NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF OXAZEPAM

(CAS NO. 604-75-1)

IN F344/N RATS

(FEED STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

October 1998

NTP TR 468

NIH Publication No. 99-3958

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
National Institutes of Health

FOREWORD

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. The interpretive conclusions presented in this Technical Report are based only on the results of these NTP studies. Extrapolation of these results to other species and quantitative risk analyses for humans require wider analyses beyond the purview of these studies. Selection *per se* is not an indicator of a chemical's carcinogenic potential.

Listings of all published NTP reports and ongoing studies are available from NTP Central Data Management, NIEHS, P.O. Box 12233, MD E1-02, Research Triangle Park, NC 27709 (919-541-3419). The Abstracts and other study information for 2-year studies are also available at the NTP's World Wide Web site: http://ntp-server.niehs.nih.gov.

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF OXAZEPAM

(CAS NO. 604-75-1)

IN F344/N RATS

(FEED STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

October 1998

NTP TR 468

NIH Publication No. 99-3958

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
National Institutes of Health

CONTRIBUTORS

National Toxicology Program

Evaluated and interpreted results and reported findings

J.R. Bucher, Ph.D., Study Scientist

D.A. Bridge, B.S.

R.E. Chapin, Ph.D.

J.R. Hailey, D.V.M.

J.K. Haseman, Ph.D.

R.A. Herbert, D.V.M., Ph.D.

R.R. Maronpot, D.V.M.

G.N. Rao, D.V.M., Ph.D.

J.H. Roycroft, Ph.D.

C.S. Smith, Ph.D.

G.S. Travlos, D.V.M.

D.B. Walters, Ph.D.

K.L. Witt, M.S., Oak Ridge Associated Universities

Battelle Columbus Laboratories

Conducted studies, evaluated pathology findings

P.J. Kurtz, Ph.D., Principal Investigator M. Hejtmancik, Ph.D. M.J. Ryan, D.V.M., Ph.D.

Experimental Pathology Laboratories, Inc.

Provided pathology quality assurance

J.F. Hardisty, D.V.M., Principal Investigator C.C. Shackelford, D.V.M., M.S., Ph.D.

Dynamac Corporation

Prepared quality assurance audits

S. Brecher, Ph.D., Principal Investigator

NTP Pathology Working Group

Evaluated slides, prepared pathology report on rats (3 April 1996)

R. Brown, D.V.M.

Glaxo-Wellcome

J.R. Hailey, D.V.M.
National Toxicology Program

R.A. Herbert, D.V.M., Ph.D. National Toxicology Program

A. Nyska, D.V.M.

National Toxicology Program

A. Radovsky, D.V.M., Ph.D. National Toxicology Program

C.C. Shackelford, D.V.M., M.S., Ph.D. Experimental Pathology Laboratories, Inc.

Analytical Sciences, Inc.

Provided statistical analyses

R.W. Morris, M.S., Principal Investigator S.R. Lloyd, M.S. N.G. Mintz, B.S.

Biotechnical Services, Inc.

Prepared Technical Report

S.R. Gunnels, M.A., Principal Investigator J.M. Gregory, B.S. L.M. Harper, B.S.

A.M. Macri-Hanson, M.A., M.F.A.

CONTENTS

ABSTRACT .	••••••	5
EXPLANATIO1	N OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	9
TECHNICAL R	REPORTS REVIEW SUBCOMMITTEE	10
SUMMARY OF	TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS	11
INTRODUCTIO	ON	13
MATERIALS A	AND METHODS	21
RESULTS		29
DISCUSSION A	AND CONCLUSIONS	47
REFERENCES		51
Appendix A	Summary of Lesions in Male Rats in the 2-Year Feed Study of Oxazepam	61
Appendix B	Summary of Lesions in Female Rats in the 2-Year Feed Study of Oxazepam	109
APPENDIX C	Genetic Toxicology	147
Appendix D	Chemical Characterization and Dose Formulation Studies	155
Appendix E	Feed and Compound Consumption in the 2-Year Feed Studies of Oxazepam	163
Appendix F	Ingredients, Nutrient Composition, and Contaminant Levels in NIH-07 Rat and Mouse Ration	169
Appendix G	Sentinel Animal Program	173
Appendix H	Early Responses of F344/N Rats to Oxazepam	175

ABSTRACT

$$\begin{array}{c|c} H & O \\ \hline N & C & O \\ \hline C & O \\ \hline C_6 H_5 & \end{array}$$

OXAZEPAM

CAS No. 604-75-1

Chemical Formula: C₁₅H₁₁ClN₂O₂ Molecular Weight: 286.74

Synonym: 7-Chloro-1,3-dihydro-3-hydroxy-5-phenyl-2*H*-1,4-benzodiazepin-2-one

Trade Names: Serax, Tazepam, Wy-3498

Oxazepam and related benzodiazepine drugs are used in the treatment of anxiety. All benzodiazepines currently in use share a number of effects, including sedation, hypnosis, decreased anxiety, muscle relaxation, amnesia, and anticonvulsant activity. Oxazepam and four other benzodiazepines (chlordiazepoxide, chlorazepate, diazepam, and flurazepam) were nominated for study by the Food and Drug Administration (FDA) and by the NIEHS based on their widespread use, use by pregnant women, and the lack of adequate rodent carcinogenicity studies. Oxazepam was evaluated in 14-week and 2-year studies by the NTP, and Technical Report No. 443 contains the results of the studies performed with the Swiss-Webster and B6C3F₁ strains of mice. Studies with rats were not initiated at the same time as the mouse studies because adequate carcinogenicity studies of oxazepam with the Sprague-Dawley rat strain had been submitted to the FDA. Subsequently, because of the marked neoplastic responses found in the two mouse strains, the NTP initiated 2-year studies of oxazepam with the F344/N rat. Groups of male

and female F344/N rats were exposed to oxazepam (greater than 99% pure) in feed for 2 years. Genetic toxicology studies were conducted in *Salmonella typhimurium* and cultured Chinese hamster ovary cells, and mouse peripheral blood samples were analyzed for the frequency of micronucleated normochromatic erythrocytes.

2-YEAR STUDY

Groups of 50 male and 50 female F344/N rats were fed diets containing 0, 625, 2,500, or 5,000 ppm oxazepam for up to 105 weeks. A stop-exposure group of 50 males and 50 females received 10,000 ppm oxazepam in feed for 26 weeks, after which animals received undosed feed for the remainder of the 2-year study. The continuous-exposure concentrations resulted in average daily doses of 25, 100, or 250 mg oxazepam/kg body weight to males and 25, 110, or 220 mg/kg to females. Stop- exposure males and females received an average daily dose of 630 mg/kg during the exposure period.

Oxazepam, NTP TR 468

Survival, Body Weights, and Clinical Findings

All 5,000 ppm continuous-exposure and 10,000 ppm stop-exposure males died before the end of the study. Survival of 2,500 ppm continuous-exposure males and females was significantly less than that of the controls. The mean body weight gains of 2,500 and 5,000 ppm males and females were less than those of the controls throughout the study. The mean body weights of 10,000 ppm stop-exposure males were generally less than those of the controls throughout the study; those of 10,000 ppm stop-exposure females were less than those of the controls during the exposure portion of the study but increased steadily after the cessation of dosing at week 27. Feed consumption by exposed groups was similar to that by the controls after week 1 of the study. Treatment-related eye/nasal discharge, hyperactivity when handled, and/or ataxia were observed in exposed male and female rats on or about day 2 of exposure but were no longer apparent after day 7.

Plasma Oxazepam Determinations

Plasma oxazepam concentrations were measured at the end of the study. The concentrations ranged from approximately 0.5 (625 ppm males) to 2.8 μ g/mL (5,000 ppm females).

Pathology Findings

In the standard histopathologic evaluation, the incidence of renal tubule adenoma was slightly increased in male rats exposed to 2,500 ppm and was at the upper limit of the historical control range for this neoplasm in 2-year NTP feed studies. In an extended evaluation (step section) of the kidneys of male rats, the incidences of renal tubule adenoma occurred with a positive trend in exposed groups. In standard and step sections (combined), male rats exposed to 2,500

or 5,000 ppm showed a significant increase in the incidences of renal tubule adenoma and hyperplasia. In addition, the incidences of renal tubule adenoma and hyperplasia were significantly increased in the 10,000 ppm stop-exposure group. The incidences of nephropathy in continuously exposed female rats were significantly greater than in the controls, and the severity of nephropathy increased with increasing exposure concentration in males.

The incidences of epithelial hyperplasia and chronic inflammation of the forestomach in males exposed to 2,500 and 5,000 ppm and of ulcers in 2,500 ppm males were significantly greater than in the controls. Incidences of mineralization of the glandular stomach in 5,000 ppm and 10,000 ppm (stop-exposure) males and of erosion of the duodenum in 5,000 ppm males were significantly greater than in the controls. Female rats exposed to 2,500 ppm had greater incidences of epithelial hyperplasia, chronic inflammation, and ulcers of the forestomach and of erosion in the glandular stomach.

Centrilobular hepatocyte hypertrophy occurred more frequently in 2,500 and 5,000 ppm males and females than in the controls.

GENETIC TOXICOLOGY

Oxazepam was not mutagenic in any of several strains of *S. typhimurium*, nor did it induce sister chromatid exchanges or chromosomal aberrations in cultured Chinese hamster ovary cells. These *in vitro* tests were performed with and without S9 metabolic activation. Results from an *in vivo* mouse peripheral blood micronucleus test performed on B6C3F₁ mice used in a 14-week study were also negative.

CONCLUSIONS

In summary, under the conditions of these 2-year dosed-feed studies, there was *equivocal evidence of carcinogenic activity** in male F344/N rats, based on small increases in the incidences of renal tubule adenomas in exposed groups also exhibiting significantly enhanced nephropathy. There was *no evidence of carcinogenic activity* of oxazepam in female F344/N rats exposed to feed containing 625, 2,500, or 5,000 ppm for 2 years or 10,000 ppm for 6 months.

Administration of oxazepam to rats resulted in non-neoplastic lesions in the forestomach, glandular stomach, and small intestine as well as centrilobular hypertrophy of hepatocytes in the liver. In addition, nephropathy was increased in incidence in female rats and was markedly increased in severity in male rats, resulting in early mortality at the higher exposure concentrations.

^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 9. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 11.

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Oxazepam

	Male F3	44/N Rats	Female F	Female F344/N Rats		
	(2-Year Study)	(Stop-Exposure Study)	(2-Year Study)	(Stop-Exposure Study)		
Concentrations	0, 625, 2,500, or 5,000 ppm	10,000 ppm for 26 weeks	0, 625, 2,500, or 5,000 ppm	10,000 ppm for 26 weeks		
Body weights	weights 2,500 ppm and 5,000 ppm groups less than control group		2,500 and 5,000 ppm groups less than control group	10,000 ppm group similar to control group		
2-Year survival rates	17/50, 11/50, 6/50, 0/50	0/50	32/50, 26/50, 20/50, 31/50	25/50		
Nonneoplastic effects	Kidney: severity of nephropathy (1.9, 2.3, 2.7, 3.2) Forestomach: chronic inflammation (6/50, 8/48, 23/50, 15/50); ulcer (9/50, 12/48, 20/50, 10/50); epithelial hyperplasia (5/50, 8/48, 25/50, 16/50) Glandular stomach: mineralization (0/50, 3/48, 1/50, 4/50) Small intestine: duodenum, erosion (4/50, 3/48, 9/49, 16/50) Liver: hepatocyte centrilobular hypertrophy (0/50, 1/50, 8/49, 14/50)		Kidney: nephropathy (32/50, 43/50, 41/50, 48/50) Forestomach: chronic inflammation (1/50, 5/50, 16/50, 3/50); ulcer (1/50, 2/50, 9/50, 6/50); epithelial hyperplasia (2/50, 6/50, 16/50, 5/50) Glandular stomach: erosion (0/50, 4/50, 7/50, 2/50) Liver: hepatocyte centrilobular hypertrophy (0/50, 0/50, 10/50, 31/50)	Forestomach: chronic inflammation (5/50); ulcer (4/50); epithelial hyperplasia (5/50)		
Neoplastic effects	None	None	None	None		
Uncertain findings	Kidney: renal tubule adenoma (extended evaluation - 1/50, 1/50, 4/50, 5/50; standard and extended evaluations combined - 2/50, 1/50, 7/50, 6/50)	Kidney: renal tubule adenoma (extended evaluation - 6/45; standard and extended evaluations combined - 6/45)	None	None		
Level of evidence of carcinogenic activity			No evidence			
Genetic toxicology Salmonella typhimurium gene mutations: Sister chromatid exchanges Cultured Chinese hamster ovary cells in vitro: Chromosomal aberrations Cultured Chinese hamster ovary cells in vitro: Micronucleated normochromatic erythrocytes in B6C3F ₁ mice:		TA102, Negative Negative	Negative with and without S9 in strains TA97, TA98, TA100, TA102, and TA1535 Negative with and without S9 Negative with and without S9 Negative at 14 weeks			

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (**clear evidence** and **some evidence**); one category for uncertain findings (**equivocal evidence**); one category for no observable effects (**no evidence**); and one category for experiments that cannot be evaluated because of major flaws (**inadequate study**). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism.

- Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemical-related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemical related.
- No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemical-related increases in malignant or benign neoplasms.
- **Inadequate study** of carcinogenic activity is demonstrated by studies that, because of major qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- · adequacy of the experimental design and conduct;
- · occurrence of common versus uncommon neoplasia;
- progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue;
- · latency in tumor induction;
- multiplicity in site-specific neoplasia;
- · metastases;
- supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- · presence or absence of dose relationships;
- statistical significance of the observed tumor increase;
- concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- · survival-adjusted analyses and false positive or false negative concerns;
- · structure-activity correlations; and
- in some cases, genetic toxicology.

NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE

The members of the Technical Reports Review Subcommittee who evaluated the draft NTP Technical Report on oxazepam on 11 December 1996 are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing the NTP studies:

- · to ascertain that all relevant literature data have been adequately cited and interpreted,
- · to determine if the design and conditions of the NTP studies were appropriate,
- · to ensure that the Technical Report presents the experimental results and conclusions fully and clearly,
- · to judge the significance of the experimental results by scientific criteria, and
- to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses.

Gary P. Carlson, Ph.D., Chairperson

School of Health Sciences Purdue University West Lafayette, IN

Arnold L. Brown, M.D., Principal Reviewer

University of Wisconsin Medical School Madison, WI

Thomas L. Goldsworthy, Ph.D.

Department of Experimental Pathology and Toxicology Chemical Industry Institute of Toxicology Research Triangle Park, NC

Robert LeBoeuf, Ph.D.

Corporate Professional and Regulatory Services Human Safety Department The Procter & Gamble Company Cincinnati, OH

Janardan K. Reddy, M.D.

Department of Pathology Northwestern University Medical School Chicago, IL Irma Russo, M.D.

Fox Chase Cancer Center Philadelphia, PA

Louise Ryan, Ph.D.*

Division of Biostatistics Dana-Farber Cancer Institute Boston, MA

Robert E. Taylor, M.D., Ph.D., Principal Reviewer

Department of Pharmacology Howard University College of Medicine Washington, DC

Frederick L. Tyson

St. Mary's Hospital and Medical Center Cancer Research Institute Grand Junction, CO

Jerrold M. Ward, D.V.M., Ph.D.

National Cancer Institute Frederick, MD

^{*} Did not attend

SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS

On 11 December 1996, the draft Technical Report on the toxicology and carcinogenesis studies of oxazepam received public review by the National Toxicology Program's Board of Scientific Counselors' Technical Reports Review Subcommittee. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. J.R. Bucher, NIEHS, introduced the toxicology and carcinogenesis studies of oxazepam by discussing the uses of the chemical and the rationale for study, describing the experimental design, reporting on survival and body weight effects, and commenting on compound-related neoplastic and nonneoplastic lesions in rats. Dr. Bucher noted that the Subcommittee had reviewed a bioassay of oxazepam in Swiss-Webster and B6C3F₁ mice in 1993. The proposed conclusions for the present study were *some evidence of carcinogenic activity* in male F344/N rats and *no evidence of carcinogenic activity* in female F344/N rats.

Dr. Taylor, a principal reviewer, agreed in principle with the proposed conclusions. He stated that because there was substantial reduction in body weight gain and survival in 2,500 and 5,000 ppm male rats along with a dose response that was not very dramatic, he would argue for changing the proposed conclusion in male rats to *equivocal evidence of carcinogenic activity*. Noting the figure illustrating the metabolism of oxazepam in F344 rats, Dr. Taylor stated that some discussion of metabolism in rats and mice would be useful as an aid in trying to explain the difference between the mouse and rat in sites of toxicity and neoplasia.

Dr. Brown, the second principal reviewer, agreed with the proposed conclusions. He said that it would be helpful if additional information could be provided in the Abstract regarding the background against which this bioassay was conducted, i.e., the unpublished study by industry in Sprague-Dawley rats. Dr. Bucher observed that the 1996 edition of the *Physicians' Desk Reference* provides a description of the rat study performed by Wyeth Laboratories, although no doses are listed. The citation indicates that there were increased incidences of prostate adenoma, interstitial cell adenoma of the testes, and thyroid gland follicular cell adenoma, none of which were replicated in the

current study in F344/N rats. Dr. W.R. Allaben, NCTR/FDA, pointed out that the data are considered proprietary information and by law cannot be released publicly. Dr. Bucher mentioned that this was one of four benzodiazepines nominated and selected for study. Three were products of Hoffmann-LaRoche, which agreed to carry out the studies with the NTP's assistance in the study design. The studies were completed, and data were submitted to the FDA.

There was a discussion about the appropriateness of step sectioning kidneys in male rats and about the exposure concentrations used in the study. Dr. Bucher said that in retrospect, the 1,250 ppm group, which was terminated after 26 weeks with the thought that it would be uninformative, would have been the best high exposure group. Dr. LeBoeuf argued that if the 5,000 ppm group were excluded from analysis because of very poor survival, and if the results for renal tubule adenomas in the 625 and 2,500 ppm groups were compared with those in the controls, then he would conclude that there was equivocal evidence of carcinogenic activity. Dr. J.K. Haseman, NIEHS, noted that the increased incidence of renal tubule adenoma in the 2,500 ppm group was significant at P= 0.018. Dr. Goldsworthy asked under what circumstances the NTP would consider a study to be inadequate for evaluation. Dr. Bucher said that, generally, the NTP might consider a study to be inadequate if there is poor survival and if there is no neoplasm response, such that the ability of the study to detect a response may be compromised. Dr. Goldsworthy asked whether excluding a 13-week study would occur more often in future bioassays. Dr. G.A. Boorman, NIEHS, pointed out that in the case of oxazepam, a 26-week study did not predict very well; however, the decision of whether to employ a 13-week study would have to be determined on a case-by-case basis by drawing on other available toxicity information.

Dr. Taylor moved that the Technical Report on oxazepam be accepted with the revisions discussed and the conclusion as written for female rats, *no evidence* of carcinogenic activity, but changed for male rats, from some evidence of carcinogenic activity to equivocal evidence of carcinogenic activity.

Dr. Brown seconded the motion. In discussion, Dr. Ward stated that having toxicity in an organ such as the kidney, where there were also neoplasms, strengthened the evidence for the neoplasms being

chemically induced because the organ is a target site for the chemical. Dr. Taylor's motion was accepted with five yes votes to three no votes (Goldsworthy, Reddy, and Ward).

INTRODUCTION

OXAZEPAM

CAS No. 604-75-1

Chemical Formula: $C_{15}H_{11}ClN_2O_2$ Molecular Weight: 286.74

Synonym: 7-Chloro-1,3-dihydro-3-hydroxy-5-phenyl-2H-1,4-benzodiazepin-2-one

Trade Names: Serax, Tazepam, Wy-3498

CHEMICAL AND PHYSICAL PROPERTIES

Oxazepam is a bitter-tasting, white, crystalline powder that is insoluble in water but soluble in alcohol, chloroform, and ether (*Remington's Pharmaceutical Sciences*, 1980). The material is nonhygroscopic and stable in light. It has a melting-point range of 205° to 206° C (*Merck Index*, 1983).

PRODUCTION, USE, AND HUMAN EXPOSURE

Oxazepam and related benzodiazepine drugs are used in the treatment of anxiety. Most clinically useful drugs for this purpose are variants of the 1,4-benzodiazepine structure (Figure 1) consisting of two aromatic rings and a 7-membered heterocycle. One of the aromatic rings is fused to the 7-membered ring and contains a chlorine or other electronegative group as a substituent. All clinically important derivatives contain a 5-aryl or 5-cyclohexenyl group. Most of the drugs vary in substituent groups at the 1 and 3 positions (*Goodman and Gilman's*, 1996). Oxazepam, known under the trade name Serax®, is produced

and sold by Wyeth Laboratories and has been on the market since 1965. Generic forms produced by other manufacturers are also now available (*PDR*, 1996).

No definite production data are available for oxazepam or for the benzodiazepine drugs; however, the use of benzodiazepines by the general population has been reported as 8% in the United Kingdom, 7% in the United States, and 8% to 10% in Norway (Pedersen and Lavik, 1991). In 1983, 2.6 million prescriptions for oxazepam were written in the United States, and oxazepam ranked 132nd and 125th in overall frequency of prescriptions written for all drugs in 1984 and 1985, respectively (Anonymous, 1986; C. Baum correspondence, 1986). Oxazepam is also a common metabolite of several other benzodiazepines, some of which are more widely prescribed, including diazepam (Valium®). In 1983, 25.5 million prescriptions for diazepam were written in the United States, making it the fourth most prescribed drug, and although newer benzodiazepines are replacing some of the older drugs, over 2.3 million prescriptions for diazepam were still written in 1995 (Anonymous, 1996).

FIGURE 1 1,4-Benzodiazepine Structure

REGULATORY STATUS

Benzodiazepines are prescription drugs regulated under the Food, Drug, and Cosmetic Act of 1938 and are on Schedule IV of the Drug Enforcement Administration Controlled Substances Code (Tocus *et al.*, 1983). Although production workers and dispensers are exposed to benzodiazepines, no workplace exposure limits have been recommended for these types of chemicals (ACGIH, 1996). Environmental contamination has not been shown.

PHARMACOLOGY

All benzodiazepines currently in use share a number of effects, including sedation, hypnosis, decreased anxiety, muscle relaxation, amnesia, and anti-convulsant activity. Benzodiazepines are considered central nervous system (CNS) depressants but are not general depressants and, within therapeutic dose ranges, all effects are related to specific CNS events (Goodman and Gilman's, 1996). Each drug differs slightly within this spectrum of actions (e.g., flurazepam has a strong hypnotic effect in humans) (Randall et al., 1969). Other drugs are marketed specifically for use in obstetrics, for epilepsy, or for insomnia (CRM, 1980). These differences may reflect the different intrinsic affinities of the drugs for benzodiazepine receptors. In addition, the various drugs have different pharmacokinetics (Greenblatt and Shader, 1978; Eadie, 1984), and differences in disposition and rates of biotransformation may affect the spectrum of effects. Oxazepam is a relatively shortacting agent typically prescribed for relief of anxiety and given orally at dose levels of 10, 15, or 30 mg, three or four times per day (*PDR*, 1996).

The therapeutic effects of the benzodiazepines are thought to be due to a receptor-mediated response that increases the efficiency of submaximal GABAergic transmission mediated by a variety of long-fiber neurons and interneurons in the CNS (Richards et al., 1986). A GABAergic receptor protein complex has been isolated and cloned from brain tissue, and some information is known on subunit structure in relation to benzodiazepine binding (Goodman and Gilman's, 1996). This complex is associated with a chloride ion channel and has associated proteins that are separate binding sites for barbiturates and the benzodiazepines (Barnard et al., 1984). The benzodiazepine binding site is on the alpha subunit (Levitan et al., 1988). The clinically useful benzodiazepines likely all act to increase the binding of GABA to the GABA receptor complex rather than changing the kinetics of chloride conductance in relation to the amount of GABA bound (Rogers et al., 1994). GABAergic neurons are most concentrated in the substantia nigra, globus pallidus, and hypothalamus in the human brain (Cooper et al., 1978). However, the density of CNS-type benzodiazepine receptors is highest in the cortical regions of the cerebrum and cerebellum, suggesting other functions for the CNS-type receptors (Saano, 1988). The anxiety-reducing effect of benzodiazepines in the rat brain has been associated with GABAergic circuits in the mammillary body (Kataoka et al., 1982). At least one other benzodiazepine receptor type has been identified in the brain, specifically in glial tissues in

the pineal gland and olfactory bulb, and is also found in heart, liver, lung, testis, and other tissues. The role of this receptor is not clear, but it appears to be a mitochondrial protein that may use porphyrins as endogenous ligands (Snyder *et al.*, 1987; Verma and Snyder, 1989; Calvo *et al.*, 1991) and may be involved in the regulation of steroid biosynthesis (Krueger and Papadopoulos, 1992), specifically in the transport of cholesterol to the inner mitochondrial membrane (Papadopoulos and Brown, 1995). Some structural requirements for binding to these receptors have been described (Campiani *et al.*, 1996).

ABSORPTION, DISPOSITION, METABOLISM, AND EXCRETION Experimental Animals

The toxicokinetics and metabolism of oxazepam in F344 rats and B6C3F₁ and Swiss-Webster mice have been described in detail by Yuan et al. (1994) and Griffin and Burka (1993, 1995). Oxazepam was well absorbed after oral administration, with peak blood concentrations achieved within 2 to 3.5 hours, and with female rats and mice having higher blood concentrations than males. Elimination of oxazepam from plasma was first order and best described by a twocompartment model with terminal elimination halflives of 4 to 5 hours for rats and 5 to 7 hours for mice. The bioavailability of oxazepam from the diet was about 40% of that achieved following a gavage dose of oxazepam (50 mg/kg) in methyl cellulose vehicle, and apparently decreased with increasing oxazepam concentrations. Thus, steady-state blood concentrations, reached after about 4 days on dosed feed, were not proportional to dose (Yuan et al., 1994).

The metabolism of oxazepam in the F344 rat is demonstrated in Figure 2. The metabolism of oxazepam is complex, with major pathways including ring oxidation through the dihydrodiol and conjugation with glucuronic acid or sulfate. A nonenzymatic condensation of the benzodiazepine ring also occurs. Not all metabolites have been identified. The metabolites are excreted primarily in feces and urine and appear in differing amounts depending on the size of the dose and the time of collection. In contrast to the

mouse, pretreatment of rats with oxazepam did not significantly alter the metabolism or elimination profiles (Griffin and Burka, 1995). Pretreatment of mice tended to shift metabolites from feces to urine and increased excretion of glucuronide and unchanged drug. There was evidence of extensive enterohepatic circulation in the mouse (Griffin and Burka, 1993; Griffin *et al.*, 1995a), and this may influence the ultimate metabolic profile in the mouse to a greater extent than in rats or humans.

Humans

Oxazepam is readily absorbed following oral administration, and peak blood levels in humans are achieved in 0.75 to 8 hours when oxazepam is given in tablet form, with an average of 2.7 hours (Shader and Greenblatt, 1981). The half-life of oxazepam in the blood of humans is 6.8 ± 1.3 hours. It has a volume of distribution of 0.6 ± 0.2 L/kg and a clearance of 1.05 ± 0.36 mL/min per kilogram. Approximately 98% of the drug is bound to plasma proteins (Goodman and Gilman's, 1996). About 95% is converted to the C3 glucuronide conjugate by UDP glucuronyl transferase 2 (Rajaonarison et al., 1991) and excreted in the urine; minor amounts of six other metabolites have been identified (Sisenwine et al., 1972). Only the parent compound is thought to have antianxiety activity.

TOXICITY

Experimental Animals

Oral LD $_{50}$ values for oxazepam have been reported to range from about 1,500 mg/kg to greater than 5,000 mg/kg in various strains of mice (Marcucci et al., 1968; Randall et al., 1970; Scrollini et al., 1975; Petrescu et al., 1981) and were greater than 5,000 mg/kg in Wistar and Charles River CD rats (Owen et al., 1970; Scrollini et al., 1975). Owen et al. (1970) administered oxazepam in feed to Charles River CD rats at concentrations of 0.06%, 0.125%, 0.25%, and 0.5%. After 6 weeks, 2 of 20 rats in the 0.5% group died, and body weight gain was decreased in the 0.25% males. Liver, adrenal gland, and kidney weights were greater in exposed rats than in controls. The only histopathologic finding was an increase in liver parenchymal fat in exposed rats.

FIGURE 2 Metabolism of Oxazepam in F344 Rats (Griffin and Burka, 1995)

Groups of 30 male and 30 female rats were fed diets containing 0, 0.015%, 0.03%, 0.06%, or 0.12% oxazepam for 55 weeks. Deaths were not clearly chemical related, and other than increased liver weights, no effects on body weight gain, hematology parameters, or significant chemical-related gross or histopathologic lesions were observed (Owen *et al.*, 1970).

The principal effects seen in Swiss-Webster and $B6C3F_1$ mice in 13- or 14-week studies using dosed feed at concentrations as high as 10,000 ppm were marked liver weight increases and increased incidences of centrilobular hypertrophy. These changes occurred at all doses including the lowest dose, 625 ppm (NTP, 1993).

The increased liver weights observed in these and other studies with benzodiazepines suggest stimulation of proliferation of smooth endoplasmic reticulum (Orlandi *et al.*, 1975). However, the benzodiazepines do not appear to stimulate their own metabolism and have been found to inhibit metabolism of other drugs such as morphine or aminopyrine in Wistar rats (Vega *et al.*, 1984) and to stimulate metabolism of certain chemicals (i.e., benzene and aniline) (Jabłońska *et al.*, 1975). This coincides with the benzodiazepines' reputation of not producing significant tolerance during long-term therapy (*Goodman and Gilman's*, 1996). Physical dependence has been demonstrated in rats with several of the drugs, including diazepam (Martin *et al.*, 1982).

Humans

The benzodiazepines are a poor choice for suicide purposes and, despite many attempts, deaths by overdose are rare (Finkle *et al.*, 1979; Buckley *et al.*, 1995). Overdoses of oxazepam commonly result in drowsiness, blurred vision, and ataxia. As in rats, stimulation of proliferation of smooth endoplasmic reticulum has been shown in liver biopsies from humans taking diazepam (Orlandi *et al.*, 1975). Physical dependence is produced in humans given benzodiazepines.

CARCINOGENICITY

Experimental Animals

Several long-term rodent studies have been performed with the benzodiazepines. Fox and Lahcen (1974) observed liver neoplasms in oxazepam-treated Swiss-Webster mice during the course of reproductive toxicity studies. Mice were housed as breeding pairs from 3 to 12 months of age and were fed an oxazepam-supplemented diet at doses of 0.05% and 0.15%. They were killed at 14 months of age. The incidences of liver neoplasms increased in males (0/13, 3/12, 8/13) and females (0/10, 0/10, 5/8) with dose. The neoplasms were generally multiple and gave the livers a massively nodular appearance. Histopathologically, the neoplasms were diagnosed as hepatocellular adenomas, which showed peliosis and extramedullary hematopoiesis.

De la Iglesia et al. (1981) administered diazepam or prazepam in feed at concentrations sufficient to result in doses of up to 75 mg/kg body weight per day to male and female CF₁ mice and Wistar rats for 80 and 104 weeks, respectively. The incidences of malignant liver neoplasms were increased in male mice receiving diazepam. Temazepam, which is metabolized to oxazepam in the mouse, was administered in feed to Charles River CD rats for 2 years and to Charles River CD-1 mice for 18 months at doses of 10 to 160 mg/kg per day. Exposed female mice had slightly increased incidences of liver adenoma (Robinson et al., 1984).

As a follow-up to the Fox and Lachen (1974) observation, groups of 60 male and 60 female Swiss-Webster mice were exposed to feed containing 0, 2,500, or 5,000 ppm oxazepam for 57 weeks. The study was then terminated because of poor survival in the exposed groups. Mice receiving oxazepam were found to have very high rates of hepatocellular neoplasms (males, combined hepatocellular adenomas and control, 1/60; 2,500 ppm, 35/60; carcinomas: 5,000 ppm, 52/60; females: 1/60, 23/59, 47/59), as well as an exacerbated amyloidosis. Amyloidosis is commonly seen in this strain of mice, but the condition was severe, particularly in the heart, and likely contributed to the low survival. A similar study was carried out with the B6C3F₁ mouse, with an additional dose group receiving oxazepam at 125 ppm. This lower exposure concentration was projected to give blood concentrations in the therapeutic range for humans. Again, mice receiving 2,500 or 5,000 ppm oxazepam suffered from reduced survival and high rates of hepatocellular neoplasms (males, combined hepatocellular adenomas, carcinomas, and hepatoblastomas: control, 23/49; 125 ppm, 19/50; 2,500 ppm, 50/50; 5,000 ppm, 50/50; females: 28/50, 36/50, 50/50, 47/50). The incidences of thyroid gland

18 Oxazepam, NTP TR 468

follicular cell adenoma were also increased in exposed females (0/50, 4/50, 5/50, 6/50) (NTP, 1993; Bucher *et al.*, 1994).

Humans

No studies on the carcinogenicity of oxazepam in humans were found in the literature.

PROMOTION STUDIES

The benzodiazepines have been tested in various promotion assays because of reports, primarily from one laboratory, that diazepam treatment accelerated the growth of intrarenally implanted neoplasm cells (Walker 256) (Horrobin *et al.*, 1979) and that it was positive in an *in vitro* metabolic cooperation assay for neoplasm promoters (Trosko and Horrobin, 1980). These reports appeared following publication of an epidemiological study that suggested an association between increased incidences of breast cancer and benzodiazepine use in women (Stoll, 1976). This association was later discounted (Kleinerman *et al.*, 1984), but further animal experimentation has provided mixed results.

Remandet et al. (1984)fed F344/N rats 2-acetylaminofluorene for 8 weeks and followed this for 12 weeks with diets containing one of six benzodiazepines. They reported no increased incidences of liver neoplasms or enzyme-altered foci. Préat et al. (1987) reported positive promotional activity with oxazepam in Wistar rats in two different assays for hepatocarcinogenesis. In one, animals were initiated with diethylnitrosamine (DEN) and were treated with 2-acetylaminofluorene and carbon tetrachloride during the next 2 weeks; they then received oxazepam in feed for 30 weeks. In the other protocol, initiation with DEN was preceded by partial hepatectomy, and promotion was effected by dietary administration for 1 year. Diwan et al. (1986) found diazepam and oxazepam to be promoters of DEN-initiated liver neoplasms in mice. In this study, groups of B6C3F₁ mice received injections of DEN at 5 weeks of age; at 7 weeks, they were fed diets containing diazepam or oxazepam at 0.05% or 0.15%, or were given phenobarbital in water at 500 ppm. Mice were killed periodically through 60 weeks of age. The incidences of neoplasms were increased in mice receiving diazepam and in those receiving 0.15% oxazepam. A few adenomas were also observed in uninitiated mice receiving 0.15% diazepam (3/15) or 0.05% oxazepam

(2/16), and none were observed in mice receiving only phenobarbital. Diazepam and oxazepam were also found to induce hepatic P_{450} content and to increase aminopyrine N-demethylase activity. Diwan $et\ al.$ (1986) have proposed that promotion of hepatocellular carcinogenesis is associated with induction of N-demethylase activity and appears to be quite species and strain specific. Diazepam did not induce cytochrome P_{450} in the liver of Sprague-Dawley rats (Vorne and Idänpään-Heikkilä, 1975), and this was considered consistent with the negative promotional findings of Remandet $et\ al.$ (1984) in their study with F344/N rats.

REPRODUCTIVE AND DEVELOPMENTAL TOXICITY Experimental Animals

Although the benzodiazepines have been used in treating toxemia and preeclampsia as well as the psychiatric complications of pregnancy (Shannon et al., 1972; Kanto, 1982), there are many reports of fetotoxic and teratogenic effects of these and other minor tranquilizers when given to pregnant animals. Tucker (1985) provided a critical review of studies of developmental toxicity of benzodiazepines in the rat. Saito et al. (1984) found increases in fetal toxicity (resorptions, dead fetuses, and malformations) in pregnant rats given doses of diazepam or chlordiazepoxide of 100 mg/kg per os during gestational days 7 to 14. Miller and Becker (1975) first found diazepam produced cleft palate following oral administration of 87.5 or 125 mg/kg to Swiss-Webster mice on days 11 to 13. This has since received considerable study and is now attributed to potentiation of the GABAergic inhibition of the palate shelf reorientation (Wee and Zimmerman, 1983). In general, exposures to high doses in utero produce decreased litter sizes, decreased pup weights, and increased numbers of malformations. Exposures to lower doses (5 to 20 mg/kg per day) during critical periods (after gestational day 14 in rats) produce no immediately obvious effects at birth but result in various behavioral deficits during later life and a variety of poorly understood changes in the concentration of neurotransmitters in various brain areas (Livezey et al., 1986a; Ryan and Pappas, 1986; Shibuya et al., 1986). Central to these studies have been attempts to correlate changes in benzodiazepine receptor concentration with altered behavior. Livezey et al. (1986b) have argued that in utero exposure to benzodiazepines during the

period of receptor development (after gestational day 14 in rats) results in a decreased benzodiazepine receptor concentration and results in rats that suffer chronic anxiety demonstrated by hyperarousal, inability of the animals to habituate to a novel environment, and a large reduction in the amount of deep slow-wave sleep. Changes in passive avoidance have also been reported in mice following *in utero* exposure to oxazepam (Ricceri *et al.*, 1994).

Humans

Exposure of the human fetus to diazepam results in a set of symptoms collectively known as the "floppy infant syndrome," which includes hypothermia, hyperbilirubinemia, hypotonia, asphyxia, respiratory complications, and poor sucking response. This is likely due to the ready transfer of the drugs across the placenta. Pharmacologic effects are exaggerated in the unborn because higher levels accumulate due to the slower elimination from the fetus. There have been reports of increases in severe congenital anomalies in infants whose mothers took chlordiazepoxide and other benzodiazepines (including oxazepam) during pregnancy (Milkovich and van den Berg, 1974); there have also been reports claiming no link between benzodiazepine use and fetal abnormalities (Hartz et al., 1975).

GENETIC TOXICITY

Oxazepam has not been tested extensively for mutagenicity, but the data reported for oxazepam and its structural analogues indicate that this class of chemicals is probably not genotoxic. There is one report of a positive response in a Salmonella gene mutation assay (Batzinger et al., 1978). The authors described an increase in revertants for strains TA98 and TA100 when exposure was carried out in the presence of rat liver S9 activation enzymes. The data reported were insufficient for a critical evaluation of the results. Other laboratories that have tested oxazepam for mutagenicity in Salmonella have reported negative results. Matula and Downie (1983), in a brief abstract which presented little experimental detail, reported negative results, with and without S9, in strains TA98 and TA100. Balbi et al. (1980) detected no mutagenic activity with oxazepam in four strains of Salmonella, with or without S9, but their report did not include complete data tables for those tests that gave negative results. NTP mutagenicity tests with five strains of Salmonella yielded negative results, with and without S9 (Appendix C).

No evidence of chromosome nondisjunction was observed in Aspergillus nidulans treated with an unspecified concentration of oxazepam in the absence of S9 (Bignami et al., 1974). Unscheduled DNA synthesis was not detected in rat liver cells in vitro (Swierenga et al., 1983), and no induction of chromosomal aberrations was observed in bone marrow cells of mice administered 0.85 mg/kg oxazepam by intraperitoneal injection five times weekly for 8 weeks (Degraeve et al., 1985). In addition, results from NTP (1993) studies (Appendix C) showed no induction of sister chromatid exchanges or chromosomal aberrations in cultured Chinese hamster ovary cells treated with oxazepam, with or without rat liver S9, and no increase in micronucleus frequency was noted in peripheral blood erythrocytes of male and female mice treated with oxazepam for 90 days.

A variety of genotoxicity tests has been performed with two of the widely used structural analogues of oxazepam, diazepam, and chlordiazepoxide. Diazepam was nonmutagenic in Salmonella (Batzinger et al., 1978; Waskell, 1978; Preiss et al., 1982; Zeiger et al., 1992). There was no evidence of diazepam-induced chromosome loss or nondisjunction in yeast (Bignami et al., 1974; Matula and Downie, 1983; Crebelli et al., 1989, 1991; Parry et al., 1989; Whittaker et al., 1989). The effects reported for diazepam in cultured mammalian cells varied. No induction of chromosomal aberrations was noted in cultured Chinese hamster ovary cells treated with diazepam with or without S9 in two laboratories (Ishidate et al., 1978; Matsuoka et al., 1979), but positive results were reported in one study using cultured Chinese hamster ovary cells treated in the absence of S9 (Lafi and Parry, 1988). Disruption of mitosis with concomitant chromosome loss was observed in cultured Chinese hamster ovary cells after treatment with diazepam in the absence of S9 (Hsu et al., 1983; Parry et al., 1986; Lafi et al., 1987). Results of tests for induction of chromosomal aberrations and sister chromatid exchanges in human lymphocytes (Staiger, 1970; Zhurkov, 1975) or fibroblasts (Staiger, 1969; Kawachi et al., 1980; Sasaki et al., 1980) treated in vitro with diazepam were uniformly negative. Unscheduled DNA synthesis was not detected in rat liver cells treated in vitro

20 Oxazepam, NTP TR 468

with diazepam (Swierenga et al., 1983; Williams et al., 1989).

In vivo tests with diazepam showed little indication of genotoxic activity. No evidence of mitotic disruption or induction of chromosomal aberrations was observed in mouse bone marrow cells following administration of up to 100 or 150 mg/kg diazepam, respectively (Miller and Adler, 1989; Xu and Adler, 1990). Negative results were reported for diazepam in bone marrow chromosomal aberration assays in hamsters (Schmid and Staiger, 1969) and rats (Ishimura et al., 1975; Kawachi et al., 1980). In addition, no increases in chromosomal aberrations (Stenchever et al., 1970a; White et al., 1974) or sister chromatid exchanges (Torigoe, 1979; Husum et al., 1985) were observed in peripheral lymphocytes obtained from patients treated with diazepam either chronically, as a management for anxiety or muscle spasm, or acutely, as part of a surgical routine.

