Controlling Open Feedlot Runoff. 2008. *Proceedings: 2008 ASABE Annual International Meeting.* June 29-July 2, 2008.
- D. Andersen, R. Burns, L. Moody, M. Helmers. Comparison of the Soil-Plant-Air-Water Model and the Iowa State University Effluent Limitation Guidelines Model to Replicate Holding Basin Performance. 2008. *Proceedings: 2008 ASABE Annual International Meeting.* June 29-July 2, 2008.
- R.V. Muhlbauer, I. Khanijo, R.T. Burns, L.B. Moody, L.M. Pepple, C.H. Pederson. Low Cost Method for Monitoring Flow from a Vegetative Treatment System. 2007. *Proceedings: International Symposium on Air Quality and Waste Management for Agriculture*. September 16-19, 2007.
- I. Khanijo, R. Burns, L. Moody, M. Helmers, J. Lawrence, C. Pederson, D. Anderson. Vegetated Treatment System Models: Modeled vs. Measured Performance. 2007. *Proceedings: International Symposium on Air Quality and Waste Management for Agriculture*. September 16-19, 2007.
- L. Moody, N. Heithoff, R. Burns, C. Pederson, I. Khanijo. Settling Basin Design and Performance for Runoff Control from Beef Feedlots. 2007. *Proceedings: International Symposium on Air Quality and Waste Management for Agriculture*. September 16-19, 2007.
- Khanijo, I., R. T. Burns, L. B. Moody, C. H. Pederson. 2006. Evaluation of Cost Effective Methods for Measuring Runoff Volume from Vegetated Treatment Areas. ASABE Paper #064047. St. Joseph, MI: ASABE.
- Moody, L. B., C. H. Pederson, R. T. Burns, I. Khanijo. 2006. Vegetative Treatment Systems for Open Feedlot Runoff: Project Design and Monitoring Methods for Five Commercial Beef Feedlots. ASABE Paper #064145. St. Joseph, MI: ASABE.

Questions & Discussion