
1

Assessment of Options for Handling Full Unicode Character Encodings

in MARC21

A Study for the Library of Congress

Part 1: New Scripts

Jack Cain

Senior Consultant

Trylus Computing, Toronto

1 Purpose
This assessment intends to study the issues and make recommendations on the possible
expansion of the character set repertoire for bibliographic records in MARC21 format.

1.1 “Encoding Scheme” vs. “Repertoire”
An encoding scheme contains codes by which characters are represented in computer
memory. These codes are organized according to a certain methodology called an
encoding scheme. The list of all characters so encoded is referred to as the “repertoire” of
characters in the given encoding schemes. For example, ASCII is one encoding scheme,
perhaps the one best known to the average non-technical person in North America. “A”,
“B”, & “C” are three characters in the repertoire of this encoding scheme. These three
characters are assigned encodings 41, 42 & 43 in ASCII (expressed here in hexadecimal).

1.2 MARC8
"MARC8" is the term commonly used to refer both to the encoding scheme and its
repertoire as used in MARC records up to 1998. The ‘8’ refers to the fact that, unlike
Unicode which is a multi-byte per character code set, the MARC8 encoding scheme is
principally made up of multiple one byte tables in which each character is encoded using
a single 8 bit byte. (It also includes the EACC set which actually uses fixed length 3
bytes per character.) (For details on MARC8 and its specifications see:
http://www.loc.gov/marc/.)

MARC8 was introduced around 1968 and was initially limited to essentially Latin script
only. Gradually it was expanded until today it includes the following scripts: Arabic,
Chinese, Cyrillic, Greek, Japanese, Korean, and Latin. The vast majority of bibliographic
records in North America and in many other locations around the world are exchanged
using MARC8 encoding.

Very little expansion has been made to the MARC8 repertoire in recent years, as a
decision was made in the early 1990s to look toward Unicode for additional characters
rather than continue the arduous task of expanding MARC8. (The term ‘arduous’ is
deliberate and refers not so much to the difficulty of making additions and documenting
them but to the labor that every computer systems vendor using MARC records must
expend in order to modify their systems so that new characters are recognized and

2

supported.) As the users and systems have proliferated, change has become more costly
to the community at large.

Although MARC8 is based on ASCII, parts of the repertoire and encodings outside of
ASCII are unique to the world of libraries and library records and have been little used
outside this domain causing support challenges. Therefore the concept of the adoption of
Unicode also has the attraction of bringing the library world more into line with
mainstream computer developments such as the Internet.

1.3 Unicode
The Unicode encoding scheme and its repertoire have been in development for a little
over 10 years now. The intent of Unicode is to provide a single encoding scheme that is
capable of handling all the world’s languages. Although its adoption has not been as
quick as was initially hoped or predicted, Unicode is now the underlying encoding used
in many major software development efforts—all recent Microsoft products, the Java
programming language, and so on.

In the year 1998, it was agreed [MARBI Proposal 98-18], that it was acceptable for
MARC21 libraries participating in data interchange to begin using the Unicode encoding
scheme as an alternative to the MARC8 encoding scheme. However, it was also agreed
that the character set repertoire in current use was not to be expanded. The prohibition on
repertoire expansion was considered necessary because of concerns over record exchange
among systems—a vital element in the world of library information processing.

This MARBI decision then meant that MARC21 records could be encoded in either
MARC8 or in Unicode but that only the MARC8 repertoire of characters was to be
allowed in either case. The MARC8 repertoire represents all of the characters in the
MARC8 encoding scheme but it represents only a small fraction of all the characters in
the Unicode encoding scheme.

1.4 Issues
There is some urgency in the need to come to agreement on the resolution of the issues
being raised in this report since already some local library systems are running on
Unicode and several more are in the process of developing Unicode-based systems.
Although users of these systems can be encouraged to stay within the current MARC8
repertoire, the systems require specialized software filters designed to ensure that no
characters outside the current MARC8 repertoire enter the system. If such filters are not
provided, some characters outside the current MARC8 repertoire will begin to appear on
such systems and will then begin to find their way into distribution channels and
subsequently appear in records destined to be loaded on non-Unicode systems.