Fewer genotoxicity test results are available for chlordiazepoxide, but indications are that it, too, is not genetically active. Chlordiazepoxide did not induce nondisjunction in A. nidulans (Bignami et al., 1974) or chromosomal aberrations in cultured Chinese hamster cells (Sasaki et al., 1980), human fibroblasts (Staiger, 1969), or leucocytes (Bregman, 1970; Stenchever et al., 1970b). In vitro micronucleus tests with hamster and human cells were negative (Sasaki et al., 1980). Results of in vivo investigations indicate that chlordiazepoxide does not induce chromosomal aberrations in mouse (Petersen et al., 1978; Degraeve et al., 1985) or hamster (Schmid and Staiger, 1969) bone marrow cells. Finally, no induction of chromosomal aberrations was observed in lymphocytes obtained from patients administered chlordiazepoxide (up to 200 mg/day) (Stenchever et al., 1970b).

STUDY RATIONALE

Oxazepam and four other benzodiazepines (chlordiazepoxide, chlorazepate, diazepam, and flurazepam) were nominated for study by the Food and Drug Administration (FDA) and by the NIEHS based on their widespread use, use by pregnant women, and the lack of adequate rodent carcinogenicity studies. An agreement was reached with Hoffmann-LaRoche, Inc., the manufacturer of chlordiazepoxide, diazepam, and flurazepam, for studies to be carried out on these drugs under its auspices in cooperation with the NTP. These studies are completed and results have been submitted to the FDA. No studies were performed on chlorazepate because of the very similar metabolite profile between this drug and diazepam. Oxazepam was evaluated in 14-week and 2-year studies by the NTP, and Technical Report No. 443 contains the results of studies performed with the Swiss-Webster and B6C3F₁ strains of mice (NTP, 1993). Studies with rats were not initiated at the same time as the mouse studies because adequate carcinogenicity studies of oxazepam with the Sprague-Dawley rat strain had been submitted to the FDA by the manufacturer, Wyeth Laboratories. Subsequently, because of the marked neoplastic responses found in the two mouse strains, the NTP initiated further 2-year studies of oxazepam with the F344/N rat.

The current studies include measures of serum oxazepam concentrations and histopathologic evaluation of tissues from the 2-year animals. No 13-week studies were performed with oxazepam in rats because it was determined that the prior 13-week studies with mice gave very little information on which to base dose selection for the 2-year studies. For this reason, five exposure concentrations were chosen for the 2-year evaluation. After 26 weeks, one exposure group considered uninformative was terminated, and the highest exposure group was removed from dosed feed for the duration of the study. A separate set of studies evaluating a number of biochemical changes in the F344/N rat following short-term exposure to oxazepam is summarized in Appendix H.

MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF OXAZEPAM

Oxazepam was obtained from Roussel Corporation (Englewood Cliffs, NJ) in one lot (86017.01). Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute (Kansas City, MO) (Appendix D). Reports on analyses performed in support of the oxazepam studies are on file at the NIEHS.

The chemical, a white, powdered solid, was identified as oxazepam by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. Purity of oxazepam was determined by elemental analyses, Karl Fischer water analysis, functional group titration, thinlayer chromatography (two systems), and highperformance liquid chromatography. Elemental analyses for carbon, hydrogen, nitrogen, and chlorine were in agreement with the theoretical values for oxazepam. Karl Fischer water analysis indicated $0.026\% \pm 0.001\%$ water. Functional group titration indicated a purity of $101.4\% \pm 0.5\%$. Thin-layer chromatography indicated a major spot and one trace impurity in one system, and only a major spot in a second system. High-performance liquid chromatography revealed a major peak with no impurity peaks with areas greater than 0.1% of the major peak area. The overall purity was determined to be greater than 99%.

Stability studies of the bulk chemical were performed by the analytical chemistry laboratory using high-performance liquid chromatography. These studies indicated that oxazepam was stable as a bulk chemical for 2 weeks when stored protected from light at temperatures up to 60° C. To ensure stability, the bulk chemical was stored at room temperature, protected from light, in metal cans or amber glass bottles.

Stability was monitored during the 2-year study using high-performance liquid chromatography. No degradation of the bulk chemical was detected.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS

The dose formulations were prepared every 2 weeks by mixing oxazepam with feed (Table D1). Homogeneity and stability studies of a 500 ppm dose formulation were performed by the analytical chemistry laboratory using high-performance liquid chromatography. Homogeneity was confirmed and the stability of the dose formulation was confirmed for at least 3 weeks at 5° C when stored protected from light.

Periodic analyses of the dose formulations of oxazepam were conducted at the study laboratory and analytical chemistry laboratory using high-performance liquid chromatography. During the 2-year study, dose formulations were analyzed every 8 weeks (Table D2). All 50 of the dose formulations analyzed were within 10% of the target concentrations; 89% (17/19) of the animal room samples analyzed were within 10% of the target concentrations with no value differing more than 12% from the target concentration.

2-YEAR STUDY

Study Design

Groups of 50 male and 50 female F344/N rats were fed diets containing 0, 625, 1,250, 2,500, 5,000, or 10,000 ppm oxazepam for up to 105 weeks. The exposure concentrations were selected to provide a wide exposure range. No 13-week rat studies were performed because the data from the 13-week mouse study did not provide useful information for the selection of exposure concentrations for the prior 2-year mouse studies (NTP, 1993), and it was not anticipated that useful information would be gained from a 13-week rat study. The 5,000 ppm exposure concentration was determined during the course of the study to be the maximum tolerated dose. Concentrations of 0, 625, 2,500, and 5,000 ppm were selected for the continuous-exposure study. After

22 Oxazepam, NTP TR 468

26 weeks of exposure, rats in the 1,250 ppm group were eliminated from the study because it was anticipated that this group would provide no useful information. Rats in the 625, 2,500, and 5,000 ppm groups received dosed feed throughout the 2-year study. Rats in the 10,000 ppm group stopped receiving oxazepam in feed at 26 weeks and remained on control feed until study termination.

Source and Specification of Animals

Male and female F344/N rats were obtained from Taconic Farms (Germantown, NY) for use in the 2-year study. Rats were quarantined for 13 days (males) or 14 days (females) before the beginning of the studies and were approximately 6 weeks old at the beginning of the study. Five male and five female rats were randomly selected for parasite evaluation and gross observation of disease at the end of the quarantine period. The health of the animals was monitored during the study according to the protocols of the NTP Sentinel Animal Program (Appendix G).

Animal Maintenance

Rats were housed five per cage. Feed and water were available *ad libitum*. Feed consumption was measured for a 7-day interval during weeks 1 and 4 and every 4 weeks thereafter by cage. Cages were changed twice per week, and racks were rotated every 2 weeks. Further details of animal maintenance are given in Table 1. Information on feed composition and contaminants is provided in Appendix F.

Clinical Examinations and Pathology

All animals were observed twice daily. Clinical findings were recorded every 4 weeks and at study termination. Individual body weights were recorded weekly for 13 weeks, monthly thereafter, and at the end of the study.

During study weeks 105 (males) and 104 (females) (1 to 3 days prior to necropsy), blood samples were collected from the retroorbital sinus of up to six males and six females in the 625, 2,500, and 5,000 ppm groups either at 6:00 a.m. or 6:00 p.m. On the days of necropsy, blood samples were similarly collected from up to 17 randomly selected female rats that had not been bled earlier. Plasma oxazepam concentra-

tions were measured in all samples by Midwest Research Institute.

A complete necropsy and microscopic examination were performed on all rats in the 0, 625, 2,500, and 5,000 ppm groups. Rats in the 1,250 ppm group were discarded without tissue collection at 26 weeks. Histopathologic evaluation of rats in the 10,000 ppm group was limited to gross lesions, stomach (forestomach and glandular), small intestine, kidney, thyroid gland, and the liver. At necropsy, all organs and tissues were examined for grossly visible lesions, and all major tissues were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned to a thickness of 5 to 6 µm, and stained with hematoxylin and eosin for microscopic examination. For extended evaluation of renal tubule proliferative lesions in male rats, kidneys were step-sectioned at 1-mm intervals to obtain a maximum of four additional sections per kidney. For all paired organs (i.e., adrenal gland, kidney, and ovary), samples from each organ were examined. Tissues examined microscopically are listed in Table 1.

Microscopic evaluations were completed by the study laboratory pathologist, and the pathology data were entered into the Toxicology Data Management System. The slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were evaluated by an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, the slide and tissue counts were verified, and the histotechnique was evaluated. For the 2-year study, a quality assessment pathologist evaluated slides from all tumors and all potential target organs, which included the adrenal cortex, forestomach, glandular stomach, and liver of males and females; the adrenal medulla, duodenum, eye, kidney, pancreas, preputial gland, rectum, and skin of males; and the spleen and thyroid gland of females.

The quality assessment report and the reviewed slides were submitted to the NTP Pathology Working Group (PWG) chairperson, who reviewed the selected tissues and addressed any inconsistencies in the diagnoses made by the laboratory and quality assessment

Representative histopathology slides pathologists. containing examples of lesions related to chemical administration, examples of disagreements diagnoses between the laboratory and quality assessment pathologist, or lesions of general interest were presented by the chairperson to the PWG for review. The PWG consisted of the quality assessment pathologist and other pathologists experienced in rodent toxicologic pathology. This group examined the tissues without any knowledge of dose groups or previously rendered diagnoses. When the PWG consensus differed from the opinion of the laboratory pathologist, the diagnosis was changed. Final diagnoses for reviewed lesions represent a consensus between the laboratory pathologist, reviewing pathologist(s), and the PWG. Details of these review procedures have been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). For subsequent analyses of the pathology data, the decision of whether to evaluate the diagnosed lesions for each tissue type separately or combined was generally based on the guidelines of McConnell et al. (1986).

STATISTICAL METHODS Survival Analyses

The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals found dead of other than natural causes were censored from the survival analyses; animals dying from natural causes were not censored. Statistical analyses for possible dose-related effects on survival used Cox's (1972) method for testing two groups for equality and Tarone's (1975) life table test to identify dose-related trends. All reported P values for the survival analyses are two sided.

Calculation of Incidence

The incidences of neoplasms or nonneoplastic lesions as presented in Tables A1, A5, B1, and B5 are given as the number of animals bearing such lesions at a specific anatomic site and the number of animals with that site examined microscopically. For calculation of statistical significance, the incidences of most neoplasms (Tables A3a, A3b, B3a, and B3b) and all nonneoplastic lesions are given as the numbers of animals affected at each site examined microscopically. However, when macroscopic examination was required to detect neoplasms in certain tissues (e.g.,

harderian gland, intestine, mammary gland, and skin) before microscopic evaluation, or when neoplasms had multiple potential sites of occurrence (e.g., leukemia or lymphoma), the denominators consist of the number of animals on which a necropsy was performed. Tables A3a, A3b, B3a, and B3b also give the survival-adjusted neoplasm rate for each group and each site-specific neoplasm, i.e., the Kaplan-Meier estimate of the neoplasm incidence that would have been observed at the end of the study in the absence of mortality from all other competing risks (Kaplan and Meier, 1958).

Analysis of Neoplasm Incidences

The majority of neoplasms in these studies were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical method used was logistic regression analysis, which assumed that the diagnosed neoplasms were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, neoplasm prevalence was modeled as a logistic function of chemical exposure and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if the fit of the model was not significantly enhanced. The neoplasm incidences of exposed and control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). When neoplasms are incidental, this comparison of the time-specific neoplasm prevalences also provides a comparison of the time-specific neoplasm incidences (McKnight and Crowley, 1984).

In addition to logistic regression, other methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These methods include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal neoplasms, and the Fisher exact test and the Cochran-Armitage trend test (Armitage, 1971; Gart *et al.*, 1979), procedures based on the overall proportion of neoplasm-bearing animals.

Tests of significance included pairwise comparisons of each exposed group with controls and a test for an overall dose-related trend. Continuity-corrected tests were used in the analysis of neoplasm incidence, and reported P values are one sided. The procedures

24 Oxazepam, NTP TR 468

described in the preceding paragraphs were also used to evaluate selected nonneoplastic lesions. For further discussion of these statistical methods, refer to Haseman (1984).

Analysis of Nonneoplastic Lesion Incidences

Because all nonneoplastic lesions in this study were considered to be incidental to the cause of death or not rapidly lethal, the primary statistical analysis used was a logistic regression analysis in which nonneoplastic lesion prevalence was modeled as a logistic function of chemical exposure and time.

Analysis of Continuous Variables

Prior to analysis, extreme values identified by the outlier test of Dixon and Massey (1951) were examined by NTP personnel, and implausible values were eliminated from the analysis. Average severity values were analyzed for significance using the Mann-Whitney U test (Hollander and Wolfe, 1973).

Historical Control Data

Although the concurrent control group is always the first and most appropriate control group used for evaluation, historical control data can be helpful in the overall assessment of neoplasm incidence in certain instances. Consequently, neoplasm incidences from the NTP historical control database, which is updated yearly, are included in the NTP reports for neoplasms appearing to show compound-related effects.

QUALITY ASSURANCE METHODS

The 2-year study was conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations (21 CFR, Part 58). In addition, as records from the 2-year study were submitted to the NTP Archives, this study was audited retrospectively by an independent quality assurance contractor. Separate audits covering completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and a draft of this NTP Technical Report were conducted. Audit procedures and findings are presented in the reports and are on file at NIEHS. The audit findings were reviewed and assessed by NTP staff, so all comments had been resolved or were otherwise addressed during the preparation of this Technical Report.

GENETIC TOXICOLOGY

The genetic toxicity of oxazepam was assessed by testing the ability of the chemical to induce mutations in various strains of *Salmonella typhimurium*, sister chromatid exchanges and chromosomal aberrations in cultured Chinese hamster ovary cells, and increases in the frequency of micronucleated erythrocytes in peripheral blood of mice. The protocols for these studies and the results are given in Appendix C.

The genetic toxicity studies of oxazepam are part of a larger effort by the NTP to develop a database that would permit the evaluation of carcinogenicity in experimental animals from the molecular structure and the effects of the chemical in short-term *in vitro* and *in vivo* genetic toxicity tests. These genetic toxicity tests were originally developed to study mechanisms of chemical-induced DNA damage and to predict carcinogenicity in animals, based on the electrophilicity theory of chemical mutagenesis and the somatic mutation theory of cancer (Miller and Miller, 1977; Straus, 1981; Crawford, 1985).

There is a strong correlation between a chemical's potential electrophilicity (structural alert to DNA reactivity), mutagenicity in Salmonella, and carcinogenicity in rodents. The combination of electrophilicity and Salmonella mutagenicity is highly correlated with the induction of carcinogenicity in rats and mice and/or at multiple tissue sites (Ashby and Tennant, 1991). Other in vitro genetic toxicity tests correlate less well with rodent carcinogenicity (Tennant et al., 1987; Zeiger et al., 1990), although these other tests can provide information on the types of DNA and chromosome effects that can be induced by the chemical being investigated. Data from NTP studies show that a positive response in Salmonella is the most predictive in vitro test for rodent carcinogenicity (89% of the Salmonella mutagens are rodent carcinogens), and that there is no complementarity among the in vitro genetic toxicity tests. That is, no battery of tests that included the Salmonella test improved the predictivity of the Salmonella test alone.

The predictivity for carcinogenicity of a positive response in bone marrow chromosome aberration or micronucleus tests appears to be less than the *Salmonella* test (Shelby *et al.*, 1993; Shelby and Witt,

1995). Positive responses in long term peripheral blood micronucleus tests have not been formally evaluated for their predictivity for rodent carcinogenicity. But because of the theoretical and observed associations between induced genetic damage and

adverse effects in somatic and germ cells, the determination of *in vivo* genetic effects is important to the overall understanding of the risks associated with exposure to a particular chemical.

TABLE 1

Experimental Design and Materials and Methods in the 2-Year Feed Study of Oxazepam

Study Laboratory

Battelle Columbus Laboratories (Columbus, OH)

Strain and Species

F344/N rats

Animal Source

Taconic Farms (Germantown, NY)

Time Held Before Studies

13 days (males) or 14 days (females)

Average Age When Studies Began

6 weeks

Date of First Dose

23 September (males) or 24 September (females) 1991

Duration of Dosing

1,250 and 10,000 ppm groups: 26 weeks 0, 625, 2,500, and 5,000 ppm groups: 105 weeks

Date of Last Dose

1,250 and 10,000 ppm groups: 23 - 24 March 1992 625, 2,500, and 5,000 ppm groups: 21 - 23 September 1993

Necropsy Dates

21 - 23 September 1993

Average Age at Necropsy

111 weeks

Size of Study Groups

50 males and 50 females

Method of Animal Distribution

Animals were distributed randomly into groups of approximately equal initial mean body weights.

Animals per Cage

5

Method of Animal Identification

Tail tattoo

Diet

NIH-07 Open Formula meal diet (Zeigler Brothers Inc., Gardners, PA), available ad libitum, changed weekly or as necessary

Water Distribution

Tap water (Columbus, OH, municipal supply) distributed via automatic watering system (Edstrom Industries Inc., Waterford, WI), available ad libitum

Cages

Polycarbonate (Lab Products Inc., Maywood, NJ), changed twice weekly

Bedding

Sani-Chips® heat-treated hardwood chips (P.J. Murphy Forest Products Corp., Montville, NJ), changed twice weekly

TABLE 1

Experimental Design and Materials and Methods in the 2-Year Feed Study of Oxazepam (continued)

Cage Filters

DuPont 2024 spun-bonded polyester filters (Snow Filtration Co., Cincinnati, OH), changed once every 2 weeks

Racks

Stainless steel (Lab Products Inc., Maywood, NJ), rotated every 2 weeks

Animal Room Environment

Temperature: 19.4° to 25.6° C Relative humidity: 36% to 66% Fluorescent light: 12 hours/day

Room air: minimum of 10 changes/hour

Doses

0, 625, 1,250, 2,500, 5,000, or 10,000 ppm in feed

Type and Frequency of Observation

Rais were observed twice daily; clinical findings were recorded every 4 weeks and at study termination; individual body weights were recorded weekly for 13 weeks, monthly thereafter, and at study termination. Feed consumption was recorded for a 7-day interval during study weeks 1 and 4, and every 4 weeks thereafter by cage.

Method of Sacrifice

CO2 asphyxiation

Necropsy

Necropsy performed on all rats except the 1,250 ppm group

Histopathology

Complete histopathology was performed on all 0, 625, 2,500, and 5,000 ppm rats. In addition to gross lesions, tissue masses, and associated lymph nodes, the tissues examined included: adrenal gland, brain, clitoral gland, esophagus, eyes, heart, large intestine (cecum, colon, and rectum), small intestine (duodenum, jejunum, and ileum), kidney, liver, lung, lymph nodes (mandibular and mesenteric), mammary gland, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, skin, spleen, stomach (forestomach and glandular stomach), testis, thymus, thyroid gland, trachea, urinary bladder, and uterus. Histopathologic evaluation was limited to gross lesions, stomach (forestomach and glandular), small intestine, kidney, thyroid gland, and liver for the 10,000 ppm group.

Plasma Oxazepam Determinations

At weeks 27 (1,250 ppm group) and 105 (males) and 104 (females) (625, 2,500, and 5,000 ppm groups), blood was collected from the vena cava or retroorbital sinus for plasma oxazepam assays.

RESULTS

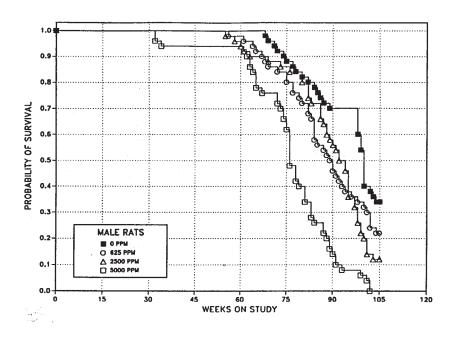
2-YEAR STUDY

Survival

Estimates of 2-year survival probabilities for male and female rats are shown in Table 2 and in the Kaplan-Meier survival curves (Figures 3 and 4). All 5,000 ppm continuous-exposure and 10,000 ppm stop-exposure males died before the end of the study.

Survival of 2,500 ppm continuous-exposure males and females was significantly less than that of the controls. However, survival of 5,000 ppm females did not differ from that of the controls.

TABLE 2
Survival of Rats in the 2-Year Feed Study of Oxazepam


	0 ррт	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Male					
Animals initially in study	50	50	50	50	50
Moribund	25	27	33	43	39
Natural deaths	8	12	11	7	11
Animals surviving to study termination Percent probability of survival at end		11	6	0	0
of study ^a	34	22	12	0	0
Mean survival (days) ^b	662	616	621	531	617
Survival analysis ^c	P< 0.001	P = 0.070	P= 0.002	P< 0.001	P< 0.001
Female					
Animals initially in study	50	50	50	50	50
Accidental death ^d	1	0	0	0	0
Moribund	11	18	18	16	19
Natural deaths	6	6	12	3	6
Animals surviving to study termination Percent probability of survival at end		26	20	31	25
of study	66	52	40	62	50
Mean survival (days)	676	679	655	686	685
Survival analysis	P= 1.000	P = 0.339	P = 0.019	P = 0.967	P = 0.257

^a Kaplan-Meier determinations

b Mean of all deaths (uncensored, censored, and terminal sacrifice)

The result of the life table trend test (Tarone, 1975) is in the control column (the 10,000 ppm stop-exposure group was excluded from the trend test), and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the exposed group columns.

d Censored from survival analyses

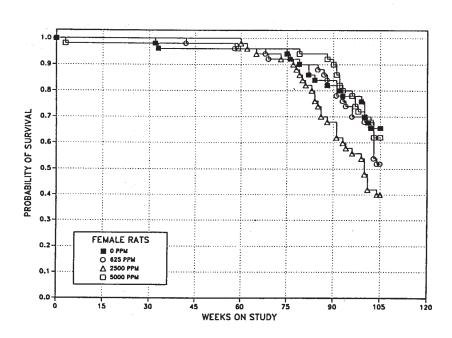
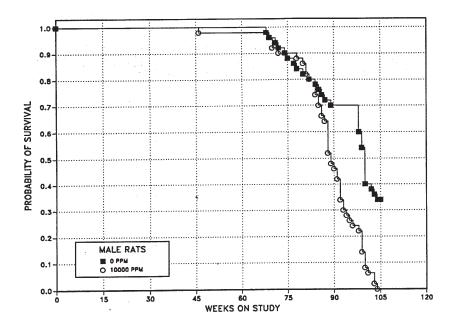



FIGURE 3
Kaplan-Meier Survival Curves for Male and Female Rats
Administered Oxazepam in Feed for 2 Years

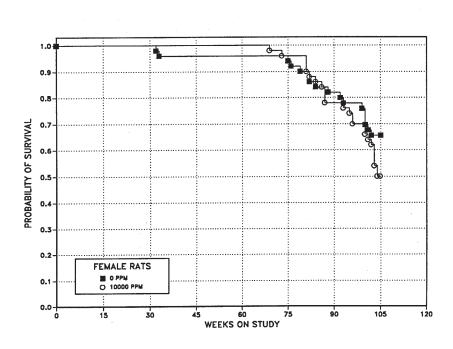
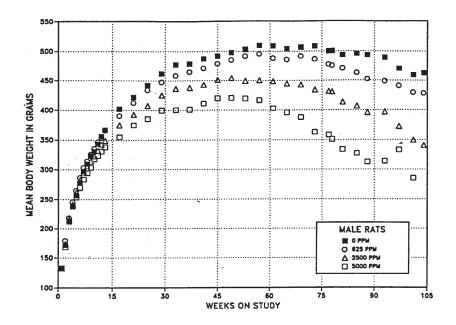


FIGURE 4
Kaplan-Meier Survival Curves for Male and Female Rats in the 2 Year Stop-Exposure Feed Study of Oxazepam


Body Weights, Feed and Compound Consumption, and Clinical Findings

The mean body weight gains of 2,500 and 5,000 ppm males and females were less than those of the controls throughout the study (Figure 5, Tables 3 and 4). The final mean body weights were 74% (2,500 ppm males), 62% (5,000 ppm males), 85% (2,500 ppm females), and 82% (5,000 ppm females) that of the The mean body weights of respective controls. 10,000 ppm stop-exposure males were generally less than those of the controls throughout the study (Figure 6). The mean body weight of 10,000 ppm stop-exposure females was approximately 18% less than that of the controls at week 29, but increased steadily after the cessation of dosing at week 27, and was similar to that of the controls at the end of the study.

During the first week of the study, there was a slight exposure concentration-related decrease in the amount of feed consumed by exposed rats compared to that by the controls (Tables E1 and E2). The reduction in feed consumption was not apparent after the first week of the study, and the reduced consumption was attributed to the initial ataxia experienced during the first week of the study rather than to poor palatability of the dosed feed. At the end of the study, the average daily feed consumption by exposed male and female

rats was similar to that by the controls. In 10,000 ppm stop-exposure males and females, the feed consumption was also similar to that by the controls. Dietary levels of 625, 2,500, 5,000, and 10,000 ppm delivered average daily doses of 25, 100, 250, and 630 mg oxazepam/kg body weight to males and 25, 110, 220, and 630 mg/kg to females. Treatmentrelated eye/nasal discharge, hyperactivity when handled, and/or ataxia were observed in exposed males and females on or about day 2 of exposure but were no longer apparent after day 7. The duration and severity of ataxia were exposure-concentration dependent. On day 2, ataxia was slight in male and female rats exposed to 625 or 1,250 ppm, moderate in male and female rats exposed to 2,500 ppm and female rats exposed to 5,000 ppm, and severe in male rats exposed to 5,000 ppm and male and female rats exposed to 10,000 ppm.

The severity of ataxia diminished daily and was not apparent after day 2 in rats exposed to 625 ppm or 2,500 ppm or after days 3 (males) or 6 (females) in rats exposed to 5,000 ppm. Hyperactivity and eye/nasal discharge were observed in male and female rats exposed to 5,000 ppm but were not apparent after days 3 (males) or 6 (females) of exposure. Male and female stop-exposure rats were hyperactive on day 197 after being switched to undosed feed.

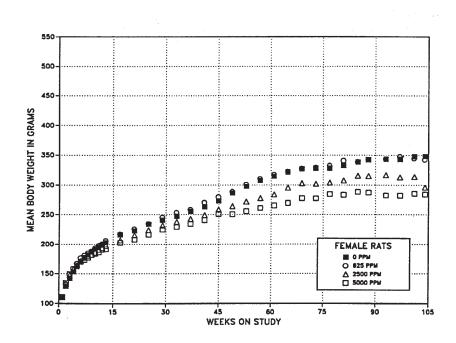


FIGURE 5
Growth Curves for Male and Female Rats
Administered Oxazepam in Feed for 2 Years

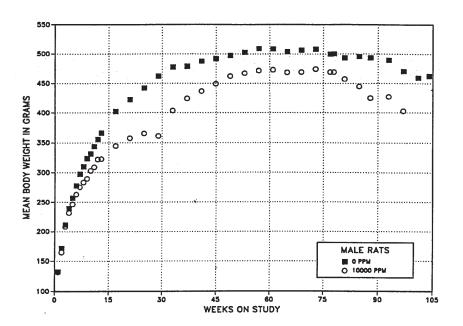
TABLE 3
Mean Body Weights and Survival of Male Rats in the 2-Year Feed Study of Oxazepam

Weeks	() ppm		625 ppm			2,500 ppm	
on	Av. Wt.	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	100	50	100	100	50	132	100	50
1 2	132 172	50 50	132 179	104	50 50	132	100	50 50
3	211	50 50	218	104	50 50	216	101	50 50
4	240	50 50	246	103	50 50	242	102	50 50
5	257	50 50	265	103	50 50	262	102	50 50
6	278	50 50	286	103	50 50	283	102	50 50
7	297	50 50	304	103	50 50	296	99	50 50
8	310	50 50	315	102	50 50	306	99	50
9	323	50 50	326	102	50 50	314	99 97	50 50
10	331	50 50	336	101	50 50	323	98	50 50
11	344	50 50	347	102	50 50	332	98 97	50 50
12	356	50 50	354	99	50 50	332 343	97 96	50 50
13	367	50 50	366	100	50 50	343 349	96 95	50 50
17	402	50 50	391	97	50 50	375	93	50 50
21	402	50 50	413	98	50 50	393	93 93	50 50
25	442	50 50	434	98	50 50	393 408	93 92	50 50
29	442	50 50		96 97	50 50		92 92	50 50
33	402 477	50 50	448 459	97 96	50 50	426 437	92 92	50 50
33 37	477	50 50	459 465	96 97	50 50	437	92 92	50 50
41	487	50	471	97	50	443	91 92	50 50
45 49	492	50 50	479 485	97	50 50	451 454		50 50
	497			98			91	
53	503	50	492	98	50	449	89	50
57	509	50	496	97	49	451	89	49
61	509	50	488	96	49	449	88	47
65	504	50	486	96	47	445	88	45
69	506	49	492	97	44	443	88	45
73	508	46	487	96	42	434	86	44
77	500	44	478	96	40	432	86	42
78	500	43	476	95	38	431	86	42
81	493	41	471	96	36	414	84	40
85	495	39	463	94	28	407	82	36
88	493	36	452	92	27	396	80	32
93	489	35	449	92	21	397	81	25
97	470	35	441	94	18	372	79	17
101	459	20	429	94	16	349	76	9
104	463	17	428	93	11	341	74	6
Mean for we	eeks							
1-13	278		283	102		275	99	
14-52	462		449	97		425	92	
53-104	493		469	95		414	84	
-							-	

TABLE 3
Mean Body Weights and Survival of Male Rats in the 2-Year Feed Study of Oxazepam (continued)

Weeks		5,000 ppm		10,000 ppm ^a				
on	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of		
Study	(g)	controls)	Survivors	(g)	controls)	Survivors		
1	132	100	50	132	99	50		
2	168	98	50	164	96	50		
3	213	101	50	208	99	50		
4	238	100	50	232	97	50		
5	254	99	50	247	96	50		
6	270	97	50	263	95	50		
7	284	95	50	275	93	50		
8	294	95	50	284	92	50		
9	304	94	50	290	90	50		
10	318	96	50	303	92	50		
11	324	94	50	309	90	50		
12	331	93	50	322	91	50		
13	338	92	50	323	88	50		
17	355	88	50	344	86	50		
21	375	89	50	358	85	50		
25	386	87	50	366	83	50		
29	400	87	50	361	78	50		
33	401	84	48	404	85	50		
37	401	84	47	424	89	50		
41	411	84	47	437	90	50		
45	420	85	47	449	91	50		
49	421	85	47	462	93	49		
53	420	84	47	467	93	49		
57	417	82	47	472	93	49		
61	403	79	47	473	93	49		
65	396	79	42	469	93	49		
69	388	77	38	469	93	49		
73	363	72	36	474	93	45		
77	358	72	24	469	94	45		
78	351	70	24	469	94	45		
81	334	68	20	458	93	43		
85	328	66	13	445	90	37		
88	313	63	10	425	86	31		
93	314	64	5	427	87	17		
97	333	71	4	403	86	12		
101	285	62	3					
lean for weeks								
	267	0.e		250	0.4			
13		96		258	94			
1-52	397	86 72		401	87 91			
3-101	357	12		455	91			

^a Stop-exposure group


TABLE 4
Mean Body Weights and Survival of Female Rats in the 2-Year Feed Study of Oxazepam

Weeks	0	ppm		625 ppm			2,500 ppm	
on	Av. Wt.	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	111	50	111	100	50	111	100	50
2	129	50	132	103	50	133	103	50
3	142	50	149	105	50	148	104	50
4	153	50	159	104	50	157	103	50
5	162	50	167	103	50	165	102	50
6	171	50	177	103	50	172	100	50
7	178	50	181	102	50	177	100	50
8	182	50	185	102	50	180	99	50
9	187	50	188	101	50	182	98	50
10	191	50	193	101	50	186	97	50
11	195	50	198	101	50	190	97	50
12	200	50	200	101	50	194	97	50
13	203	50	206	101	50	197	97	50
17	216	50	218	101	50	207	96	50
21	223	50	226	101	50	216	97	50
25	234	50	235	100	50	224	96	50
29	241	50	245	102	50	232	96	50
33	247	49	253	102	50	238	96	50
37	255	48	258	101	50	243	95	50
41	263	48	270	103	50	249	95	50
45	273	48	280	103	49	259	95	50
49	286	48	289	101	49	264	92	50
53	298	48	301	101	49	272	91	50
57	308	48	311	101	49	277	90	50
61	315	48	318	101	48	284	90	49
65	322	48	323	100	48	296	92	48
69	328	48	328	100	47	303	93	47
73	328	48	330	101	46	302	92	47
77	328	46	333	101	46	304	93	46
81	333	45	341	102	45	308	92	42
85	339	42	339	100	45	316	93	37
88	343	40	343	100	42	316	92	34
93	343	39	344	100	39	317	92	31
97	343	38	348	101	35	314	91	28
101	348	34	345	99	34	314	90	23
104	348	32	343	98	27	296	85	21
ean for we	eks							
13	170		173	102		169	100	
-52	249		253	102		237	95	
3-104	330		332	100		301	91	

TABLE 4
Mean Body Weights and Survival of Female Rats in the 2-Year Feed Study of Oxazepam (continued)

Weeks		5,000 ppm			10,000 ppm ^a	
on	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	controls)	Survivors	(g)	controls)	Survivors
1	111	100	50	111	99	50
2	134	104	50	133	103	50
3	150	105	50	147	104	50
4	158	103	49	156	102	50
5	164	101	49	162	100	50
6	170	99	49	168	98	50
7	174	98	49	173	97	50
8	177	97	49	175	96	50
9	182	97	49	177	95	50
10	184	96	49	183	96	50
11	187	96	49	185	95	50
12	191	96	49	187	94	50
13	192	94	49	188	93	50
17	203	94	49	197	91	50
21	208	93	49	202	91	50
25	216	92	49	208	89	50
29	225	94	49	198	82	50
33	229	93	49	224	90	50
37	235	92	49	235	92	50
41	241	92	49	245	93	50
45	251	92	49	255	94	50
49	251	88	49	266	93	50
53	256	86	49	277	93	50
57	261	85	49	290	94	50
61	265	84	48	304	96	50
65	270	84	48	316	98	50
69	278	85	48	323	99	50
73	277	84	48	324	99	49
73 77	285	87	48	330	101	48
81	283	85	47	331	100	48
85	288	85	47	336	99	43
88	287	84	47	346	101	39
93	282	82	41	352	102	39
97	282	82	39	357	102	35
101	285	82 82	35	356	104	33
101	284	82 82	31	346	100	27
104	۵04	02	31	340	100	٤1
Aean for weeks						
-13	167	99		165	98	
4-52	229	92		226	91	
3-104	277	84		328	99	

^a Stop-exposure group

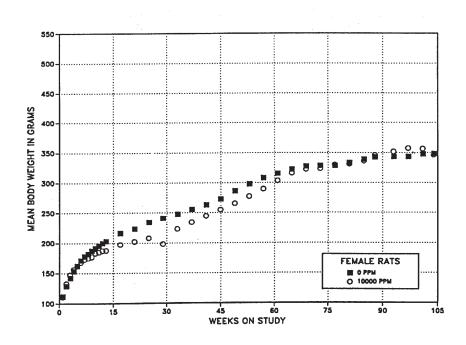


FIGURE 6 Growth Curves for Male and Female Rats in the 2 Year Stop-Exposure Feed Study of Oxazepam

Plasma Oxazepam Determinations

Plasma oxazepam concentrations were measured at the end of the study. Due to mortality, no blood samples from males exposed to 5,000 ppm were available at the end of the study. Plasma oxazepam concentrations were similar between males and females at each

exposure concentration (Table 5). The concentrations were somewhat higher than reported serum concentrations in humans (0.3 to 1 μ g/mL) receiving a therapeutic dose of oxazepam (Greenblatt *et al.*, 1980; Salzman *et al.*, 1983).

TABLE 5
Plasma Concentrations of Oxazepam in Rats in the 2-Year Feed Study of Oxazepam^a

	625 ppm	2,500 ppm	5,000 ppm	
Male				
n	10	6	b	
Week 105	$0.50 \pm\ 0.04$	1.94 ± 0.34	_	
Female				
n	25	19	28	
Weeks 104-105	$0.60 \pm\ 0.05$	1.61 ± 0.16	$2.79 \pm\ 0.24$	

Mean \pm standard error; values given as μ g/mL

Pathology and Statistical Analyses

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms and/or nonneoplastic lesions of the kidney (with parathyroid gland and bone), gastrointestinal tract (forestomach, glandular stomach, and small intestine), liver, mammary gland, adrenal medulla, pituitary gland, and pancreas. Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the neoplasms mentioned in this section are presented in Appendix A for male rats and Appendix B for female rats.

Kidney (with parathyroid gland and bone): At histopathologic examination of the standard kidney sections, three renal tubule adenomas were seen in male

rats exposed to 2,500 ppm, which was at the upper limit of the historical range for this neoplasm in 2-year NTP feed studies (Tables 6, A3a, and A4a).

This increased incidence of renal tubule adenoma in male rats exposed to 2,500 ppm suggested a compound-related effect; therefore, an extended step-section evaluation of the kidneys was performed (male rats only, exposed and control groups) using the remaining residual formalin-fixed kidney wet tissue. Additional rats with renal tubule adenoma and numerous additional incidences of renal epithelial hyperplasia were identified. The incidences of these proliferative lesions observed in the extended step-section evaluation and the combined incidences of standard and step sections in male rats are presented in Tables 6, A3a, and A3b. The incidences of renal tubule adenomas in the extended evaluation and the

b No samples collected due to 100% mortality

TABLE 6
Incidences of Neoplasms and Nonneoplastic Lesions of the Kidney of Rats in the 2-Year Feed Study of Oxazepam

	0 ррт	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Male					
Single Sections (Standard Evaluation	on)				
Number Examined Microscopically	50	50	50	50	42
Nephropathy ^a	49 (1.9) ^b	44 (2.3)	49 (2.7)**	50 (3.2)**	42 (3.3)**
Renal Tubule Hyperplasia	0	1 (1.0)	3 (2.3)	1 (2.0)	0
Renal Tubule Adenoma ^c					
Overall rate ^d	1/50 (2%)	0/50 (0%)	3/50 (6%)	1/50 (2%)	0/50 (0%)
Adjusted rate ^e	5.6%	0.0%	23.8%	16.7%	0.0%
Terminal rate ^f	0/17 (0%)	0/11 (0%)	1/6 (17%)	0/0	0/0
First incidence (days)	723	_h	641	634	_
Logistic regression test ^g	P = 0.103	P = 0.588N	P = 0.188	P = 0.503	P = 0.588N
Step Sections (Extended Evaluation	1)				
Number Examined Microscopically	50	50	50	50	50
Renal Tubule Hyperplasia	5	6	9	8	21**
Renal Tubule Hyperplasia,					
Oncocytic	0	1	2	2	3
Renal Tubule Adenoma, Multiple	0	1	1	1	1
Renal Tubule Adenoma (includes	multiple)				
Overall rate	1/50 (2%)	1/50 (2%)	4/50 (8%)	5/50 (10%)	6/45 (13%)
Adjusted rate	5.9%	9.1%	31.3%	19.5%	31.9%
Terminal rate	1/17 (6%)	1/11 (9%)	1/6 (17%)	0/0	0/0
First incidence (days)	730 (T)	730 (T)	653	467	613
Logistic regression test	P = 0.006	P = 0.663	P = 0.071	P = 0.151	P = 0.024
Renal Tubule, Oncocytoma	0	0	0	1	0
Single Sections and Step Sections (Combined)				
Number Examined Microscopically	50	50	50	50	45
Renal Tubule Hyperplasia	5	6	12*	9*	21**
Renal Tubule Hyperplasia,					
Oncocytic	0	1	2	2	3^{i}
Renal Tubule Adenoma, Multiple	0	1	2	1	1
Renal Tubule Adenoma (includes	multiple)				
Overall rate	2/50 (4%)	1/50 (2%)	7/50 (14%)	6/50 (12%)	6/45 (13%)
Adjusted rate	11.1%	9.1%	49.7%	32.9%	39.1%
Terminal rate	1/17 (6%)	1/11 (9%)	2/6 (33%)	0/0	0/0
First Incidence (days)	723	730 (T)	641	467	613
Logistic regression test	P = 0.018	P = 0.647	P = 0.018	P = 0.109	P = 0.046
Renal Tubule, Oncocytoma	0	0	0	1	0

TABLE 6
Incidences of Neoplasms and Nonneoplastic Lesions of the Kidney of Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ppm	625 ppm	2,5 00 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Female					
Number Examined Microscopically Nephropathy	50 32 (1.1)	50 43** (1.3)	50 41** (1.3)	50 48** (1.7)**	1 ^j 1 (2.0)

- * Significantly different (P≤0.05) from the control group by the logistic regression test (incidence) or by the Mann-Whitney U test (severity)
 ** P<0.01
- a Number of animals with lesion
- Average severity of lesions in affected animals: 1= minimal, 2= mild, 3= moderate, 4= marked
- Historical incidence for 2-year NTP feed studies with untreated control groups (mean ± standard deviation): 9/1,301 (0.7% ± 1.5%); range. 0%-6%
- Oumber of animals with neoplasms per number of animals with kidney examined microscopically
- E Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality
- Observed incidence in animals surviving until the end of the study
- In the control column are the P values associated with the trend test (the 10,000 ppm stop-exposure group was excluded from the trend test). In the exposure group columns are the P values corresponding to pairwise comparisons between the controls and that exposure group. The logistic regression test regards lesions in animals dying prior to terminal kill as nonfatal. A lower incidence in an exposed group is indicated by N.
- Not applicable; no neoplasms in animal group
- Number examined microscopically equals 42.
- J Tissue was examined microscopically only when it was observed to be abnormal at necropsy; thus, statistical comparisons with the controls are not appropriate.

combined incidences in standard and step sections were increased in 2,500, 5,000, and 10,000 ppm (stop-exposure) groups and were significantly greater in male rats in the 10,000 ppm (stop-exposure) group than in the controls. The incidences of renal tubule adenomas in the extended evaluation and the combined incidences in standard and step sections in these groups increased with a positive trend (Tables 6, A3a, A3b, and A4b). The incidences of renal tubule hyperplasia in standard and step sections (combined) in the male rats exposed to 2,500, 5,000, or 10,000 ppm (stop-exposure) were significantly greater than that in the controls.

