U.S. Meat Animal Research Center Environmental Management Research Unit Animal Waste Management Group Clay Center, NE

J.A. Nienaber, R.A. Eigenberg, V. Varel, M. Spiehs and B.L. Woodbury

USMARC Research Controlling Environmental Impact from CAFOs

© 2007 Tele Atlas Image © 2007 DigitalGlobe Streaming IIIIIIII 100%

98

Eve alt 11.94 m

Cente

Road 33

Electromagnetic Soil Conductivity Meter, ECa

The transmitter coil (TX) is placed near the earth and is energized with an alternating current. The small currents induced into the earth generate a secondary signal which is picked up by a receiver coil (RX) at a distance S away. The ratio of the two signals gives a measure of the soil's conductivity beneath the two coils.

OBJECTIVES

Measure Spatial Seasonal Soil Dynamics •Temperature Moisture Content Nitrate Which dynamic drives soil conductivity?

Treatments Established in 1992

Winter cover crop destroyed with herbicide and tillage, late March

Beef feedlot manure or composted beef feedlot manure applied to treatment strips, late March and incorporated with disk; planted to corn, mid-April

Experimental Design

Aerial view of study, July 1995

•Main plots: With (green) or without winter cover crop

- Sub plots: NCK·N only check MN·Manure @ N rate MP • Manure @ P rate
 - CN ·Composted manure @ N rate
 - CP ·Composted manure @ P rate
- Four replicates
 Soil cores in Rep
 2

Materials and Methods

Dualem with integrated GPS Pulled on sled by ATV or person-power

Map of Survey Points

Results

Data corrected for temperature, axis alignment, velocity and offset to produce image maps

04/18/2002 Organics Applied

09/25/2002 Cover Crop Planted

10/01/2002

Results

MEAN OF ALL TREATMENTS BY COVER Crop Only, Temperature Corrected

Results

Relative Contribution to EC_a Variability

Year	NO ₃ -N	WFPS	
	<u>% P≤</u>	<u>%</u>	P≤
2000	79.5 0.0001	20.5	0.02
2001	98.0 0.0001	2.0	0.41
2002	93.4 0.0001	6.6	0.15
2003	98.4 0.0001	1.6	0.21

Sample Sites Positive for E. coli 0157 Discharge Event 4 07/06/04 - 10/03/05

Pathogens did not persist on hay once baled

<u>o</u>

EMI Technology: The Road to Measuring Nutrient Spatial Distribution

Goal:

Develop a tool to monitor VTA performance and provide information to refine management.

- Kriging and CoKriging require 75+ soil samples to describe nutrient distribution. (Where to sample?)
- CoKriging relies mostly on soil samples.
- **EMI** Non-intrusive, **inexpensive**, indirect measure of soil health
- Co-locating soil samples in the EMI path reduces complexity and spatial uncertainty and allowed the use of MLR (6,12,20 samples)

Create a Nutrient Image Map Based on the Correlation of the Nutrient with Conductivity

Method Validation

Use EMI, Spatial Statistical Software (ESAP), and MLR to predict nutrient distribution in VTA.

Two sampling strategies

Response Surface Sampling Design (RSSD)

- **Uses EMI data to identify sample locations by**
 - 1. Sampling in areas to achieve maximum dynamic range
 - 2. Spreading sample locations apart (independence)
- Stratified Random Sampling (SRS)
 - ECa data subdivided into 4 groups by conductivity level
 - **Points are randomly assigned within the four groups**

Chloride prediction maps

Ability to Predict Actual Points

Cl⁻ Prediction Map - August 2005

Management Changes

Discharge inlets were modified in Spring of 2006

Original Inlet Design

New Inlet Design

Cl⁻ Prediction Map - November 2006

VTA Performance from 05 to 06

VTA Sampling Using ESAP

EC_a Data with GPS Coordinates

ESAP - RSSD Spatial Sampling Design with 6, 12 or 20 samples Sample Locations co-located w/EMI

Soils Data Cl, TN, TP, etc.

EC_a Data

ESAP - Calibrate

Calculate Models Summary Statistics Prediction Equations Prediction Maps Graphical Illustrations

Multi-State Vegetative Treatment System Demonstration Study

Central Iowa

Central Iowa

Northwest Iowa 2

-96.4001 -96.4 -96.3999 -96.3998 -96.3997 -96.3996 -96.3995 -96.3994

Northwest Iowa 2

Feedlot Surface Manure Accumulation

Four questions

- **Are there areas in the pen accumulating manure?**
- **If so, where are these areas?**
- ^{3.} What is the environmental impact (i.e. air, soil, water)?
 - What can we do about it?

Feedlot Survey in Cooperation with ARS-USDA, Bushland, TX

Area based on Conductivity

Spatial Feedlot Manure Accumulation

ECa Data with GPS Coordinates

ESAP - RSSD

Sample Locations co-located w/EMI

Soil Core/ Flux Chambers CI, TN, TP, CO2, N20 CH4, aromatics, VFA.

ECa Data

ESAP - Calibrate

Calculate Models Summary Statistics Prediction Equations Prediction Maps

Manure is a 100 times more conductive than soil.

Soil property correlation matrix, and soil property / electromagnetic induction (EMI) cross-correlation estimates.

Soil property c	orrelation matrix	x (n = 40)			
	ln(Cl)	TN	TP	VS	
ln(Cl)	1.000	0.898	0.924	0.913	
TN		1.000	0.985	0.987	
ТР			1.000	0.978	
VS				1.000	
Soil property /	<i>EMI cross-corre</i>	elation estimates	(<i>n</i> = 40)		
	ln(Cl)	TN	TP	VS	
EMI	0.931	0.863	0.865	0.881	
ln(EMI)	0.966	0.924	0.930	0.937	

Pen 219, Predicted Volatile Solids

Ln(CO2) = bo + b1(ECa) + b2 (x)

Pen Surface Materials

Approximately 75% of the material hauled out of pens is soil

- \$ to haul soil out of the pens
- \$ to haul fill soil in to the pens
- Limits distance it can be economically hauled for field application.
- Soils near feedlot become loaded w/Phosphorus
- Risk to quality of surface waters receiving Ag runoff.

Pen Surface Materials

Need

•70 – 85% of pen scrapings is non-volatile dirt from the feedlot surface

•Removing pen scrapings and hauling fill dirt in for maintaining pen conditions is expensive

Objectives

•Compare pond ash surfaced pens with soil surface pens for reducing the soil content of the pen scrapings

Feedlot Surface Material

•64 MARC III heifers

8 pens
8 animal per pen
19 m²/head

•85 days

Pens 1011, 1012, 1015, 1016 had 18 inch thick pond ash surface
Standard finish ration

Feedlot Surface Material

Feedlot Surface Material

Summary

- The total mass of VS removed from all pens was not different
- 70% reduction in total mass removed
- The VS% from the PA pens was nearly twice as high as SS pens
- 14 times more material (scrapings removed and fill dirt replace) for the SS pen when compared to PA pens

Questions

09.29.2004

Management Changes

Discharge inlets were modified in Spring of 2006

Original Inlet Design

New Inlet Design

Application

CI Pred. Map - November 2006

Feedlot Surface Material

Trtmt	Total Mass	Total Solids	Volatile Solids	Ash	Fill
	kg	kg	kg	kg	kg
Soil	3631	2059	535.5	1523	11026
Pond Ash	1055	783.7	396.6	387.1	0
P-value	0.0083	0.026	0.22	0.025	