3

Canadian Aboriginal Syllabics. MARBI proposal 2002-11 allowed the addition of

Canadian Aboriginal Syllabics to the MARC21 repertoire but only in Unicode

encoding—thus obviating the need to expand the current MARC8 repertoire but

recognizing that there is a loss of data if a conversion to MARC8 is needed for an

interchange situation.

Communication Format vs Internal Processing. In considering the various issues raised

in this report, systems engineers need to decide what is a matter of internal handling

within the system and what is a matter for inclusion within records being issued in

MARC communication format. The stability of the repertoire and encodings in MARC8

have contributed greatly to record sharing, cooperative projects, and vendor system

development - which have brought cost savings to libraries. Therefore the exchange

environment is the primary issue, rather than the internal system, although the two can be

more cost effective when compatible.

1.5 Basic Multilingual Plane (BMP)

The present study is limited to the Basic Multilingual Plane of Unicode.

“The Basic Multilingual Plane (BMP, or Plane 0) contains all the
common-use characters for all the modern scripts of the world, as well as
many historical and rare characters. By far the majority of all Unicode
characters for almost all textual data can be found in the BMP.” (The
Unicode Consortium. The Unicode standard, version 4.0. Reading, MA,
Addison-Wesley, 2003. ISBN 0-321-18578-1, page 35)

It should be noted that access to characters beyond the BMP requires special techniques
as specified in the Unicode documentation. System software must be aware of such
techniques and library automation systems must take them into account in their design for
characters beyond the BMP to be available to the applications running on them. While it
is very likely that most library systems would only extremely rarely need to access
characters beyond the BMP, it should be noted that there are already a couple of han
(Chinese) characters in the current MARC8 repertoire which fall outside the BMP in
Unicode. The Unicode standard, version 4.0, has this to say about Plane 2 where these
han characters have been placed:

“…the vast majority of Plane 2 characters are extremely rare or of
historical interest only”.

2 New Scripts and New Characters in Existing Scripts
The move from the current MARC8 repertoire to a “full Unicode” repertoire represents
an enormous increase in the number of characters to be handled. The current MARC8
repertoire includes about 17,000 characters. Unicode 4.0 includes 236,029 code points of
which 50,635 are for graphic characters in the “Basic Multilingual Plane”. (Version 4.0
of Unicode was released in the fall of 2003.). There are two areas of concern. One is for
new characters not in the MARC8 repertoire. Another is for characters that are in the
repertoire but have alternative encodings in Unicode. This section is focused on the
former.

4

The Unicode encoding ‘code space’ is divided into ‘blocks’ or ranges of code points.
“Appendix B: Unicode 4.0 Blocks and MARC8 Encoding” provides a list of all Unicode
blocks and shows which blocks have partial coverage in the MARC8 repertoire and
which are entirely new.

“Appendix A: Unicode Scripts” provides a similar listing but is ordered by script and
shows the number of characters in Unicode that are in addition to those found in the
MARC8 repertoire. A further set of tables giving specific code points in each Unicode
block that are new to the MARC8 repertoire has been prepared as an ancillary part of this
report.

2.1 Moving from Full Unicode Records to MARC8
The issue that raises the most concern in repertoire expansion is the complex of
consequences encountered when records move from a system with a large repertoire to a
system that has provision only for a much smaller repertoire. Character set is very
fundamental and very unforgiving—if a system does not know about a character code, or
worse—has a different character assigned already to that code—then data corruption will
result unless proper measures are taken.

A number of options are available when moving data from a full Unicode environment to
the current MARC8 repertoire environment. In making a choice of option, it should first
of all be stated that the move to full Unicode systems is likely to be an irreversible trend
with more and more systems moving in this direction and with therefore more and more
pressure for others to do the same. With this in mind, it does not seem reasonable to
invest in very complex solutions.