One adenoma in each of the control and 2,500 and 5,000 ppm groups was a grossly visible lesion at necropsy. Microscopically, approximately 50% of the adenomas in exposed groups in standard and step sections were approximately 1 mm in diameter. All were discrete, well-circumscribed lesions, five or more tubule diameters in size, and were distinguished from

hyperplasia by having a more complex structure (Plates 1 and 2).

Most hyperplasias were generally minimal to mild focal lesions consisting of tubules that were enlarged up to two to three times that of a normal tubule and were lined by increased numbers of epithelial cells which partially or totally filled the tubule lumen (Plates 3 and 4). Hyperplasia was considered a preneoplastic lesion and was distinguished from regenerative epithelial changes commonly seen as a component of chronic nephropathy.

The incidences of nephropathy in the continuously exposed and stop-exposure male rats were similar to that in the controls (Tables 6 and A5). However, there was an exposure concentration-related increase in the severity (exacerbation) of nephropathy; the severities of nephropathy in male rats exposed to 2,500, 5,000, or 10,000 ppm (stop-exposure) were significantly greater than that in the controls. The incidences of nephropathy in continuously exposed

female rats were significantly greater than that in the controls; however, the severity was significantly increased only in the 5,000 ppm group (Tables 6 and B5). Nephropathy in male rats was generally mild in the control and 625 ppm groups and moderate to marked in the 2,500, 5,000, and 10,000 ppm (stopexposure) groups. Mild nephropathy involved less than 50% of the kidney and was composed of multifocal renal tubule regeneration, minimal to mild tubule dilatation, and interstitial fibrosis with mononuclear infiltrates (Plate 5). Moderate nephropathy involved a greater proportion of the kidney and consisted of a spectrum of changes that included dilatation of renal tubules with hyaline or cellular casts, increased interstitial fibrosis with mononuclear inflammatory cell infiltrates, and multifocal tubule regeneration. Severe nephropathy involved most of the kidney and consisted of a similar spectrum of lesions of greater severity (Plate 6). In addition, there was marked thickening and mineralization of the basement membrane of tubules, blood vessels, and glomeruli; atrophy of the glomerular tuft: dilatation of the glomerular urinary space; and transitional epithelial hyperplasia of the renal papilla.

42

Parathyroid gland hyperplasia and fibrous osteodystrophy of the bone were considered secondary to the exacerbated nephropathy that occurred in exposed male rats. In male rats, the incidences of parathyroid gland hyperplasia (0 ppm, 3/39; 625 ppm, 6/41; 2,500 ppm, 9/46; 5,000 ppm, 16/40) and fibrous osteodystrophy of the bone (0/50, 1/50, 6/50, 8/50) occurred with positive trends (Table A5). The incidences of parathyroid gland hyperplasia in male rats exposed to 5,000 ppm and fibrous osteodystrophy of the bone in male rats exposed to 2,500 or 5,000 ppm were greater than those in the controls.

Gastrointestinal Tract (forestomach, glandular stomach, and small intestine): In male rats, there were positive trends in the incidences of epithelial hyperplasia and chronic inflammation of the forestomach. The incidences of epithelial hyperplasia and chronic inflammation of the forestomach of males exposed to 2,500 or 5,000 ppm and of ulcers in 2,500 ppm

males were significantly greater than those in the controls (Tables 7 and A5). In male rats exposed to 5,000 ppm, the incidences of mineralization of the glandular stomach and erosion of the duodenum were significantly greater than those in the controls. In the 10,000 ppm stop-exposure males, the incidence of mineralization of the glandular stomach was significantly greater than that in the controls. In female rats exposed to 2,500 ppm, the incidences of epithelial hyperplasia, chronic inflammation, and ulcers in the forestomach and of erosion of the glandular stomach were significantly greater than those in the controls (Tables 7 and B5).

Epithelial hyperplasia of the forestomach occurred as focal or multifocal lesions of varying severity. Most lesions occurred as slightly to moderately raised thickenings of the mucosa, due to an increase in the number of epithelial cells at all levels of the epithelium (Plates 7 and 8). Others were focal broad-based lesions in which the epithelium was markedly thickened and thrown into papillary folds (Plates 9 and 10). In some cases, focal nests or finger-like projections of proliferative basal epithelium extended into the submucosa. Forestomach ulcers were also focal or multifocal lesions characterized by loss of the mucosal squamous epithelium with necrosis and inflammation of the adjacent muscularis mucosa and superficial submucosa, with or without accompanying fibrosis (Plates 11 and 12). Variable thickening (hyperplasia) of the epithelium and keratin layer (hyperkeratosis) at the edges of ulcers were consistent and frequently striking components of ulcerative lesions. Ulcers were sometimes accompanied by focal erosion of the mucosal epithelium. Chronic active inflammation of varying severity almost invariably occurred in the submucosa beneath hyperplastic and ulcerative lesions and consisted of a combination of edema and infiltrates of neutrophils, macrophages, and lymphocytes with occasional focal hemorrhage (Plates 8, 10, and 12). In male rats, the incidence of mucosal erosions in the duodenum in the 5,000 ppm group was significantly greater than in the controls. Erosions of the duodenum were characterized by focal loss and necrosis of the superficial mucosal epithelium.

TABLE 7
Incidences of Selected Nonneoplastic Lesions of the Gastrointestinal Tract of Rats in the 2-Year Feed Study of Oxazepam

	0	ppm	625	5 ppm	2,50	00 ppm	5,00	0 ppm		00 ppm Exposure)
Male										
Forestomach ^a	50		48		50		50		49	
Chronic Inflammation ^b	6	$(1.5)^{c}$	8	(1.5)		* (2.0)	15*	(1.9)	10	(2.2)
Ulcer	9	(2.7)	12	(2.9)	20*	(2.8)	10	(3.0)	7	(3.1)
Epithelium, Hyperplasia	5	(2.2)	8	(2.0)	25**	* (2.3)	16**	(2.4)	15*	(2.5)
Glandular Stomach	50		48		50		50		47	
Erosion	5	(2.2)	5	(1.4)	9	(2.3)	4	(2.5)	5	(1.4)
Mineralization	0		3	(2.3)	1	(1.0)	4*	(2.0)	16**	(2.8)
Ulcer	2	(2.5)	7	(2.0)	7	(1.6)	4	(1.8)	4	(2.8)
Small Intestine, Duodenum	50		48		49		50		44	
Erosion	4	(2.0)	3	(2.3)	9	(1.8)	16*	(2.4)	1	(1.0)
Female										
Forestomach	50		50		50		50		50	
Chronic Inflammation	1	(2.0)	5	(1.8)	16**	* (2.0)	3	(1.7)	5	(1.4)
Ulcer	1	(3.0)	2	(2.5)	9*	(2.1)	6	(2.2)	4	(3.3)
Epithelium, Hyperplasia	2	(3.0)	6	(2.2)	16**	* (2.3)	5	(2.2)	5	(1.8)
Glandular stomach	50		50		50		50		49	
Erosion	0		4	(2.0)		* (2.3)	2	(2.0)	0	
Ulcer	2	(2.0)	3	(1.7)	5	(2.0)	0		4	(2.0)
Mineralization	1	(1.0)	0		1	(2.0)	2	(1.5)	0	

^{*} Significantly different (P≤0.05) from the control group by the logistic regression test

Liver: The incidences of minimal to mild centrilobular hepatocyte hypertrophy in 2,500 and 5,000 ppm males and females were significantly greater than those in the controls (Tables 8, A5, and B5). In continuous-exposure females, the incidences of clear cell foci in the 2,500 and 5,000 ppm groups were significantly greater than in the controls but not in the 10,000 ppm stop-exposure group. The incidences of basophilic foci in 2,500 ppm continuous-exposure males and

females, 5,000 ppm continuous-exposure females, and 10,000 ppm stop-exposure females were significantly less than in the controls. Centrilobular hypertrophy was characterized by enlargement of hepatocytes around central veins; affected hepatocytes had more abundant and more eosinophilic cytoplasm and slightly larger nuclei than the surrounding unaffected hepatocytes.

^{**} $P \le 0.01$

a Number examined microscopically

b Number of animals with lesion

^c Average severity of lesions in affected animals: 1= minimal, 2= mild, 3= moderate, 4= marked

TABLE 8
Incidences of Nonneoplastic Lesions of the Liver of Rats in the 2-Year Feed Study of Oxazepam

	0 ppm	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Male					
Number Examined Microscopically	50	50	49	50	50
Basophilic Focus ^a	21	11	$4** (2.0)^{b}$	2	13
Clear Cell Focus	2	4	0	0	0
Eosinophilic Focus	8	5	5	6	2
Mixed Cell Focus Hepatocyte, Centrilobular,	2	4	2	1	1
Hypertrophy	0	1 (1.0)	8** (1.0)	14** (1.3)	0
Female					
Number Examined Microscopically	50	50	50	50	49
Basophilic Focus	44	41	28**	26**	16**
Clear Cell Focus	6	3	11*	22**	0
Eosinophilic Focus	17	18	4**	11	11
Mixed Cell Focus Hepatocyte, Centrilobular,	5	15*	7	3	2
Hypertrophy	0	0	10** (1.2)	31** (1.5)	0

^{*} Significantly different ($P \le 0.05$) from the control group by the logistic regression test

Mammary Gland: In females exposed to 2,500 and 5,000 ppm, the incidences of fibroadenoma were significantly less than that in the controls (Tables 9 and B3). The incidences of fibroadenoma; carcinoma; and fibroadenoma, adenoma, or carcinoma (combined) occurred with negative trends. All neoplasm incidences were within the historical control ranges from NTP 2-year feed studies (Table B4). The decreased incidences in 2,500 and 5,000 ppm females were most likely due to the significant reductions in mean body weights observed at these exposure concentrations. The incidences of mammary gland neoplasms in stop-exposure females were similar to those in the controls.

Adrenal Medulla: In continuous-exposure males, there was a negative trend in the incidences of benign

pheochromocytoma of the adrenal medulla (0 ppm, 14/50; 625 ppm, 9/50; 2,500 ppm, 6/50; 5,000 ppm, 3/50; Table A1), and the incidences in the 2,500 and 5,000 ppm males were significantly less than that in the controls. The incidence of benign pheochromocytoma in 5,000 ppm male rats was less than the historical control range from 2-year NTP feed studies Adrenal glands were not routinely (Table A4b). examined in the 10,000 ppm stop-exposure group. The incidence of adrenal medulla hyperplasia in males exposed to 5,000 ppm was significantly ($P \le 0.05$) greater than that in the controls (9/50, 9/50, 15/50, 16/50: Table A5): the severities of this lesion in exposed rats were similar to that in the controls. This shift in the pattern of proliferative lesions of the adrenal medulla may be a consequence of the earlier mortality in the 2,500 and 5,000 ppm and 10,000 ppm stop-exposure groups.

^{**} P≤0.01

^a Number of animals with lesion

b Average severity of lesions in affected animals: 1= minimal, 2= mild, 3= moderate, 4= marked

TABLE 9 Incidences of Mammary Gland Neoplasms in Female Rats in the 2-Year Study of Oxazepam

	0 ррт	625 ppm	2,500 ppm	5,000 ppm (Stop-Exposure)	10,000 ppm
Fibroadenoma ^a					
Overall rate ^b	25/50 (50%)	19/50 (38%)	9/50 (18%)	13/50 (26%)	23/50 (46%)
Adjusted rate ^c	67.0%	52.8%	33.2%	35.1%	66.7%
Terminal rate ^d	20/32 (63%)	10/26 (38%)	4/20 (20%)	8/31 (26%)	14/25 (56%)
First incidence (days)	529	612	589	550	562
Logistic regression test ^e	P = 0.003N	P = 0.152N	P = 0.003N	P = 0.007N	P = 0.428N
Adenoma					
Overall rate	1/50 (2%)	2/50 (4%)	0/50 (0%)	0/50 (0%)	0/50 (0%)
Fibroadenoma or Adenoma ^f					
Overall rate	26/50 (52%)	20/50 (40%)	9/50 (18%)	13/50 (26%)	23/50 (46%)
Adjusted rate	67.8%	55.7%	33.2%	35.1%	66.7%
Terminal rate	20/32 (63%)	11/26 (42%)	4/20 (20%)	8/31 (26%)	14/25 (56%)
First incidence (days)	529	612	589	550	562
Logistic regression test	P = 0.002N	P = 0.153N	P = 0.001N	P = 0.004N	P = 0.340N
Carcinoma ^g					
Overall rate	2/50 (4%)	3/50 (6%)	0/50 (0%)	0/50 (0%)	1/50 (2%)
Adjusted rate	5.1%	10.3%	0.0%	0.0%	2.1%
Terminal rate	1/32 (3%)	2/26 (8%)	0/20 (0%)	0/31 (0%)	0/25 (0%)
First incidence (days)	228	697	h	_	562
Logistic regression test	P = 0.048N	P = 0.483	P = 0.288N	P = 0.213N	P = 0.713N
Adenoma or Carcinoma ⁱ					
Overall rate	3/50 (6%)	5/50 (10%)	0/50 (0%)	0/50 (0%)	1/50 (2%)
Adjusted rate	7.4%	16.8%	0.0%	0.0%	2.1%
Terminal rate	1/32 (3%)	3/26 (12%)	0/20 (0%)	0/31 (0%)	0/25 (0%)
First incidence (days)	228	697	_ ` `	_ ` '	562
Logistic regression test	P = 0.013N	P = 0.347	P = 0.130N	P = 0.109N	P = 0.466N
Fibroadenoma, Adenoma, or Caro	cinoma ^j				
Overall rate	27/50 (54%)	23/50 (46%)	9/50 (18%)	13/50 (26%)	23/50 (46%)
Adjusted rate	68.4%	62.7%	33.2%	35.1%	66.7%
Terminal rate	20/32 (63%)	13/26 (50%)	4/20 (20%)	8/31 (26%)	14/25 (56%)
First incidence (days)	228	612	589	550	562
Logistic regression test	P< 0.001N	P = 0.268N	P< 0.001N	P = 0.003N	P = 0.346N

Historical incidence for 2-year NTP feed studies with untreated control groups (mean ± standard deviation): 524/1,301 $(40.3\% \pm 13.1\%)$; range, 8%-58%

Number of animals with neoplasms per number of animals with mammary gland necropsied Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

Observed incidence in animals surviving until the end of the study

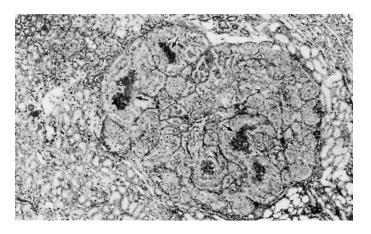
In the control column are the P values associated with the trend test (the 10,000 ppm stop-exposure group was excluded from the trend test). In the exposure group columns are the P values corresponding to pairwise comparisons between the controls and that exposure group. The logistic regression test regards lesions in animals dying prior to terminal kill as nonfatal. A negative trend or lower incidence in an exposure group is indicated by N.

Historical incidence: 540/1,301 ($41.5\% \pm 13.2\%$); range, 8%-62% Historical incidence: 36/1,301 ($2.8\% \pm 2.7\%$); range, 0%-8%

Not applicable; no neoplasms in animal group.

Historical incidence: 60/1,301 (4.6% ± 3.2%); range, 0%-10%

Historical incidence: 568/1,301 (43.7% ± 13.9%); range, 8%-64%


Pituitary Gland: There were negative trends in the incidences of pituitary gland (pars distalis) adenoma in males (17/49, 12/50, 10/50, 2/48) and females (31/50, 28/50, 21/50, 12/50) (Tables A3a and B3a). In males and females exposed to 5,000 ppm, incidences of adenoma were significantly less than those in the controls, and the incidences were below the historical ranges from 2-year NTP feed studies (Tables A4c and B4b). In females exposed to 5,000 ppm, the incidence of adenoma or carcinoma (combined) was also significantly less than that in the controls and was below the historical control range. There was a negative trend in the incidence of hyperplasia in male rats (9/49, 5/50, 3/50, 1/48; Table A5). In males exposed to 5,000 ppm, the incidence of hyperplasia was significantly less than that in the controls. The decreasing trends were most likely due at least in part to a combination of decreased body weights and survival in males and to decreased body weights in females, although it is unlikely that these reasons could fully account for the effects observed.

Pancreas: The incidence of atrophy of the pancreatic acinus in males in the 5,000 ppm group was significantly less than that in the controls (17/50, 10/48, 14/49, 1/50; Table A5), and the incidences of this

lesion occurred with a negative trend. The lower incidences of this lesion may have been related to reduced survival of exposed males.

GENETIC TOXICOLOGY

Oxazepam (3 to 3,333 μ g/plate) did not induce mutations in Salmonella typhimurium strains TA97, TA98, TA100, TA102, or TA1535 when tested in a preincubation protocol with or without Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 (Table C1). In cytogenetic tests with cultured Chinese hamster ovary cells, oxazepam did not induce sister chromatid exchanges (Table C2) or chromosomal aberrations (Table C3), with or without S9. Cell cycle delay was noted at the 50 μg/mL dose in the sister chromatid exchange test without S9; harvest time was extended to allow accumulation of sufficient second-division metaphase cells for analysis. Peripheral blood samples obtained from B6C3F₁ mice in a 14-week toxicity study were analyzed for frequency of micronucleated normochromatic erythrocytes; no increase in the frequency of micronucleated normochromatic erythrocytes was observed in any of the exposed groups (Table C4).

PLATE 1 Renal tubule adenoma in the kidney of a male F344/N rat administered 2,500 ppm oxazepam for 2 years. Mass is well circumscribed with cells arranged in variably sized packets, some of which have central areas of cellular degeneration and hemorrhage (arrows). H&E; $35 \times$

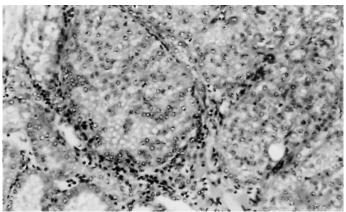


PLATE 2 Higher magnification of Plate 1. Neoplastic cells resemble epithelial cells of normal adjacent tubules and form small packets separated by delicate fibrovascular septae. H&E; $175 \times$

PLATE 3 Mild renal tubule hyperplasia (arrowheads) in the kidney of a male F344/N rat administered 2,500 ppm oxazepam for 2 years. Group of hyperplastic tubules are surrounded by relatively normal renal tubules. Glomerulus (arrow). H&E; $140 \times$

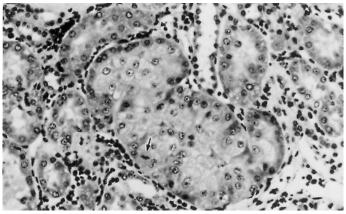
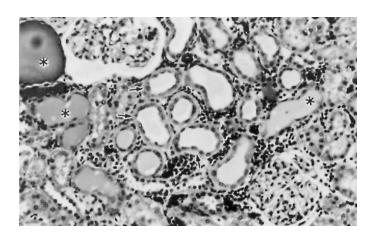



PLATE 4 Higher magnification of Plate 3. Hyperplastic tubules are filled with cuboidal to polygonal tubular epithelial cells. Note mitotic figure (arrow). H&E; $230 \times$

PLATE 5 Mild nephropathy in a male F344/N rat administered 625 ppm oxazepam for 2 years. Note group of regenerative tubules with slight thickening of the tubular basement membrane (arrows) and slightly dilated tubules containing protein casts(*). H&E; $175\times$

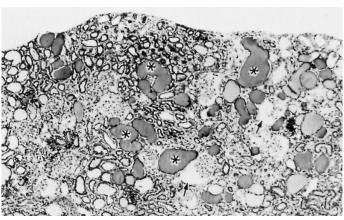


PLATE 6
Marked nephropathy in a male F344/N rat administered 2,500 ppm oxazepam for 2 years. Note focal renal tubule regeneration, interstitial fibrosis, dilated glomeruli (arrows), and variably dilated renal tubules, many of which contain protein casts(*). H&E;45.5×

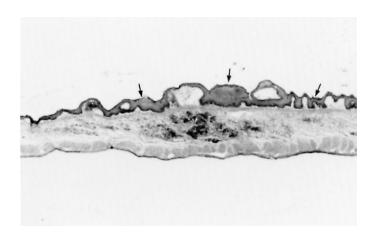
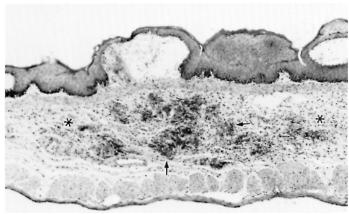



PLATE 7 Focal epithelial hyperplasia in the forestomach of a male F344/N rat administered 2,500 ppm oxazepam for 2 years. Note focal thickening of the mucosal epithelium (arrows). Normal mucosal epithelium is shown at left. H&E; $16.5\times$

PLATE 8 Higher magnification of Plate 7. Note hyperplastic mucosal epithelium. The adjacent submucosal is expanded by chronic active inflammation and edema (*).Focal areas of submucosal hemorrhage are also evident (arrows). H&E; $40\times$

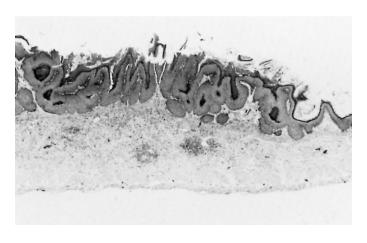


PLATE 9

Marked focal epithelial hyperplasia in the forestomach of a male F344/N rat administered 2,500 ppm oxazepam for 2 years. The hyperplastic mucosal epithelium forms multiple thick papillary folds that project into the lumen. There is also thickening of the keratin layer (hyperkeratosis) covering the epithelial surface. H&E; $20 \times$

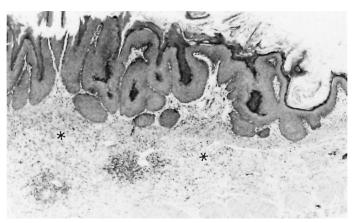


PLATE 10

Higher magnification of Plate 9. Chronic active inflammation and edema are within the adjacent submucosal and extend into the muscle (tunica muscularis) layers (*). H&E; $33 \times$

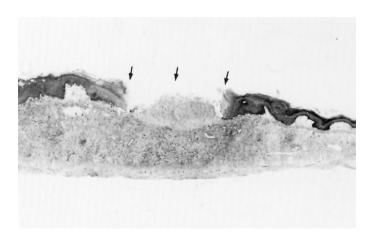


Plate 11

Focal mucosal ulcer in the forestomach of a male F344/N rat administered 5,000 ppm oxazepam for 2 years. The cavity (ulcer) formed by the loss of the mucosal epithelium is partially filled with a coagulum of necrotic cellular debris and degenerate inflammatory cells (arrows). H&E; $16.5 \times$

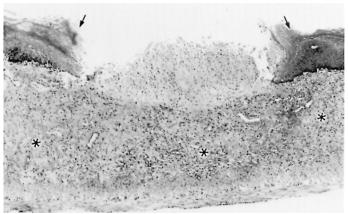


PLATE 12

Higher magnification of Plate 11. Marked chronic active inflammation and fibrosis within the submucosa and extending into the muscle (tunica muscularis) layers (*). Note mucosal epithelial hyperplasia with hyperkeratosis at the margins of the ulcer (arrows). H&E; $33 \times$

DISCUSSION AND CONCLUSIONS

Evaluation of the toxicity and carcinogenicity of oxazepam in F344/N rats was prompted by the finding of a marked hepatocellular neoplasm response in similar studies with Swiss-Webster and B6C3F₁ mice (NTP, 1993; Bucher *et al.*, 1994). Studies of the carcinogenicity of oxazepam in Sprague-Dawley rats were performed previously and reported to the FDA. However, given the widespread use of benzo-diazepines and the fact that oxazepam is a common metabolite of several of the more widely used variants of this drug class, cancer studies in a second strain of rat were deemed necessary to examine possible differences in response.

No 13-week rat studies were performed prior to the 2-year studies summarized in this report because there was some sense of urgency to begin the rat studies and because relatively little useful information was obtained from the 13-week studies conducted in preparation for the 2-year mouse studies. Instead, based on information from the literature, a five-dose 2-year study was begun in anticipation that sufficient information would be gained during the first 6 months of the 2-year study to determine which exposure groups would be allowed to proceed to study termination. Based on low body weight gains, groups of male and female rats exposed to 10,000 ppm were removed from dosed feed and allowed to consume control diet until the end of the study. Groups consuming feed containing 1,250 ppm were terminated because it was predicted that little additional information would be gained from these animals.

In retrospect, the decision to forego performance of 13-week studies was incorrect. The 2,500 and 5,000 ppm exposure concentrations selected for the continuous administration portion of the study were sufficiently high to result in substantial reductions in both body weight gains and in survival of male rats. Survival was somewhat reduced in the 625 ppm male group, and mean body weights were also slightly lower in this group during most of the study. From the standpoint of body weight and survival, 625 ppm was sufficient for an adequate chronic toxicity and carcinogenicity study in male rats.

In female rats, adverse effects on body weights and survival were not nearly as severe as in males, although both body weights and survival were reduced in an exposure-related fashion. The incidences of nephropathy were increased in females, but the severities were mild. The difference between the responses of males and females to oxazepam appeared to be in the unexpected and marked enhancement of the nephropathy commonly seen in control male F344/N rats. Varying degrees of nephropathy normally develop in the aging rat, and this condition is worsened when the animals are maintained on a relatively high protein diet, such as the NIH-07 diet used in these studies (Rao et al., 1993). Nephropathy is considered to be a major contributor to early mortality in rats and likely accounts for the pattern of deaths observed in this study. It is possible that this kidney lesion would have been seen in certain exposure groups in 13-week studies because nephropathy was more severe in the 10,000 ppm stopexposure group of males, 18 months after exposure ceased. However, enhanced nephropathy was not seen in mice receiving oxazepam, nor was it reported in rats or mice in chronic studies with prazepam (de la Iglesia et al., 1981), temazepam (Robinson et al., 1984), or ripazepam (Fitzgerald et al., 1984), although some renal tubule dilatation in rats was reported with the last compound.

In the current study, the parathyroid gland hyperplasia and fibrous osteodystrophy of bone that occurred in the male rats are consistent sequelae to severe nephropathy and secondary hyperparathyroidism of chronic renal failure (Leininger and Riley, 1990; Seely and Hildebrandt, 1990; Capen, 1994). Mineralization of the glandular stomach is also a common manifestation of severe nephropathy and is due to hypercalcemia induced by secondary hyperparathyroidism. It has been shown experimentally that stress-related ulceration of the glandular stomach can be enhanced by either acidotic or nonacidotic renal insufficiency (Fischer et al., 1974), and mineralization of the glandular stomach and the forestomach can be sequelae to uremia (Brown and Hardisty, 1990).

Male rats exposed to 2,500 or 5,000 ppm and female rats exposed to 2,500 ppm had increased incidences of epithelial hyperplasia, ulceration, and inflammation of the forestomach. Degenerative and proliferative forestomach lesions are relatively common in studies in which chemicals are administered orally (Gonipath et al., 1987). The spectrum of degenerative lesions includes erosions, ulceration, and necrosis with associated inflammation of the submucosa, which may extend to the serosal surface. Proliferative lesions range from mild hyperplasia to marked papillomatous hyperplasia of the squamous epithelium of the forestomach, with or without the development of papillomas. Papillomas were not noted in this study; however, severe papillary hyperplasia was observed in The increased incidences of some animals. these lesions in the forestomach of continuously exposed animals suggest that the development of these lesions was probably a direct effect of chemical administration. In the stop-exposure study, the significantly increased incidences of nonneoplastic lesions in the forestomach indicate a failure of these lesions to resolve during the prolonged recovery period. This is rather unexpected. It suggests that these lesions may have been due in part to the abrupt removal of the drug from the diet, eliciting stress related to dependence, coupled with compromised renal function later in the study.

A few renal tubule adenomas were seen, principally in the 2,500 ppm group in the initial evaluation of kidneys of exposed male rats, although a dose response was not evident. Additional sections of the remaining embedded kidneys were taken and additional microscopic adenomas were observed. The NTP experience with multiple-step sectioning of kidneys has been reported by Eustis et al. (1994). In 13 prior studies, additional renal tubule neoplasms and oncocytomas were observed with step sectioning in both control and exposed groups. Although no additional neoplasms were found in the control rat kidneys for many of the studies, as many as six were found in one study. Even greater numbers of additional neoplasms were found in some exposure groups. Eustis et al. (1994) noted that the studies in which additional renal neoplasms were found were also those in which nephropathy was more severe than usual, or those in which the chemical enhanced the nephropathy. This was the case in the present study with oxazepam.

Although the renal tubule neoplasms occurred with a positive trend, this was considered an uncertain finding. The incidence of 14% in the 2,500 ppm group is similar to the upper range of neoplasms found in historical controls after step sectioning (Eustis et al., 1994). While it is unlikely that the 2,500, 5,000, and 10,000 ppm stop-exposure groups incidences would all fall close to the upper range of historical control incidences by chance alone, the severe nephropathy complicated interpretation of these There was no increase in renal tubule neoplasms in the 625 ppm group. Whether these renal neoplasms represent an intrinsic carcinogenic effect of oxazepam or are secondary to the oxazepam-enhanced nephropathy cannot be determined from these studies. There is no convincing evidence to suggest that oxazepam is mutagenic or has the ability to induce chromosomal aberrations or other adverse genetic effects.

The effects of oxazepam on the liver of male and female rats were limited to centrilobular hepatocyte hypertrophy commonly seen with a wide variety of agents, including other benzodiazepines and barbiturates, and changes in the incidences of basophilic and clear cell foci. There was no evidence of an increase in hepatocellular neoplasms in male or female rats exposed to oxazepam. This is in sharp contrast to the increases in liver neoplasms reported with the two mouse strains studied earlier (NTP, 1993; Bucher et al., 1994).

The reasons for the species differences in liver neoplasm response are not known. The response of the mouse liver to oxazepam includes a transient induction of hepatocyte replication, which, coupled with hepatocyte hypertrophy, accounts for the increase in liver weight. Increases in cytochrome P450 and b5 content and glucuronyl transferase activity are seen; however, there is little evidence to suggest that oxidative stress or cytotoxicity is induced (Bucher et al., 1994; Cunningham et al., 1994; Griffin et al., 1996). In similar studies reported in Appendix H. hepatocyte proliferation in rats was also transient and hypertrophy was a persistent change. Again, oxazepam did not induce significant cytotoxicity. In in vitro incubations of oxazepam with microsomes from human, rat, and mouse liver, evidence of covalent protein binding was found in all three cases, but the magnitude was greatest in rats,

followed by mice, and then humans (Griffin *et al.*, 1995a,b), suggesting that this activity is unrelated to the carcinogenic response.

One area in which there are clear differences between rats and mice is in comparative metabolism. metabolism of oxazepam is complex and has been extensively documented in the F344/N rat and the B6C3F₁ and Swiss-Webster mouse (Griffin and Burka, 1993, 1995). Oxidative metabolism (of the phenyl ring) occurs in both rats and mice (Griffin et al., 1995c) but is more pronounced in rats. There are also differences in the major conjugation reactions with glucuronic acid and sulfate, as well as differences in fecal and urinary excretion patterns. On repeated dosing, there is a shift in the metabolite pattern in mice, but not rats, suggesting an induction of enzymes which are involved in oxazepam metabolism. Serum concentrations of oxazepam were higher at comparable dosed feed concentrations in mice (NTP, 1993) than in rats in the current study, but the differences appeared due at least in part to the relatively greater consumption of dosed feed by mice than rats on a body weight basis. Mice also eliminated less oxazepam in the feces than did rats and had a slightly longer terminal elimination half-life from plasma, suggesting that enterohepatic circulation may be greater in mice (Yuan et al., 1994; Griffin and Burka, 1993, 1995). This may indicate a greater degree of exposure of the liver of mice to oxazepam and its metabolites when compared to rats. Nonetheless, as indicated earlier, despite considerable effort devoted to examining the basis for the differential carcinogenic response in rats and mice, no clear biochemical basis for this effect has been identified.

Two recent epidemiology studies have evaluated the association between human cancers and benzo-diazepine use. Neither examined oxazepam specifically. Rosenberg *et al.* (1995) did not find an associ-

ation between sustained benzodiazepine use (at least 4 days per week for at least 1 month, initiated at least 2 years prior to hospital admission) and any one of 11 cancers (breast, large bowel, malignant melanoma, lung, uterine endometrium, ovary, non-Hodgkin's lymphoma, testis, Hodgkin's disease, thyroid gland, and liver) in a large United States hospital-based surveillance study. Harlow and Cramer (1995) reported an association between prior use of benzodiazepines exceeding 1 to 6 months with subsequent development of ovarian cancer (adjusted odds ratio 1.8, 95% CI 1.0 -3.1). These authors proposed that the induction of hepatic microsomal enzymes by benzodiazepines might enhance the metabolism of estrogen, thus stimulating higher gonadotropin levels. Ovarian neoplasms were not increased in female rats in the present studies or in studies with mice reported earlier (NTP, 1993).

CONCLUSIONS

In summary, under the conditions of these 2-year dosed-feed studies, there was *equivocal evidence of carcinogenic activity** in male F344/N rats based on small increases in the incidences of renal tubule adenomas in exposed groups also exhibiting significantly enhanced nephropathy. There was *no evidence of carcinogenic activity* of oxazepam in female F344/N rats exposed to feed containing 625, 2,500, or 5,000 ppm for 2 years or 10,000 ppm for 6 months.

Administration of oxazepam to rats resulted in non-neoplastic lesions in the forestomach, glandular stomach, and small intestine as well as centrilobular hypertrophy of hepatocytes in the liver. In addition, nephropathy was increased in incidence in female rats and was markedly increased in severity in male rats, resulting in early mortality at the higher exposure concentrations.

^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 9. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 11.

REFERENCES

American Conference of Governmental Industrial Hygienists (ACGIH) (1996). 1996 Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinnati, OH.

Anonymous (1986). Top 200 Drugs of 1985: A 1.4% increase in refills nudges 1985 rxs 1.1% ahead of 1984 volume. *Pharm. Times* **52**, 25-33.

Anonymous (1996). The Top 200 Drugs. *Am. Druggist* Feb., 18-23.

Armitage, P. (1971). *Statistical Methods in Medical Research*, pp. 362-365. John Wiley and Sons, New York.

Ashby, J., and Tennant, R.W. (1991). Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. *Mutat. Res.* **257**, 229-306.

Balbi, A., Muscettola, G., Staiano, N., Martire, G., and De Lorenzo, F. (1980). Psychotropic drugs: Evaluation of mutagenic effect. *Pharmacol. Res. Commun.* **12**, 423-431.

Barnard, E.A., Stephenson, F.A., Sigel, E., Mamalaki, C., Bilbe, G., Constanti, A., Smart, T.G., and Brown, D.A. (1984). Structure and properties of the brain GABA/benzodiazepine receptor complex. *Adv. Exp. Med. Biol.* **175**, 235-254.

Batzinger, R.P., Ou, S.-Y.L., and Bueding, E. (1978). Antimutagenic effects of 2(3)-tert-butyl-4-hydroxyanisole and of antimicrobial agents. *Cancer Res.* **38**, 4478-4485.

Bignami, M., Morpurgo, G., Pagliani, R., Carere, A., Conti, G., and Di Giuseppe, G. (1974). Non-disjunction and crossing-over induced by pharmaceutical drugs in *Aspergillus nidulans*. *Mutat. Res.* **26**, 159-170.

Boorman, G.A., Montgomery, C.A., Jr., Eustis, S.L., Wolfe, M.J., McConnell, E.E., and Hardisty, J.F. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), pp. 345-357. Noyes Publications, Park Ridge, NJ.

Bregman, A.A. (1970). *In vitro* effects of tranquilizers on human chromosomes. *EMS Newsl.* **3**, 41.

Brown, H. R., and Hardisty, J. F. (1990). Oral cavity, esophagus, and stomach. In *Pathology of the Fischer Rat.* (G.A. Boorman, S.L. Eustis, M.R. Elwell, C.A. Montgomery, Jr., and W.F. MacKenzie, Eds.), pp. 9-30. Academic Press, Inc., San Diego.

Bucher, J.R., Shackelford, C.C., Haseman, J.K., Johnson, J.D., Kurtz, P.J., and Persing, R.L. (1994). Carcinogenicity studies of oxazepam in mice. *Fundam. Appl. Toxicol.* **23**, 280-297.

Buckley, N.A., Dawson, A.H., Whyte, I.M., and O'Connell, D.L. (1995). Relative toxicity of benzo-diazepines in overdose. *BMJ* **310**, 219-221.

Calvo, D.J., Campos, M.B., Calandra, R.S., Medina, J.H., and Ritta, M.N. (1991). Effect of long term diazepam administration on testicular benzo-diazepine receptors and steroidogenesis. *Life Sci.* **49**, 519-525.

Campiani, G., Nacci, V., Fiorini, I., De Filippis, M.P., Garofalo, A., Ciani, S.M., E., Williams, D.C., Greco, G., Novellino, Zisterer, D.M., Woods, M.J., Mihai, Manzoni, C., and Mennini, T. (1996). Synthesis, biological activity, and SARs of pyrrolobenzoxazepine derivatives, a new class of specific "peripheral-type" benzodiazepine receptor ligands. J. Med. Chem. 39, 3435-3450.

Capen, C.C. (1994). Changes in structure and function of the parathyroid gland. In *Pathobiology of the Aging Rat.* (U. Mohr, D.L. Dungworth, and C.C. Capen, Eds.), pp. 199-226. ILSI Press, Washington, DC.

Code of Federal Regulations (CFR) 21, Part 58.

Committee on the Review of Medicines (CRM) (1980). Systematic review of the benzodiazepines. Guidelines for data sheets on diazepam, chlor-diazepoxide, medazepam, clorazepate, lorazepam, oxazepam, temazepam, triazolam, nitrazepam, and flurazepam. *Br. Med. J.* **280**, 910-912.

Cooper, J.R., Bloom, F.E., and Roth, R.H., Eds. (1978). *The Biochemical Basis of Neuropharma-cology*, 3rd ed. Oxford University Press, New York.

Cox, D.R. (1972). Regression models and life-tables. *J. R. Stat. Soc.* **B34**, 187-220.

Crawford, B.D. (1985). Perspectives on the somatic mutation model of carcinogenesis. In *Advances in Modern Environmental Toxicology. Mechanisms and Toxicity of Chemical Carcinogens and Mutagens* (M.A. Mehlman, W.G. Flamm, and R.J. Lorentzen, Eds.), pp. 13-59. Princeton Scientific Publishing Co., Inc., Princeton, NJ.

Crebelli, R., Conti, G., Conti, L., and Carere, A. (1989). The E.E.C. genomic mutation program: Results with Aspergillus nidulans. *Environ. Mol. Mutagen.* **14** (Suppl. 15), 41-42 (Abstr.).

Crebelli, R., Conti, G., Conti, L., and Carere, A. (1991). *In vitro* studies with nine known or suspected spindle poisons: Results in tests for chromosome malsegregation in *Aspergillus nidulans*. *Mutagenesis* **6**, 131-136.

Cunningham, M.L., Maronpot, R.R., Thompson, M., and Bucher, J.R. (1994). Early responses of the liver of B6C3F1 mice to the hepatocarcinogen oxazepam. *Toxicol. Appl. Pharmacol.* **124**, 31-38.

Degraeve, N., Chollet, C., Moutschen, J., Moutschen-Dahmen, M., and Gilet-Delhalle, J. (1985). Investigation of the potential mutagenic activity of benzodiazepines in mice. *Mutat. Res.* **147**, 290.

de la Iglesia, A., Barsoum, N., Gough, A., Mitchell, L., Martin, R.A., di Fonzo, C., and McGuire, E.J. (1981). Carcinogenesis bioassay of prazepam (Verstran) in rats and mice. *Toxicol. Appl. Pharmacol.* **57**, 39-54.

Dinse, G.E., and Haseman, J.K. (1986). Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. *Fundam. Appl. Toxicol.* **6**, 44-52.

Dinse, G.E., and Lagakos, S.W. (1983). Regression analysis of tumour prevalence data. *Appl. Statist.* **32**, 236-248.

Diwan, B.A., Rice, J.M., and Ward, J.M. (1986). Tumor-promoting activity of benzodiazepine tranquilizers, diazepam and oxazepam, in mouse liver. *Carcinogenesis* **7**, 789-794.

Dixon, W.J., and Massey, F.J., Jr. (1951). *Introduction to Statistical Analysis*, 1st ed., pp. 145-147. McGraw-Hill Book Company, Inc., New York.

Eadie, M.J. (1984). Currently available benzo-diazepines. *Med. J. Aust.* **8**, 827-831.

Eustis, S.L., Hailey, J.R., Boorman, G.A., and Haseman, J.K. (1994). The utility of multiple-section sampling in the histopathological evaluation of the kidney for carcinogenicity studies. *Toxicol. Pathol.* **22**, 457-472.

Finkle, B.S., McCloskey, K.L., and Goodman, L.S. (1979). Diazepam and drug-associated deaths. *JAMA* **242**, 429-434.

Fischer, R.P., Peter, E.T., and Mullane, J.F. (1974). Experimental stress ulcers in acidotic and nonacidotic renal insufficiency. *Arch. Surg.* **109**, 409-411.

Oxazepam, NTP TR 468 53

- Fitzgerald, J.E., de la Iglesia, F.A., and McGuire, E.J. (1984). Carcinogenicity studies in rodents and ripazepam, a minor tranquilizing agent. *Fundam. Appl. Toxicol.* **4**, 178-190.
- Florey, K., Ed. (1974). *Analytical Profiles of Drug Substances*, Vol. 3, pp. 442-464. Academic Press, New York.
- Fox, K.A., and Lahcen, R.B. (1974). Liver-cell adenomas and peliosis hepatis in mice associated with oxazepam. *Res. Commun. Chem. Pathol. Pharmacol.* **8**, 481-488.
- Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J., Margolin, B.H., Resnick, M.A., Anderson, B., and Zeiger, E. (1987). Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. *Environ. Mol. Mutagen.* **10** (Suppl. 10), 1-175.
- Gart, J.J., Chu, K.C., and Tarone, R.E. (1979). Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. *JNCI* **62**, 957-974.
- Gonipath, C., Prentice, D.E., and Lewis, D.J. (1987). The alimentary system and pancreas. In *Atlas of Experimental Toxicological Pathology*, Vol. 13. (G.A. Gresham, Ed.), pp. 61-76. MTP Press Limited, Boston, MA.
- Goodman and Gilman's The Pharmacological Basis of Therapeutics (1996). 9th ed. (J.G. Hardman, L.E. Limbird, P.B. Molinoff, R.W. Ruddon, and A.G. Gilman, Eds.). McGraw-Hill, New York.
- Greenblatt, D.J., and Shader, R.I. (1978). Pharmaco-kinetic understanding of antianxiety drug therapy. *South. Med. J.* **71**, 2-9.
- Greenblatt, D.J., Divoll, M., Harmatz, J.S., and Shader, R.I. (1980). Oxazepam kinetics, effects of age and sex. *J. Pharmacol. Exp. Ther.* **215**, 86-91.
- Griffin, R.J., and Burka, L.T. (1993). Metabolism and elimination of oxazepam in B6C3F1 and Swiss-Webster mice. *Drug Metab. Dispos.* **21**, 918-926.

- Griffin, R.J., and Burka, L.T. (1995). Metabolism and elimination of oxazepam in F344 rats. *Drug Metab. Dispos.* **23**, 232-239.
- Griffin, R.J., Burka, L.T., and Cunningham, M.L. (1995a). Activity of hepatic drug metabolizing enzymes following oxazepam-dosed feed treatment in B6C3F1 mice. *Toxicol. Lett.* **76**, 251-256.
- Griffin, R.J., Burka, L.T., and Cunningham, M.L. (1995b). Activity of hepatic drug metabolizing enzymes following oxazepam-dosed feed treatment in B6C3F₁ mice. *Toxicol. Lett.* **76**, 251-256.
- Griffin, R.J., Burka, L.T., and Demby, K.B. (1995c). Oxidative biotransformation of oxazepam to reactive and nonreactive products in rat, mouse and human microsomes. *Hum. Exp. Toxicol.* **14**, 779-786.
- Griffin, R.J., Dudley, C.N., and Cunningham, M.L. (1996). Biochemical effects of the mouse hepatocarcinogen oxazepam: Similarities to phenobarbital. *Fundam. Appl. Toxicol.* **29**, 147-154.
- Harlow, B.L., and Cramer, D.W. (1995). Self-reported use of antidepressants or benzodiazepine tranquilizers and risk of epithelial ovarian cancer: Evidence from two combined case-control studies (Massachusetts, United States). *Cancer Causes Control* **6**, 130-134.
- Hartz, S.C., Heinonen, O.P., Shapiro, S., Siskind, V., and Slone, D. (1975). Antenatal exposure to meprobamate and chlordiazepoxide in relation to malformations, mental development, and childhood mortality. *N. Engl. J. Med.* **292**, 726-728.
- Haseman, J.K. (1984). Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. *Environ. Health Perspect.* **58**, 385-392.
- Hollander, M., and Wolfe, D.A. (1973). *Nonparametric Statistical Methods*, pp. 120-123. John Wiley and Sons, New York.
- Horrobin, D.F., Ghayur, T., and Karmali, R.A. (1979). Mind and cancer. *Lancet* **1**, 978.

- Hsu, T.C., Liang, J.C., and Shirley, L.R. (1983). Aneuploidy induction by mitotic arrestants. Effects of diazepam on diploid Chinese hamster cells. *Mutat. Res.* **122**, 201-209.
- Husum, B., Wulf, H.C., Niebuhr, E., and Rasmussen, J.A. (1985). SCE in lymphocytes of patients treated with single, large doses of diazepam. *Mutat. Res.* **155**, 71-73.
- Ishidate, M., Jr., Hayashi, M., Sawada, M., Matsuoka, K., Yoshikawa, K., Ono, M., and Nakadate, M. (1978). Cytotoxicity test on medical drugs) Chromosome aberration tests with Chinese hamster cells *in vitro*. *Eisei Shikenjo Hokoku* **96**, 55-61.
- Ishimura, K., Sawai, M., Yamamoto, K., Neda, K., and Sato, H. (1975). Studies on the chromosomes of rat bone marrow cells treated with benzodiazepine derivative *in vivo*. *Teratology* **12**, 199.
- Jabłońska, J.K., Knobloch, K., Majka, J., and Wiśniewska-Knypl, J.M. (1975). Stimulatory effects of chlordiazepoxide, diazepam and oxazepam on the drug-metabolizing enzymes in microsomes. *Toxicology* **5**, 103-111.
- Kanto, J.H. (1982). Use of benzodiazepines during pregnancy, labour and lactation, with particular reference to pharmacokinetic considerations. *Drugs* **23**, 354-380.
- Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. *J. Am. Stat. Assoc.* **53**, 457-481.
- Kataoka, Y., Shibata, K., Gomita, Y., and Ueki, S. (1982). The mammillary body is a potential site of antianxiety action of benzodiazepines. *Brain Res.* **241**, 374-377.
- Kawachi, T., Yahagi, T., Kada, T., Tazima, Y., Ishidate, M., Sasaki, M., and Sugiyama, T. (1980). Cooperative programme on short-term assays for carcinogenicity in Japan. *IARC Sci. Publ.* **27**, 323-330.

- Kleinerman, R.A., Brinton, L.A., Hoover, R., and Fraumeni, J.F., Jr. (1984). Diazepam use and progression of breast cancer. *Cancer Res.* **44**, 1223-1225.
- Krueger, K.E., and Papadopoulos, V. (1992). Mitochondrial benzodiazepine receptors and the regulation of steroid biosynthesis. *Annu. Rev. Pharmacol. Toxicol.* **32**, 211-237.
- Lafi, A., and Parry, J.M. (1988). A study of the induction of aneuploidy and chromosome aberrations after diazepam, medazepam, midazolam and bromazepam treatment. *Mutagenesis* **1**, 78.
- Lafi, A., Parry, E.M., and Parry, J.M. (1987). The effects of benzodiazepines upon the fidelity of mitotic cell division in cultured Chinese hamster cells. *Mutat. Res.* **189**, 319-332.
- Leininger, J.R., and Riley, M.G.I. (1990). Bones, joints, and synovia. In *Pathology of the Fischer Rat. Reference and Atlas*. (G.A. Boorman, S.L. Eustis, M.R. Elwell, C.A. Montgomery, Jr., and W.F. MacKenzie, Eds.), pp. 209-226. Academic Press, Inc., San Diego.
- Levitan, E.S., Schofield, P.R., Burt, D.R., Rhee, L.M., Wisden, W., Köhler, M., Fujita, N., Rodriguez, H.F., Stephenson, A., Darlison, M.G., Barnard, E.A., and Seeburg, P.H. (1988). Structural and functional basis for GABA_A receptor heterogeneity. *Nature* **335**, 76-79.
- Livezey, G.T., Marczynski, T.J., McGrew, E.A., and Beluhan, F.Z. (1986a). Prenatal exposure to diazepam: Late postnatal teratogenic effect. *Neurobehav. Toxicol. Teratol.* **8**, 433-440.
- Livezey, G.T., Marczynski, T.J., and Isaac, L. (1986b). Prenatal diazepam: Chronic anxiety and deficits in brain receptors in mature rat progeny. *Neurobehav. Toxicol. Teratol.* **8**, 425-432.
- McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. *JNCI* **76**, 283-289.

Oxazepam, NTP TR 468 55

MacGregor, J.T., Wehr, C.M., and Langlois, R.G. (1983). A simple fluorescent staining procedure for micronuclei and RNA in erythrocytes using Hoechst 33258 and pyronin Y. *Mutat. Res.* **120**, 269-275.

MacGregor, J.T., Wehr, C.M., Henika, P.R., and Shelby, M.D. (1990). The *in vivo* erythrocyte micronucleus test: Measurement at steady state increases assay efficiency and permits integration with toxicity studies. *Fundam. Appl. Toxicol.* **14**, 513-522.

McKnight, B., and Crowley, J. (1984). Tests for differences in tumor incidence based on animal carcinogenesis experiments. *J. Am. Stat. Assoc.* **79**, 639-648.

Marcucci, F., Guaitani, A., Kvetina, J., Mussini, E., and Garattini, S. (1968). Species difference in diazepam metabolism and anticonvulsant effect. *Eur. J. Pharmacol.* **4**, 467-470.

Margolin, B.H., Risko, K.J., Frome, E.L., and Tice, R.R. (1990). A general purpose statistical analysis program for micronucleus assay data. Appendix 2: Micronucleus data management and analysis version 1.4a. Integrated Laboratory Systems, Research Triangle Park, NC.

Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* **10**, 71-80.

Martin, W.R., McNicholas, L.F., and Cherian, S. (1982). Diazepam and pentobarbital dependence in the rat. *Life Sci.* **31**, 721-730.

Matsuoka, A., Hayashi, M., and Ishidate, M., Jr. (1979). Chromosomal aberration tests on 29 chemicals combined with S9 mix in vitro. *Mutat. Res.* **66**, 277-290.

Matula, T.I., and Downie, R. (1983). Evaluation of diazepam and oxazepam in *in vitro* microbial mutagenicity tests and in an *in vivo* promoter assay. *Environ. Mutagen.* **5**, 478.

The Merck Index (1983). 10th ed. (M. Windholz, Ed.), p. 994. Merck and Company, Inc., Rahway, NJ.

The Merck Index (1989). 11th ed. (S. Budavari, Ed.), p. 1096. Merck and Company, Inc., Rahway, NJ.

Milkovich, L., and van den Berg, B.J. (1974). Effects of prenatal meprobamate and chlordiazepoxide hydrochloride on human embryonic and fetal development. *N. Engl. J. Med.* **291**, 1268-1271.

Miller, B.M., and Adler, I.-D. (1989). Suspect spindle poisons: Analysis of c-mitotic effects in mouse bone marrow cells. *Mutagenesis* **4**, 208-215.

Miller, J.A., and Miller, E.C. (1977). Ultimate chemical carcinogens as reactive mutagenic electrophiles. In *Origins of Human Cancer* (H.H. Hiatt, J.D. Watson, and J.A. Winsten, Eds.), pp. 605-627. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Miller, R.P., and Becker, B.A. (1975). Teratogenicity of oral diazepam and diphenylhydantoin in mice. *Toxicol. Appl. Pharmacol.* **32**, 53-61.

National Cancer Institute (NCI) (1976). Guidelines for Carcinogen Bioassay in Small Rodents. Technical Report Series No. 1. NIH Publication No. 76-801. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Institutes of Health (NIH) (1978). Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, NIH, Bethesda, MD.

National Toxicology Program (NTP) (1993). Toxicology and Carcinogenesis Studies of Oxazepam (CAS No. 604-75-1) in Swiss-Webster and $B6C3F_1$ Mice (Feed Studies). Technical Report Series No. 443. NIH Publication No. 93-3359. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

Orlandi, F., Bamonti, F., Dini, M., Koch, M., and Jezequel, A.M. (1975). Hepatic cholesterol synthesis in man: Effect of diazepam and other drugs. *Eur. J. Clin. Invest.* **5**, 139-146.

Owen, G., Smith, T.H.F., and Agersborg, H.P.K., Jr. (1970). Toxicity of some benzodiazepine compounds with CNS activity. *Toxicol. Appl. Pharmacol.* **16**, 556-570.

Papadopoulos, V., and Brown, A.S. (1995). Role of the peripheral-type benzodiazepine receptor and the polypeptide diazepam binding inhibitor in steroidogenesis. *J. Steroid Biochem. Mol. Biol.* **53**, 103-110.

Parry, J.M., Parry, E.M., Calvert, R., Lafi, A., and Somers, A. (1986). The mechanisms of induction of chromosome aneuploidy as revealed by the study of aberrations of mitotic cell division. *Prog. Clin. Biol. Res.* **209A**, 325-332.

Parry, J.M., Parry, E.M., Warr, T., Lynch, A., and James, S. (1989). The detection of aneugens using yeasts and cultured mammalian cells. *Environ. Mol. Mutagen.* **14** (Suppl. 15), 151 (Abstr.).

Pedersen, W., and Lavik, N.J. (1991). Adolescents and benzodiazepines: Prescribed use, self-medication and intoxication. *Acta Psychiatr. Scand.* **84**, 94-98.

Petersen, K.W., Sherwood, H.L., and Petersen, H.D. (1978). The cytogenetic effects of diazepam and chlordiazepoxide. *Anat. Rec.* **190**, 620.

Petrescu, M., Cuparencu, B., Horak, J., Petrescu, L., Florescu, P., Kory, M., Tomus, C., and Rusu, V. (1981). Certain aspects of the toxicity of some benzodiazepines. *Agressologie* **22**, 209-217.

Physicians' Desk Reference (PDR) (1996). 50th ed., pp. 2810-2811. Medical Economics Company, Montvale, NJ.

Préat, V., de Gerlache, J., Lans, M., and Roberfroid, M. (1987). Promoting effect of oxazepam in rat hepatocarcinogenesis. *Carcinogenesis* **8**, 97-100.

Preiss, A.M., Scheutwinkel-Reich, M., Fülle, I., Grohmann, H.G., and Stan, H.-J. (1982). Investigation, with the Salmonella/microsome test, of psychopharmaceuticals used in meat production. *Mutat. Res.* **104**, 333-337.

Rajaonarison, J.F., Lacarelle, B., De Sousa, G., Catalin, J., and Rahmani, R. (1991). *In vitro* glucuronidation of 3'-azido-3'-deoxythymidine by human liver. Role of UDP-glucuronosyltransferase 2 form. *Drug Metab. Dispos.* **19**, 809-815.

Randall, L.O., Schallek, W., Scheckel, C.L., Stefko, P.L., Banziger, R.F., Pool, W., and Moe, R.A. (1969). Pharmacological studies on flurazepam hydrochloride (¹) (RO 5-6901), a new psychotropic agent of the benzodiazepine class. *Arch. Int. Pharmacodyn. Ther.* **178**, 216-241.

Randall, L.O., Scheckel, C.L., and Pool, W. (1970). Pharmacology of medazepam (1) and metabolites. *Arch. Int. Pharmacodyn. Ther.* **185**, 135-148.

Rao, G.N., Edmondson, J., and Elwell, M.R. (1993). Influence of dietary protein concentration on severity of nephropathy in Fischer-344 (F-344/N) rats. *Toxicol. Pathol.* **21**, 353-361.

Remandet, B., Gouy, D., Berthe, J., Mazue, G., and Williams, G.M. (1984). Lack of initiating or promoting activity of six benzodiazepine tranquilizers in rat liver limited bioassays monitored by histopathology and assay of liver and plasma enzymes. *Fundam. Appl. Toxicol.* **4**, 152-163.

Remington's Pharmaceutical Sciences (1980). 16th ed. (A. Osol, Ed.). Mack Publishing Company, Easton, PA.

Ricceri, L., Calamandrei, G., and Alleva, E. (1994). Prenatal oxazepam affects passive avoidance performance of preweaning mice. *Brain Res. Bull.* **33**, 267-271.

Richards, J.G., Schoch, P., Möhler, H., and Haefely, W. (1986). Benzodiazepine receptors resolved. *Experientia* **42**, 121-126.

Oxazepam, NTP TR 468 57

- Robinson, R.L., Van Ryzin, R.J., Stoll, R.E., Jensen, R.D., and Bagdon, R.E. (1984). Chronic toxicity/carcinogenesis study of temazepam in mice and rats. *Fundam. Appl. Toxicol.* **4**, 394-405.
- Rogers, C.J., Twyman, R.E., and MacDonald, R.L. (1994). Benzodiazepine and beta-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. *J. Physiol. (Lond.)* **475**, 69-82.
- Rosenberg, L., Palmer, J.R., Zauber, A.G., Warshauer, M.E., Strom, B.L., Harlap, S. and Shapiro, S. (1995). Relation of benzodiazepine use to the risk of selected cancers: Breast, large bowel, malignant melanoma, lung, endometrium, ovary, non-Hodgkin's lymphoma, testis, Hodgkin's disease, thyroid and liver. *Am. J. Epidemiol.* **141**, 1153-60.
- Ryan, C.L., and Pappas, B.A. (1986). Intrauterine diazepam exposure: Effects on physical and neurobehavioral development in the rat. *Neurobehav. Toxicol. Teratol.* **8**, 279-286.
- Saano, V. (1988). Central-type and peripheral-type benzodiazepine receptors. *Ann. Clin. Res.* **20**, 348-355.
- Saito, H., Kobayashi, H., Takeno, S., and Sakai, T. (1984). Fetal toxicity of benzodiazepines in rats. *Res. Commun. Chem. Pathol. Pharmacol.* **46**, 437 (Abstr.).
- Salzman, C., Shader, R.I., Greenblatt, D.J., and Harmatz, J.S. (1983). Long vs. short half-life benzodiazepines in the elderly. *Arch. Gen. Psychiatry* **40**, 293-297.
- Sasaki, M., Sugimura, K., Yoshida, M.A., and Abe, S. (1980). Cytogenetic effects of 60 chemicals on cultured human and Chinese hamster cells. *La Kromosomo* **20**, 574-584.
- Schmid, W., and Staiger, G.R. (1969). Chromosome studies on bone marrow from Chinese hamsters treated with benzodiazepine tranquillizers and cyclophosphamide. *Mutat. Res.* **7**, 99-108.

- Scrollini, F., Caliari, S., Romano, A., and Torchio, P. (1975). Toxicological and pharmaco-logical investigations of pinazepam (7-chloro-1-propargyl-5-phenyl-3H-1,4-benzodiazepin-2-one): A new psychotherapeutic agent. *Arzneimittelforschung* **25**, 934-940.
- Seely, J.C., and Hildebrandt, P.K. (1990). Parathyroid gland. In *Pathology of the Fischer Rat. Reference and Atlas.* (G.A. Boorman, S.L. Eustis, M.R. Elwell, C.A. Montgomery, Jr., and W.F. MacKenzie, Eds.), pp. 537-543. Academic Press, Inc., San Diego.
- Shader, R.I., and Greenblatt, D.J. (1981). The use of benzodiazepines in clinical practice. *Br. J. Clin. Pharmacol.* **11**, 5S-9S.
- Shannon, R.W., Fraser, G.P., Aitken, R.G., and Harper, J.R. (1972). Diazepam in preeclamptic toxaemia with special reference to its effect on the newborn infant. *Br. J. Clin. Pract.* **26**, 271-275.
- Shelby, M.D., and Witt, K.L. (1995). Comparison of results from mouse bone marrow chromosome aberration and micronucleus tests. *Environ. Mol. Mutagen.* **25**, 302-313.
- Shelby, M.D., Erexson, G.L., Hook, G.J., and Tice, R.R. (1993). Evaluation of a three-exposure mouse bone marrow micronucleus protocol: Results with 49 chemicals. *Environ. Mol. Mutagen.* **21**, 160-179.
- Shibuya, T., Watanabe, Y., Hill, H.F., and Salafsky, B. (1986). Developmental alterations in maturing rats caused by chronic prenatal and postnatal diazepam treatments. *Jpn. J. Pharmacol.* **40**, 21-29.
- Sisenwine, S.F., Tio, C.O., Shrader, S.R., and Ruelius, H.W. (1972). The biotransformation of oxazepam (7-chloro-1,3-dihydro-3-hydroxy-5-phenyl-2H-1,4-benzodiazepin-2-one) in man, miniature swine and rat. *Arzneimittelforschung* **22**, 682-687.

Snyder, S.H., Verma, A., and Trifiletti, R.R. (1987). The peripheral-type benzodiazepine receptor: A protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. *FASEB J.* **1**, 282-288.

Staiger, G.R. (1969). Chlordiazepoxide and diazepam: Absence of effects on the chromosomes of diploid human fibroblast cells. *Mutat. Res.* **7**, 109-115.

Staiger, G.R. (1970). Studies on the chromosomes of human lymphocytes treated with diazepam *in vitro*. *Mutat. Res.* **10**, 635-644.

Stenchever, M.A., Frankel, R.S., and Jarvis, J.A. (1970a). Effect of diazepam on chromosomes of human leukocytes *in vivo*. *Am. J. Obstet. Gynecol.* **107**, 456-460.

Stenchever, M.A., Frankel, R.S., Jarvis, J.A., and Veress, K. (1970b). Effect of chlordiazepoxide hydrochloride on human chromosomes. *Am. J. Obstet. Gynecol.* **106**, 920-923.

Stoll, B.A. (1976). Psychosomatic factors and tumour growth. In *Risk Factors in Breast Cancer* (B.A. Stoll, Ed.), pp. 193-203. William Heinemann Medical Books, London.

Straus, D.S. (1981). Somatic mutation, cellular differentiation, and cancer causation. *JNCI* **67**, 233-241.

Swierenga, S.H.H., Butler, S.G., and Hasnain, S.H. (1983). Activity of diazepam and oxazepam in various mammalian cell *in vitro* toxicity tests. *Environ. Mutagen.* **5**, 417.

Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* **62**, 679-682.

Tennant, R.W., Margolin, B.H., Shelby, M.D., Zeiger, E., Haseman, J.K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. (1987). Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. *Science* **236**, 933-941.

Tocus, E.C., Nelson, R.C., and Vocci, F.J., Jr. (1983). Regulatory perspectives and the benzo-diazepines. *J. Psychoactive Drugs* **15**, 151-157.

Torigoe, K. (1979). Sister chromatid exchange in children treated with anticonvulsant drugs. *Acta Med. Biol.* **27**, 65-72.

Trosko, J.E., and Horrobin, D.F. (1980). The activity of diazepam in a Chinese hamster V79 lung cell assay for tumour promoters. *IRCS Med. Sci.* **8**, 887

Tucker, J.C. (1985). Benzodiazepines and the developing rat: A critical review. *Neurosci. Biobehav. Rev.* **9**, 101-111.

Vega, P., Carrasco, M., Sanchez, E., and del Villar, E. (1984). Structure-activity relationship in the effect of 1,4-benzodiazepines on morphine, aminopyrine and oestrone metabolism. *Res. Commun. Chem. Pathol. Pharmacol.* **44**, 179-198.

Verma, A., and Snyder, S.H. (1989). Peripheral type benzodiazepine receptors. *Annu. Rev. Pharmacol. Toxicol.* **29**, 307-322.

Vorne, M., and Idänpään-Heikkilä, J. (1975). Inhibition of drug metabolizing enzymes by diazepam in rat liver. *Experientia* **31**, 962-963.

Waskell, L. (1978). A study of the mutagenicity of anesthetics and their metabolites. *Mutat. Res.* **57**, 141-153.

Wee, E.L., and Zimmerman, E.F. (1983). Involvement of GABA in palate morphogenesis and its relation to diazepam teratogenesis in two mouse strains. *Teratology* **28**, 15-22.

White, B.J., Driscoll, E.J., Tjio, J.-H., and Smilack, Z.H. (1974). Chromosomal aberration rates and intravenously given diazepam. *JAMA* **230**, 414-417.

Whittaker, S.G., Zimmermann, F.K., Dicus, B., Piegorsch, W.W., Fogel, S., and Resnick, M.A. (1989). Detection of induced mitotic chromosome loss in *Saccharomyces cerevisiae* — an interlaboratory study. *Mutat. Res.* **224**, 31-78.

Oxazepam, NTP TR 468 59

Williams, G.M., Mori, H., and McQueen, C.A. (1989). Structure-activity relationships in the rat hepatocyte DNA-repair test for 300 chemicals. *Mutat. Res.* **221**, 263-286.

Xu, W., and Adler, I.-D. (1990). Clastogenic effects of known and suspect spindle poisons studied by chromosome analysis in mouse bone marrow cells. *Mutagenesis* **5**, 371-374.

Yuan, J., Goehl, T.J., Hong, L., Clark, J., Murrill, E., and Moore, R. (1994). Toxicokinetics of oxazepam in rats and mice. *J. Pharm. Sci.* **83**, 1373-1379.

Zeiger, E., Haseman, J.K., Shelby, M.D., Margolin, B.H., and Tennant, R.W. (1990). Evaluation of four in vitro genetic toxicity tests for predicting rodent carcinogenicity: Confirmation of earlier results with 41 additional chemicals. *Environ. Mol. Mutagen.* **16** (Suppl. 18), 1-14.

Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., and Mortelmans, K. (1992). Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals. *Environ. Mol. Mutagen.* **19** (Suppl. 21), 2-141.

Zhurkov, V.S. (1975). Investigation of the mutagenic activity of drug preparations and food additives in a culture of human lymphocytes. *Sov. Genet.* **11**, 528-530.

APPENDIX A SUMMARY OF LESIONS IN MALE RATS IN THE 2-YEAR FEED STUDY OF OXAZEPAM

TABLE A1	Summary of the Incidence of Neoplasms in Male Rats	
	in the 2-Year Feed Study of Oxazepam	62
TABLE A2	Individual Animal Tumor Pathology of Male Rats	
	in the 2-Year Feed Study of Oxazepam	66
TABLE A3a	Statistical Analysis of Primary Neoplasms in Male Rats	
	in the 2-Year Feed Study of Oxazepam	90
TABLE A3b	Statistical Analysis of Primary Neoplasms in Male Rats	
	in the 2-Year Stop-Exposure Feed Study of Oxazepam	96
TABLE A4a		
	in Untreated Male F344/N Rats	101
TABLE A4b	Historical Incidence of Benign Adrenal Medulla Pheochromocytoma	
	in Untreated Male F344/N Rats	101
TABLE A4c	Historical Incidence of Pituitary Gland (Pars Distalis) Adenoma	
	in Untreated Male F344/N Rats	102
TABLE A5	Summary of the Incidence of Nonneoplastic Lesions in Male Rats	
	in the 2-Year Feed Study of Oxazepam	103

TABLE A1
Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam^a

	0 ppm	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Disposition Summary					
Animals initially in study Early deaths	50	50	50	50	50
Moribund	25	27	33	43	39
Natural deaths	8	12	11	7	11
Survivors					
Terminal sacrifice	17	11	6		
Animals examined microscopically	50	50	50	50	50
Alimentary System					
Intestine large, colon	(50)	(47)	(50)	(50)	(1)
Polyp adenomatous	. ,	1 (2%)	` ,	` '	, ,
Intestine large, rectum	(50)	(48)	(49)	(50)	(1)
Polyp adenomatous		1 (2%)			
Intestine small, jejunum	(49)	(48)	(46)	(49)	
Carcinoma	2 (4%)				
Leiomyosarcoma	1 (2%)	(50)	(40)	(50)	(50)
Liver	(50)	(50)	(49)	(50)	(50)
Fibrous histiocytoma, metastatic, lung	1 (00/)	1 (2%)			
Hepatocellular carcinoma	1 (2%)			0 (00/)	1 (00/)
Hepatocellular adenoma	1 (2%)	(0)	(4)	3 (6%)	1 (2%)
Mesentery Leiomyosarcoma, metastatic,	(7)	(6)	(4)	(4)	(5)
intestine small, jejunum	1 (14%)				
Leiomyosarcoma, metastatic, stomach,	1 (14/0)				
glandular		1 (17%)			
Oral mucosa		1 (1770)	(1)		
Gingival, squamous cell carcinoma			1 (100%)		
Pancreas	(50)	(48)	(49)	(50)	
Adenoma	(00)	1 (2%)	(10)	(00)	
Fibrous histiocytoma, metastatic, lung		1 (2%)			
Acinus, adenoma	1 (2%)	- (~/0)	1 (2%)		
Acinus, adenoma, mixed cell	1 (2%)		()		
Stomach, forestomach	(50)	(48)	(50)	(50)	(49)
Leiomyosarcoma		, ,	1 (2%)	, ,	, ,
Stomach, glandular	(50)	(48)	(50)	(50)	(47)
Leiomyosarcoma	•	1 (2%)			• •
Гongue		(1)		(1)	
Squamous cell carcinoma				1 (100%)	
Squamous cell papilloma		1 (100%)			
Γooth	(1)				
Odontoma	1 (100%)				
Cardiovascular System					
Heart	(50)	(50)	(50)	(50)	(7)
	(30)	(50) 1 (2%)	(30)	(30)	(7)
Schwannoma malignant		1 (270)			

TABLE A1
Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0	ppm	625	5 ppm	2,50	00 ppm	5,00	00 ppm		00 ppm Exposure)
Endocrine System										
Adrenal cortex	(50)		(50)		(50)		(50)			
Adenoma			1	(2%)						
Fibrous histiocytoma, metastatic, lung			1	(2%)						
Adrenal medulla	(50)		(50)		(50)		(50)		(1)	
Pheochromocytoma malignant									1	(100%)
Pheochromocytoma benign		(18%)		(16%)		(10%)		(2%)		
Bilateral, pheochromocytoma benign		(10%)		(2%)		(2%)		(4%)		
slets, pancreatic	(50)	(00.1)	(48)		(49)		(50)			
Adenoma		(2%)								
Carcinoma		(4%)	(50)		(50)		(40)		(5)	
Pituitary gland	(49)	(250/)	(50)	(940/)	(50)	(100/)	(48)	(40/)	(5)	(1000/)
Pars distalis, adenoma multiple	1/	(35%)	12	(24%)		(18%)	2	(4%)	5	(100%)
Pars distalis, adenoma, multiple	(50)		(49)			(2%)	(50)		(50)	
Гhyroid gland Bilateral, C-cell, adenoma	(50)	(2%)	(49)		(50)	(4%)	(50)		(50)	
C-cell, adenoma		(18%)	5	(10%)		(8%)	9	(4%)	1	(2%)
C-cell, carcinoma	9	(10/0)	3	(10/0)	4	(0/0)	۷	(4/0)		(2%)
Follicular cell, adenoma	1	(2%)			1	(2%)	9	(4%)		(4%)
Follicular cell, carcinoma		(6%)	3	(6%)		(6%)		(8%)		(2%)
General Body System Peritoneum	(2)		(1)		(1)		(2)		(1)	
Genital System Epididymis	(50)		(49)		(50)		(50)		(1)	
Epididyinis Preputial gland	(48)		(50)		(50)		(49)		(1) (14)	
Adenoma		(13%)		(18%)		(10%)		(6%)		(50%)
Carcinoma		(2%)	3	(1070)	3	(1070)	3	(070)	'	(3070)
Fibrous histiocytoma, metastatic, lung		(270)	1	(2%)						
Bilateral, adenoma	1	(2%)	•	(270)			1	(2%)	3	(21%)
Seminal vesicle	(50)	(3,0)	(50)		(50)		(50)	(2,0)	(1)	()
Testes	(50)		(50)		(50)		(50)		(48)	
Bilateral, interstitial cell, adenoma		(70%)	` '	(84%)		(94%)		(92%)		(92%)
Interstitial cell, adenoma		(20%)		(12%)		(4%)		(2%)		(8%)
Warrant and the Cont		·		·						·
Hematopoietic System Bone marrow	(50)		(50)		(50)		(50)			
Fibrous histiocytoma, metastatic, lung	(00)			(2%)	(30)		(00)			
Lymph node	(5)		(8)	(~ /U)	(8)		(1)		(9)	
Deep cervical, carcinoma, metastatic,	(0)		(0)		(0)		(1)		(0)	
thyroid gland									1	(11%)
Lymph node, mandibular	(50)		(49)		(49)		(50)		(4)	(11/0)
Lymph node, mesenteric	(49)		(49)		(50)		(47)		(4)	
Spleen	(50)		(50)		(50)		(50)		(33)	
Fibroma		(2%)	(- 3)		()		(-3)		(-3)	
Hemangiosarcoma		, ,	1	(2%)	1	(2%)				
Histiocytic sarcoma				(2%)		(2%)				
HISHOCYHC Sal COIHa										
Thymus	(49)		(47)		(49)		(47)			

TABLE A1
Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

			· ·		
	0 ppm	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Integumentary System					
Mammary gland Adenoma	(50)	(44)	(48)	(48)	(2) 1 (50%)
Carcinoma	4 (00/)	~ (440/)	4 (00/)	1 (2%)	1 (50%)
Fibroadenoma	4 (8%)	5 (11%)	4 (8%)	2 (4%)	(0)
Skin Fibroma	(50)	(49)	(49)	(50)	(8)
Fibrosarcoma	3 (6%) 2 (4%)	1 (2%) 3 (6%)	1 (2%)	2 (4%)	2 (25%) 1 (13%)
Keratoacanthoma	3 (6%)	5 (10%)	1 (2%)	2 (4%)	2 (25%)
Keratoacanthoma, multiple	3 (0/0)	J (1070)	1 (2/0)	1 (2%)	L (LJ/0)
Liposarcoma				1 (2%)	
Osteosarcoma			1 (2%)	1 (270)	
Sarcoma	1 (2%)		1 (2/0)		
Schwannoma malignant	3 (6%)				
Squamous cell papilloma	2 (4%)		1 (2%)		
Sebaceous gland, adenoma	1 (2%)		, ,		2 (25%)
Musculoskeletal System					
Bone	(50)	(50)	(50)	(50)	(4)
Chordoma			1 (2%)		
Nervous System Brain	(50)	(50)	(50)	(50)	(2)
Astrocytoma malignant	(30)	(30)	1 (2%)	(30)	(2)
Fibrous histiocytoma, metastatic, lung		1 (2%)	1 (2/0)		
Oligodendroglioma malignant		1 (270)	1 (2%)		
Ongouenarognoma manghane			1 (270)		
Respiratory System					
Lung	(50)	(50)	(50)	(50)	(3)
Alveolar/bronchiolar adenoma	1 (2%)		1 (2%)		
Alveolar/bronchiolar carcinoma		1 (2%)	1 (2%)		
Chordoma, metastatic, bone			1 (2%)		
Fibrosarcoma, metastatic, skin	1 (2%)				
Fibrous histiocytoma		1 (2%)			
Schwannoma malignant, metastatic, skir	n 1 (2%)				
Special Senses System		(4)		(4)	(1)
Zymbal's gland		(1)		(1)	(1)
Carcinoma		1 (100%)		1 (100%)	1 (100%)
Urinary System					
Zidney	(50)	(50)	(50)	(50)	(42)
Fibrous histiocytoma, metastatic, lung	(30)	1 (2%)	(30)	(30)	(44)
Renal tubule, adenoma	1 (2%)	1 (2/0)	3 (6%)	1 (2%)	
Urinary bladder	(50)	(50)	(50)	(50)	(1)
	(30)	(00)			\ - /

TABLE A1 Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

			2,500 ppm	5, 000 ppm	10,000 ppm (Stop-Exposur					
Systemic Lesions										
Multiple organs ^b	(50)	(50)	(50)	(50)	(50)					
Histiocytic sarcoma		1 (2%)	1 (2%)							
Leukemia mononuclear	27 (54%)	36 (72%)	33 (66%)	19 (38%)	34 (68%)					
Lymphoma malignant					1 (2%)					
Mesothelioma malignant	2 (4%)	2 (4%)	1 (2%)	1 (2%)	1 (2%)					
Neoplasm Summary			**							
Total animals with primary neoplasms ^c	50	50	50	48	48					
Total primary neoplasms	160	151	135	99	116					
Total animals with benign neoplasms	47	50	50	47	48					
Total benign neoplasms	115	99	89	71	74					
Total animals with malignant neoplasms	38	43	40	25	35					
Total malignant neoplasms	45	52	46	28	42					
Fotal animals with metastatic neoplasms Total metastatic neoplasms	3 3	2 8	1		1					

Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of Oxazepam: 0 ppm

Number of Days on Study	4 7	4 8	4 9	4 9	5 1	5 1		5 4	5 5	5 7	5 8	5 9	6 0	6 0	6 2	6 8		6 8	6 8	6 8	6 8	6 9	6 9	6 9	6 9	
number of Days on Study	1	0	1	8	7	9					5					1		2	2	4	8	0		4		
	0	0	0			0			0	0				0	0	0	0	0	0	0	0	0	0		0	
Carcass ID Number	3 0	3	1 9	2 5	2 9	2 7		4 3	3 5	0 7		4 8	4 1	3 1	2	1 7		2 8	3 7	5 0	3 9	0 4		1 8		
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine small, jejunum Carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	
Leiomyosarcoma																										
ntestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hepatocellular carcinoma Hepatocellular adenoma														X												
Mesentery				+		+																				
Leiomyosarcoma, metastatic, intestine small, jejunum																										
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Acinus, adenoma																										
Acinus, adenoma, mixed cell																										
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Γooth																										
Odontoma																										
Cardiovascular System																										
Blood vessel	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
E ndocrine System Adrenal cortex																										
Adrenal cortex Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma benign	т	_	т	т	т	т	т	т	т	т	т	X	т	т	т	_	X		т	X	_	т	т	т	т	
Bilateral, pheochromocytoma benign										X		/1				X	71	/1		71			X		X	
slets, pancreatic	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+		+	
Adenoma	'		'	'	'	'			'	'	'	'	'		'		'	'	'	'			X		'	
Carcinoma																	X								X	
Parathyroid gland	N	M	+	+	+	M	+	+	M	+	M	+	+	+	+	+		M	+	+	M	+	+	+	+	
Pituitary gland	+												M													
Pars distalis, adenoma	X					X														X			X		X	
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Bilateral, C-cell, adenoma																										
C-cell, adenoma										X								X	X		X			X		
Follicular cell, adenoma									X																	
Follicular cell, carcinoma																					X				X	

^{+:} Tissue examined microscopically A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

TARIF A2

Individual Animal Tumor Pathology	01 1/14110												J				1			1. 1.		`				
	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	9	9	9	9	9	1	1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	5	6	8	8	8	1	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Total
Carcass ID Number	4	2	0	1	3	4	0	1	0	0	0	1	1	1	1	2	2	2	3	3	3	4	4	4	4	Tissues/
	0	3	1	6	6	9	8	0	2	3	5	1	3	4	5	0	4	6	3	4	8	2	5	6	7	Tumors
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine large, rectum	· +	·		·		·	·	·	·	·	·	·	·	·	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	·	·		<u>.</u>		·	50
intestine large, rectum																										50
ntestine large, cecum ntestine small, duodenum																_										50
	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ntestine small, jejunum	+	+	+	+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Carcinoma							37								X											2
Leiomyosarcoma							X																			1
ntestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular carcinoma																										1
Hepatocellular adenoma															X											1
Mesentery							+	+							+								+	+		7
Leiomyosarcoma, metastatic,																										
intestine small, jejunum							X																			1
ancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Acinus, adenoma									X																	1
Acinus, adenoma, mixed cell																									X	1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Footh		ď					+		•	•											Ċ					1
Odontoma							X																			1
Cardiovascular System																										
Blood vessel																										49
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	50
1eart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	30
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign	X						X									X				X		X				9
Bilateral, pheochromocytoma benign			X																							5
slets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																										1
Carcinoma																										2
Parathyroid gland	+	+	+	+	+	+	+	+	M	+	+	+	+	М	М	+	+	M	+	+	+	+	+	+	+	39
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		+	+	+	+	+	+	+	49
Pars distalis, adenoma	v	X		X	X	'			Ý	X			'		X			,	'	X				Y	X	17
Thyroid gland	+	Δ.	+	Λ.	Δ.		5	J					5		+		ر	_			+				+	50
Bilateral, C-cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	+	+	+	
		v	v										v					Λ				v				1
C-cell, adenoma		X	X										X									X				9
Follicular cell, adenoma Follicular cell, carcinoma									3.7																	1
									X																	3

	4	4	4	4	r	E	E	۳	E	r	5	E	c	c	C	0	e	c	c	c	C	-	c	c	C	
Number of Days on Study	7	8			5	о 1	5 3	5	5 5	5 7	о 8	5 9	6 0	6 0	6 2	6 8	6 8	6 8	6 8	6 8	6 8	6 9	6 9	6 9	6 9	
Number of Days on Study	1	0	1	8	7	9	7	4	4	1	5	2	1	8	1	1	2	2	2	4	8	0				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	3	3	1	2	2	2	0	4	3	0	4	4	4	3	2	1	1	2	3	5	3	0	0	1	2	
	0	2	9	5	9	7	6	3	5	7	4	8	1	1	2	7	2	8	7	0	9	4	9	8	1	
Genital System																										
Coagulating gland Epididymis		_			_		_	+	_		_	_	_	_	_	_			+	_			_		_	
Preputial gland	+	+	N	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	
Adenoma		Ċ			Ċ								X							Ċ	•	Ċ		.,,		
Carcinoma								X																		
Bilateral, adenoma																							X			
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Testes Bilateral, interstitial cell, adenoma	+	+	+	+	+	+	+ X	+	+	+	+	+ V	+ X	+	+ V	+ Y	+ Y	+ Y	+ Y	+ Y	+ Y	+ X	+	+	+ X	
Interstitial cell, adenoma					X		Λ		X	X	X		Л	X	Л	Λ	Λ	А	Λ	Λ	Λ	Λ		X		
Hematopoietic System																						_				
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node										+						+					+					
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibroma Thymus						+																				
	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	
Integumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibroadenoma																										
Skin Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibrosarcoma			X																							
Keratoacanthoma			21								X						X									
Sarcoma																										
Schwannoma malignant		X																								
Squamous cell papilloma					X											X										
Sebaceous gland, adenoma																	X									
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nervous System																										
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Alveolar/bronchiolar adenoma			τ,		X																					
Fibrosarcoma, metastatic, skin			X																							
Schwannoma malignant, metastatic, skin Nose	J	_			_	_	_	_	_		_		_			_	_	_	_	_	_	_	_	_	_	
rvose Frachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
2 110 0 1																						—	_	_		
Special Senses System Ear																										