2.1.1 Option 1: Drop the character
In this option the characters that are found not to be present in the current MARC8
repertoire are deleted. The software used to perform the deletion also must be capable of
handling all resultant changes to the record arising from the deletion. The following
structural checking needs to be applied before the record is stored in the system in
question and before any indexing is applied to it.

a) if the character in question is a precomposed character it may be preferable to
decompose it first and then analyze what needs to be done next. If both the character and
its diacritic can be kept in MARC8 then both should be kept; if the diacritic is not present
in MARC8 then at least the letter should be kept. If neither is in MARC 8 then both will
have to be dropped.
b) make any necessary adjustments in the length calculations recorded in the record
c) if, after such deletions, an empty field or subfield remains then that field or subfield
would need to be deleted

2.1.2 Option 2: Substitute another character
A list of sensible substitution characters may be developed to handle commonly
encountered characters for which reasonable substitution characters exist. For example in

5

Unicode the ellipsis has an encoding as a single character [U+2026], but in MARC 8
three ASCII periods could be used as a substitute.

The basic advantage of this method is its relative simplicity and practicality. The basic
disadvantage is the loss of information about the original character although it is true that
some such substitutions could be reversed. A second disadvantage is that this solution
would only be practical for a limited number of characters for which a reasonable
substitution exists. For the overwhelming majority of characters in Unicode that are
beyond the MARC8 repertoire no sensible substitution is likely to be found.

It should also be stated that character substitution is against Unicode principles since it
destroys data integrity—although this conformance applies to Unicode systems only and
if the data is being moved to a non-Unicode system there is some justification for not
being constrained by this conformance requirement. (See Unicode Conformance
Requirement, C10. Unicode 4.0, section 3.2, “Modification”, page 60)

2.1.3 Option 3: Replace the character with a “place-holder” character
(Cf. Unicode section 5.3: Unknown and Missing Characters)

This option is similar to Option 2 but instead of deleting the character, it is replaced by a

“place-holder” character. This technique is often encountered on the web where the

empty rectangle is commonly used as a place-holder character for a character that is not

present. It should be noted that the concept of a place-holder character has existed for

some time in CJK character sets where a specific character for this purpose has been

assigned and is present in the current MARC8 repertoire. This character, called “geta”,

has hexadecimal code 212A46 in the current MARC8 encoding and is encoded as

U+0313 in Unicode.

If this option is chosen, the simplest implementation would be to use the same place-

holder character for all characters missing from the current MARC8 repertoire. One

might also want to consider a combination of options 2 and 3: substitution for some

characters; place-holders for others. One of the consequences of the adoption of this

technique is that a new place-holder character would have to be established in MARC8

for non-CJK data—probably in one of the spare code points in the ANSEL code space,

such as C9. The obvious disadvantage of this option is the loss of information about the

original character.

2.1.4 Option 4: Replace the character with “[U+nnnn]” in ASCII
In this option the character or characters in question are replaced by a conventional
representation in ASCII characters of the 2 byte Unicode hexadecimal code point for the
character in question. For example, if the original Unicode record contains an ellipsis, a
character not in the current MARC8 repertoire, the character would be replaced by
“[U+2026]”.

This method requires the software to make any necessary adjustments in the length
calculations recorded in the record. It should also be noted that this technique could cause
an “overflow” problem with records or fields that are long since every character so

6

treated would increase by a number of bytes. The severity of the problem would depend
on the limits imposed by the software within which the records are handled.

This method has the advantage that the value of the original character has not been
entirely discarded and still may be reconstructed from the code value that is recorded.
Performing such a reconstruction however is not a trivial task.

2.1.5 Option 5: Replace the non-MARC8 character with the Unicode character
name
This option, suggested by Joan Aliprand of RLG, follows the “tried and true” method of
providing a cataloger’s description for characters that the technology cannot handle. It is
essentially the same as Option 4 above but uses the more “user-friendly” approach of a
readable name instead of a numeric code point. The Unicode character name is
extractable from the Unicode Character Database. (See ‘Resources’ below)

Note that it is not helpful with han characters which essentially do not have a name in
Unicode. And the possible length problems discussed in point 4 are even more severe
with this method.

2.1.6 Option 6: Using escape sequences to shift to Unicode within records encoded
in the current MARC8 encoding
Although this option is theoretically possible it is strongly discouraged by this report.
Such a course of action will inevitably make for severe complications in systems design
and therefore is not to be recommended. The following quotation from the Unicode 4.0
text provides good background on this point.

“The Unicode standard, by supplying a universal repertoire associated
with well-defined character semantics, does not require the code set
independent model of internationalization and text handling. That model
abstracts away string handling as manipulation of byte streams of
unknown semantics to protect implementations from the details of
hundreds of different character encodings, and selectively late-binds
locale-specific character properties to characters. Of course, it is always
possible for code set independent implementations to retain their model
and to treat Unicode characters as just another character set in that context.
It is not at all unusual for Unix implementations to simply add UTF-8 as
another character set, parallel to all the other character sets they support.
However, by contrast, the Unicode approach—because it is associated
with a universal repertoire—assumes that characters and their properties
are inherently and inextricably associated. If an internationalized
application can be structured to work directly in terms of Unicode
characters, all levels of the implementation can reliably and efficiently
access character storage and be assured of the universal applicability of
character property semantics.” (The Unicode Consortium. The Unicode
standard, version 4.0. Reading, MA, Addison-Wesley, 2003. ISBN 0-321-
18578-1, page 15)

7

2.1.7 Recommendations
The choice of which of the above methods is influenced by a number of factors:
a) availability of software to perform the conversion.
b) cost of conversion software, especially if it must be created from scratch.
c) needs of the user population of the system on which the records are being loaded. For
example, if the users of the system are chiefly monolingual, the removal of a single
foreign character from a record may have little repercussion. On the contrary, if one
considers the removal of all Chinese characters from a system serving an area where
there are many readers of the language, the consequences may be considerable.
d) the need to record the original Unicode characters for future Unicode export or internal
system conversion.

In this report, the recommended choice is Option 4 above.
The reasons for the choice of this option are:
a) the original Unicode value can be reconstructed
(no information is lost and the record can be reverted to Unicode).
b) the method is already established as a common method of dealing with this problem in
the IT industry.
c) this option is not expensive or complex to program (Option 5 is somewhat more
expensive and error prone although it is more user-friendly).

2.2 Moving Records between Systems that use Different Unicode Versions
There can be an issue of missing characters also within between Unicode systems which
are running different versions of Unicode. For example, a system running Unicode
version 4.0 sends a character code to a system running Unicode 3.2 and that character is
not present in Unicode 3.2.

2.2.1 Recommendation
This report recommends using the same option as that used in moving records to a non-
Unicode system using the current MARC8 repertoire—replace the character with a
representation of the hexadecimal code of the character using ASCII representation.

2.3 Display and Fonts Issues
The move to full Unicode will immediately raise for libraries the issue of the availability
of fonts and the characteristics of the fonts that are in fact available.

“The difference between identifying a character and rendering it on
screen or paper is crucial to understanding Unicode’s role in text
processing. The character identified by a Unicode code point is an abstract
entity, such as “LATIN CAPITAL LETTER A” or “BENGALI DIGIT FIVE”. The
mark made on screen or paper, called a glyph, is a visual representation of
the character.

“The Unicode standard does not define glyph images. That is, the standard
defines how characters are interpreted, not how glyphs are rendered.
Ultimately, the software or hardware rendering engine of a computer is

8

responsible for the appearance of the characters on the screen. The
Unicode standard does not specify the precise shape, size, or orientation of
on-screen characters.” (The Unicode Consortium. The Unicode standard,
version 4.0. Reading, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1,
page 5)

There are no fonts currently in existence that will display all characters in Unicode
version 4.0. A single TrueType or OpenType font, which has a limit of 65,536 characters,
is no longer then capable of including all Unicode characters.