Individual Animal Tumor Pathology o																										
N. 1. AD. G. 1	6		6	6			7						7					7				7		7		
Number of Days on Study	9	9	9	9	9	1	1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	5	6	8	8	8	1	6	3	0	0	0	0	0	U	0	0	0	0	0	0	0	0	0	U	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Total
Carcass ID Number	4	2	0	1		4		1		0			1		1	2	2	2	3	3	3	4			4	Tissues
	0	3	1	6	6	9	8	0	2	3	5	1	3	4	5	0	4	6	3	4	8	2	5	6	7	Tumors
Genital System																										
Coagulating gland																										2
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	48
Adenoma					X		X		X							X	X									6
Carcinoma																										1
Bilateral, adenoma Prostate																										1 50
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Bilateral, interstitial cell, adenoma	X	X	X	X	X		X	X										X							X	35
Interstitial cell, adenoma															X						X					10
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	·						+	+			Ċ					'		Ċ	Ċ			Ċ		Ċ		5
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Fibroma		X																								1
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	49
Integumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Fibroadenoma				X						X																4
Skin	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Fibroma			•			X							X											X		3
Fibrosarcoma			X			37																				2
Keratoacanthoma Sarcoma						X X																				3
Schwannoma malignant		X				Λ					X															3
Squamous cell papilloma		71									21															2
Sebaceous gland, adenoma																										1
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
N C4																										
Nervous System Brain																										50
DI dili		+		+	+	+	+	+	+	_	_	+	+	+	+	+	_	_	+	+	+	_	+	+	+	30
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma																										1
Fibrosarcoma, metastatic, skin		v																								1
Schwannoma malignant, metastatic, skin Nose		X						,	,			,	,		,				,							1 50
Nose Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
	'	_	-	_		-	_	•	_	_	•			_	-	•	_	•		_	_	_				30
Special Senses System																										4
Ear																			+							1
Eye																+							+			2

Individual Animal Tumor Patho	nology of Male Rats in the 2-Year Feed Study of Oxazepam: 0 ppm (continued)
	4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6
Number of Days on Study	$7 \;\; 8 \;\; 9 \;\; 9 \;\; 1 \;\; 1 \;\; 3 \;\; 4 \;\; 5 \;\; 7 \;\; 8 \;\; 9 \;\; 0 \;\; 0 \;\; 2 \;\; 8 \;\; 8 \;\; 8 \;\; 8 \;\; 8$
	1 0 1 8 7 9 7 1 4 1 5 2 1 8 1 1 2 2 2 4 8 0 0 4 5
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Carcass ID Number	3 3 1 2 2 2 0 4 3 0 4 4 4 3 2 1 1 2 3 5 3 0 0 1 2
	0 2 9 5 9 7 6 3 5 7 4 8 1 1 2 7 2 8 7 0 9 4 9 8 1
Urinary System	
Kidney	+ + + + + + + + + + + + + + + + + + + +
Renal tubule, adenoma	
Urinary bladder	+ + + + + + + + + + + + + + + + + + + +
Systemic Lesions	
Multiple organs	+ + + + + + + + + + + + + + + + + + + +
Leukemia mononuclear	x x
Mesothelioma malignant	X X

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of Oxazepam: 0 ppm (continued)
--

Number of Days on Study			6 9	6 9	6 9	6 9	7 1	7 1	7 2	7 3																	
	Ę	õ	6	8	8	8	1	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
c my	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Total
Carcass ID Number	4	1	2	0	1	3	4	0	1	0	0	0	1	1	1	1	2	2	2	3	3	3	4	4	4	4	Tissues/
	()	3	1	6	6	9	8	0	2	3	5	1	3	4	5	0	4	6	3	4	8	2	5	6	7	Tumors
Urinary System																											
Kidney	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Renal tubule, adenoma									X																		1
Urinary bladder	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions																											
Multiple organs	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear	2	X	X		X			X	X				X		X			X	X		X		X	X	X		27
Mesothelioma malignant																											2

7	Г.	RI	17	٨	9

TABLE A2 Individual Animal Tumor Pathology of M	[ale	R	ats	in	th	e 2	-Y	ear	· Fe	eed	St	ud	v o	of (Oxa	ıze	pa	m:	62	25	DD	m				
			4			4			5				_	5	5	5	5	5	5	5	5	5	6	ß	6	
Number of Days on Study	8	2	4	5	6	7	8	0	2	2	3	3	5	5	7	7	7	8	8	8	8	8	0	1		
Number of Days on Study	6	6	8	2					3				0					5	5	6	6	9		4		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	5 2	5 7	6 7	9	6 3	6 0	5 3	9 8	6 2	8 3	5 4	7 8	7 2	5 5		8	7 4	7 1	8 6	9	9 5	6 4	7 5	5 9	5 8	
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	
Polyp adenomatous															X											
Intestine large, rectum	+	+	+	+	Α	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Polyp adenomatous																										
Intestine large, cecum	+	+	+	+	A	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum	+	+	+	+	Α	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum	+	+	+	+	A	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, ileum	+	+	A	+	A	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibrous histiocytoma, metastatic, lung								X																		
Mesentery		+	+																+							
Leiomyosarcoma, metastatic, stomach, glandular																										
Pancreas	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma																										
Fibrous histiocytoma, metastatic, lung								X																		
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	
Stomach, forestomach	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, glandular	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Leiomyosarcoma																										
Tongue																		+								
Squamous cell papilloma																		X								
Cardiovascular System																										
Blood vessel	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Schwannoma malignant																										
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma																										
Fibrous histiocytoma, metastatic, lung								X																		
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Pheochromocytoma benign														X									X	X		
Bilateral, pheochromocytoma benign																										
Islets, pancreatic	+	+	+	+	A	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Parathyroid gland	+		+	+	+	+	M		M		+	M		M		+	+	+	+	+	+	M				
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pars distalis, adenoma							X				X					X					X	_				
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+		+	
C-cell, adenoma																								X		
Follicular cell, carcinoma																								X		
																					+					
																								_		
	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	
Peritoneum	+++	++	++	+ +	+ +	++	+ +	+ +	++	++	++	+++	M +	++	+ +	++	+ +	++	+++	+++	++	++	++	++	+++	
Peritoneum Genital System Epididymis	+ +	++	++	+	++	++	+	++	+ + X	+	+ + X	+ + X	M +	+ + X	+	++	+	+ + X	+++	++	+	+++	+++	+	+ + X	
Peritoneum Genital System Epididymis Preputial gland	+ +	+ +	+++	+	+ +	++	++	+ + X	+ + X	+++	+ + X	+ + X	M +	+	+	++	+++	+ + X	+	+	+++	+	+	+		

TARIF A2

Individual Animal Tumor Pathology of M	[ale	R	ats	ın	un	e 2	- Y (ear	· Fe	eed	St	ud	y o) to	Jxa	ze	pai	m:	62	25	pp	m	(COI	ntin	ued)	
	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	3	4	5	5	6	8	9	0	0	1	1	2	3	3	3	3	3	3	3	3	3	3	3	
	5	8	4	2	1	2	7	2	8	2	9	2	4	2	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Total
Carcass ID Number	8	8	7	8	5	9	0	6	6	6	9	6	5	8	6	7	7	7	7	8	8	9	9	9	9	Tissues/
	9	0	3	2	1	7	0	6	5	8	1	9	6	5	1		6	7	9	1	8	0	4	6	9	Tumors
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Polyp adenomatous																										1
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	48
Polyp adenomatous Intestine large, cecum		_	_		_	_	_	_	_	_	_	_	_	_	_	+	Λ +	+	_	_		_		_	_	1 48
Intestine large, cecum Intestine small, duodenum		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	T	48
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Fibrous histiocytoma, metastatic, lung																										1
Mesentery											+						+						+			6
Leiomyosarcoma, metastatic, stomach, glandular											X															1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Adenoma				X																						1
Fibrous histiocytoma, metastatic, lung																										1 49
Salivary glands Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach, glandular		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	T	48
Leiomyosarcoma	-	_	-	-	_	_		_		-	X	_		_	-	_	-		_	_	_		_		-	1
Tongue																										1
Squamous cell papilloma																										1
Cardiovascular System																										
Blood vessel	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Schwannoma malignant					X																					1
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma		•	·		·	•	•	•	•	•	•	•		•			•	•	•	•	•	X	•	•		1
Fibrous histiocytoma, metastatic, lung																										1
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign			_		X						X			X	X						X					8
Bilateral, pheochromocytoma benign			X																							1
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+									+		48
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+								+	+		M	41
Pituitary gland Pars distalis, adenoma	+ X	+	+ X	+	+ V	+ X	+	+	+	+	+	+	+	+ X	+	+	+ X	+	+	+	+	+	+	+	+	50 12
Pars distans, adenoma Thyroid gland	+	+	+		+		+	_	_	+	+	_	+	+	+	_		_	+	_	+	_	_		+	12 49
C-cell, adenoma	_	т	т	т			т	т	_	-	X	-T	-	-	7	-	X	-	-	-T	X	т	X		-	5
Follicular cell, carcinoma			X								. 1						21		X		21		/1			3
·																										
General Body System Peritoneum																										1
Genital System																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																X						X			X	9
Fibrous histiocytoma, metastatic, lung																										1
Prostate																										50

								- '	-Cu		uu	J		//		Pu		0.	~0	PP		(001	11111	ucu)	
3	4	4	4	4	4					5	5						5	5	5	5	5	6	6	6	
8	2									3	3						8	8	8	8	8	0			
0	0	ō	۷	0									1	1	۷	ð	Э	Э	O	b	9	4	4	U	
0	0	0																							
2																									
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	
X	Х	Х	Х	X	Х	Х	Χ	Х	Х	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	X	
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
							X																		
	+				,											+	+	+	+		1.	r -			
+	+	+ \/	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	M	. +	+	+	
+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
		Ċ	·		•				,				•	•	•										
+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	
		X																							
+	+	M	+	+	M		+	+	M	M	+	+	+	+	+	+	+	+	+	+	M	. +	+	+	
																					1.1	٠.			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	IVI	+	+	+	
											X				21								X		
									X						X									X	
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
							X																		
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
					,				,				,	,	,										
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
- Т	Т	Τ'	т	Г	Г		٢	Г	г	Г	Г	Г	r	٢	۲	Г	Г	Г	т	г	_		_	'	_
													_			+									
													X												
					,		,		,				,	,	,										
+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	3 8 6 0 0 5 2 + + + + + + + + + + + + + + + + + +	3 4 8 2 6 6 0 0 5 5 2 7 + + + + + + + + + + + + + + + + + + +	3 4 4 8 2 4 6 6 8 0 0 0 0 5 5 6 2 7 7 + + + + + + + X X X +	3 4 4 4 8 2 4 5 6 6 8 2 0 0 0 0 0 5 5 6 9 2 7 7 3 3 4 4 4 4 5 6 6 8 2 6 9 2 7 7 7 3 6 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	3 4 4 4 4 8 2 4 5 6 6 6 8 2 6 6 8 2 6 6 8 2 6 6 9 6 2 7 7 3 3 3 6 7 7 3 3 7 7 3 7 3 7 7 3 7 3	3 4 4 4 4 4 4 8 2 4 5 6 7 6 6 8 2 6 3 3 0 0 0 0 0 0 0 5 5 6 9 9 6 6 2 7 7 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 4 4 4 4 4 4 8 2 4 5 6 7 8 6 6 8 2 6 3 1 0 0 0 0 0 0 0 0 0 0 5 5 6 9 6 6 5 5 2 7 7 3 3 3 0 3 + + + + + + + + + + + + + + + + + +	3 4 4 4 4 4 4 5 8 8 2 4 5 6 7 8 0 6 6 8 2 6 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 5 5 6 9 6 6 5 9 2 7 7 3 3 3 0 3 8 + + + + + + + + + + + + + + + + + +	3 4 4 4 4 4 4 5 5 5 8 2 4 5 6 7 8 0 2 6 6 8 2 6 3 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 5 5 6 9 6 6 5 9 6 2 7 7 3 3 0 3 8 2 + + + + + + + + + + + + + + + + + +	3 4 4 4 4 4 4 5 5 5 5 8 8 2 4 5 6 6 7 8 0 2 2 2 6 6 8 8 2 6 3 1 1 3 3 4	3 4 4 4 4 4 4 5 5 5 5 5 5 8 8 2 4 5 6 7 8 0 2 2 2 3 6 6 8 2 6 3 1 1 3 3 4 6 6 6 8 2 6 3 1 1 3 3 4 6 6 6 8 2 6 3 1 1 3 3 4 6 6 6 8 2 6 3 1 1 3 3 4 6 6 6 5 9 6 8 5 2 7 7 3 3 3 0 3 8 2 3 4 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 8 8 2 4 5 6 7 8 0 2 2 2 3 3 3 6 6 6 8 2 6 3 1 1 3 4 6 6 6	3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 8 2 4 5 6 7 8 0 2 2 2 3 3 3 5 6 6 8 2 6 3 1 1 3 3 4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	8 2 4 5 6 7 8 0 2 2 2 3 3 5 5 7 7 7 7 8 8 8 8 8 8 0 1 2 6 6 8 8 2 6 3 1 1 3 4 6 6 0 7 1 2 8 5 5 6 6 9 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Individual Animal Tumor Pathology	oi maie	; N	au				/- I ·	tai	· F	cc u) J	uu	y		JAC	<u>ız</u> c	μa	<u> </u>	<u>U</u>	~~	PP		(00	111111	ueu)	
	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	3	4	5	5	6	8	9	0	0	1	1	2	3	3	3	3	3	3	3	3	3	3	3	
· ·	5	8	4	2	1	2	7	2	8	2	9	2	4	2	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Total
Carcass ID Number	8	8	7	8	5	9	0	6	6	6	9	6	5	8	6	7	7	7	7	8	8	9	9	9	9	Tissues
	9	0	3	2	1	7	0	6	5	8	1				1	0	6	7	9		8	0	4	6	9	Tumors
Genital System (continued)																										
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Testes	+	+	+	+	+	+	+	+	+			+	+	+	+		+	+	+	+	+	+	+	+	+	50
Bilateral, interstitial cell, adenoma	X	X		X	X		X						X										X	X	X	42
Interstitial cell, adenoma	71					X			11	11	11					-	11	11	11		11				21	6
Hematopoietic System																										
Bone marrow	.1	ر ـ	_			_	_			_	_		_	_	_		_	_				_	_	_		50
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibrous histiocytoma, metastatic, lung																										1
Lymph node	+											+	+													8
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma											X															1
Histiocytic sarcoma																X										1
Thymus	_	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	M	[+	47
Thymoma malignant		,							Ċ		.,,	·			•							·	·	141		1
Integumentary System																										
Mammary gland																			M							44
		_		-		-	-	X		-	-	_	_	-	X	_	-	-	171				X		-	5
Fibroadenoma								Λ							Λ					X			Λ			
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Fibroma																										1
Fibrosarcoma				X																						3
Keratoacanthoma													X										X			5
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System																										
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Fibrous histiocytoma, metastatic, lung																										1
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar carcinoma																X										1
Fibrous histiocytoma																										1
Nose	.1	_	_			_	_	_		_	_		_	_	_		_	_				_	_	_		50
Nose Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	30
Special Senses System																										-
Eye			+																		+					3
Zymbal's gland																										1
Carcinoma																										1
Jrinary System																										
Kidney		J				_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ر	_		50
Fibrous histiocytoma, metastatic, lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1
From the description of the first of the fir															,											
Urinary bladder	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			-		+	50

TARLE A2

Individual Animal Tumor Patho	logy of Male	R	ats	s in	th	e 2	- Y	ear	· F	eed	l S	tud	ly (of (Oxa	aze	epa	m:	6	25	pp	m	(co	ntin	ued)	
	3	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	
Number of Days on Study	8	2	4	5	6	7	8	0	2	2	3	3	5	5	7	7	7	8	8	8	8	8	0	1	2	
	6	6	8	2	6	3	1	1	3	4	6	6	0	7	1	2	8	5	5	6	6	9	4	4	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	5	5	6	9	6	6	5	9	6	8	5	7	7	5	8	8	7	7	8	9	9	6	7	5	5	
	2	7	7	3	3	0	3	8	2	3	4	8	2	5	4	7	4	1	6	2	5	4	5	9	8	
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Histiocytic sarcoma																										
Leukemia mononuclear		X			X				X	X	X	X	X		X	X	X	X	X	X	X	X	X		X	
Mesothelioma malignant																					X					

TABLE A2

Individual Animal Tumor Patholo	gy of Male	R	ats	in	th	e 2	-Ye	ear	Fe	ed	St	ud	y o	of (Oxa	aze	pa	m:	62	25	pp	m	(coı	ntin	ued)	
Number of Days on Study	6 2	6 2 8	6 3	6 4	6 5	6 5	6	6 8 2	6 9 8	7 0 2	7 0 9	7	7	7 2 2	7 3 0	7 3 0	7 3	7 3 0	7 3	7 3	7 3	7 3	7 3	7	7 3	
Carcass ID Number	0 8 9	0 8	0 7 3	0 8 2	0 5 1	0 9 7	1 0 0	0 6 6	0 6 5	0 6 8	9 0 9 1	2 0 6 9	0 5 6	0 8 5	0 6 1	0 7 0	0 0 7 6	0 7 7	0 7 9	0 8 1	0 8 8	0 9 0	0 9 4	0 9 6	0 0 9 9	Total Tissues/ Tumors
Systemic Lesions Multiple organs Histiocytic sarcoma Leukemia mononuclear Mesothelioma malignant	+ X	+ X	+	+ X	+	+ X	+ X	+ X X	+ X	+ X	+	+ X	+ X	+ X	+	+ X X	+ X	+	+ X	+ X	+ X	+ X	+ X	+	+ X	50 1 36

7	'Δ	RI	LΕ	Α	2

Individual Animal Tumor Pathology	UI MIAN												J				1			,	· I	P-			
	3	4	1 4	4	4	4	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6
Number of Days on Study	8	() 1	2	4	7	0	2	5	5	6	7	7	7	9	9	0	0	1	1	2	2	3	4	4
or Dujo or Stady	1	(9	7		4	8				6		9	0	5	3	3	0	6		1	
	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Carcass ID Number	9					6	9	6	9	9	5	9		7		7			6	8	6	8	9	7	9
	3				1				4																
Alimentary System																									
Esophagus	_		∟			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Intestine large, colon	+		+ +	- +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, rectum	+		⊢ A	٠ +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, cecum	+		. <u>.</u> ⊢ +		. M	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, duodenum	À		+ +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, jejunum				٠ ٠	· À	+	+	·	·	<u>.</u>	·	· +	+	<u>.</u>	·	+	·	·	·	· +	·	·	+	<u>.</u>	· +
Intestine small, ileum			ÀA		. Δ	Ţ	i	·	·	i	i	·	·	·	·	· -	Ţ		i	·	Ţ	i	· -	i	<u>.</u>
Liver			• +			+	+			+	+	+			+									+	· ±
Mesentery	Н		. 7	7	_	+	т	т	т	-	-	т	т	т	-	+	т	т	т	т	т	-		+	1"
						+										+								+	
Oral mucosa																									
Gingival, squamous cell carcinoma																									
Pancreas	A	٠.	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Acinus, adenoma																								X	
Salivary glands	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach, forestomach	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leiomyosarcoma									X																
Stomach, glandular	+	_	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Cardiovascular System																									
Blood vessel	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Heart	+		+ +	- 4	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	-				-				-			-	-	_		-			-				-	-	
Endocrine System																									
Adrenal cortex	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal medulla	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma benign																									
Bilateral, pheochromocytoma benign																									
Islets, pancreatic	Α	٠ .	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Parathyroid gland	+	.]	√I +	- N	1 +	+	M	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pituitary gland	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pars distalis, adenoma																	X								
Pars distalis, adenoma, multiple																									
Thyroid gland	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Bilateral, C-cell, adenoma																									
C-cell, adenoma										X															X
Follicular cell, adenoma																				X					
Follicular cell, carcinoma				Χ	(-					
General Body System																									
Peritoneum																									+
Genital System																									
Epididymis	+		- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Preputial gland	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ V
Adenoma																			X						X
Prostate	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Seminal vesicle	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Testes	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Bilateral, interstitial cell, adenoma	X		. >	Χ	X	X	X			X	X	X	X	X	X	X	X	X	X	X	X	X	X		X
Interstitial cell, adenoma		2						X																	

Individual Animal Tumor Pathology	or water		-										<i>y</i> `				Pu		,		1	P			tinuc	, u)
	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	5	5	5	5	6	6	6	7	7	8	8	8	8	8	9	0	0	0	1	3	3	3	3	3	3	
	3	5	9	9	2	3	3	3	6	0	1	4	7	9	5	1	2	5	6	0	0	0	0	0	0	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	Total
Carcass ID Number	5	5	8	8	6	7	9	5	6	8	8	7	8	7	8	7	5	7	5	5	6	7	8	9	0	Tissues/
	3	2	1	8	8	2	0	1	6	2	9	0	7	6	3	7	6	9	9	8	0	4	4	6	0	Tumors
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, jejunum Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46 46
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Mesentery	'	'	'	'	+	'	'		'			'	'	'		'			'	'						4
Oral mucosa					·																				+	1
Gingival, squamous cell carcinoma																									X	1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Acinus, adenoma																										1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leiomyosarcoma																										1
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	50
Cardiovascular System																										
Blood vessel	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign		X					X		X			X								X						5
Bilateral, pheochromocytoma benign													X													1
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pars distalis, adenoma	X		X					X	X	X	X							X	X							9
Pars distalis, adenoma, multiple																									X	1
Thyroid gland Bilateral, C-cell, adenoma	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	50 2
C-cell, adenoma						Λ			X			X						Λ								4
Follicular cell, adenoma									/1			71														1
Follicular cell, carcinoma			X								X															3
General Body System Peritoneum																										1
rentoneum																										1
Genital System																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma		X								X											X					5
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Testes Bilateral, interstitial cell, adenoma	+ v	+ V	+ V	+ v	+ X	+ Y	+ V	+ V	+ V	+ V	+ Y	+ V	+ V	+ V	+ V	+ V	+ V	+ V	+ V	+ V	+ V	+ V	+ V	+ Y		50
Interstitial cell, adenoma	X	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	47 2

Individual Animal Tumor Patholog	gy of Male	K	ats	in _	tn	e z	- Y (ear	Fe	ed	St	ud	y o	f ()xa	ze	pa	m:	2,	,50	0 I	p	n (con	tinued)	_
	3	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	
Number of Days on Study	8	0	1	2	4	7	0	2	5	5	6	7	7	7	9	9	0	0	1	1	2	2	3	4	4	
	1	0	5	4	0	9	7	6	4	8	8	0	1	6	6	9	0	5	3	3	0	6	3	1	1	
Carrage ID Namel or	1	1	1		1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	_	1	
Carcass ID Number	9	8 6	5 5	6 1	9 1	6 7	9 8	6 2	9 4	9 7	5 4	9	5 7	7 3	6 5	7 1	7 8	6 4	6 3	8	6 9	8 5	9 5	7 5	9 2	
Hematopoietic System																						_				_
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node			+			+	+					+				+				+		+		+		
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hemangiosarcoma																										
Histiocytic sarcoma		,			. 1	+		+	_	ر	М	ر	_	ر	ر	J									_	
Thymus	+	+	+	+	+	+	+	+	+	+	11/1	+	+	+	+	+	+	+	+	+	+		+	+	+	_
Integumentary System						• -																			3.6	
Mammary gland	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	
Fibroadenoma																										
Skin	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibroma																			X							
Keratoacanthoma				X																						
Osteosarcoma Squamous cell papilloma				Λ																						
Musculoskeletal System																						_				_
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Chordoma																										
Nervous System																										
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Astrocytoma malignant																										
Oligodendroglioma malignant																										
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Alveolar/bronchiolar adenoma																										
Alveolar/bronchiolar carcinoma																										
Chordoma, metastatic, bone																										
Nose Frachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	+		+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	_
Special Senses System Eye																										
Urinary System																						_				_
Kidney	1	د	_	_	_		_	_		_	_	_	_	_	_			_	_	_	_	_	_	_	_	
Renal tubule, adenoma	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X	
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Systemic Lesions																										_
Systemic Lesions Multiple organs		_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Histiocytic sarcoma	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	т	
Leukemia mononuclear	Y	¥	X		X	X	X		X	X	X		X	X		X	X	X	X	X		Y	X	X		
Lenkemia mononiiciear																										

Individual Animal Tumor Patholog	gy of Mai	. 1									. ~ .	·uu	J				1				_ 1	•				,u)
	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	5	5		5	6	6	6	7	7	8	8	8	8	8	9	0	0	0	1	3	3	3	3	3	3	
	3	5	9	9	2	3	3	3	6	0	1	4	7	9	5	1	2	5	6	0	0	0	0	0	0	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	Total
Carcass ID Number	5	5		8	6	7	9	5	6	8	8	7	8	7	8	7	5	7	5	5	6	7	8	9	0	Tissues
	3	2	1	8	8	2	0	1	6	2	9	0	7	6	3	7	6	9	9	8	0	4	4	6	0	Tumors
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node																										3
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mesenteric Spleen	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
Hemangiosarcoma		7	-	_		-	-	_		_	-	_	X	_			-	-	-		-	-		-		1
Histiocytic sarcoma																							X			1
Гһутиѕ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Integumentary System																										
Mammary gland	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Fibroadenoma		Σ	X																	X					X	4
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Fibroma							37																			1
Keratoacanthoma Osteosarcoma							X																			1
Squamous cell papilloma														X												1
Musculoskeletal System																										~ 0
Bone Chordoma	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Chordonia													Λ													1
Nervous System																										
Brain	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Astrocytoma malignant					v												X									1 1
Oligodendroglioma malignant					X																					1
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma														37								X				1
Alveolar/bronchiolar carcinoma Chordoma, metastatic, bone													X	X												1
Nose	+	4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Γrachea	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Special Senses System																										
Eye					+																				+	2
Urinary System Kidney	_	4		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	+	50
Renal tubule, adenoma		-1	7	-1	7	+ X	т	Τ'	-	т	г	Т	г	г	г	г	г	г	Т	Т		Τ'	-	X		30
Urinary bladder	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			50
Systemic Lesions																										
Multiple organs	+	4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Histiocytic sarcoma							•		•														X			1
Leukemia mononuclear	X	Σ	(X	X	X	X	X			X	X					X		X		X	X		X		33
Mesothelioma malignant																										1

_			-	_
ТΔ	RI	IF.	Α	9

	2	2	2	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
Number of Days on Study	2	2		_	3	3	3	4	5	5	5	6	9			1	1	1	2	2	2	2	2	2	3
	3			2	2	9	9	2	1	1	2	7				2	6	9	1	6	8	9	9	9	0
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Carcass ID Number	0 9	-			3 7	0 1	0 7	4 0	2	2 6	1 3			1				4 Q	3 1	4	4	2	3 4	5	4
A1:	3		0	- 0		1	'	0	3	U	3	J	۵	4	U	U	3	0	1	4	J	4	-1	U	0
Alimentary System Esophagus	+		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, colon	+		- +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, rectum			- +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, rectum												_	_												T
Intestine small, duodenum												_	_												T
Intestine small, jejunum			_ Δ									_	_												T
0 0	, T											_	_	_	M	_	_	_		_					T.
Intestine small, ileum Liver	+	7	- +	+	+	+	+	+	+	_	_	+	_	+	M +	+	+	_	+	+	+	+	+	+	T .
Hepatocellular adenoma	+	-	- +	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+ X	+ V	+	+	T
										Λ											Λ	Λ			
Mesentery									,										,		,		+		
Pancreas	+	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Salivary glands	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach, forestomach	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach, glandular	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Tongue										+															
Squamous cell carcinoma										X															
Cardiovascular System																									
Blood vessel	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Heart	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Endocrine System																									
Adrenal cortex	+	- 4	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal medulla	+	- 4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma benign																			X						
Bilateral, pheochromocytoma benign											X												X		
Islets, pancreatic	+		- +	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+
Parathyroid gland	+	. 1	иN	1 +	M	+	+																		
Pituitary gland	+			+					+		+									+			+		
Pars distalis, adenoma			'					. 7 1	Ċ	•		•		•	•	•	•	•	•		•	X			-
Thyroid gland	_				_	_	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+		+	_	+
C-cell, adenoma	7	7	-T	7	7	Т	Т	Г	Г	-	X	-	1-		1.	1.	-	-			г	-	г	-	•
Follicular cell, adenoma											/1														
Follicular cell, aucilonia Follicular cell, carcinoma								X								X									
General Body System																									
Peritoneum			+																						
Genital System																									
Epididymis	+	- +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Preputial gland	+		+ +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma	'		'							•		•		•	•	•	•	•	•		•		'		X
Bilateral, adenoma																							X		
Prostate	_				_	_	+	+	_	+	+	+	+	+	+	+	+	+	+	_	+	+	1	_	+
Seminal vesicle	7	. 7	. T	 						_	+	_	+	+	+	+	+	_	_		_				· +
Testes		7					Τ.	-	, T	7	7	7	7	т .	T'	7	7	7	7	-	, ·	-	-	-	
Bilateral, interstitial cell, adenoma	+	-	- +	· · · · · · · · · · · · · · · · · · ·	X	+ X	+ V	+ V	+ V	+ V	+ V	T V	+ X	+ V	T V	T V	T V	T V	+ X	+ V	+ V	+ X	+	+ X	T Y
Interstitial cell, adenoma				Λ		Λ	Χ	Χ	Χ	X	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ		Λ	Λ

Individual Animal Tumor Pathology	or marc	. 10								u		····	<i>y</i> •				P		Ο,	-	·	1	`		timuc	.u)
	5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	7	7	7	
Number of Days on Study	3	4	4	4	5	6	6	6	7	7	7	8	0	0	1	1	2	2	3	3	4	8	0	1	1	
•	0	1	1	3	0	2	2	2	5	6	7	5	5	5	0	8	0	8	1	4	7	8	5	0	2	
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	Total
Carcass ID Number	4	2	3	2	3	1	1	1	0	2	4	3	2	4	3	2	3	0	0	3	2	1	2	0	1	Tissues
	7	0		7		5	7	9	2	5	2	2	8	1	3	2	9	3	5	8	9	1			8	Tumors
Alimentary System																							_			
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular adenoma																										3
Mesentery									+			+													+	4
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Tongue																										1
Squamous cell carcinoma																										1
Cardiovascular System																										
Blood vessel	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal medulla	+	+	. +	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign		ď	Ċ					Ċ	•											Ċ						1
Bilateral, pheochromocytoma benign																										2
Islets, pancreatic	_	_		_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50
Parathyroid gland																+	+	+	+	М	+			+	+	40
Pituitary gland									T _		+	+		+	+	+	+		+		+	+		+		48
		_				_		т	_	т	т	т	X	_	т	_	т	т	_	171	. T	т		т	_	2
Pars distalis, adenoma Thyroid gland												+														50
C-cell, adenoma	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	2
Follicular cell, adenoma									X	Λ														X		2
Follicular cell, adenoma Follicular cell, carcinoma			X		X				Λ															Λ		4
General Body System																							_			
Peritoneum															+											2
Genital System																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	49
Adenoma		ď		·		•		X	•	•	X	•	•			•			•	•	.,,				•	3
Bilateral, adenoma																										1
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Seminal vesicle		+	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Testes		1			. ₊	+	+	·	· +	<u>'</u>	+	· +	<u>'</u>	+	<u>.</u>	· +	<u>'</u>	· +	· +	+	+	4	+	4	<u>.</u>	50
Bilateral, interstitial cell, adenoma	Y Y	¥	· ¥	¥	Y Y	Y	X	Y	Y	X	Y	X	X	Y	Y	Y	X	X	Y	Y	Y	Y	Y	Y	Y	46
Interstitial cell, adenoma	Λ	7	. ^	^	. ^	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	1

logy of Male Rats in the 2-Year Feed Study of Oxazepam: 5,000 ppm (continued)
2 2 2 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 3 1 0 3 0 0 4 2 2 1 4 1 1 1 0 4 4 3 4 4 2 3 5 4
9 5 0 8 7 1 7 0 3 6 3 5 2 4 6 6 9 8 1 4 3 4 4 0 6
+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + M +
+ + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
X X
+ + + + + + + + + + + + + + + + + + + +
V
X
X
+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
$egin{array}{cccccccccccccccccccccccccccccccccccc$

Individual Animal Tumor Patho	plogy of Male Rats in the 2-Year Feed Study of Oxazepam: 5,000 ppm (continued)
Number of Days on Study	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6
Carcass ID Number	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + + + + + + + + + + + + + + + + + +
Integumentary System Mammary gland Carcinoma Fibroadenoma Skin Fibroma Keratoacanthoma Keratoacanthoma, multiple Liposarcoma	+ + + + + + M + + + + + + + + + + + + +
Musculoskeletal System Bone	+ + + + + + + + + + + + + + + + + + + +
Nervous System Brain	+ + + + + + + + + + + + + + + + + + + +
Respiratory System Lung Nose Trachea	+ + + + + + + + + + + + + + + + + + +
Special Senses System Eye Zymbal's gland Carcinoma	1 + 1 X
Urinary System Kidney Renal tubule, adenoma Urinary bladder	+ + + + + + + + + + + + + + + + + + +
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant	+ + + + + + + + + + + + + + + + + + +

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of Oxazepam: 10,000 ppm (Stop-Exposure)

(Stop-Laposure)																										
Number of Days on Study	3 1 7	8	8	4 9 0	4 9 8	5 4 2	5	5 6 4	5 6 7	5 7 2	5 8 4	5 8 5	5 8 7	5 9 0	5 9 0	5 9 6	5 9 6	6 0 5	6 1 3	6 1 3	6 1 3	6 1 4	6 1 4	6 1 6	6 1 8	
Carcass ID Number	2 5 1	2 7 8	5	2 6 8	2 7 9	2 8 5	2 5 2	2 5 3	2 9 9	2 8 1	2 8 9	2 9 0	2 6 2	2 6 9	2 8 7	2 5 5	2 7 5	2 9 3	2 6 3	2 7 2	2 7 4	2 5 8	2 9 6	2 7 6	2 5 6	
Alimentary System Intestine large, colon Intestine large, rectum Intestine large, cecum Intestine small, duodenum Liver Hepatocellular adenoma Mesentery Stomach, forestomach Stomach, glandular	+ + + A +	+	+ + + + +	A + A A	+ + + + +	+ + + +	+ + + +	+ + + + + +	A + A	+ + + +	+ + + +	+ + X + +	+ + + + +	+ + + +	+ + + + +	+ + + + +	+ + + +	+ + + + +	A + +	+ + + + + +	+ + + +	+ + + +	+ + + + +	A + +	+ + + +	
Cardiovascular System Heart																		+								
Endocrine System Adrenal medulla Pheochromocytoma malignant Parathyroid gland Pituitary gland Pars distalis, adenoma Thyroid gland C-cell, adenoma C-cell, carcinoma Follicular cell, adenoma Follicular cell, carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
General Body System Peritoneum																			+							
Genital System Epididymis Preputial gland Adenoma Bilateral, adenoma Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+	+	+ X	+ X	+ X	+ X	+ X	+ *X		+ X	+ X + X	+ X	+ X		+ X		+ X + X		+ *X		X +	+ X + X	+	+ X		
Hematopoietic System Lymph node Deep cervical, carcinoma, metastatic, thyroid gland Lymph node, mandibular Lymph node, mesenteric Spleen		+	+	+	+ + + + +	+ + + + +		+		+	+		+	+	+	+	+			+	+	+			+	

TABLE A2
Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of Oxazepam: 10,000 ppm (Stop-Exposure) (continued)

Number of Days on Study	6 2 0	6 2 7	6 3 1	6 3 4	6 3 8	6 4 1	6 4 1	6 4 1	6 4 5	6 4 7	6 5 3	6 5 9	6 7 0	6 8 1	6 8 7	6 9 0	6 9 1	6 9 2	6 9 4	6 9 6	6 9 7	7 0 2	7 1 9	7 1 9	7 2 2	
Carcass ID Number	2 9 4	9	2 9 7	2 9 8	2 6 5	2 6 0	2 6 1	2 8 3	2 6 4	9	2 8 0	3 0 0	2 8 4	2 6 7		2 8 8	2 7 7	2 7 0	2 5 7	2 7 3	2 6 6	2 9 1	2 5 4	2 7 1	2 8 6	Total Tissues/ Tumors
Alimentary System Intestine large, colon Intestine large, cecum Intestine small, duodenum Liver Hepatocellular adenoma Mesentery Stomach, forestomach Stomach, glandular	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+ + + +	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + + + +	+ + + + +	+ + + + + +	+ + + + +	+ + + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + + + +	+ + + + +	A + + +	+ + + + +	+ + + + + +	+ + + + + +	+ + + +	+ + + + +	+ + + + +	+ + + + +	1 1 44 50 1 5 49
Cardiovascular System Heart						+	+								+	+	+					+				7
Endocrine System Adrenal medulla Pheochromocytoma malignant Parathyroid gland Pituitary gland Pars distalis, adenoma Thyroid gland C-cell, adenoma C-cell, carcinoma Follicular cell, adenoma Follicular cell, carcinoma	+	+ X +	+	+ + X	+ X X	+ + X	+	+	+	+	+ X +	+	+	+	+ X	+ X + X +	+	+	+	+ X +	+	+ + X +	+	+	+	1 13 5 5 5 50 1 1 2
General Body System Peritoneum																										1
Genital System Epididymis Preputial gland Adenoma Bilateral, adenoma Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ X	+ X	+ X	+ X	+ X + X	+ X	+ X	+ X	+ X + X	+ X	+ X	+ X	+ X	+ X	+ X	+	+ X + X	+ + X	+ + X	+ X + X	+ X	+ X	+ + X	+ X + X	+ X	1 14 7 3 1 48 44 4
Hematopoietic System Lymph node Deep cervical, carcinoma, metastatic, thyroid gland Lymph node, mandibular Lymph node, mesenteric Spleen	+		+ +	+ X +	+			+	+	+	+	+	+	+	+						+	+ + +	+		+	9 1 4 4 33

TABLE A2
Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of Oxazepam: 10,000 ppm (Stop-Exposure) (continued)

(Stop-Exposure) (continued)		
Number of Days on Study	3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6	
Carcass ID Number	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Integumentary System Mammary gland Adenoma Carcinoma Skin Fibroma Fibrosarcoma Keratoacanthoma Sebaceous gland, adenoma	+ + X + + + X + X X X X	
Musculoskeletal System Bone		
Nervous System Brain Peripheral nerve Spinal cord	+ + +	
Respiratory System Lung	+	
Special Senses System Eye Zymbal's gland Carcinoma		
Urinary System Kidney Urinary bladder	++ ++++++++++++++++++++++++++++++++++++	-
Systemic Lesions Multiple organs Leukemia mononuclear Lymphoma malignant Mesothelioma malignant	+ + + + + + + + + + + + + + + + + + +	

TABLE A2
Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of Oxazepam: 10,000 ppm (Stop-Exposure) (continued)

• •																											
Number of Days on Study	6 2 0	2	3	3		4	6 4 1	6 4 1	6 4 5	6 4 7	6 5 3	6 5 9	6 7 0	6 8 1	6 8 7	6 9 0	6 9 1	6 9 2	6 9 4	6 9 6	6 9 7	7 0 2	1	1	2		
Carcass ID Number	2 9 4	2 9 5	9	9	6	6	2 6 1	2 8 3	2 6 4	2 9 2	2 8 0	3 0 0	2 8 4	2 6 7	2 8 2	2 8 8	2 7 7	2 7 0	2 5 7	2 7 3	2 6 6	2 9 1	2 5 4	2 7 1	8	To Tissu Tum	
Integumentary System Mammary gland Adenoma Carcinoma Skin Fibroma Fibrosarcoma Keratoacanthoma Sebaceous gland, adenoma																+ X			+	+ X	+ X		+ X				2 1 1 8 2 1 2 2
Musculoskeletal System Bone		+	-	+							+									+							4
Nervous System Brain Peripheral nerve Spinal cord					+	-														+							2 2 2
Respiratory System Lung															+						+						3
Special Senses System Eye Zymbal's gland Carcinoma													+ + X											4	-		2 1 1
Urinary System Kidney Urinary bladder	+	- +	- +	- +	- +	- +	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		42 1
Systemic Lesions Multiple organs Leukemia mononuclear Lymphoma malignant Mesothelioma malignant	+ X		- + X X	- + X X	- + X X	- + (+	+ X	+	+ X	+	+	+	+ X	+ X	+ X	+ X	· -	- + X		50 34 1 1						

TABLE A3a Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam

	0 ррт	625 ppm	2,500 ppm	5,000 ppm
Adrenal Medulla: Benign Pheochromocyton	na			
Overall rate ^a	14/50 (28%)	9/50 (18%)	6/50 (12%)	3/50 (6%)
Adjusted rate ^b	44.1%	42.4%	38.8%	8.8%
Terminal rate ^c	3/17 (18%)	2/11 (18%)	1/6 (17%)	0/0
First incidence (days)	571	557	655	452
Life table test ^d	P = 0.481	P = 0.562N	P = 0.529N	P = 0.543
Logistic regression test ^d	P = 0.043N	P = 0.259N	P = 0.022N	P = 0.049N
Cochran-Armitage test ^a	P = 0.003N			
Fisher exact test ^d		P = 0.171N	P = 0.039N	P = 0.003N
Kidney (Renal Tubule): Adenoma (Single S	ections)			
Overall rate	1/50 (2%)	0/50 (0%)	3/50 (6%)	1/50 (2%)
Adjusted rate	5.6%	0.0%	23.8%	16.7%
Terminal rate	0/17 (0%)	0/11 (0%)	1/6 (17%)	0/0
First incidence (days)	723	_e	641	634
Life table test	P = 0.009	P = 0.598N	P = 0.099	P = 0.159
Logistic regression test	P = 0.103	P = 0.588N	P = 0.188	P = 0.503
Cochran-Armitage test	P = 0.399			
Fisher exact test		P = 0.500N	P = 0.309	P = 0.753N
Kidney (Renal Tubule): Adenoma (Step Sec	etions)			
Overall rate	1/50 (2%)	1/50 (2%)	4/50 (8%)	5/50 (10%)
Adjusted rate	5.9%	9.1%	31.3%	19.5%
Terminal rate	1/17 (6%)	1/11 (9%)	1/6 (17%)	0/0
First incidence (days)	730 (T)	730 (T)	653	467
Life table test	P< 0.001	P = 0.663	P = 0.027	P = 0.008
Logistic regression test	P = 0.009	P = 0.663	P = 0.071	P = 0.151
Cochran-Armitage test	P = 0.028			
Fisher exact test		P = 0.753N	P = 0.181	P = 0.102
Kidney (Renal Tubule): Adenoma (Single a	nd Step Sections)			
Overall rate	2/50 (4%)	1/50 (2%)	7/50 (14%)	6/50 (12%)
Adjusted rate	11.1%	9.1%	49.7%	32.9%
Terminal rate	1/17 (6%)	1/11 (9%)	2/6 (33%)	0/0
First incidence (days)	723	730 (T)	641	467
Life table test	P< 0.001	P = 0.656N	P = 0.004	P = 0.001
Logistic regression test	P = 0.002	P = 0.647N	P = 0.018	P = 0.109
Cochran-Armitage test	P = 0.027			
Fisher exact test		P = 0.500N	P = 0.080	P = 0.134
Liver: Hepatocellular Adenoma				
Overall rate	1/50 (2%)	0/50 (0%)	0/49 (0%)	3/50 (6%)
Adjusted rate	5.9%	0.0%	0.0%	8.9%
Terminal rate	1/17 (6%)	0/11 (0%)	0/6 (0%)	0/0
First incidence (days)	730 (T)	_	_	451
Life table test	P = 0.011	P = 0.587N	P = 0.707N	P = 0.073
Logistic regression test	P = 0.125	P = 0.587N	P = 0.707N	P = 0.419
Cochran-Armitage test	P = 0.072	D 0 *003*	D 0 50533	D 0.000
Fisher exact test		P = 0.500N	P = 0.505N	P = 0.309

TABLE A3a
Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ppm	625 ppm	2,500 ppm	5,000 ppm
Liver: Hepatocellular Adenoma or Carcinoma				
Overall rate	2/50 (4%)	0/50 (0%)	0/49 (0%)	3/50 (6%)
Adjusted rate	8.4%	0.0%	0.0%	8.9%
Terminal rate	1/17 (6%)	0/11 (0%)	0/6 (0%)	0/0
First incidence (days)	608	_	_	451
Life table test	P = 0.047	P = 0.325N	P = 0.368N	P = 0.144
Logistic regression test	P = 0.299	P = 0.269N	P = 0.268N	P = 0.637
Cochran-Armitage test	P = 0.201			
Fisher exact test		P = 0.247N	P = 0.253N	P = 0.500
Mammary Gland: Fibroadenoma				
Overall rate	4/50 (8%)	5/50 (10%)	4/50 (8%)	2/50 (4%)
Adjusted rate	18.2%	32.9%	38.9%	7.4%
Terminal rate	1/17 (6%)	3/11 (27%)	2/6 (33%)	0/0
First incidence (days)	698	481	655	452
Life table test	P = 0.094	P = 0.280	P = 0.213	P = 0.330
Logistic regression test	P = 0.575N	P = 0.336	P = 0.384	P = 0.592N
Cochran-Armitage test	P = 0.200N			
Fisher exact test		P = 0.500	P = 0.643N	P = 0.339N
Mammary Gland: Fibroadenoma or Carcinoma				
Overall rate	4/50 (8%)	5/50 (10%)	4/50 (8%)	2/50 (4%)
Adjusted rate	18.2%	32.9%	38.9%	7.4%
Terminal rate	1/17 (6%)	3/11 (27%)	2/6 (33%)	0/0
First incidence (days)	698	481	655	452
Life table test	P = 0.094	P = 0.280	P = 0.213	P = 0.330
Logistic regression test	P = 0.575N	P = 0.336	P = 0.384	P = 0.592N
Cochran-Armitage test	P = 0.200N			
Fisher exact test		P = 0.500	P = 0.643N	P = 0.339N
Pancreatic Islets: Adenoma or Carcinoma				
Overall rate	3/50 (6%)	0/48 (0%)	0/49 (0%)	0/50 (0%)
Adjusted rate	9.9%	0.0%	0.0%	0.0%
Terminal rate	0/17 (0%)	0/11 (0%)	0/6 (0%)	0/0
First incidence (days)	682	— D	— D. 0.00437	_
Life table test	P = 0.257N	P = 0.232N	P = 0.321N	P= 0.648N
Logistic regression test	P = 0.142N	P = 0.170N	P = 0.173N	P = 0.404N
Cochran-Armitage test Fisher exact test	P = 0.073N	P= 0.129N	P= 0.125N	P= 0.121N
Pituitary Gland (Pars Distalis): Adenoma Overall rate	17/49 (35%)	12/50 (24%)	10/50 (20%)	2/48 (4%)
Adjusted rate	61.7%	41.5%	56.7%	10.9%
Terminal rate	8/17 (47%)	1/11 (9%)	1/6 (17%)	0/0
First incidence (days)	471	481	600	529
Life table test	P = 0.478N	P = 0.577N	P = 0.330	P = 0.573N
Logistic regression test	P = 0.007N	P = 0.246N	P = 0.246N	P = 0.030N
Cochran-Armitage test	P< 0.001N		- 0.21011	_ 0.0001.
Fisher exact test		P = 0.172N	P = 0.078N	P< 0.001N

TABLE A3a
Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625 ppm	2,500 ppm	5,000 ppm
Preputial Gland: Adenoma				
Overall rate	7/48 (15%)	9/50 (18%)	5/50 (10%)	4/49 (8%)
Adjusted rate	29.8%	38.8%	30.2%	17.7%
Terminal rate	3/17 (18%)	3/11 (27%)	1/6 (17%)	0/0
First incidence (days)	601	523	613	529
Life table test	P = 0.142	P = 0.178	P = 0.371	P = 0.069
Logistic regression test	P = 0.251N	P = 0.362	P = 0.558N	P = 0.656N
Cochran-Armitage test	P = 0.101N			
Fisher exact test		P = 0.428	P = 0.351N	P = 0.250N
Preputial Gland: Adenoma or Carcinoma				
Overall rate	8/48 (17%)	9/50 (18%)	5/50 (10%)	4/49 (8%)
Adjusted rate	31.5%	38.8%	30.2%	17.7%
Terminal rate	3/17 (18%)	3/11 (27%)	1/6 (17%)	0/0
First incidence (days)	541	523	613	529
Life table test	P = 0.210	P = 0.257	P = 0.494	P = 0.143
Logistic regression test	P = 0.163N	P = 0.507	P = 0.377N	P = 0.432N
Cochran-Armitage test	P = 0.070N			
Fisher exact test		P = 0.537	P = 0.250N	P = 0.168N
Skin: Keratoacanthoma				
Overall rate	3/50 (6%)	5/50 (10%)	1/50 (2%)	3/50 (6%)
Adjusted rate	10.1%	23.5%	5.0%	17.5%
Terminal rate	0/17 (0%)	1/11 (9%)	0/6 (0%)	0/0
First incidence (days)	585	524	663	507
Life table test	P = 0.199	P = 0.210	P = 0.547N	P = 0.121
Logistic regression test	P = 0.439N	P = 0.343	P = 0.338N	P = 0.606
Cochran-Armitage test	P = 0.351N			
Fisher exact test		P = 0.357	P = 0.309N	P = 0.661N
Skin: Squamous Cell Papilloma or Keratoacanthor	na			
Overall rate	5/50 (10%)	5/50 (10%)	2/50 (4%)	3/50 (6%)
Adjusted rate	14.6%	23.5%	12.9%	17.5%
Terminal rate	0/17 (0%)	1/11 (9%)	0/6 (0%)	0/0
First incidence (days)	517	524	663	507
Life table test	P = 0.293	P = 0.422	P = 0.512N	P = 0.292
Logistic regression test	P = 0.268N	P = 0.616N	P = 0.222N	P = 0.411N
Cochran-Armitage test	P = 0.200N			
Fisher exact test		P = 0.630N	P = 0.218N	P = 0.357N
Skin: Malignant Schwannoma				
Overall rate	3/50 (6%)	0/50 (0%)	0/50 (0%)	0/50 (0%)
Adjusted rate	11.6%	0.0%	0.0%	0.0%
Terminal rate	1/17 (6%)	0/11 (0%)	0/6 (0%)	0/0
First incidence (days)	480	_	_ 	_
Life table test	P = 0.188N	P = 0.181N	P = 0.256N	P = 0.467N
Logistic regression test	P = 0.076N	P = 0.110N	P = 0.109N	P = 0.155N
Cochran-Armitage test Fisher exact test	P = 0.074N	P= 0.121N	P= 0.121N	P= 0.121N

TABLE A3a Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625 ppm	2,500 ppm	5,000 ppm
Skin (Subcutaneous Tissue): Fibroma				
Overall rate	3/50 (6%)	1/50 (2%)	1/50 (2%)	2/50 (4%)
Adjusted rate	16.2%	2.9%	3.1%	100.0%
Terminal rate	2/17 (12%)	0/11 (0%)	0/6 (0%)	0/0
First incidence (days)	711	572	613	585
Life table test	P = 0.088	P = 0.433N	P = 0.609N	P = 0.016
Logistic regression test	P = 0.398	P = 0.398N	P = 0.452N	P = 0.230
Cochran-Armitage test	P = 0.512N	D 0 000M	D 0 000M	D 0 COOM
Fisher exact test		P = 0.309N	P = 0.309N	P = 0.500N
Skin (Subcutaneous Tissue): Fibrosarcoma				
Overall rate	2/50 (4%)	3/50 (6%)	0/50 (0%)	0/50 (0%)
Adjusted rate	6.3%	10.4%	0.0%	0.0%
Terminal rate	0/17 (0%)	0/11 (0%)	0/6 (0%)	0/0
First incidence (days)	491	536	_	_
Life table test	P = 0.137N	P = 0.389	P = 0.339N	P = 0.461N
Logistic regression test	P = 0.030N	P = 0.607	P = 0.182N	P = 0.188N
Cochran-Armitage test Fisher exact test	P = 0.051N	P = 0.500	P= 0.247N	P= 0.247N
risilei exact test		r = 0.300	r = 0.247N	r = 0.2471N
Skin (Subcutaneous Tissue): Fibrosarcoma	or Sarcoma			
Overall rate	3/50 (6%)	3/50 (6%)	0/50 (0%)	0/50 (0%)
Adjusted rate	11.0%	10.4%	0.0%	0.0%
Terminal rate	0/17 (0%)	0/11 (0%)	0/6 (0%)	0/0
First incidence (days)	491	536	— D. O. O. CONI	— D. 0.404N
Life table test	P = 0.107N P = 0.020N	P= 0.533 P= 0.608N	P = 0.252N P = 0.107N	P= 0.434N P= 0.149N
Logistic regression test Cochran-Armitage test	P = 0.020N P = 0.027N	r = 0.006 N	P = 0.1071N	P = 0.1491N
Fisher exact test	r = 0.0271	P = 0.661N	P = 0.121N	P = 0.121N
Skin (Subcutaneous Tissue): Fibroma, Fibro				- 4 4 1
Overall rate	5/50 (10%)	4/50 (8%)	1/50 (2%)	2/50 (4%)
Adjusted rate	21.5%	12.9%	3.1%	100.0%
Terminal rate First incidence (days)	2/17 (12%) 491	0/11 (0%) 536	0/6 (0%) 613	0/0 585
Life table test	P= 0.541	P= 0.594	P = 0.318N	P= 0.231
Logistic regression test	P = 0.172N	P = 0.334 P = 0.489N	P = 0.124N	P = 0.670N
Cochran-Armitage test	P = 0.107N	1 - 0.40014	1 - 0.12-114	1 – 0.07017
Fisher exact test	1 0110111	P = 0.500N	P = 0.102N	P = 0.218N
Torton Adamana				
Testes: Adenoma Overall rate	45/50 (90%)	48/50 (96%)	49/50 (98%)	47/50 (94%)
Adjusted rate	100.0%	100.0%	100.0%	100.0%
Terminal rate	17/17 (100%)	11/11 (100%)	6/6 (100%)	0/0
First incidence (days)	517	386	381	422
Life table test	P< 0.001	P = 0.014	P< 0.001	P< 0.001
Logistic regression test	P = 0.011	P = 0.054	P = 0.012	P< 0.001
Cochran-Armitage test	P = 0.354			
Fisher exact test		P = 0.218	P = 0.102	P = 0.357

TABLE A3a
Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625 ppm	2,500 ppm	5,000 ppm
Thyroid Gland (C-cell): Adenoma				
Overall rate	10/50 (20%)	5/49 (10%)	6/50 (12%)	2/50 (4%)
Adjusted rate	35.5%	34.6%	31.7%	8.6%
Terminal rate	3/17 (18%)	3/11 (27%)	0/6 (0%)	0/0
First incidence (days)	571	614	558	452
Life table test	P = 0.299	P = 0.400N	P = 0.444	P= 0.564
Logistic regression test	P = 0.210N	P = 0.312N	P = 0.351N	P = 0.145N
Cochran-Armitage test	P = 0.023N	1 0101211	1 0.00111	1 0111011
Fisher exact test		P = 0.140N	P = 0.207N	P = 0.014N
Гhyroid Gland (Follicular Cell): Carcinoma				
Overall rate	3/50 (6%)	3/49 (6%)	3/50 (6%)	4/50 (8%)
Adjusted rate	12.5%	16.3%	12.6%	13.4%
Ferminal rate	1/17 (6%)	1/11 (9%)	0/6 (0%)	0/0
First incidence (days)	688	614	424	442
Life table test	P = 0.021	P = 0.456	P = 0.339	P = 0.057
Logistic regression test	P = 0.395	P = 0.546	P = 0.656	P = 0.516
Cochran-Armitage test	P = 0.405			
Fisher exact test		P = 0.651	P = 0.661N	P = 0.500
Гhyroid Gland (Follicular Cell): Adenoma or Cai	cinoma			
Overall rate	4/50 (8%)	3/49 (6%)	4/50 (8%)	6/50 (12%)
Adjusted rate	14.6%	16.3%	15.4%	59.2%
Γerminal rate	1/17 (6%)	1/11 (9%)	0/6 (0%)	0/0
First incidence (days)	554	614	424	442
Life table test	P = 0.002	P = 0.603	P = 0.354	P = 0.010
Logistic regression test	P = 0.188	P = 0.582N	P = 0.617N	P = 0.318
Cochran-Armitage test	P = 0.218			
Fisher exact test		P = 0.511N	P = 0.643N	P = 0.370
All Organs: Mononuclear Cell Leukemia				
Overall rate	27/50 (54%)	36/50 (72%)	33/50 (66%)	19/50 (38%)
Adjusted rate	72.4%	91.4%	86.0%	100.0%
Terminal rate	8/17 (47%)	8/11 (73%)	3/6 (50%)	0/0
First incidence (days)	498	426	381	442
Life table test	P< 0.001	P = 0.005	P = 0.002	P< 0.001
Logistic regression test	P = 0.049N	P = 0.020	P = 0.187	P = 0.459N
Cochran-Armitage test	P = 0.009N			
Fisher exact test		P = 0.048	P = 0.154	P = 0.080N
All Organs: Benign Neoplasms				
Overall rate	47/50 (94%)	50/50 (100%)	50/50 (100%)	47/50 (94%)
Adjusted rate	100.0%	100.0%	100.0%	100.0%
Terminal rate	17/17 (100%)	11/11 (100%)	6/6 (100%)	0/0
First incidence (days)	471	386	381	422
Life table test	P< 0.001	P = 0.014	P< 0.001	P< 0.001
Logistic regression test	P = 0.040	P = 0.011	P = 0.014	P = 0.001
Cochran-Armitage test	P = 0.370N	D 0 101	D 0 101	D 0 001N
Fisher exact test		P = 0.121	P = 0.121	P = 0.661N

Oxazepam, NTP TR 468 95

TABLE A3a
Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ppm	625 ppm	2,500 ppm	5,000 ppm
All Organs: Malignant Neoplasms				
Overall rate	38/50 (76%)	43/50 (86%)	40/50 (80%)	25/50 (50%)
Adjusted rate	85.6%	93.5%	96.5%	100.0%
Terminal rate	11/17 (65%)	8/11 (73%)	5/6 (83%)	0/0
First incidence (days)	480	426	381	237
Life table test	P< 0.001	P = 0.016	P = 0.003	P< 0.001
Logistic regression test	P< 0.001N	P = 0.083	P = 0.477	P = 0.025N
Cochran-Armitage test	P< 0.001N			
Fisher exact test		P = 0.154	P = 0.405	P = 0.006N
All Organs: Benign or Malignant Neoplasms				
Overall rate	50/50 (100%)	50/50 (100%)	50/50 (100%)	48/50 (96%)
Adjusted rate	100.0%	100.0%	100.0%	100.0%
Terminal rate	17/17 (100%)	11/11 (100%)	6/6 (100%)	0/0
First incidence (days)	471	386	381	237
Life table test	$P \le 0.001$	P = 0.035	P = 0.001	P< 0.001
Logistic regression test	_f	_	_	_
Cochran-Armitage test	P = 0.043N			
Fisher exact test		P = 1.000N	P = 1.000N	P = 0.247N

⁽T) Terminal sacrifice

Value of statistic cannot be computed.

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, kidney, liver, pancreatic islets, pituitary gland, preputial gland, testes, and thyroid gland; for other tissues, denominator is number of animals necropsied.

b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

Observed incidence at terminal kill

Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The life table test regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in an exposed group is indicated by N.

Not applicable; no neoplasms in animal group

TABLE A3b Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Stop-Exposure Feed Study of Oxazepam

	0 ppm	10,000 ppm	
Adrenal Medulla: Benign Pheochromocytom	a		
Overall rate ^a	14/50 (28%)	0/1 (0%) ^d	
Adjusted rate ^b	44.1%	, ,	
Terminal rate ^c	3/17 (18%)		
First incidence (days)	571		
Adrenal Medulla: Benign or Malignant Phe		d	
Overall rate	14/50 (28%)	1/1 (100%) ^d	
Adjusted rate	44.1%		
Terminal rate	3/17 (18%)		
First incidence (days)	571		
Kidney (Renal Tubule): Adenoma (Step Sect			
Overall rate	1/50 (2%)	6/45 (13%)	
Adjusted rate	5.9%	39.1%	
Terminal rate	1/17 (6%)	0/0	
First incidence (days)	730 (T)	613	
Life table test ^e		P = 0.001	
Logistic regression test ^e		P = 0.024	
Fisher exact test ^e		P = 0.041	
Kidney (Renal Tubule): Adenoma (Single an			
Overall rate	2/50 (4%)	6/45 (13%)	
Adjusted rate	11.1%	39.1%	
Terminal rate	1/17 (6%)	0/0	
First incidence (days)	723	613	
Life table test		P = 0.001	
Logistic regression test Fisher exact test		P=0.046 P=0.103	
Mammary Gland: Fibroadenoma Overall rate	4/50 (8%)	0/50 (0%)	
Adjusted rate	18.2%	0.0%	
Terminal rate	1/17 (6%)		
First incidence (days)	698	0/0 f	
Life table test	000	P = 0.537N	
Logistic regression test		P = 0.214N	
Fisher exact test		P = 0.059N	
Mammary Gland: Fibroadenoma or Adenoi	ma		
Overall rate	4/50 (8%)	1/50 (2%)	
Adjusted rate	18.2%	10.0%	
Terminal rate	1/17 (6%)	0/0	
First incidence (days)	698	690	
Life table test		P = 0.608	
Logistic regression test		P = 0.515N	
Fisher exact test		P = 0.181N	
Mammary Gland: Fibroadenoma, Adenoma	, or Carcinoma		
Overall rate	4/50 (8%)	2/50 (4%)	
Adjusted rate	18.2%	13.1%	
Terminal rate	1/17 (6%)	0/0	
First incidence (days)	698	614	
Life table test		P = 0.345	
Logistic regression test		P = 0.614N	
Fisher exact test		P = 0.339N	

TABLE A3b Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Stop-Exposure Feed Study of Oxazepam (continued)

	0 ррт	10,000 ррш	
Pancreatic Islets: Adenoma or Carcinoma			
Overall rate	3/50 (6%)	$0/0^{ m d}$	
Adjusted rate	9.9%		
Terminal rate	0/17 (0%)		
First incidence (days)	682		
Pituitary Gland (Pars Distalis): Adenoma			
Overall rate	17/49 (35%)	5/5 (100%) ^d	
Adjusted rate	61.7%		
Terminal rate	8/17 (47%)		
First incidence (days)	471		
Preputial Gland: Adenoma			
Overall rate	7/48 (15%)	10/14 (71%) ^d	
Adjusted rate	29.8%		
Terminal rate	3/17 (18%)		
First incidence (days)	601		
Preputial Gland: Adenoma or Carcinoma			
Overall rate	8/48 (17%)	10/14 (71%) ^d	
Adjusted rate	31.5%		
Terminal rate	3/17 (18%)		
First incidence (days)	541		
Skin: Keratoacanthoma			
Overall rate	3/50 (6%)	2/50 (4%)	
Adjusted rate	10.1%	4.8%	
Terminal rate	0/17 (0%)	0/0	
First incidence (days)	585	542	
Life table test		P= 0.645	
Logistic regression test		P= 0.449N	
Fisher exact test		P = 0.500N	
Skin: Squamous Cell Papilloma or Keratoacantl		2 (72 (424)	
Overall rate	5/50 (10%)	2/50 (4%)	
Adjusted rate	14.6%	4.8%	
Terminal rate	0/17 (0%) 517	0/0 542	
First incidence (days) Life table test	317	P = 0.458N	
Logistic regression test		P = 0.436N P = 0.157N	
Fisher exact test		P = 0.1371V P = 0.218N	
I IOHOL CARCE ICOL		1 – 0.21014	
Skin: Malignant Schwannoma	9/50 (60/)	0/50 (00/)	
Overall rate	3/50 (6%)	0/50 (0%)	
Adjusted rate	11.6%	0.0%	
Terminal rate First incidence (days)	1/17 (6%) 480	0/0	
Life table test	400	— P= 0.377N	
Logistic regression test		P = 0.37 N P = 0.107 N	
Fisher exact test		P = 0.121N	

TABLE A3b
Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Stop-Exposure Feed Study of Oxazepam (continued)

	0 ррт	10,000 ppm
Skin (Subcutaneous Tissue): Fibroma Overall rate Adjusted rate Terminal rate First incidence (days) Life table test Logistic regression test Fisher exact test	3/50 (6%) 16.2% 2/17 (12%) 711	2/50 (4%) 34.8% 0/0 558 P= 0.154 P= 0.629 P= 0.500N
Skin (Subcutaneous Tissue): Fibrosarcoma or Subcutaneous Tissue): Fibr	Sarcoma 3/50 (6%) 11.0% 0/17 (0%) 491	1/50 (2%) 20.0% 0/0 697 P= 0.712 P= 0.323N P= 0.309N
Skin (Subcutaneous Tissue): Fibroma, Fibrosa Overall rate Adjusted rate Terminal rate First incidence (days) Life table test Logistic regression test Fisher exact test	rcoma, or Sarcoma 5/50 (10%) 21.5% 2/17 (12%) 491	3/50 (6%) 47.9% 0/0 558 P= 0.187 P= 0.492N P= 0.357N
Testes: Adenoma Overall rate Adjusted rate Terminal rate First incidence rate Life table test Logistic regression test Fisher exact test	45/50 (90%) 100.0% 17/17 (100%) 517	48/48 (100%) 100.0% 0/0 480 P< 0.001 P= 0.014 P= 0.031
Thyroid Gland (C-cell): Adenoma Overall rate Adjusted rate Terminal rate First incidence (days) Life table test Logistic regression test Fisher exact test	10/50 (20%) 35.5% 3/17 (18%) 571	1/50 (2%) 9.1% 0/0 687 P= 0.320N P= 0.030N P= 0.004N
Thyroid Gland (C-cell): Adenoma or Carcinon Overall rate Adjusted rate Terminal rate First incidence (days) Life table test Logistic regression test Fisher exact test	10/50 (20%) 35.5% 3/17 (18%) 571	2/50 (4%) 13.2% 0/0 634 P= 0.516N P= 0.068N P= 0.014N

TABLE A3b
Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Stop-Exposure Feed Study of Oxazepam (continued)

	0 ррт	10,000 ppm	
Thyroid Gland (Follicular Cell): Carcinom	a		
Overall rate	3/50 (6%)	1/50 (2%)	
Adjusted rate	12.5%	4.8%	
Terminal rate	1/17 (6%)	0/0	
First incidence (days)	688	638	
Life table test		P = 0.660	
Logistic regression test		P = 0.513N	
Fisher exact test		P = 0.309N	
Thyroid Gland (Follicular Cell): Adenoma	or Carcinoma		
Overall rate	4/50 (8%)	2/50 (4%)	
Adjusted rate	14.6%	9.5%	
Terminal rate	1/17 (6%)	0/0	
First incidence (days)	554	638	
Life table test		P = 0.573	
Logistic regression test		P = 0.400N	
Fisher exact test		P = 0.339N	
All Organs: Mononuclear Cell Leukemia			
Overall rate	27/50 (54%)	34/50 (68%)	
Adjusted rate	72.4%	100.0%	
Terminal rate	8/17 (47%)	0/0	
First incidence (days)	498	480	
Life table test		P< 0.001	
Logistic regression test		P = 0.075	
Fisher exact test		P = 0.109	
All Organs: Benign Neoplasms			
Overall rate	47/50 (94%)	48/50 (96%)	
Adjusted rate	100.0%	100.0%	
Terminal rate	17/17 (100%)	0/0	
First incidence (days)	471	480	
Life table test		P< 0.001	
Logistic regression test		P = 0.331	
Fisher exact test		P = 0.500	
All Organs: Malignant Neoplasms			
Overall rate	38/50 (76%)	35/50 (70%)	
Adjusted rate	85.6%	100.0%	
Terminal rate	11/17 (65%)	0/0	
First incidence (days)	480	480	
Life table test		P< 0.001	
Logistic regression test		P = 0.363N	
Fisher exact test		P = 0.326N	

TABLE A3b Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Stop-Exposure Feed Study of Oxazepam (continued)

	0 ррт	10,000 ррт	
All Organs: Benign or Malignant Neoplasms Overall rate Adjusted rate Terminal rate First incidence (days) Life table test Logistic regression test Fisher exact test	50/50 (100%) 100.0% 17/17 (100%) 471	48/50 (96%) 100.0% 0/0 480 P< 0.001 P= 0.423N P= 0.247N	

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, kidney, pancreatic islets, pituitary gland, preputial gland, testes, and thyroid gland; for other tissues, denominator is number of animals necropsied.

Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

Observed incidence at terminal kill

Tissue was examined microscopically only when it was observed to be abnormal at necropsy; thus, statistical comparisons with the controls are not appropriate.

Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and the exposed group. The life table test regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Fisher exact test compares directly the overall incidence rates. For all tests, a lower incidence in the exposed group is indicated by \mathbf{N} . Not applicable; no neoplasms in animal group

TABLE A4a Historical Incidence of Renal Tubule Adenoma in Untreated Male F344/N Rats^a

Study	Incidence in Controls
Historical Incidence at Battelle Columbus Laboratories	
4,4'-Thiobis(6-t-Butyl-m-Cresol) 5,5-Diphenylhydantoin Ethylene Thiourea Polybrominated Biphenyls (Firemaster FF-1®) Manganese (II) Sulfate Monohydrate Triamterene Tricresyl Phosphate	0/50 0/50 0/50 0/50 1/52 1/50 0/51
Overall Historical Incidence	
Total Standard deviation Range	9/1,301 (0.7%) 1.5% 0%-6%

^a Data as of 12 May 1995

TABLE A4b Historical Incidence of Benign Adrenal Medulla Pheochromocytoma in Untreated Male F344/N Rats^a

Study	Incidence in Controls
Historical Incidence at Battelle Columbus Laboratories	
4,4'-Thiobis(6- <i>t</i> -Butyl- <i>m</i> -Cresol) 5,5-Diphenylhydantoin Ethylene Thiourea Polybrominated Biphenyls (Firemaster FF-1®) Manganese (II) Sulfate Monohydrate Triamterene Tricresyl Phosphate	14/50 19/50 22/50 12/49 14/52 9/50 5/50
Overall Historical Incidence	
Total Standard deviation Range	396/1,283 (30.9%) 12.1% 10%-63%

^a Data as of 12 May 1995

TABLE A4c Historical Incidence of Pituitary Gland (Pars Distalis) Adenoma in Untreated Male F344/N Rats^a

Study	Incidence in Controls	
Historical Incidence at Battelle Columbus Laboratories		
4,4'-Thiobis(6-t-Butyl-m-Cresol) 5,5-Diphenylhydantoin Ethylene Thiourea Polybrominated Biphenyls (Firemaster FF-1®) Manganese (II) Sulfate Monohydrate Triamterene Tricresyl Phosphate	14/50 14/50 19/50 13/50 13/52 8/50 8/51	
Overall Historical Incidence		
Total Standard deviation Range	377/1,284 (29.4%) 10.6% 14%-60%	

^a Data as of 12 May 1995

TABLE A5
Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of Oxazepam^a

	0 ррт	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Disposition Summary	50	50	50	50	50
Animals initially in study Early deaths	30	50	30	30	30
Moribund	25	27	33	43	39
Natural deaths	8	12	11	7	11
Survivors Terminal sacrifice	17	11	6		
Animals examined microscopically	50	50	50	50	50
Alimentary System					
Intestine large, colon	(50)	(47)	(50)	(50)	(1)
Parasite metazoan	. ,	4 (9%)	` '	2 (4%)	
Serosa, inflammation, chronic					1 (100%)
Intestine large, rectum	(50)	(48)	(49)	(50)	(1)
Congestion			1 (2%)		
Edema Parasite metazoan			1 (2%) 1 (2%)	2 (4%)	
Serosa, inflammation, chronic			1 (270)	۵ (470)	1 (100%)
Intestine large, cecum	(50)	(48)	(49)	(50)	(1)
Congestion	(==)	(==/	1 (2%)	(/	\=/
Edema			1 (2%)		
Serosa, inflammation, chronic					1 (100%)
Intestine small, duodenum	(50)	(48)	(49)	(50)	(44)
Erosion	4 (8%)	3 (6%)	9 (18%)	16 (32%)	1 (2%)
Inflammation, chronic active Mineralization					1 (2%) 6 (14%)
Ulcer	1 (2%)		2 (4%)	2 (4%)	U (1470)
Intestine small, ileum	(50)	(47)	(46)	(49)	
Ulcer	1 (2%)	* • /	\ -/	\ - /	
Liver	(50)	(50)	(49)	(50)	(50)
Angiectasis	1 (2%)				1 (2%)
Basophilic focus	21 (42%)	11 (22%)	4 (8%)	2 (4%)	13 (26%)
Clear cell focus	2 (4%)	4 (8%)	1 (90/)		
Degeneration, cystic Degeneration, fatty	3 (6%) 1 (2%)	1 (2%)	1 (2%) 1 (2%)		
Eosinophilic focus	8 (16%)	5 (10%)	1 (2%) 5 (10%)	6 (12%)	2 (4%)
Hepatodiaphragmatic nodule	1 (2%)	3 (6%)	1 (2%)	2 (4%)	3 (6%)
Mixed cell focus	2 (4%)	4 (8%)	2 (4%)	1 (2%)	1 (2%)
Necrosis, focal	1 (2%)	• •	5 (10%)	4 (8%)	, ,
Bile duct, hyperplasia	1 (2%)		1 (2%)		
Centrilobular, congestion	4 (00.0)	1 (2%)		4 (00.1)	4 (00.1)
Centrilobular, degeneration	1 (2%)	1 (00/)	4 (00/)	1 (2%)	1 (2%)
Centrilobular, necrosis Hepatocyte, centrilobular, hypertrophy	3 (6%)	1 (2%) 1 (2%)	4 (8%) 8 (16%)	3 (6%) 14 (28%)	2 (4%)
Serosa, fibrosis		1 (2%)	o (1070)	14 (2070)	
Serosa, inflammation, chronic		1 (2/0)			1 (2%)
Mesentery	(7)	(6)	(4)	(4)	(5)
Accessory spleen	1 (14%)	1 (17%)	, ,	• •	1 (20%)
Necrosis, acute, focal		1 (17%)			
Fat, necrosis	6 (86%)	3 (50%)	3 (75%)	4 (100%)	4 (80%)
Pancreas	(50)	(48)	(49)	(50)	
Acinus, atrophy	17 (34%)	10 (21%)	14 (29%)	1 (2%)	
Acinus, hyperplasia	1 (9%)	1 (90/)		1 (2%)	
Artery, inflammation, granulomatous	1 (2%)	1 (2%)			

^a Number of animals examined microscopically at the site and the number of animals with lesion

TABLE A5
Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625	ó ppm	2,50	0 ppm	5,00	00 ppm		00 ppm Exposure)
Alimentary System (continued)									
Salivary glands	(50)	(49)		(50)		(50)	(0.0.1)		
Parotid gland, degeneration							(2%)		
Parotid gland, hyperplasia, focal	(#0)	(40)		(50)			(2%)	(40)	
Stomach, forestomach	(50)	(48)	(00/)	(50)	(00/)	(50)	(40/)	(49)	(00/)
Erosion	1 (90/)	1	(2%)	1	(2%)	Z	(4%)	1	(2%)
Hyperplasia Inflammation, chronic	1 (2%)			1	(2%)				
Inflammation, chronic active	6 (12%)	8	(17%)		(44%)	15	(30%)	10	(20%)
Mineralization	0 (1270)	Ü	(1770)		(2%)	10	(0070)		(8%)
Ulcer	9 (18%)	12	(25%)		(40%)	10	(20%)		(14%)
Epithelium, hyperplasia	5 (10%)		(17%)		(50%)		(32%)		(31%)
Serosa, inflammation	0 (1070)	· ·	(1170)	~0	(0070)		(6%)		(01/0)
Stomach, glandular	(50)	(48)		(50)		(50)	. ,	(47)	
Erosion	5 (10%)		(10%)		(18%)		(8%)		(11%)
Inflammation, chronic active			•		•			2	(4%)
Mineralization			(6%)		(2%)		(8%)		(34%)
Ulcer	2 (4%)	7	(15%)	7	(14%)	4	(8%)		(9%)
Serosa, inflammation								2	(4%)
Cardiovascular System									
Blood vessel	(49)	(50)		(50)		(50)			
Aorta, mineralization			(2%)			3	(6%)		
Aorta, thrombosis	1 (2%)								
Heart	(50)	(50)		(50)		(50)		(7)	
Atrium, thrombosis	7 (14%)				(2%)				(71%)
Myocardium, degeneration	46 (92%)		(80%)		(86%)		(74%)		(14%)
Myocardium, mineralization		1	(2%)	2	(4%)	1	(2%)	4	(57%)
Endocrine System									
Adrenal cortex	(50)	(50)		(50)		(50)			
Degeneration, cystic			(2%)						
Hyperplasia, focal	5 (10%)	10	(20%)		(16%)	6	(12%)		
Hypertrophy, focal	4 (22.1)			1	(2%)				
Necrosis, focal	1 (2%)	/#61		(#0)		(20)		/45	
Adrenal medulla	(50)	(50)	(100/)	(50)	(000/)	(50)	(000/)	(1)	
Hyperplasia	9 (18%)		(18%)		(30%)		(32%)		
slets, pancreatic Hyperplasia	(50) 3 (6%)	(48)	(4%)	(49)		(50)	(2%)		
Parathyroid gland	(39)	(41)	(1/0)	(46)		(40)	(2/0)	(13)	
** 1 .	3 (8%)		(15%)	(40) Q	(20%)		(40%)	(13)	(100%)
Hyperplasia Pituitary gland	(49)	(50)	(10/0)	(50)	(20/0)	(48)	(10/0)	(5)	(100/0)
Cyst	1 (2%)	(30)		(30)		(10)		(3)	
Degeneration, cystic	1 (2%)								
Pars distalis, cyst	- (~,0)	2	(4%)			1	(2%)		
Pars distalis, hyperplasia	9 (18%)		(10%)	3	(6%)		(2%)		
Pars distalis, thrombosis	1 (2%)		. ,						
Pars nervosa, gliosis, focal	` ′			1	(2%)				
Гhyroid gland	(50)	(49)		(50)	•	(50)		(50)	
Mineralization							(2%)		
C-cell, hyperplasia	33 (66%)	36	(73%)	38	(76%)	38	(76%)		(82%)
Follicle, cyst	4 (8%)	2	(4%)		(8%)	6	(12%)	9	(18%)
Follicle, hyperplasia				1	(2%)				
Follicle, ultimobranchial cyst						1	(2%)		

TABLE A5
Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625 ppm	2,500 ppm	5, 000 ppm	10,000 ppm (Stop-Exposure)
General Body System					
Peritoneum	(2)	(1)	(1)	(2)	(1)
Inflammation, chronic				1 (50%)	
Genital System					
Epididymis	(50)	(49)	(50)	(50)	(1)
Cyst				1 (2%)	
Inflammation, chronic	(40)	(70)	(50)	1 (2%)	(1.4)
Preputial gland	(48)	(50)	(50)	(49)	(14)
Cyst	1 (2%) 1 (2%)				
Hyperplasia				1 (90/)	
Inflammation, chronic active Inflammation, suppurative	2 (4%) 1 (2%)	1 (2%)		1 (2%) 4 (8%)	3 (21%)
Duct, cyst	1 (2%)	4 (8%)	4 (8%)	4 (8%) 3 (6%)	3 (21%) 1 (7%)
Prostate	(50)	(50)	(50)	(50)	1 (1/0)
Inflammation, chronic active	1 (2%)	(00)	(30)	(30)	
Inflammation, suppurative	1 (2/0)	1 (2%)			
Seminal vesicle	(50)	(50)	(50)	(50)	(1)
Atrophy	(00)	(00)	(00)	(00)	1 (100%)
Cyst	1 (2%)			1 (2%)	1 (10070)
Fibrosis	- (~/0)	1 (2%)		- (-/0)	
Hyperplasia		- ()	1 (2%)		
Inflammation, chronic	1 (2%)		- ()		
Inflammation, suppurative	` ,	1 (2%)			
Гestes	(50)	(50)	(50)	(50)	(48)
Germinal epithelium, atrophy	2 (4%)	2 (4%)	1 (2%)	1 (2%)	
Hematopoietic System					
Bone marrow	(50)	(50)	(50)	(50)	
Necrosis	1 (2%)	(-0)	(==/	(==/	
Thrombosis	()			1 (2%)	
Lymph node	(5)	(8)	(8)	(1)	(9)
Renal, ectasia	• •	• /	1 (13%)	• •	, ,
Renal, pigmentation			, ,		1 (11%)
Lymph node, mesenteric	(49)	(49)	(50)	(47)	(4)
Congestion			1 (2%)		
Inflammation, chronic active	1 (2%)				
Spleen	(50)	(50)	(50)	(50)	(33)
Fibrosis	7 (14%)	3 (6%)	3 (6%)	4 (8%)	8 (24%)
Hematopoietic cell proliferation	6 (12%)	1 (2%)	3 (6%)	5 (10%)	
Necrosis	1 (2%)	1 (2%)			
Pigmentation, hemosiderin		1 (2%)	3 (6%)	2 (4%)	
Lymphoid follicle, atrophy		1 (2%)	4 (00.1)	1 (2%)	
Red pulp, congestion	(40)	1 (2%)	1 (2%)	2 (4%)	
Francis acceptance of all and	(49)	(47)	(49)	(47)	
Ectopic parathyroid gland Ectopic thyroid				2 (4%) 1 (2%)	
Integramentom: Ct					
Integumentary System	(50)	(4.4)	(40)	(40)	(9)
Mammary gland	(50)	(44)	(48)	(48)	(2)
Hyperplasia, cystic Inflammation, suppurative	3 (6%)		1 (2%)		
			1 (2%)		

TABLE A5
Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ppm	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Integumentary System (continued)	(5.0)	(40)	(40)	(50)	(0)
Skin Ulcer	(50)	(49)	(49)	(50) 2 (4%)	(8)
Epidermis, cyst	1 (2%)			£ (470)	
Epidermis, inflammation, suppurative	4 (00/)				1 (13%)
Hair follicle, cyst	1 (2%)				
Musculoskeletal System					
Bone	(50)	(50)	(50)	(50)	(4)
Fibrosis Fibrous osteodystrophy		1 (2%)	6 (12%)	8 (16%)	1 (25%) 3 (75%)
Hyperostosis	3 (6%)	- ()	1 (2%)	2 (20.2)	2 (13.3)
Nervous System					
Brain	(50)	(50)	(50)	(50)	(2)
Hydrocephalus	6 (12%)	2 (4%)	4 (00/)	1 (2%)	
Necrosis, focal Hypothalamus, degeneration	1 (2%)		1 (2%)		
Medulla, gliosis, focal	1 (2%)				
Respiratory System					
Lung	(50)	(50)	(50)	(50)	(3)
Fibrosis			1 (2%)		
Hematopoietic cell proliferation	1 (2%)			1 (90/)	
Hemorrhage Inflammation, acute, focal				1 (2%) 1 (2%)	
Inflammation, chronic, focal				1 (2%)	
Inflammation, granulomatous	1 (2%)	2 (4%)		3 (6%)	
Metaplasia, squamous			1 (2%)		
Alveolar epithelium, hyperplasia	1 (2%)	1 (2%)		1 (2%)	
Interstitium, inflammation, acute Interstitium, inflammation, chronic	1 (2%) 2 (4%)		3 (6%)		
Interstitium, inflammation, chronic,	۵ (۱۳/۵)		3 (0/0)		
focal	1 (2%)				
Interstitium, mineralization		1 (2%)		1 (2%)	
Mediastinum, inflammation, chronic	1 (90/)			1 (2%)	
Vein, thrombosis Nose	1 (2%) (50)	(50)	(50)	(50)	
Inflammation, suppurative	13 (26%)	14 (28%)	9 (18%)	7 (14%)	
Special Senses System					
Eye	(2)	(3)	(2)	(1)	(2)
Cataract	. ,	1 (33%)	()		` '
Inflammation, suppurative				1 (100%)	
Anterior chamber, inflammation, acute		1 (33%)			1 (50%)
Anterior chamber, inflammation, suppurative			1 (50%)		
Suppurative			1 (30/0)		1 (50%)