2.3.1 Large comprehensive fonts
Two fonts are available however which have relatively good coverage of characters in

languages commonly encountered. These are: “Arial Unicode” from Microsoft and

“Andale Mono” from Agfa-Monotype. (Both fonts have actually been built by Agfa

Monotype but the former is available only from Microsoft—by license.) The Arial

Unicode font is based on Unicode version 2.1. (Unicode 2.1 includes 38,871 graphic

characters.) It does include a few additions beyond version 2.1 but there are no plans to

expand it with enormous numbers of new characters. It is planned however that there will

be “a new version that has better quality and more complete coverage of the scripts it

already supports”. These additions will expand this font in some areas to bring it up to

Unicode 3.2 and in other areas up to Unicode 4.0.

Andale Mono supports all characters in Unicode 3.0—that is, 49,170 graphic characters.

The major difference between Unicode versions 2.1 and 3.0—except for Canadian

Aboriginal Syllabics—is the addition of “Han Extension A” with 6,582 additional han

characters. Either of these fonts would cover the vast majority of needs of most research

libraries. Andale Mono is also currently undergoing upgrades that will bring it up to

Unicode 4.0; the problem of size will be addressed by putting some of the CJK additions

in separate fonts.

In addition to simply adding more characters, Agfa Monotype will also be adding font

capabilities which will support most dynamic diacritic plus letter combinations in the

following scripts: Latin, Cyrillic and Greek.

Both of these large fonts are available commercially and are subject to licensing

restrictions.

2.3.2 Linked sets of fonts
By policy, Microsoft and large font houses have decided that no more work will be done
on comprehensive fonts and that all effort will be devoted instead to the creation of
“linked sets of fonts”. Partly, this is due to the 65K (65,536) limit on fonts that Unicode
4.0 now goes well beyond. Another factor relates to the requirements of font design—for
example, a well-designed Thai font has different requirements from a well-designed font
for Canadian Aboriginal Syllabics and font designers are unwilling to create
comprehensive fonts that do not do justice to many of the characters that would be
included. From the point of view of serving a market, this concept is especially true of
fonts that include han characters. Adobe, for example, has created fonts specifically for

9

Japan or for China in which tens of thousands of glyph variants were created to make the
font completely acceptable in each of those markets.

2.3.3 Situation of libraries regarding fonts
For libraries collecting little non-English library material there will not be significant font
problems or issues with the move to full Unicode. The fonts which are regularly available
should be completely adequate in the handling of English and in fact most European
language material. Characters which are beyond the current MARC8 repertoire such as
the section sign (§)(U+00A7), the Yen sign (¥) (U+00A5)—to give only two examples—
will appear just as they do in this document since they are regular characters in the
commonly available fonts such as “Times” and “Arial”. And it is unlikely, for many
libraries, that very many characters will be needed that are not available in this way.

However, when we consider the needs of large research libraries the situation is
somewhat different. The move to full Unicode could readily involve characters or whole
scripts that are not present in the fonts that are regularly available in the personal
computers that usually are used as the interface equipment for most library automation
systems. What then can be done?

Libraries can consider licensing one of the two comprehensive fonts listed above—
various licensing arrangements are possible. Either of these comprehensive fonts would
be capable of handling the vast majority of characters required by even a major research
library.

Secondly, libraries can investigate the availability of a linked set of fonts covering the
scripts in which the library specifically collects materials.

2.3.4 Terminal software, browsers, word processors
In considering requirements for display it is relevant to point out the universal trend away
from custom software for display on terminals of a library system toward the use of
commonly available browser software maintained at someone else’s expense. Therefore,
issues of display need to be studied in the context of the capabilities of the browsers
available to the users of the library system in question. Display capabilities will certainly
vary from one browser to another and even from one version of the same browser to
another version of that browser. Recommendations for font use will need to be correlated
with browser choice and capability. And it should also be made clear that capabilities
experienced with a word processor may or may not be reflected in the browser of choice.