TABLE A5
Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0	ppm	625	ó ppm	2,50	0 ppm	5,00	0 ppm		00 ppm Exposure)
Urinary System										
Kidney	(50)		(50)		(50)		(50)		(42)	
Amyloid deposition	1	(2%)								
Fibrosis, focal			1	(2%)						
Infarct	1	(2%)								
Nephropathy	49	(98%)	44	(88%)	49	(98%)	50	(100%)	42	(100%)
Renal tubule, cyst	1	(2%)	1	(2%)	6	(12%)	8	(16%)	3	(7%)
Renal tubule, hyperplasia			1	(2%)	3	(6%)	1	(2%)		
Renal tubule, pigmentation, lipofuscin	1	(2%)								
Urinary bladder	(50)		(50)		(50)		(50)		(1)	
Hemorrhage	1	(2%)								
Ulcer									1	(100%)
Transitional epithelium, hyperplasia	1	(2%)								

APPENDIX B SUMMARY OF LESIONS IN FEMALE RATS IN THE 2-YEAR FEED STUDY OF OXAZEPAM

TABLE B1	Summary of the Incidence of Neoplasms in Female Rats	
	in the 2-Year Feed Study of Oxazepam	111
TABLE B2	Individual Animal Tumor Pathology of Female Rats	
	in the 2-Year Feed Study of Oxazepam	114
TABLE B3a	Statistical Analysis of Primary Neoplasms in Female Rats	
	in the 2-Year Feed Study of Oxazepam	134
TABLE B3b	Statistical Analysis of Primary Neoplasms in Female Rats	
	in the 2-Year Stop-Exposure Feed Study of Oxazepam	139
TABLE B4a	Historical Incidence of Mammary Gland Neoplasms	
	in Untreated Female F344/N Rats	142
TABLE B4b	Historical Incidence of Pituitary Gland (Pars Distalis) Neoplasms	
	in Untreated Female F344/N Rats	142
TABLE B5	Summary of the Incidence of Nonneoplastic Lesions in Female Rats	
	in the 2-Year Feed Study of Oxazepam	143

 $\begin{tabular}{ll} \textbf{TABLE B1} \\ \textbf{Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of Oxazepama } \end{tabular}$

	0 ррт	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Disposition Summary					
Animals initially in study Early deaths	50	50	50	50	50
Accidental death	1	10	10	10	10
Moribund Natural deaths	11 6	18 6	18 12	16 3	19 6
Survivors					
Terminal sacrifice	32	26	20	31	25
Animals examined microscopically	50	50	50	50	50
Alimentary System					
Intestine large, colon Polyp adenomatous	(50) 1 (2%)	(48)	(49)	(50)	
Potyp adenomatous Liver	(50)	(50)	(50)	(50)	(49)
Histiocytic sarcoma, metastatic, skin	, ,			, ,	1 (2%)
Mesentery Pancreas	(10)	(9)	(4)	(6)	(13)
Pancreas Acinus, adenoma	(50)	(50)	(49)	(49) 1 (2%)	
Salivary glands	(50)	(50)	(48)	(49)	(1)
Myoepithelioma	(50)	(50)	(50)	(50)	1 (100%)
Stomach, forestomach Tongue	(50)	(50) (1)	(50)	(50)	(50)
Squamous cell carcinoma		1 (100%)			
Cardiovascular System None					
Endocrine System	(70)	(70)	(70)	(70)	(0)
Adrenal cortex Adenoma	(50)	(50) 1 (2%)	(50) 1 (2%)	(50)	(2) 1 (50%)
Adrenal medulla	(50)	(50)	(50)	(50)	1 (30/0)
Pheochromocytoma malignant	1 (2%)				
Pheochromocytoma complex Pheochromocytoma benign	1 (2%) 1 (2%)	3 (6%)		1 (2%)	
Islets, pancreatic	(50)	(50)	(49)	(49)	
Adenoma	1 (2%)	, ,	, ,	, ,	
Parathyroid gland	(42)	(38)	(38)	(33)	
Adenoma Pituitary gland	(50)	(50)	1 (3%) (50)	(50)	(35)
Pars distalis, adenoma	30 (60%)	28 (56%)	20 (40%)	12 (24%)	23 (66%)
Pars distalis, adenoma, multiple	1 (2%)		1 (2%)		
Pars distalis, carcinoma Fhyroid gland	(50)	(50)	1 (2%) (48)	(49)	(50)
Bilateral, C-cell, adenoma	(30)	(30)	(40)	(43)	2 (4%)
C-cell, adenoma	6 (12%)	3 (6%)	6 (13%)	2 (4%)	2 (4%)
C-cell, carcinoma	1 (2%)		1 (2%)	1 (2%)	
Follicular cell, adenoma Follicular cell, carcinoma	1 (2%) 1 (2%)		3 (6%)	2 (4%) 1 (2%)	
- omediai cen, caremonia	1 (~70)		0 (0/0)	1 (2/0)	

TABLE B1
Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
General Body System None					
Genital System					
Clitoral gland	(49)	(50)	(50)	(50)	(11)
Adenoma	6 (12%)	3 (6%)	3 (6%)	4 (8%)	7 (64%)
Carcinoma	1 (2%)		1 (2%)		
Bilateral, adenoma	1 (2%)	(50)	(50)	(50)	(4)
Ovary Granulosa cell tumor benign	(50) 1 (2%)	(50)	(50)	(50)	(4)
Tubulostromal adenoma	1 (2/0)			1 (2%)	
Uterus	(50)	(50)	(50)	(50)	(5)
Polyp stromal	2 (4%)	4 (8%)	3 (6%)	4 (8%)	(0)
Sarcoma stromal	1 (2%)		, ,	1 (2%)	1 (20%)
Hematopoietic System					
Lymph node	(4)	(2)	(9)	(3)	(4)
Deep cervical, carcinoma, metastatic,					
thyroid gland	1 (25%)				
Renal, pheochromocytoma malignant,	1 (050/)				
metastatic, adrenal medulla	1 (25%)	(40)	(40)	(40)	(9)
Lymph node, mandibular Squamous cell carcinoma,	(50)	(48)	(48)	(49)	(3)
metastatic, skin					1 (33%)
Lymph node, mesenteric	(50)	(50)	(50)	(49)	(2)
Spleen	(50)	(50)	(50)	(49)	(12)
Г̂hymus	(50)	(48)	(46)	(47)	
Integumentary System					
Mammary gland	(49)	(49)	(49)	(50)	(23)
Adenoma	1 (2%)	2 (4%)			
Carcinoma Carcinoma, multiple	2 (4%)	3 (6%)			1 (4%)
Fibroadenoma	11 (22%)	14 (29%)	8 (16%)	12 (24%)	1 (4%)
Fibroadenoma, multiple	14 (29%)	5 (10%)	1 (2%)	1 (2%)	6 (26%)
Skin	(50)	(50)	(50)	(50)	(6)
Basal cell carcinoma	()	1 (2%)	(/	()	(-)
Fibroma		` ′		1 (2%)	2 (33%)
Fibrosarcoma		2 (4%)			
Keratoacanthoma				1 (2%)	
Squamous cell carcinoma					1 (17%)
Trichoepithelioma		1 (00/)	1 (2%)		
Sebaceous gland, adenoma Subcutaneous tissue, histiocytic sarcon	na	1 (2%)			1 (17%)
Subcataneous assue, instrocytic salcon					1 (11/0)
Musculoskeletal System Bone	(50)	(50)	(50)	(50)	(1)
			1.1111	1.1011	(1)

TABLE B1 Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Nervous System Brain Astrocytoma benign Carcinoma, metastatic, pituitary gland Oligodendroglioma malignant	(50)	(50) 1 (2%)	(50) 1 (2%)	(50)	
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Carcinoma, metastatic, thyroid gland	(50)	(50) 1 (2%)	(49) 1 (2%)	(49) 2 (4%)	
Special Senses System Zymbal's gland Carcinoma				(2) 2 (100%)	
Urinary System Kidney Nephroblastoma Urinary bladder Sarcoma stromal, metastatic, uterus	(50) (48)	(50) 1 (2%) (49)	(50) (49)	(50) (50) 1 (2%)	(1)
Systemic Lesions Multiple organs ^b Histiocytic sarcoma Leukemia mononuclear	(50) 14 (28%)	(50) 19 (38%)	(50) 29 (58%)	(50) 18 (36%)	(50) 1 (2%) 15 (30%)
Neoplasm Summary Total animals with primary neoplasms ^C Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms Total animals with malignant neoplasms Total malignant neoplasms Total animals with metastatic neoplasms Total animals with metastatic neoplasms	49 101 43 77 21 24 2	49 93 39 65 26 28	45 80 30 45 34 35 2	38 67 26 44 22 23 1	43 80 38 61 17 19 2

Number of animals examined microscopically at the site and the number of animals with neoplasm
 Number of animals with any tissue examined microscopically
 Primary neoplasms: all neoplasms except metastatic neoplasms

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of Oxazepam: 0 ppm

																					_					
	2	2	5	5	5	5	5	5	5	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	2		5	6	7	8	9	1	4	4	9	9	9	0	0	0	2	3	3	3	3	3	3	
· ·	3	8	2	9	0	9	1	3		3	1	7	0	6	7	0	1	8	9	0	0	0	0	0	0	
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Carcass ID Number	0					2				3								1	0	0				1		
CHICAGO ID ITHIIDUI	1								9			4		5				4				1				
			_			_	_	_	_		_	_	_	_		_	_	_	_	_	_	_		_		
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Polyp adenomatous												X														
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum	A		+	+	+	+	+	+	+	+						A	+	+	+	+	+	+	+	+	+	
Intestine small, ileum	Α	+	+	+	+	+	+	+	+	+				+			+	+	+	+	+	+	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mesentery													+		+					+		+			+	
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Cardiovascular System																										
Blood vessel					_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	
Heart		. ,				T			7	<u>т</u>	7	т Т	т Т	T	_	_	T	т.	т Т	<u>٦</u>		-T		+	т′	
- Itealt	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma malignant																X										
Pheochromocytoma complex																						X				
Pheochromocytoma benign																										
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma																										
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pituitary gland	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pars distalis, adenoma			·	X			X			X				X							X				X	
Pars distalis, adenoma, multiple															-											
Thyroid gland	+	. +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
C-cell, adenoma		'					•				•	X	X			X		•	•	•	•	•				
C-cell, carcinoma																				X						
Follicular cell, adenoma																				<i>2</i> 1						
Follicular cell, carcinoma											X															
Commel De Jer Constant																										
General Body System None																										
TVOIC																					_	_				
Genital System																										
Clitoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	M	+	+	+	
Adenoma												X					X									
Carcinoma																										
Bilateral, adenoma					X																					
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Granulosa cell tumor benign																										
		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Uterus	+																									
	+	·																								
Uterus Polyp stromal Sarcoma stromal	+	·																								

+: Tissue examined microscopically A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

Individual Animal Tumor Patholog	~	-															_				-					
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		7	
Number of Days on Study	3						3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	0	() (0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Total
Carcass ID Number	2	3					3	4	4	4	1	1	1	1	1	2	2	3	3	4	4	4	4	4	4	Tissues/
	1	() 3	5	6	8	9	3	4	8	0	6	7	8	9	5	7	2	4	0	2	5	6	7	9	Tumors
Alimentary System																										
Esophagus	+	_	⊦ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, colon	+	-	⊦ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Polyp adenomatous																										1
Intestine large, rectum	+	-		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	-	⊦ -	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	-	-	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, jejunum Intestine small, ileum	+	-	-	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46 47
Liver	+						+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Mesentery	Т	Ī		7	-T	7	т	-	Т	г	г	+	-	-	1.	+	+	-	-		+	т	т	+	-	10
Pancreas	+		- -	- 4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary glands	+	_	· 	- 4	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	_	- -	- +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	-		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System																										
Blood vessel	+	_	L -	- 4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Heart	+	_	· 	- +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																		,								F0
Adrenal cortex Adrenal medulla	+	-		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
Adrenai meduna Pheochromocytoma malignant	+	_		- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Pheochromocytoma mangham Pheochromocytoma complex																										1
Pheochromocytoma benign																X										1
Islets, pancreatic	+	_	- -	- +	- +	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	50
Adenoma												•								•		X				1
Parathyroid gland	+	_	- N	Л +	+	M	+	+	+	+	+	M	+	+	+	M	+	+	+	M	+		M	M	+	42
Pituitary gland	+			- +			+																	+		50
Pars distalis, adenoma	X				X	X		X	X	X	X		X	X	X	X			X		X		X	X	X	30
Pars distalis, adenoma, multiple				Χ																						1
Thyroid gland	+	-	⊦ -	- +			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
C-cell, adenoma					X											X				X						6
C-cell, carcinoma																										1
Follicular cell, adenoma Follicular cell, carcinoma												X														1 1
General Body System																										
None																										
Genital System																										a =
Clitoral gland	+	-		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma				χ			X										٠,			X		X				6
Carcinoma																	X									1
Bilateral, adenoma																		,								1
Ovary Cranulosa call tumor banion	+	-		- +	- +	+	+	+	+	+	+	+	+ V	+	+	+	+	+	+	+	+	+	+	+	+	50
Granulosa cell tumor benign Uterus			L								5	+	X +	+	_	_	_	ر	_	ر	_				_	1 50
Polyp stromal	+	-		- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+ X	+	+	+	50 2
Sarcoma stromal															X			Λ				Λ				1
Sai coma su omai																										1

TARLE R2

Individual Animal Tumor Pathology	of Fem	ale	R	ats	in	the	2-	Ye	ar	Fe	ed	St	udy	y o	ťΟ	xa	zej	ar	n:	0	pp	m	(cor	ntin	ued)	
	2	2		5	5	5	5	5	5			6	6		-	7	7	7	7	7	7	7	7		7	
Number of Days on Study	2 3	2		2 9	5 0	6 9	7 1	8	9 7	1 3	4	4 7	9	9 6	9 7	0	0 1	0 8	2 9	3 0	3 0	3 0	3 0		3	
Carcass ID Number	3	3 2		3 0	3 4	3	3 2	3 5	3 0	3	3	3 2	3	3 1	3 0	3 2	3 2	3	3	3	3 0	3 1	3 1		3 2	
	1	2	5	4	1	3	9	0	9	7	8		1	5	2	6	8	4	6	3	7	1	2	3	0	
Hematopoietic System																										
Bone marrow Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Deep cervical, carcinoma, metastatic,					+								+			+				+						
thyroid gland																				X						
Renal, pheochromocytoma malignant, metastatic, adrenal medulla																X										
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mesenteric Spleen	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Integumentary System																										
Mammary gland	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma Carcinoma		Х	,							X																
Fibroadenoma		Δ	•					X				X			X						X					
Fibroadenoma, multiple				X										X					X			X			X	
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Musculoskeletal System																										
Bone Osteosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	
Osteosai coma																Λ						_	_	_		
Nervous System																										
Brain Oligodendroglioma malignant	+ X		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Special Senses System Eye																	+									
Urinary System																										
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	
Systemic Lesions																										
Multiple organs Leukemia mononuclear	+	+	· +		+	+ X	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	

Individual Animal Tumor Pathology	of Fema	ale	Ra	ats	in	the	2-	Ye	ar	Fe	ed	St	udy	y o	f O	xa	zej	ar	n:	0 j	ppı	m	(cor	itin	ued)	
Number of Days on Study	7 3 0	3	7 3 1	3	7 3 1	7 3 1	7 3 1	3	7 3 1	7 3 1	7 3 1	3	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1									
Carcass ID Number	3 2 1	3 3 0	3 3 3	3 3 5	3 3 6	3 3 8	3 3 9	3 4 3	3 4 4	3 4 8	3 1 0	3 1 6		3 1 8	3 1 9	2	3 2 7	3 3 2	3 3 4	3 4 0	3 4 2	3 4 5	3 4 6	3 4 7	3 4 9	Tota Tissues Tumors
Hematopoietic System Bone marrow Lymph node Deep cervical, carcinoma, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 4
thyroid gland Renal, pheochromocytoma malignant, metastatic, adrenal medulla Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + +	+ + +	+ + + +	+ + + +	+ + +	+ + + +	+ + + +	+ + + +	+ + +	+ + + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + + +	+ + + + +	+ + + + +	1 50 50 50 50
Integumentary System Mammary gland Adenoma Carcinoma Fibroadenoma Fibroadenoma, multiple	+	+ X	+ X	+	+ X	+	+ X	+ X X	+	+ X	+ X	+ X	+ X	+	+	+ X	+	+	+	49 1 2 11						
Musculoskeletal System Bone Osteosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50 1
Nervous System Brain Oligodendroglioma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Respiratory System Lung Nose Trachea	+ + +	+ + +	+ + +	+ + +	++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + + +	50 50 50
Special Senses System Eye										+																2
Urinary System Kidney Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	++	+	++	+ M	+	+	+	+	+++	50 48
Systemic Lesions Multiple organs Leukemia mononuclear	+	+	+ X		+	+	+	+ X	+	+	+	+	+	+ X	+	+ X	+	+	+	+ X	+	+ X	+	+	+	50 14

T	nt		Do
ΙΔ	١RI	- Н	KZ.

Individual Animal Tumor Pathol	ology of Female Rats in the 2-Year Feed Study of Oxazepam: 625 ppm
	2 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7
Number of Days on Study	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Carcass ID Number	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Alimentary System	
Sophagus	+ + + + + + + + + + + + + + + + + + + +
ntestine large, colon	A + + + + + A + + + + + + + + + + + + +
ntestine large, rectum	A + + + + + + + + + + + + + + + + + + +
ntestine large, cecum ntestine small, duodenum	A + + + + + A + + + + + + + + + + + + +
ntestine small, jejunum	A + + + + + A + + + + + + + + + + + + +
ntestine small, ileum	A + A + + + + + + + + + + + + + + + + +
iver	+ + + + + + + + + + + + + + + + + + + +
Mesentery	+ + + +
ancreas	+ + + + + + + + + + + + + + + + + + + +
alivary glands	+ + + + + + + + + + + + + + + + + + + +
tomach, forestomach	+ + + + + + + + + + + + + + + + + + + +
tomach, glandular	+ + + + + + + + + + + + + + + + + + + +
Tongue Squamous cell carcinoma	+ X
Cardiovascular System	
Blood vessel	+ + + + + + + + + + + + + + + + + + + +
l eart	+ + + + + + + + + + + + + + + + + + + +
Endocrine System	
Adrenal cortex Adenoma	+ + + + + + + + + + + + + + + + + + + +
Adrenal medulla	+ + + + + + + + + + + + + + + + + + + +
Pheochromocytoma benign	X
slets, pancreatic	+ + + + + + + + + + + + + + + + + + + +
arathyroid gland	+ + + + + M + M + + + + + M + + + + + +
Pituitary gland	+ + + + + + + + + + + + + + + + + + + +
Pars distalis, adenoma	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
'hyroid gland C-cell, adenoma	+ + + + + + + + + + + + + + + + + + +
General Body System None	
Genital System	
Clitoral gland	+ + + + + + + + + + + + + + + + + + + +
Adenoma	X
Ovary Jterus	+ + + + + + + + + + + + + + + + + + + +
Polyp stromal	X X
/agina	+
Iematopoietic System	
Bone marrow	+ + + + + + + + + + + + + + + + + + + +
Lymph node	M
Lymph node, mandibular	M + + + + + + + + + + + + + + + + + + +
Lymph node, mesenteric	+ + + + + + + + + + + + + + + + + + + +
Spleen Fhymus	+ + + + + + + + + + + + + + + + + + +
1 11 y 111 u 3	· · · · · · · · · · · · · · · · · · ·

Individual Animal Tumor Pathol	9 01 FCIII	· ·													,	_		1				· •]			`		cu)
	7		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2		2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	9		9 !	9	9	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	
	3	. :	3	3	3	3	3	3	3	3	3	3	3	3	3	4	3	3	3	3	3	3	3	3	3	3	Total
Carcass ID Number	7	8	8	9	9	5	5	6	7	7	7	7	7	8	9	0	6	6	6	8	8	9	9	9	9	9	Tissues
	6	(6	4	7	3	9	1	1	2	7	8	9	5	6	0	0	2	8	8	9	1	2	5	8	9	Tumors
Alimentary System																											
Esophagus	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine large, colon	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ntestine large, rectum	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, cecum	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, duodenum	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ntestine small, jejunum	+		+ .	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, ileum	+		+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Liver Mesentery	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 9
Pancreas			_	_	_	+	+	+	+ +	+	+	+	+	_	+	+	+	+	+	+	_		_	ا ا		_	50
Salivary glands	T		τ ·	+	T +	+	+	T +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	50
Stomach, forestomach	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	50
Stomach, glandular	+		+ .	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	50
Fongue																											1
Squamous cell carcinoma																											1
Cardiovascular System																											
Blood vessel	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Heart	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																											~ 0
Adrenal cortex Adenoma	+			+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma Adrenal medulla																											1
	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	50 3
Pheochromocytoma benign (slets, pancreatic	_		<u>.</u>	_	_	_	_	_	_	_	_	_	_	_	_	+	+	+	+	_	_		_	_		_	50
Parathyroid gland	1	<i>I</i> 1	M	_	+	+	+	M	М		M		+	M			+	+	+	+					+	+	38
Pituitary gland	+		+					+		+			+		+				+	+	+	+	+	+			50
Pars distalis, adenoma	X				X		'	'		X				X			X				X					X	28
Thyroid gland	+		+ -				+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
C-cell, adenoma	,						•	X			•											•	•	ď			3
General Body System None																											
Genital System																											
Clitoral gland	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma							X						•		•			·	X					·			3
Ovary	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Uterus	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Polyp stromal								X											X								4
Vagina -																											1
Hematopoietic System																											
Bone marrow	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node																											2
Lymph node, mandibular	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymph node, mesenteric	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Spleen	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Thymus	_																										48

TABLE B2 Individual Animal Tumor Patholog	ogy of Female Rats in the 2-Year Feed Study of Oxazepam: 625 ppm (continued)
Number of Days on Study	2 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7
Carcass ID Number	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Integumentary System Mammary gland Adenoma Carcinoma	M + + + + + + + + + + + + + + + + + + +
Fibroadenoma Fibroadenoma, multiple Skin Basal cell carcinoma	X X X X X X X X X X X X X X X X X X X
Fibrosarcoma Sebaceous gland, adenoma	X X
Musculoskeletal System Bone	+ + + + + + + + + + + + + + + + + + + +
Nervous System Brain Astrocytoma benign Peripheral nerve Spinal cord	+ + + + + + + + + + + + + + + + + + + +
Respiratory System Lung Alveolar/bronchiolar carcinoma Nose Frachea	+ + + + + + + + + + + + + + + + + + +
Special Senses System Eye	
Urinary System Kidney Nephroblastoma Urinary bladder	+ + + + + + + + + + + + + + + + + + +
Systemic Lesions Multiple organs Leukemia mononuclear	+ + + + + + + + + + + + + + + + + + +

Individual Animal Tumor Patholog	gy of Female Rats in the 2-Year Feed Study of Oxazepam: 625 ppm (continued)	
Number of Days on Study	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Carcass ID Number	7 8 9 9 5 5 6 7 7 7 7 8 9 0 6 6 6 8 8 9 9 9 9 9 Tis	Total sues/ imors
Integumentary System Mammary gland Adenoma Carcinoma Fibroadenoma Fibroadenoma, multiple Skin Basal cell carcinoma Fibrosarcoma Sebaceous gland, adenoma	+ + + + + + + + + + + + + + + + + + +	49 2 3 14 5 50 1 2
Musculoskeletal System Bone	+ + + + + + + + + + + + + + + + + + + +	50
Nervous System Brain Astrocytoma benign Peripheral nerve Spinal cord	+ + + + + + + + + + + + + + + + + + +	50 1 1 1
Respiratory System Lung Alveolar/bronchiolar carcinoma Nose Trachea	+ + + + + + + + + + + + + + + + + + + +	50 1 50 50
Special Senses System Eye	+	1
Urinary System Kidney Nephroblastoma Urinary bladder	+ + + + + + + + + + + + + + + + + + + +	50 1 49
Systemic Lesions Multiple organs Leukemia mononuclear	+ + + + + + + + + + + + + + + + + + +	50 19

_	п.		_	DO
	ΙΔ	RI	н.	K7

Table B2 Individual Animal Tumor Patholo _l	gy of Fem	ale	R	ats	in	the	2-	Ye	ar	Fe	ed	Stı	ıdy	o of	f O	xa	zej	ar	n:	2,	50	0 p	pn	1		
	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	7	
Number of Days on Study	1	3	5	0	3	4	5	5	6	7	8	8	8	9	9	1	3	3	3	4	5	6	9	9	0	
5	4	2	3	6	9	0	0	6	5	8	3	5	9	7	7	1	2	3	4	6	2	9	2	7	0	
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
Carcass ID Number	7	8	8	8	6	6	7	7	7	7	5	6	7	5	9	6	9	9	9	8	6	9	6	8	5	
	7	9	4	8	1	8	1	9	0	5	9	4	2	2	4	5	3	9	7	1	0	2	3	6	5	
Alimentary System																										
Esophagus	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum	+	Α	٠ +	+	Α	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum	+	Α	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	
Intestine small, ileum	+	Α	٠ +	+	Α	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mesentery																								+	+	
Pancreas	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Salivary glands	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Cardiovascular System																										
Blood vessel	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Heart	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System																										
Adrenal cortex																									+	
Adenoma	+	_		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal medulla	_			_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
slets, pancreatic		. 4		·	Á	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	· +	+	+	
Parathyroid gland				+			+			+	M		+	+	+	+	+		M		·		1/	[+		
Adenoma	,	7			141	171	-	171		-	171	_	_	_	-	_		_	171	171		_	141	. —	-	
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pars distalis, adenoma				X			•	X		X			X					Ċ	X	Ċ	X					
Pars distalis, adenoma, multiple				21				21		71	71		21	71	71				71		71					
Pars distalis, carcinoma																										
Γhyroid gland	+	+	- +	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	[+	+	
C-cell, adenoma					.,,		•		•	X								Ċ	•	Ċ		X				
C-cell, carcinoma										••												2 %				
Follicular cell, carcinoma													X													
General Body System None																										
Genital System																										
Clitoral gland	_			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma	,	·				•			X	•	X			•					•							
Carcinoma											- •									X						
Ovary	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Jterus	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Polyp stromal	,				·	•		-		•				-	-	•	•		•	·	•	•	•	•		
Hematopoietic System							,		,	,	,						,									
Bone marrow	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node	+). /	+	,	+		,	,				+	+	,			+			1 A	r .		
Lymph node, mandibular	+	+	+	+	IVI	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	IVI	ι +	+	
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Spleen Thymus	+	+	- +	+	+ 1.4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
LUVIUUN	+	- +	- +	+	IV	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

Individual Animal Tumor Patholog	y vi i uni											~ .		. 0.	_					~,		. 1	<u>-</u>			iucu)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	0	0	0	0	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
· ·	0	1	3	3	8	9	9	9	9	9	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	
	4	4	4	4	4	4	4	4	4	5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	Total
Carcass ID Number	8	7	7	9	8	5	6	8	9	0	5	5	6	6	6	7	7	8	9	5	5	5	8	9	9	Tissues
	2	3	6	8		8	9	3	5	0	1	7	2	6	7	4	8	7	1	3	4	6	0	0		Tumors
Alimentary System																										
Esophagus	+	4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine large, colon	+	Н	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ntestine large, rectum	+	Н	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ntestine large, cecum	+	4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, duodenum	+	4	- +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
ntestine small, jejunum	·	_				·	·	·	·	·	<u>.</u>	_	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	·	·	·	·	·	47
intestine small, ileum					•				- :																	46
Liver		7										_	_	_	_	_	_									50
	+	٦	- +	+	+	+	+	+	+	+	+	+	+	_	_	_	_	+	+	+	+	+	+	+	+	
Mesentery							+																+			4
Pancreas	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Salivary glands	+	Н	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Stomach, forestomach	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
stomach, glandular	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System																										
Blood vessel	+	4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Heart	+	4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Endocrine System																							_			
Adrenal cortex		4																						+	+	50
Adenoma	+ X					_	_		_	_	т	т	_	_	т	_	_	т	т	_	_	т	_	_	_	
																										1
Adrenal medulla	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
slets, pancreatic	+	4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Parathyroid gland	+	+	- +	+	+	+	+	+	M	M	+	+	M		+	+	+	+	+	M	+	+	+	+	M	38
Adenoma														X												1
Pituitary gland	+	4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pars distalis, adenoma	X	>	ζ.	X			X		X	X				X	X	X			X				X			20
Pars distalis, adenoma, multiple																									X	1
Pars distalis, carcinoma													X													1
Γhyroid gland	+	4				_	_	_		_	_	_	+	+	_	_	_	_	_	_	_	_	_	_	_	48
C-cell, adenoma			X	, ,		X	_	-	-	_	_	_	_	X	\mathbf{v}	_	_	-	_		_	_				6
C-cell, carcinoma			Δ			Λ				X				Λ	Λ											
																			3.7							1
Follicular cell, carcinoma										X									X							3
General Body System None																										
Conital Creators																										
Genital System																										
Clitoral gland	+	Н	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma						X																				3
Carcinoma																										1
Ovary	+	Н	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Uterus	+	4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Polyp stromal			Χ	_											X					X			_	_		3
Iematopoietic System																										
Bone marrow	+	4	- +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node			ď	. '												•	•	•	+							9
			+					,	+										+		,	,				48
Lymph node, mandibular	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mesenteric	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Spleen	+	Н	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Γhymus	_					N/I													N/I					+	M	46

1 ABLE B2 Individual Animal Tumor Pathology	of Fem	ale	R	ats	in	the	2-	Ye	ar	Fe	ed	St	udy	y o	f O	xa	zej	pai	n:	2,	50	0 p	pn	n (c	onti	nued)
Number of Days on Study	4 1 4	4 3 2		0	3		5 5 0	5 5 6	5 6 5	5 7 8	5 8 3	8	5 8 9	5 9 7	5 9 7	6 1 1	6 3 2	6 3 3	6 3 4	6 4 6	6 5 2	6 6 9	6 9 2	6 9 7	7 0 0	
Carcass ID Number	4 7 7	4 8 9	8	8	4 6 1	4 6 8	4 7 1	4 7 9	4 7 0	4 7 5	4 5 9	4 6 4	4 7 2	4 5 2	4 9 4	4 6 5	4 9 3	4 9 9	4 9 7	4 8 1	4 6 0	4 9 2	4 6 3	4 8 6	4 5 5	
Integumentary System Mammary gland Fibroadenoma Fibroadenoma, multiple Skin Trichoepithelioma	+	+	+	- +	+	+	+	+	+	+	+		+ X +	+	+	+	+	+	+	+ X +	+ X +			+		
Musculoskeletal System Bone	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nervous System Brain Carcinoma, metastatic, pituitary gland	+	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System Lung Carcinoma, metastatic, thyroid gland Nose Trachea	+ + +	++++	· +	- + - +	+	+ 1 +	+ + +	+ + + +	+ + + +	+ + + +	+ + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + + +	+ + + +	
Special Senses System None																										
Urinary System Kidney Urinary bladder	+	+	. +	- +	+	+	+	++	++	++	++	++	++	+ A	++	++	+++	+	+	++	+	+	+	+	+	
Systemic Lesions Multiple organs Leukemia mononuclear	+ X	+ X	+ : X	- + (+ X	+ X	+ X	+ X	+	+	+	+ X	+	+	+ X				+ X	+	+ X			+ X	+ X	

TABLE B2 Individual Animal Tumor Pathology	of Fem	al	e F	lai	ts i	n t	he	2-	Ye	ar	Fe	ed	St	udy	y o	f O)xa	zej	pai	n:	2,	50	0 p	pn	n (c	onti	nued)
Number of Days on Study	7 0 0		0 (7 0 3	7 0 3	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1									
Carcass ID Number	4 8 2	,	4 7 3	4 7 6	4 9 8	4 8 5	4 5 8	4 6 9	4 8 3	4 9 5	5 0 0	4 5 1	4 5 7	4 6 2	4 6 6	4 6 7	4 7 4	4 7 8	4 8 7	4 9 1	4 5 3	4 5 4	4 5 6	4 8 0	4 9 0	4 9 6	Total Tissues/ Tumors
Integumentary System Mammary gland Fibroadenoma Fibroadenoma, multiple Skin Trichoepithelioma	4		+ X +		+ X +	+	+	M +	+	+	+	+	+	+ + X	+	+	+	+	+	+	+	+ X +		+ X +		+ X +	49 8 1 50
Musculoskeletal System Bone	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System Brain Carcinoma, metastatic, pituitary gland	4		+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Respiratory System Lung Carcinoma, metastatic, thyroid gland Nose Trachea	+ + +		+ + + + + + + + + + + + + + + + + + + +	++++	+ + + +	+++++	+ + +	+ + + +	+ + +	+ + +	+ X + +	+ + +	+ + +	+ + + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	+ + +	+ + +	49 1 50 49
Special Senses System None																											
Urinary System Kidney Urinary bladder	- -		+ -	+	++	+++	+	+++	+	++	+	++	++	++	+	++	++	+	++	++	+++	+	+	+	+	++	50 49
Systemic Lesions Multiple organs Leukemia mononuclear	- >		+ :		+ X	+ X		+ X	+	+ X	+	+	+	+	+ X	+	+	+ X	+	+	+	+	+	+ X	+ X	+	50 29

Number of Days on Study 0	TABLE B2 Individual Animal Tumor Pathol	ology of Female Rats in the 2-Year Feed Study of Oxazepam: 5,000 ppm
7		0 4 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7
S	Number of Days on Study	
A		7 3 0 3 4 1 4 8 1 6 9 5 9 3 0 1 5 5 1 9 9 9 9 9
S S S S S S S S S S	Samana ID Number	
Sophagus	arcass 1D Number	
Sophagus	Alimentary System	
ntestine large, colon		M + + + + + + + + + + + + + + + + + + +
A + + + + + + + + + + + + + + + + + +	ntestine large, colon	+ + + + + + + + + + + + + + + + + + + +
A + A + A + A + A + A + A + A + A + A		+ + + + + + + + + + + + + + + + + + + +
Intestine small, jejnum A + A + + + + + + + + + + + + + + + +	ntestine large, cecum	A + + + + + + + + + + + + + + + + + + +
Items		
Mesentery		
All	,	
M		
Actinus, adenoma aliabilary glands		
M		
Commach		
Cardiovascular System		1V1 + + + + + + + + + + + + + + + + + +
M		+ + + + + + + + + + + + + + + + + + + +
M	Cardiovascular System	
Candocrine System	Blood vessel	M + + + + + + + + + + + + + + + + + + +
Ademail cortex		
Ademail cortex	Endocrine System	
Pheochromocytoma benign Sides, pancreatic M + + + + + + + + + + + + + + + + + +		+ + + + + + + + + + + + + + + + + + + +
Selets, pancreatic	drenal medulla	+ + + + + + + + + + + + + + + + + + + +
Selets, pancreatic M + N + N + N + N + N + N + N + N + N +	Pheochromocytoma benign	
Parathyroid gland		M + + + + + + + + + + + + + + + + + + +
Pars distalis, adenoma Pars distalis, adenoma M + + + + + + + + + + + + + + + + + +	arathyroid gland	M + M M M M + + + + + + M + + + M + + + M + M + +
M + + + + + + + + + + + + + + + + + + +	ituitary gland	+ + + + + + + + + + + + + + + + + + + +
C-cell, adenoma C-cell, carcinoma Follicular cell, adenoma Follicular cell, carcinoma General Body System Peritoneum	Pars distalis, adenoma	$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$
C-cell, carcinoma Follicular cell, adenoma Follicular cell, adenoma Follicular cell, carcinoma General Body System Feritoneum	hyroid gland	M + + + + + + + + + + + + + + + + + + +
Follicular cell, adenoma Follicular cell, carcinoma General Body System Feritoneum + + + + + + + + + + + + + + + + + + +	C-cell, adenoma	
Follicular cell, carcinoma General Body System Peritoneum		X
Genital System Ceritoneum		
### Cenital System Clitoral gland	Follicular cell, carcinoma	
Cenital System		
litoral gland	eritoneum	+
Adenoma X		
Tubulostromal adenoma Iterus		
Tubulostromal adenoma Iterus + + + + + + + + + + + + + + + + + + +		
Terus		+ + + + + + + + + + + + + + + + + + + +
Polyp stromal X X X Iematopoietic System		
Sarcoma stromal X Iematopoietic System Ione marrow + + + + + + + + + + + + + + + + + + +		
Hematopoietic System Sone marrow + + + + + + + + + + + + + + + + + + +	r uryp struttat Sarcoma stromal	
Sone marrow $+ + + + + + + + + + + + + + + + + + +$		А
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
M + + + + + + + + + + + + + + + + + + +		+ + + + + + + + + + + + + + + + + + + +
ymph node, mesenteric A + + + + + + + + + + + + + + + + + +		M
NOOD		
Spleen M + + + + + + + + + + + + + + + + + +		

TARLE R2

Individual Animal Tumor Pathol	ogy of Fem	aı	e r	ıaı —	- 11		10	~- I	ea	r F _	eeu	. 3 1	uu	y o	10	xa	zej)ai	и.	3,	UU	ր P	Ьп	1 (C	ontii	nued)
	7	-	7 ′	7	7 1	7 ′	7	7 7	7 7	7 7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	:	3 :	3	3 3	3 :	3	3 3	3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
J. S.	9	(0 ()	0 (0 (0 (0		1	1	1	1	1	1	1	1	1	1	1		1	
	5	ļ	5 :	<u> </u>	5 5	5 :	5	5 5	5 5	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	Total
Carcass ID Number	4								3 3				0	0	0	1	1	1	2	2	2	2	3	3	5	Tissues/
	7	(9 (3	7 8	8 3	3	4 5	5 7	7 (3	1	6	7	8	3	4	6	0	1	4	9	0	6	0	Tumors
Alimentary System																										
Esophagus	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, colon	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine large, rectum	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine large, cecum	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, duodenum	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, jejunum	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, ileum	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Liver	+		+ .	+	+ -	+ .	+	+ -	+ +	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Mesentery														+								+	+			6
Pancreas Acinus, adenoma	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
											,															1 49
Salivary glands Stomach, forestomach	+		т ·	_	т ·	т ·	T L	+ - +	T 1	 L	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 50
Stomach, glandular	+		+ -	+	+ -	+ -	+	+ -	r =	,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
Cardiovascular System Blood vessel	_		μ.	_	μ.	μ.	_	+ -		⊢ -		_	_	_	_	_	_	_	_	_	_	_	_	_	_	49
Heart	+		+ .	+	+ -	+ .	+	+ -	+ -	' ⊢ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Endocrine System																										
Adrenal cortex																										50
Adrenal medulla	T		- ·	_	T .	- ·	-	T -	T 7	 	- +		+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign			_	_	_	_	-	_		_	-				-			-	_	_				X	-	1
slets, pancreatic	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Parathyroid gland			· + ·	+	· + ·	· + ·	+ :	М -			- N											+	+	+	+	33
Pituitary gland	+		+ -	+	+ -			+ -		+ -				+		+			+			+	+	+	+	50
Pars distalis, adenoma				X							X					X									X	12
Гhyroid gland	+				+ -	+ -	+	+ -	+ +	+ -			+	+	+	+	+	+	+	+	+	+	+	+	+	49
C-cell, adenoma											X															2
C-cell, carcinoma																										1
Follicular cell, adenoma								X														X				2
Follicular cell, carcinoma													X													1
General Body System Peritoneum																										1
Genital System																										
Clitoral gland	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma					X																					4
Ovary .	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Tubulostromal adenoma																			X							1
Jterus	+		+ -	+	+ -	+ -	+	+ -	+ +	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Polyp stromal Sarcoma stromal								X					X													4 1
Iematopoietic System																										
Bone marrow	_		+ -	+	+ -	+ -	+	+ -	+ -	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node								' '	. 7			7	7	т	г	г	г	г		г	т	т'	т	т	F	3
Lymph node Lymph node, mandibular	_		+ -	+	+ -	+ -	+	+ -	+ -	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mesenteric	+		+ -	+	+ -	+ -	+	+ -	+ -	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Spleen	+		· + ·	+	· + -	· + ·	+	· + -	+ -	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Thymus																				•						47