2.3.5 Combining letters and diacritics in display
(See also: Task 2: Multiple Encodings)

There can be issues with fonts in the combining of letters with the diacritics that go with

them. According to one expert consulted in the course of this study, the library will “need

fonts and applications that support accurate dynamic mark positioning for all the scripts

you want to cover.” In other words, the font in question will need to be able to recognize

the presence of a diacritic and know how to display that diacritic appropriately positioned

with the character in question. A statement from a Microsoft representative notes that:

10

“combining diacritic display (for transliterations and African languages that require them)

was added to Word2003, and there are several fonts now that support the necessary

OpenType features to allow this. Support will grow in the future”.

In order to avoid combining difficulties for the font, some vendors will develop tables

which convert separately stored character plus diacritic combinations to precomposed

characters present in the fonts being delivered with the system. However, it is inevitable

that certain precomposed combinations will not be present in the fonts supplied and in

this case the font will have to perform the combination dynamically. If the font is not

capable of making such a combination, the result may be that the character and the

diacritic appear in separate character spaces. This is likely to be true for characters such

as the Russian ligature diacritics that are placed in a compatibility area of Unicode and

for this reason are not likely to be supported by the dynamic font combining capabilities

of commercially available fonts. Although having the diacritic and letter appearing each

in their own spaces is not good looking, it should be accepted for the time being—

especially since the industry is moving clearly in the direction of smarter fonts and font

engines which will support combining in the future.

Note that the following web site provides lists of fonts by Unicode code range:

http://www.alanwood.net/unicode/fontsbyrange.html

And it should also be noted that recent versions of Internet Explorer have, under

“Tools/Internet Options/Fonts/” a dialogue box in which “Language scripts” can be

specified. The corresponding fonts available on the PC concerned, that are associated

with the scripts listed and have code points present in the range of that script, are

searched for and displayed by the IE software.

Resources

1 MARC Web Site
The MARC21 Standards web site maintained by the Library of Congress

(http://www.loc.gov/marc/) assembles much vital and useful information. In particular,

the conversion tables between MARC8 encoding and Unicode appear at:

http://www.loc.gov/marc/specifications/specchartables.html

Also in print form:

USMARC Specifications for Record Structure, Character Sets, and Exchange Media.

Washington, DC: Cataloging Distribution Service, Library of Congress.

2 Unicode Web Site
The Unicode web site (www.unicode.org) is also a key site relating to the topic of this
study. The following special elements of it should be mentioned:

2.1 Unicode 4.0 Book and CD
Citation: The Unicode Consortium. The Unicode standard, version 4.0. Reading, MA,

Addison-Wesley, 2003. ISBN 0-321-18578-1

Content:

11

2.2 Unicode Character Database
This database is available at: http://www.unicode.org/Public/UNIDATA or

ftp://www.unicode.org/Public/UNIDATA.

Specific tables within this database are mentioned in the report above.

2.3 Unicode Cross Mapping Tables
These tables provide mappings between Unicode and various national standards. They

are to be found at;

http://www.unicode.org/Public/MAPPINGS

2.4 Unicode Technical Documentation
Another source of extremely useful technical information are the technical documents

which are posted at:

http://www.unicode.org/reports/index.html

There are a series of “Annexes” which are considered part of the standard itself: Those

currently listed are:

UAX 9 The Bi-Directional Algorithm

UAX 11 East Asian Width

UAX 14 Line Breaking Properties

UAX 15 Unicode Normalization Forms

UAX 24 Script Names

UAX 29 Text Boundaries

Under Technical Standards, it is useful to consult UTS 10 Unicode Collation Algorithm

when working on normalization forms.

Under Technical Reports the following are of particular relevance to this report:

UTR 17 Character Encoding Model

UTR 22 Character Mapping Tables

UTR 23 Character Properties

UTR 30 Character Foldings

3 W3C Documents and Software
The W3C organization has a site (http://www.w3c.org/International/charlint/) which
provides a software tool, written in PERL, which will check for conformance to
Normalization Form C of the Unicode Technical Report # 15.

12

Appendix A: Unicode Scripts

Scripts and counts are only for the BMP (Basic Multilingual Plane) of Unicode. A list of

code points for each script will be found in the Unicode table “Scripts.txt” on the

Unicode site (www.unicode.org).

“New” means that no characters of the script are in MARC8.

“Partial” means that some characters of the script are present in MARC8 but full Unicode

has more characters than MARC8.

Script New/Partial MARC8 Count* Unicode Count (4.0)
Arabic Partial 56 877
Armenian New 0 83
Bengali New 0 81
Bopomofo New 0 64
CAS** New 0 628
Cherokee New 0 85
Cyrillic Partial 102 260
Devanagri New 0 102
Ethiopic New 0 337
Georgian New 0 79
Greek Partial 58 348
Gujarati New 0 82
Gurmukhi New 0 76
Hangul Partial 2,028 11,558
Han Partial 13,478*** 27,814 (in BMP)
Hebrew Partial 45 74
Hiragana Partial 88 89
Kannada New 0 81
Katakana Partial 83 164
Khmer New 0 94
Lao New 0 65
Latin Partial 74 938
Malayalam New 0 78
Mongolian New 0 140
Myanmar New 0 72
Ogham New 0 26
Oriya New 0 80
Runic New 0 78
Sinhala New 0 79
Syriac New 0 62
Tamil New 0 61
Telugu New 0 80
Thaana New 0 50
Thai New 0 83

13

Script New/Partial MARC8 Count* Unicode Count (4.0)
Tibetan New 0 139
Yi New 0 1220
*MARC8 counts include characters but not punctuation, symbols or combining marks.
**Canadian Aboriginal Syllabics. Accepted for inclusion in MARC8 in Unicode, 2002.
***This count includes 10 characters missing from the published standard.

14

Appendix B: Unicode 4.0 Blocks and MARC8 Encoding

Note: this chart includes all Unicode 4.0 blocks including those beyond the Basic

Multilingual Plane (Plane 0)

“Same” means that the MARC8 table and the Unicode table have essentially the same

character repertoires.

“New” means that none of the characters in the Unicode block are in MARC8 repertoire.

“Partial” means that some of the characters in this Unicode block are in the MARC8

repertoire and some are not. For most of the blocks listed as “Partial” below tables have

been developed showing which characters are new to MARC8 and which are already in

MARC8.

Begin End Block Name MARC8 Status
0000 007F Basic Latin Same
0080 00FF Latin-1 Supplement Partial 01
0100 017F Latin Extended-A Partial 02
0180 024F Latin Extended-B Partial 03
0250 02AF IPA Extensions Partial 04
02B0 02FF Spacing Modifier Letters Partial 05
0300 036F Combining Diacritical Marks Partial 06
0370 03FF Greek and Coptic Partial 07
0400 04FF Cyrillic Partial 08
0500 052F Cyrillic Supplementary Partial 08
0530 058F Armenian New
0590 05FF Hebrew Partial 09
0600 06FF Arabic Partial 10
0700 074F Syriac New
0780 07BF Thaana New
0900 097F Devanagari New
0980 09FF Bengali New
0A00 0A7F Gurmukhi New
0A80 0AFF Gujarati New
0B00 0B7F Oriya New
0B80 0BFF Tamil New
0C00 0C7F Telugu New
0C80 0CFF Kannada New
0D00 0D7F Malayalam New
0D80 0DFF Sinhala New
0E00 0E7F Thai New
0E80 0EFF Lao New
0F00 0FFF Tibetan New
1000 109F Myanmar New
10A0 10FF Georgian New

15

Begin End Block Name MARC8 Status
1100 11FF Hangul Jamo New
1200 137F Ethiopic New
13A0 13FF Cherokee New
1400 167F Unified Canadian Aboriginal Syllabics New
1680 169F Ogham New
16A0 16FF Runic New
1700 171F Tagalog New
1720 173F Hanunoo New
1740 175F Buhid New
1760 177F Tagbanwa New
1780 17FF Khmer New
1800 18AF Mongolian New
1900 194F Limbu New
1950 197F Tai Le New
19E0 19FF Khmer Symbols New
1D00 1D7F Phonetic Extensions New
1E00 1EFF Latin Extended Additional New
1F00 1FFF Greek Extended New
2000 206F General Punctuation New
2070 209F Superscripts and Subscripts Partial 11
20A0 20CF Currency Symbols Partial
20D0 20FF Combining Diacritical Marks for Symbols New
2100 214F Letterlike Symbols New
2150 218F Number Forms New
2190 21FF Arrows New
2200 22FF Mathematical Operators New
2300 23FF Miscellaneous Technical New
2400 243F Control Pictures New
2440 245F Optical Character Recognition New
2460 24FF Enclosed Alphanumerics New
2500 257F Box Drawing New
2580 259F Block Elements New
25A0 25FF Geometric Shapes New
2600 26FF Miscellaneous Symbols New
2700 27BF Dingbats New
27C0 27EF Miscellaneous Mathematical Symbols-A New
27F0 27FF Supplemental Arrows-A New
2800 28FF Braille Patterns New
2900 297F Supplemental Arrows-B New
2980 29FF Miscellaneous Mathematical Symbols-B New
2A00 2AFF Supplemental Mathematical Operators New
2B00 2BFF Miscellaneous Symbols and Arrows New
2E80 2EFF CJK Radicals Supplement New
2F00 2FDF Kangxi Radicals New

16

Begin End Block Name MARC8 Status
2FF0 2FFF Ideographic Description Characters New
3000 303F CJK Symbols and Punctuation Partial 12
3040 309F Hiragana Partial 13
30A0 30FF Katakana Partial 13
3100 312F Bopomofo New
3130 318F Hangul Compatibility Jamo New
3190 319F Kanbun New
31A0 31BF Bopomofo Extended New
31F0 31FF Katakana Phonetic Extensions New
3200 32FF Enclosed CJK Letters and Months New
3300 33FF CJK Compatibility New
3400 4DBF CJK Unified Ideographs Extension A
4DC0 4DFF Yijing Hexagram Symbols New
4E00 9FFF CJK Unified Ideographs Partial 14
A000 A48F Yi Syllables New
A490 A4CF Yi Radicals New
AC00 D7AF Hangul Syllables Partial 15
D800 DB7F High Surrogates New
DB80 DBFF High Private Use Surrogates New
DC00 DFFF Low Surrogates New
E000 F8FF Private Use Area
F900 FAFF CJK Compatibility Ideographs
FB00 FB4F Alphabetic Presentation Forms New
FB50 FDFF Arabic Presentation Forms-A New
FE00 FE0F Variation Selectors New
FE20 FE2F Combining Half Marks Same
FE30 FE4F CJK Compatibility Forms New
FE50 FE6F Small Form Variants New
FE70 FEFF Arabic Presentation Forms-B New
FF00 FFEF Halfwidth and Fullwidth Forms Partial
FFF0 FFFF Specials New
10000 1007F Linear B Syllabary New
10080 100FF Linear B Ideograms New
10100 1013F Aegean Numbers New
10300 1032F Old Italic New
10330 1034F Gothic New
10380 1039F Ugaritic New
10400 1044F Deseret New
10450 1047F Shavian New
10480 104AF Osmanya New
10800 1083F Cypriot Syllabary New
1D000 1D0FF Byzantine Musical Symbols New
1D100 1D1FF Musical Symbols New
1D300 1D35F Tai Xuan Jing Symbols New

17

Begin End Block Name MARC8 Status
1D400 1D7FF Mathematical Alphanumeric Symbols New
20000 2A6DF CJK Unified Ideographs Extension B
2F800 2FA1F CJK Compatibility Ideographs Supplement
E0000 E007F Tags New
E0100 E01EF Variation Selectors Supplement New
F0000 FFFFF Supplementary Private Use Area-A New
100000 10FFFF Supplementary Private Use Area-B New