TARLE R2

Individual Animal Tumor Pathology	y of Fem	ale	R	ats	in	th	e 2	-Ye	ar	Fe	ed	St	udy	y O	f O	xa	zej	pai	n:	5,	000) p	pn	1 (c	ontinued)	
Number of Days on Study	0 1 7	4 1 3	_	1	2	3	6 3 4	6 3 8	6 4 1	6 4 6	6 6 9	6 7 5	6 7 9	6 8 3	7 0 0	7 1 1	7 1 5	7 1 5	7 2 1	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	
Carcass ID Number	5 4 9	5 2 3	3	0	1	2	5 1 8	5 4 2	5 4 1	5 0 2		5 1 1	5 4 8	5 3 2		5 4 5	5 0 3	5 4 6	5 4 4	5 0 4	5 0 5	5 1 0	5 1 2	5 1 7		
Integumentary System Mammary gland Fibroadenoma Fibroadenoma, multiple Skin Fibroma Keratoacanthoma	+	+	· +	ζ.		+ X		+	+	+	+	+	+	+	+	+ X +	+ X + X	+	+ X +	+	+	+	+	+ X +	+	
Musculoskeletal System Bone	+	+	. +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nervous System Brain	+	+	. +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea	+	+ 1	. 4	- +	- + - +	· + · +	+ + +	+ + +	+ + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ X + +	+ + + +	
Special Senses System Eye Zymbal's gland Carcinoma																		+ X				+				
Urinary System Kidney Urinary bladder Sarcoma stromal, metastatic, uterus	+	+	- +	- +	- +	++	+ + X	+	+	+	+	++	++	+++	+	+	+	+	+	+	+	+	+	+	++	
Systemic Lesions Multiple organs Leukemia mononuclear	+	+	- 4		- + X X	+	+	+ X	+	+ X	+	+ X	+	+ X	+ X	+ X	+	+	+ X	+ X	+	+	+ X	+	+ X	

Individual Animal Tumor Pathology	of Female	Rats	s in	the	2-1	Year	r Fe	eed	Stı	ıdy	of	Oxa	aze	pai	n:	5,	000) p	pm	(c	ontii	nued)
Number of Days on Study	7 7 2 3 9 0	7 7 3 3 0 0	7 7 3 3 0 0	7 3 0		7 7 3 3 0 0	7 3 0	7 3 0	7 3 1		7 7 3 3 1 1		7 3 1									
Carcass ID Number	5 5 4 1 7 9	5 5 2 2 6 7		3	3	5 5 3 3 5 7	3	5 4 3	0	0	5 5 0 0 7 8	1	5 1 4	5 1 6	5 2 0	5 2 1	5 2 4	5 2 9	5 3 0	5 3 6	5 5 0	Total Tissues/ Tumors
Integumentary System Mammary gland Fibroadenoma Fibroadenoma, multiple Skin Fibroma Keratoacanthoma	+ + X + +	+ -	+ +	+ X		+ + X + +	+	+ X +	+	+	+ +	- +	+	+ X +	+ X +	+ X +	+	+	+	+ X +	+	50 12 1 50 1
Musculoskeletal System Bone	+ +	+ -	+ +	+	+	+ +	+	+	+	+	+ +	- +	+	+	+	+	+	+	+	+	+	50
Nervous System Brain	+ +	+ -	+ +	+	+	+ +	+	+	+	+	+ +	- +	+	+	+	+	+	+	+	+	+	50
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea	+ + + + + +	+ -	+ + + + + + +	· + · +	+ + + +	+ + + + + +	· + · +	+ + +	+ + + +	+ + + +	+ + + + + + + + + + + + + + + + + + + +	- + X - +		+ + +	+ + +	+ + + +	+ + + +	+ + +	+ + + +	+ + +	+ + + +	49 2 50 49
Special Senses System Eye Zymbal's gland Carcinoma					+ X																	1 2 2
Urinary System Kidney Urinary bladder Sarcoma stromal, metastatic, uterus	+ + + +	+ -	+ +	- + - +	+	+ +	+	+	+	+	+ +	- + - +	+	++	+	+++	+++	+++	++	+++	+	50 50 1
Systemic Lesions Multiple organs Leukemia mononuclear	+ + X	+ - X	+ +	+	+	+ + X	- + X X		+	+	+ +	- + X		+ X	+	+	+	+	+	+	+	50 18

Table B2	
Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of Oxazepam:	10,000 ppm
(Stop-Exposure)	

(Stop-Exposure)																										
Number of Days on Study	4 7 8	5 0 6	5 6 2	5 6 2	5 6 2	5 7 0	8	9	0	6 0 9	0	6 4 6	6	6 6 9	6 6 9	9	9	7 0 3	7 1 4	7 1 5	7 1 6	7 1 8	7 1 9	7 2 5	7 2 5	
Carcass ID Number	5 6 4	5 9 6	5 6 3	5 7 0	5 9 9	5 8 1	7	6	7	5 6 2	5 6 6	5 9 0	5 6 9	5 5 4	5 8 5	5 8 0	5 7 3	5 7 4	5 7 5	5 9 4	5 8 7	5 9 8	5 7 6	5 5 6	5 5 8	
Alimentary System Esophagus Intestine small, duodenum Intestine small, jejunum Liver Histiocytic sarcoma, metastatic, skin Mesentery Salivary glands Myoepithelioma Stomach, forestomach Stomach, glandular Cardiovascular System None	+ + + + +	A + + + + +	+ + + + + +	+ + + + +	+ + + + +	+ + + + + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + +	+ + + +	A + A	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + +	+ + + +	+ + + + +	+ + + +	+ + + +	+ + + + +	+ + X + +	+++	+ + + + +	+ + X	
Endocrine System Adrenal cortex Adenoma Pituitary gland Pars distalis, adenoma Thyroid gland Bilateral, C-cell, adenoma C-cell, adenoma	+	+	+ + X	X +	+ X +		+	+ X +	+	+ X +	+ X +	+ X +	+ X +	+		+ X + X +	+ X +	+ + X +	+	+ X +	+ X +	+ X +	+	+ X +	+ +	
General Body System None																										
Genital System Clitoral gland Adenoma Ovary Uterus Sarcoma stromal Vagina						+	+							+	+		+	+	+				+ X			
Hematopoietic System Lymph node Lymph node, mandibular Squamous cell carcinoma, metastatic, skin Lymph node, mesenteric Spleen		+		+ X			+ + + + +			+ + + +			+	+	+				+						+	
Integumentary System Mammary gland Carcinoma, multiple Fibroadenoma Fibroadenoma, multiple Skin Fibroma Squamous cell carcinoma Subcutaneous tissue, histiocytic sarcoma			+ X X			+ X			+							+ X	+ X	+ X	+ X + X	+ X	+ X		+	X	+ X +	

TABLE B2
Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of Oxazepam: 10,000 ppm (Stop-Exposure) (continued)

(Stop-Exposure) (continued)																									
Number of Days on Study	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	3	3	3	3	7 7 3 3 0 0	3		7 3 1											
Carcass ID Number	5 5 1	5 7 7	5 9 1	5 9 5	5 5 3	6	6	7	8	8	5 5 8 9 9 2	0	5	5 5 5	5 5 7	5 5 9	5 6 1	5 6 7	5 7 8	5 8 2	5 8 4	5 8 8	5 9 3	5 9 7	Total Tissues/ Tumors
Alimentary System																									1
Esophagus Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+ -	- +	+	+	+	+	+	+	+	+	+	+	A	+	1 47
Intestine small, jejunum	+																								1 49
Liver Histiocytic sarcoma, metastatic, skin	+	+	+	+	+	+	+	+	+	+	+ -	- +	+	+	+	+	+	+	+	+	+	+	+	+	1
Mesentery	+	+					+				-	+ +	+		+					+					13
Salivary glands Myoepithelioma																									1 1
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+	+	+	+	+	+	49
Cardiovascular System None																									
Endocrine System																									
Adrenal cortex Adenoma																									2 1
Pituitary gland	+	+		+	+		+	+	+			+	+			+	+	+	+	+	+	+			35
Pars distalis, adenoma	X			X	X		X		X				X				X		X						23
Thyroid gland Bilateral, C-cell, adenoma	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+ X	+	+	+	+	+	50 2
C-cell, adenoma			X	X															Λ						2
General Body System None																									
Genital System																									
Clitoral gland						+				+	-	-		+					+	+					11
Adenoma Ovary						X	+	X	X				+	X						X					7 4
Uterus							_				+												+		5
Sarcoma stromal											X														1
Vagina																									1
Hematopoietic System Lymph node																				+					4
Lymph node, mandibular																				+					3
Squamous cell carcinoma, metastatic, skin																									1
Lymph node, mesenteric Spleen						+				+										+	+				2 12
<u> </u>						_				•										_	_				120
Integumentary System Mammary gland																		,						+	23
Carcinoma, multiple			+	+	_	_		+	+			+	+					+	+	+	+	+		_	1
Fibroadenoma			X	X		X		X	X			Х						X	X		X			X	17
Fibroadenoma, multiple					X								X							X		X			6
Skin Fibroma																									$\frac{6}{2}$
Squamous cell carcinoma																									1
Subcutaneous tissue, histiocytic sarcoma																									1

TABLE B2
Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of Oxazepam: 10,000 ppm (Stop-Exposure) (continued)

(Stop Emposure) (commucu)	
Number of Days on Study	4 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7
Carcass ID Number	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Musculoskeletal System Bone	+
Nervous System None	
Respiratory System None	
Special Senses System Eye	+
Urinary System Kidney	+
Systemic Lesions Multiple organs Histiocytic sarcoma Leukemia mononuclear	+ + + + + + + + + + + + + + + + + + +

TABLE B2
Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of Oxazepam: 10,000 ppm (Stop-Exposure) (continued)

Number of Days on Study	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Carcass ID Number	5 5	Total Tissues/ Tumors
Musculoskeletal System Bone		1
Nervous System None		
Respiratory System None		
Special Senses System Eye	+	2
Urinary System Kidney		1
Systemic Lesions Multiple organs Histiocytic sarcoma Leukemia mononuclear	+ + + + + + + + + + + + + + + + + + +	50 1 15

TABLE B3a Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of Oxazepam

	0 ррт	625 ppm	2,500 ppm	5,000 ppm
Adrenal Medulla: Benign Pheochromocytoma				
Overall rate ^a	1/50 (2%)	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted rate ^b	3.1%	9.4%	0.0%	3.2%
Terminal rate ^c	1/32 (3%)	1/26 (4%)	0/20 (0%)	1/31 (3%)
First incidencę (days)	729 (T)	550	e	729 (T)
Life table test ^d	P = 0.326N	P = 0.258	P = 0.594N	P= 0.755
Logistic regression test ^d	P = 0.316N	P = 0.305	P = 0.594N	P= 0.755
Cochran-Armitage test ^d	P = 0.318N	- ***		
Fisher exact test ⁸		P = 0.309	P = 0.500N	P = 0.753N
Adrenal Medulla: Benign, Complex, or Malignant Ph	eochromocytoma			
Overall rate	3/50 (6%)	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted rate	8.9%	9.4%	0.0%	3.2%
Terminal rate	2/32 (6%)	1/26 (4%)	0/20 (0%)	1/31 (3%)
First incidence (days)	700	550	_	729 (T)
Life table test	P = 0.127N	P = 0.596	P = 0.204N	P = 0.312N
Logistic regression test	P = 0.114N	P = 0.663N	P = 0.171N	P = 0.292N
Cochran-Armitage test	P = 0.114N			
Fisher exact test		P = 0.661N	P = 0.121N	P = 0.309N
Clitoral Gland: Adenoma				
Overall rate	7/49 (14%)	3/50 (6%)	3/50 (6%)	4/50 (8%)
Adjusted rate	19.4%	10.1%	9.6%	11.5%
Terminal rate	4/31 (13%)	2/26 (8%)	1/20 (5%)	2/31 (6%)
First incidence (days)	550	654	565	679
Life table test	P = 0.306N	P = 0.210N	P = 0.309N	P = 0.259N
Logistic regression test	P = 0.293N	P = 0.149N	P = 0.153N	P = 0.239N
Cochran-Armitage test	P = 0.297N			
Fisher exact test		P = 0.151N	P = 0.151N	P = 0.251N
Clitoral Gland: Adenoma or Carcinoma				
Overall rate	8/49 (16%)	3/50 (6%)	4/50 (8%)	4/50 (8%)
Adjusted rate	22.4%	10.1%	12.5%	11.5%
Terminal rate	5/31 (16%)	2/26 (8%)	1/20 (5%)	2/31 (6%)
First incidence (days)	550	654	565	679
Life table test	P = 0.253N	P = 0.145N	P = 0.360N	P = 0.179N
Logistic regression test	P = 0.237N	P = 0.093N	P = 0.174N	P = 0.157N
Cochran-Armitage test	P = 0.241N			
Fisher exact test		P = 0.094N	P = 0.168N	P = 0.168N
Mammary Gland: Fibroadenoma				
Overall rate	25/50 (50%)	19/50 (38%)	9/50 (18%)	13/50 (26%)
Adjusted rate	67.0%	52.8%	33.2%	35.1%
Terminal rate	20/32 (63%)	10/26 (38%)	4/20 (20%)	8/31 (26%)
First incidence (days)	529	612	589	550
Life table test	P = 0.010N	P = 0.363N	P = 0.039N	P = 0.017N
Logistic regression test	P = 0.003N	P = 0.152N	P = 0.003N	P = 0.007N
Cochran-Armitage test	P = 0.005N			
Fisher exact test		P = 0.157N	P< 0.001N	P = 0.011N

TABLE B3a
Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ppm	625 ppm	2,500 ppm	5,000 ppm
Mammary Gland: Fibroadenoma or Adenoma				
	26/50 (52%)	20/50 (40%)	9/50 (18%)	13/50 (26%)
	67.8%	55.7%	33.2%	35.1%
Terminal rate	20/32 (63%)	11/26 (42%)	4/20 (20%)	8/31 (26%)
First incidence (days)	529	612	589	550
Life table test	P = 0.006N	P = 0.372N	P = 0.028N	P = 0.011N
Logistic regression test	P = 0.002N	P = 0.153N	P = 0.001N	P = 0.004N
	P = 0.002N			
Fisher exact test		P = 0.158N	P< 0.001N	P = 0.007N
Mammary Gland: Carcinoma				
Overall rate	2/50 (4%)	3/50 (6%)	0/50 (0%)	0/50 (0%)
Adjusted rate	5.1%	10.3%	0.0%	0.0%
Terminal rate	1/32 (3%)	2/26 (8%)	0/20 (0%)	0/31 (0%)
First incidence (days)	228	697	_	_
	P = 0.060N	P = 0.443	P = 0.288N	P = 0.243N
8	P = 0.048N	P = 0.483	P = 0.288N	P = 0.213N
0	P = 0.051N			
Fisher exact test		P = 0.500	P = 0.247N	P = 0.247N
Mammary Gland: Adenoma or Carcinoma				
	3/50 (6%)	5/50 (10%)	0/50 (0%)	0/50 (0%)
J	7.4%	16.8%	0.0%	0.0%
	1/32 (3%)	3/26 (12%)	0/20 (0%)	0/31 (0%)
	228	697		
	P= 0.018N	P = 0.305	P = 0.163N	P= 0.118N
0 0	P= 0.013N	P = 0.347	P = 0.130N	P = 0.109N
0	P = 0.014N	D 0.077	D 0 101N	D 0.101N
Fisher exact test		P = 0.357	P = 0.121N	P = 0.121N
Mammary Gland: Fibroadenoma, Adenoma, or Carcino				
	27/50 (54%)	23/50 (46%)	9/50 (18%)	13/50 (26%)
3	68.4%	62.7%	33.2%	35.1%
	20/32 (63%)	13/26 (50%)	4/20 (20%)	8/31 (26%)
` 3 /	228	612	589	550
	P = 0.002N	P = 0.531N	P = 0.019N	P = 0.007N
	P< 0.001N P< 0.001N	P = 0.268N	P< 0.001N	P = 0.003N
Cochran-Armitage test Fisher exact test	r< 0.001N	P = 0.274N	P< 0.001N	P = 0.004N
Pituitary Gland (Pars Distalis): Adenoma	04 (50 (000))	00/50 (500)	04/80 (1001)	10/50 (010/)
	31/50 (62%)	28/50 (56%)	21/50 (42%)	12/50 (24%)
3	73.6%	79.6%	62.0%	31.8%
	21/32 (66%)	19/26 (73%)	9/20 (45%)	6/31 (19%)
	529	475 D 0 470	506	646 D + 0.001N
	P< 0.001N	P = 0.479	P = 0.504N	P< 0.001N
0 0	P< 0.001N P< 0.001N	P = 0.338N	P = 0.058N	P< 0.001N
Fisher exact test	r < 0.0011N	P = 0.342N	P = 0.036N	P< 0.001N
I ISHOI CAMULUSU		1 - 0.04611	1 - 0.03011	1 < 0.00111

TABLE B3a
Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625 ppm	2,500 ppm	5,000 ppm
Pituitary Gland (Pars Distalis): Adenoma or Carci	noma			
Overall rate	31/50 (62%)	28/50 (56%)	22/50 (44%)	12/50 (24%)
Adjusted rate	73.6%	79.6%	65.4%	31.8%
Terminal rate	21/32 (66%)	19/26 (73%)	10/20 (50%)	6/31 (19%)
First incidence (days)	529	475	506	646
Life table test	P < 0.001N	P = 0.479	P = 0.548	P< 0.001N
Logistic regression test	P< 0.001N	P = 0.338N	P = 0.089N	P< 0.001N
Cochran-Armitage test	P< 0.001N			
Fisher exact test		P = 0.342N	P = 0.054N	P< 0.001N
Thyroid Gland (C-cell): Adenoma				
Overall rate	6/50 (12%)	3/50 (6%)	6/48 (13%)	2/49 (4%)
Adjusted rate	16.5%	11.5%	23.4%	5.8%
Terminal rate	3/32 (9%)	3/26 (12%)	3/20 (15%)	1/31 (3%)
First incidence (days)	647	729 (T)	578	679
Life table test	P= 0.217N	P = 0.324N	P = 0.364	P= 0.147N
Logistic regression test	P = 0.199N	P = 0.247N	P = 0.519	P = 0.126N
Cochran-Armitage test	P = 0.215N	D 0.949NI	D 0 501	D 0.141N
Fisher exact test		P = 0.243N	P = 0.591	P = 0.141N
Thyroid Gland (C-cell): Adenoma or Carcinoma				
Overall rate	7/50 (14%)	3/50 (6%)	7/48 (15%)	3/49 (6%)
Adjusted rate	19.4%	11.5%	27.9%	8.5%
Terminal rate	4/32 (13%)	3/26 (12%)	4/20 (20%)	1/31 (3%)
First incidence (days)	647	729 (T) P= 0.232N	578 P= 0.324	679 P= 0.171N
Life table test Logistic regression test	P = 0.286N P = 0.266N	P = 0.232N P = 0.162N	P = 0.324 P = 0.480	P = 0.171N P = 0.096N
Cochran-Armitage test	P = 0.289N	$\Gamma = 0.1021$	r = 0.400	r = 0.0901
Fisher exact test	1 - 0.2031	P = 0.159N	P = 0.581	P = 0.167N
1 billet chact tool		1 0110011	1 0.001	1 0110111
Thyroid Gland (Follicular Cell): Carcinoma	4 (50 (00))	0 (70 (00))	2/12/22/	4.440.400.0
Overall rate	1/50 (2%)	0/50 (0%)	3/48 (6%)	1/49 (2%)
Adjusted rate	2.5%	0.0%	12.4%	3.2%
Terminal rate	0/32 (0%)	0/26 (0%)	2/20 (10%)	1/31 (3%)
First incidence (days) Life table test	641 P= 0.410	— P= 0.505N	589 P= 0.201	729 (T) P= 0.758N
Logistic regression test	P = 0.410 P = 0.395	P = 0.505N P = 0.504N	P = 0.201 P = 0.285	P = 0.758N P = 0.759
Cochran-Armitage test	P = 0.393 P = 0.391	r = 0.3041	$\Gamma = 0.203$	$\mathbf{r} = 0.739$
Fisher exact test	1 – 0.331	P = 0.500N	P = 0.293	P = 0.747
Thymaid Cland (Fallicular Call). Adapama or Com-	inoma			
Thyroid Gland (Follicular Cell): Adenoma or Care Overall rate	2/50 (4%)	0/50 (0%)	3/48 (6%)	3/49 (6%)
Adjusted rate	5.5%	0.0%	12.4%	9.7%
Terminal rate	1/32 (3%)	0/26 (0%)	2/20 (10%)	3/31 (10%)
First incidence (days)	641	_	589	729 (T)
Life table test	P = 0.192	P = 0.265N	P = 0.344	P= 0.493
Logistic regression test	P = 0.185	P = 0.237N	P = 0.461	P= 0.517
Cochran-Armitage test	P = 0.170			
Fisher exact test		P = 0.247N	P = 0.480	P = 0.490

TABLE B3a
Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ppm	625 ppm	2,500 ppm	5,000 ppm
Uterus: Stromal Polyp				
Overall rate	2/50 (4%)	4/50 (8%)	3/50 (6%)	4/50 (8%)
Adjusted rate	6.3%	13.6%	13.9%	10.9%
Terminal rate	2/32 (6%)	2/26 (8%)	2/20 (10%)	2/31 (6%)
First incidence (days)	729 (T)	718	703	631
Life table test	P = 0.373	P = 0.273	P = 0.302	P = 0.340
Logistic regression test	P = 0.378	P = 0.311	P = 0.349	P = 0.349
Cochran-Armitage test	P = 0.365			
Fisher exact test		P = 0.339	P = 0.500	P = 0.339
Uterus: Stromal Polyp or Stromal Sarcoma				
Overall rate	3/50 (6%)	4/50 (8%)	3/50 (6%)	5/50 (10%)
Adjusted rate	9.4%	13.6%	13.9%	12.9%
Terminal rate	3/32 (9%)	2/26 (8%)	2/20 (10%)	2/31 (6%)
First incidence (days)	729 (T)	718	703	631
Life table test	P = 0.338	P = 0.415	P = 0.443	P = 0.364
Logistic regression test	P = 0.340	P = 0.469	P = 0.497	P = 0.366
Cochran-Armitage test	P = 0.325			
Fisher exact test		P = 0.500	P = 0.661N	P = 0.357
All Organs: Mononuclear Cell Leukemia				
Overall rate	14/50 (28%)	19/50 (38%)	29/50 (58%)	18/50 (36%)
Adjusted rate	37.7%	46.9%	67.4%	43.8%
Terminal rate	10/32 (31%)	7/26 (27%)	7/20 (35%)	9/31 (29%)
First incidence (days)	522	400	414	613
Life table test	P = 0.281	P = 0.136	P< 0.001	P = 0.277
Logistic regression test	P = 0.214	P = 0.198	P = 0.003	P = 0.279
Cochran-Armitage test	P = 0.215			
Fisher exact test		P = 0.198	P = 0.002	P = 0.260
All Organs: Benign Neoplasms				
Overall rate	43/50 (86%)	39/50 (78%)	30/50 (60%)	26/50 (52%)
Adjusted rate	95.5%	95.0%	81.9%	66.1%
Terminal rate	30/32 (94%)	24/26 (92%)	14/20 (70%)	18/31 (58%)
First incidence (days)	529	475	506	550
Life table test	P = 0.002N	P = 0.446	P = 0.563	P = 0.003N
Logistic regression test	P< 0.001N	P = 0.174N	P = 0.007N	P< 0.001N
Cochran-Armitage test	P< 0.001N			
Fisher exact test		P = 0.218N	P = 0.003N	P< 0.001N
All Organs: Malignant Neoplasms				
Overall rate	21/50 (42%)	26/50 (52%)	34/50 (68%)	22/50 (44%)
Adjusted rate	51.1%	60.1%	76.4%	51.6%
Terminal rate	13/32 (41%)	10/26 (38%)	10/20 (50%)	11/31 (35%)
First incidence (days)	223	288	414	613
Life table test	P = 0.502	P = 0.146	P = 0.001	P = 0.498
Logistic regression test	P = 0.461	P = 0.205	P = 0.013	P = 0.496
Cochran-Armitage test	P = 0.477			
Fisher exact test		P = 0.212	P = 0.008	P = 0.500

TABLE B3a Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625 ppm	2,500 ppm	5,000 ppm
All Organs: Benign or Malignant Neoplasms				
Overall rate	49/50 (98%)	49/50 (98%)	45/50 (90%)	38/50 (76%)
Adjusted rate	100.0%	98.0%	90.0%	82.5%
Terminal rate	32/32 (100%)	25/26 (96%)	15/20 (75%)	23/31 (74%)
First incidence (days)	223	288	414	550
Life table test	P = 0.041N	P = 0.220	P = 0.085	P = 0.058N
Logistic regression test	P< 0.001N	P = 0.761N	P = 0.063N	P = 0.001N
Cochran-Armitage test	P< 0.001N			
Fisher exact test		P = 0.753N	P = 0.102N	P< 0.001N

⁽T) Terminal sacrifice

Not applicable; no neoplasms in animal group

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, clitoral gland, pituitary gland, thyroid gland, and uterus; for other tissues, denominator is number of animals necropsied. Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

Observed incidence at terminal kill

Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The life table test regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in an exposed group is indicated by N.

TABLE B3b Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Stop-Exposure Feed Study of Oxazepam

	0 ррт	10,000 ppm	
Adrenal Medulla: Benign, Complex, or M	alignant Pheochromocytoma		
Overall rate ^a	3/50 (6%)	$0/0^{ m d}$	
Adjusted rate ^b	8.9%		
Terminal rate ^c	2/32 (6%)		
First incidence (days)	700		
Clitoral Gland: Adenoma			
Overall rate	7/49 (14%)	7/11 (64%) ^d	
Adjusted rate	19.4%	()	
Terminal rate	4/31 (13%)		
First incidence (days)	550		
Clitoral Gland: Adenoma or Carcinoma			
Overall rate	8/49 (16%)	7/11 (64%) ^d	
Adjusted rate	22.4%	()	
Terminal rate	5/31 (16%)		
First incidence (days)	550		
Mammary Gland: Fibroadenoma			
Overall rate	25/50 (50%)	23/50 (46%)	
Adjusted rate	67.0%	66.7%	
Terminal rate	20/32 (63%)	14/25 (56%)	
First incidence (days)	529	562	
Life table test ^e		P = 0.394	
Logistic regression test ^e		P = 0.428N	
Fisher exact test ^e		P = 0.421N	
Mammary Gland: Fibroadenoma or Aden	oma		
Overall rate	26/50 (52%)	23/50 (46%)	
Adjusted rate	67.8%	66.7%	
Terminal rate	20/32 (63%)	14/25 (56%)	
First incidence (days)	529	562	
Life table test		P = 0.468	
Logistic regression test		P = 0.340N	
Fisher exact test		P = 0.345N	
Mammary Gland: Adenoma or Carcinoma	a		
Overall rate	3/50 (6%)	1/50 (2%)	
Adjusted rate	7.4%	2.1%	
Terminal rate	1/32 (3%)	0/25 (0%)	
First incidence (days)	228	562 P 0.337N	
Life table test		P = 0.327N P = 0.466N	
Logistic regression test Fisher exact test		P = 0.309N	
Mammary Gland: Fibroadenoma, Adenom	no or Carainama		
Overall rate	27/50 (54%)	23/50 (46%)	
Adjusted rate	68.4%	66.7%	
Terminal rate	20/32 (63%)	14/25 (56%)	
First incidence (days)	228	562	
Life table test		P = 0.542	
Logistic regression test		P = 0.346N	
Fisher exact test		P = 0.274N	

TABLE B3b Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Stop-Exposure Feed Study of Oxazepam (continued)

	0 ррт	10,000 ppm	
Pituitary Gland (Pars Distalis): Adenoma			
Overall rate	31/50 (62%)	23/35 (66%)	
Adjusted rate	73.6%	67.3%	
Terminal rate	21/32 (66%)	8/16 (50%)	
First incidence (days)	529	562	
Life table test		P= 0.438	
Logistic regression test Fisher exact test		P = 0.507 P = 0.453	
Thyroid Gland (C-cell): Adenoma	0.420.00	1/20 (00.0)	
Overall rate	6/50 (12%)	4/50 (8%)	
Adjusted rate	16.5%	13.8%	
Terminal rate First incidence (days)	3/32 (9%) 647	3/25 (12%) 562	
Life table test	047	P = 0.472N	
Logistic regression test		P = 0.365N	
Fisher exact test		P = 0.370N	
Thyroid Gland (C-cell): Adenoma or Carcino	nma		
Overall rate	7/50 (14%)	4/50 (8%)	
Adjusted rate	19.4%	13.8%	
Terminal rate	4/32 (13%)	3/25 (12%)	
First incidence (days)	647	562	
Life table test		P = 0.366N	
Logistic regression test		P = 0.258N	
Fisher exact test		P = 0.262N	
Uterus: Stromal Polyp or Stromal Sarcoma			
Overall rate	3/50 (6%)	1/50 (2%)	
Adjusted rate	9.4%	4.0%	
Terminal rate	3/32 (9%)	1/25 (4%)	
First incidence (days)	729 (T)	729 (T)	
Life table test		P = 0.396N P = 0.396N	
Logistic regression test Fisher exact test		P = 0.390N P = 0.309N	
All Organs: Mononuclear Cell Leukemia Overall rate	14/50 (28%)	15/50 (200/)	
	14/50 (28%) 37.7%	15/50 (30%)	
Adjusted rate Terminal rate	10/32 (31%)	40.5% 6/25 (24%)	
First incidence (days)	522	506	
Life table test	0 m m	P= 0.336	
Logistic regression test		P= 0.507	
Fisher exact test		P= 0.500	
All Organs: Benign Neoplasms			
Overall rate	43/50 (86%)	38/50 (76%)	
Adjusted rate	95.5%	84.3%	
Terminal rate	30/32 (94%)	18/25 (72%)	
First incidence (days)	529	562	
Life table test		P = 0.482	
Logistic regression test Fisher exact test		P = 0.092N P = 0.154N	
LIPHEL EYACT IGST		r = 0.1341N	

TABLE B3b
Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Stop-Exposure Feed Study of Oxazepam (continued)

	0 ррт	10,000 ppm	
All Organs: Malignant Neoplasms	24/52/4220	47/70 (040)	
Overall test Adjusted rate	21/50 (42%) 51.1%	17/50 (34%) 43.0%	
Terminal rate	13/32 (41%)	6/25 (24%)	
First incidence (days)	223	506	
Life table test	220	P = 0.460N	
Logistic regression test		P = 0.293N	
Fisher exact test		P = 0.268N	
All Organs: Benign or Malignant Neoplasms			
Overall rate	49/50 (98%)	43/50 (86%)	
Adjusted rate	100.0%	89.5%	
Terminal rate	32/32 (100%)	20/25 (80%)	
First incidence (days)	223	506	
Life table test		P = 0.515	
Logistic regression test		P = 0.030N	
Fisher exact test		P = 0.030N	

(T)Terminal sacrifice

b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, clitoral gland, pituitary gland, and thyroid gland; for other tissues, denominator is number of animals necropsied.

C Observed incidence at terminal kill

d Tissue was examined microscopically only when it was observed to be abnormal at necropsy; thus, statistical comparisons with the controls are not appropriate.

Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and the exposed group. The life table test regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Fisher exact test compares directly the overall incidence rates. For all tests, a lower incidence in the exposed group is indicated by N.

TABLE B4a Historical Incidence of Mammary Gland Neoplasms in Untreated Female F344/N Rats^a

			Incidence in Cont	trols	
Study	Fibroadenoma	Fibroadenoma or Adenoma	Carcinoma	Adenoma or Carcinoma	Fibroadenoma, Adenoma, or Carcinoma
Historical Incidence at Battelle Columbu	s Laboratories				
4,4'-Thiobis(6-t-Butyl-m-Cresol)	29/50	31/50	1/50	3/50	32/50
5,5-Diphenylhydantoin	17/50	18/50	3/50	4/50	21/50
Ethylene Thiourea	13/50	13/50	0/50	0/50	13/50
Polybrominated Biphenyls (Firemaster FF-1®)	4/50	4/50	0/50	0/50	4/50
Manganese (II) Sulfate Monohydrate	19/50	19/50	0/50	0/50	19/50
Triamterene	19/50	22/50	0/50	4/50	22/50
Tricresyl Phosphate	15/51	18/51	0/51	3/51	18/51
Overall Historical Incidence					
Total	524/1,301 (40.3%)	540/1,301 (41.5%)	36/1,301 (2.8%)	60/1,301 (4.6%)	568/1,301 (43.7%)
Standard deviation	13.1%	13.2%	2.7%	3.2%	13.9%
Range	8%-58%	8%-62%	0%-8%	0%-10%	8%-64%
-					

^a Data as of 12 May 1995

TABLE B4b Historical Incidence of Pituitary Gland (Pars Distalis) Neoplasms in Untreated Female F344/N Rats^a

		Incidence in Con	trols	
Study	Adenoma	Carcinoma	Adenoma or Carcinoma	
Historical Incidence at Battelle Columbus Laboratories				
4,4'-Thiobis(6-t-Butyl-m-Cresol)	27/49	0/49	27/49	
5,5-Diphenylhydantoin	25/50	1/50	26/50	
Ethylene Thiourea	24/50	0/50	24/50	
Polybrominated Biphenyls (Firemaster FF-1®)	21/50	0/50	21/50	
Manganese (II) Sulfate Monohydrate	23/50	0/50	23/50	
Triamterene	21/50	0/50	21/50	
Tricresyl Phosphate	30/51	0/51	30/51	
Overall Historical Incidence				
Total	666/1,290 (51.6%)	14/1,290 (1.1%)	680/1,290 (52.7%)	
Standard deviation	12.5%	1.4%	12.7%	
Range	30%-74%	0%-4%	30%-76%	

^a Data as of 12 May 1995

TABLE B5
Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of Oxazepam^a

	0 ppm	625 p	pm	2,50	00 ppm	5,00	00 ppm		00 ppm Exposure)
Disposition Summary									
Animals initially in study Early deaths	50	50		50)	50)	50)
Accidental death	1	10		1.0	,	1.0	,	1/	,
Moribund Natural deaths	11 6	18 6		18 12		16		19	
Survivors	U	0		12	3)	,)
Terminal sacrifice	32	26		20)	31	l	25	i
Animals examined microscopically	50	50		50)	50)	50)
Alimentary System									
Esophagus	(50)	(50)		(50)		(49)		(1)	
Periesophageal tissue, necrosis								1	(100%)
Intestine large, colon	(50)	(48)		(49)		(50)			
Parasite metazoan	2 (4%)	2 (49)	%)		(4%)		(4%)		
Intestine large, rectum	(50)	(49)		(49)		(50)	(90/)		
Cyst	9 (40/)	9 (40	V)	1	(90/)	1	(2%)		
Parasite metazoan ntestine small, duodenum	2 (4%) (50)	2 (49)	6)	(47)	(2%)	(49)		(47)	
Ulcer	(30)	(43)			(4%)	(43)		(47)	
Serosa, inflammation				~	(170)			1	(2%)
Intestine small, jejunum	(46)	(48)		(47)		(48)		(1)	()
Parasite metazoan	. ,	. ,			(2%)	/		` '	
Ulcer									(100%)
Liver	(50)	(50)		(50)		(50)		(49)	
Basophilic focus	44 (88%)	41 (82			(56%)		(52%)	16	(33%)
Clear cell focus	6 (12%)	3 (69	%)	11	(22%)	22	(44%)	•	(40/)
Degeneration, cystic	1 (90/)			0	(40/)			2	(4%)
Degeneration, fatty	1 (2%)	10 (00	20/)		(4%)	11	(990/)	11	(990/)
Eosinophilic focus Hepatodiaphragmatic nodule	17 (34%) 12 (24%)	18 (36 2 (49			(8%) (8%)		(22%) (10%)		(22%) (12%)
Inflammation, granulomatous	1 (2%)	۵ (4)	0)		(4%)		(6%)	U	(16/0)
Mixed cell focus	5 (10%)	15 (30)%)		(14%)		(6%)	2.	(4%)
Necrosis, focal	3 (10/3)	10 (00	,	•	(= = / = /		(4%)		(2%)
Centrilobular, atrophy	1 (2%)					_		_	/
Centrilobular, necrosis					(2%)		(4%)	1	(2%)
Hepatocyte, centrilobular, hypertrophy					(20%)		(62%)		
Mesentery	(10)	(9)		(4)		(6)		(13)	
Accessory spleen	1 (10%)	A /11	100()		(1000/)	_	(1000/)	4.0	(1000/)
Fat, necrosis	8 (80%)	9 (10	JU%)		(100%)		(100%)	13	(100%)
Pancreas A cinus, atrophy	(50) 6 (12%)	(50)	00/)	(49)	(90/)	(49)	(160/)		
Acinus, atrophy Stomach, forestomach	6 (12%) (50)	6 (12 (50)	/0)	(50)	(2%)	(50)	(16%)	(50)	
Abscess	(30)	(30)			(2%)	(30)		(50)	
Erosion					(4%)				
Foreign body					(4%)				
Inflammation, chronic					(6%)				
Inflammation, chronic active	1 (2%)	5 (10)%)	13	(26%)		(6%)	5	(10%)
Inflammation, granulomatous				1	(2%)		(2%)		
Ulcer	1 (2%)	2 (49			(18%)		(12%)		(8%)
Epithelium, hyperplasia	2 (4%)	6 (12	2%)	16	(32%)	5	(10%)	5	(10%)

^a Number of animals examined microscopically at the site and the number of animals with lesion

TABLE B5
Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ррт	625 ppm	2,500	ppm 5,0	00 ppm	10,000 ppm (Stop-Exposure)
Alimentary System (continued)						
Stomach, glandular Erosion Inflammation, chronic active	(50)	(50) 4 (8%)	(50) 7 (1 1 (2		(4%)	(49)
Mineralization	1 (2%)		1 (2		(4%)	
Ulcer	2 (4%)	3 (6%)	5 (1		` ,	4 (8%)
Serosa, inflammation						1 (2%)
Cardiovascular System						
Blood vessel	(50)	(50)	(50)	(49)		
Aorta, mineralization Heart	(50)	(50)	(49)	(49)	(2%)	
Atrium, thrombosis	(30)	1 (2%)	(43)	(49)		
Myocardium, degeneration	32 (64%)	34 (68%)	35 (7	1%) 32	(65%)	
Myocardium, fibrosis, focal					(4%)	
Myocardium, mineralization	1 (00/)			1	(2%)	
Pericardium, inflammation, chronic Valve, inflammation, chronic	1 (2%)		1 (2	%)		
varve, inflammation, chrome			1 (2	70)		
Endocrine System	(50)	(50)	(50)	(50)		(0)
Adrenal cortex Degeneration	(50)	(50)	(50) 1 (2	94)		(2)
Hemorrhage	1 (2%)		1 (2	/0)		
Hyperplasia, diffuse	1 (270)			1	(2%)	
Hyperplasia, focal	9 (18%)	8 (16%)	5 (1		(8%)	
Hypertrophy, focal		2 (4%)			(2%)	
Pigmentation, hemosiderin Adrenal medulla	1 (2%) (50)	(50)	1 (2			
Degeneration	(30)	(50)	(50) 1 (2	(50) %)		
Hyperplasia	8 (16%)	3 (6%)	1 (2		(8%)	
slets, pancreatic	(50)	(50)	(49)	(49)	, ,	
Hyperplasia	2 (4%)	1 (2%)			(2%)	45.00
Pituitary gland	(50)	(50)	(50)	(50)	(40/)	(35)
Angiectasis	1 (90/)			2	(4%)	9 (80/)
Cyst Pars distalis, angiectasis	1 (2%)	1 (2%)				2 (6%)
Pars distalis, cyst	5 (10%)	2 (4%)	1 (2	%) 3	(6%)	2 (6%)
Pars distalis, degeneration, cystic	, ,	` '	1 (2	%) 3	(6%)	5 (14%)
Pars distalis, hyperplasia	4 (8%)	5 (10%)	3 (6	%) 8	(16%)	1 (3%)
Pars distalis, vacuolization cytoplasmic	,					1 (00/)
focal Thyroid gland	(50)	(50)	(48)	(49)		1 (3%) (50)
Ultimobranchial cyst	(30)	(30)	(40)		(2%)	(30)
C-cell, hyperplasia	40 (80%)	43 (86%)	35 (7		(86%)	43 (86%)
Follicle, cyst	, ,	1 (2%)	2 (4		(4%)	1 (2%)
General Body System						
Peritoneum				(1)		
Inflammation, granulomatous					(100%)	

TABLE B5
Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0	ppm	62:	5 ppm	2,50	00 ppm	5,00	00 ppm		00 ppm Exposure)
Genital System										
Clitoral gland	(49)		(50)		(50)		(50)		(11)	
Cyst	1	(2%)				4				
Hyperplasia					1	(2%)		(00/)		
Inflammation, chronic			4	(00/)			1	(2%)		
Inflammation, chronic active Inflammation, granulomatous			1	(2%)	1	(2%)				
Inflammation, granulomatous Inflammation, suppurative					1	(2/0)			1	(9%)
Duct, cyst	1	(2%)	4	(8%)	6	(12%)	2	(4%)		(27%)
Ovary	(50)	, ,	(50)	(070)	(50)	(12/0)	(50)	(1/0)	(4)	(2170)
Cyst		(10%)		(12%)		(10%)		(12%)	4	(100%)
Uterus	(50)		(50)		(50)		(50)		(5)	
Inflammation, chronic					1	(2%)				
Inflammation, suppurative						,x				(20%)
Cervix, cyst	2	(4%)	1	(2%)	1	(2%)				(20%)
Cervix, inflammation, suppurative							_	(40/)		(20%)
Cervix, myometrium, hyperplasia	4	(90/)	1	(90/)	1	(20/)	2	(4%)	1	(20%)
Endometrium, hyperplasia, cystic	1	(2%)	1	(2%)	1	(2%)				
Hematopoietic System										
Bone marrow	(50)		(50)		(50)		(50)			
Necrosis	(00)			(2%)	(00)		(00)			
Lymph node	(4)		(2)	/	(9)		(3)		(4)	
Lumbar, ectasia	. ,		, ,			(11%)			, ,	
Mediastinal, pigmentation, hemosiderin							1	(33%)		
Pancreatic, inflammation, granulomatou		(0 # 0 t)			1	(11%)				
Renal, ectasia		(25%)	/						<i>(c)</i>	
Lymph node, mandibular	(50)		(48)	(00/)	(48)		(49)		(3)	
Ectasia	(E0)			(2%)	(50)		(40)		(9)	
Lymph node, mesenteric Ectasia	(50)	(2%)	(50)		(50)		(49)		(2)	
Ectasia Inflammation, acute		(2%)								
Spleen	(50)	(2/0)	(50)		(50)		(49)		(12)	
Fibrosis	(00)			(2%)		(4%)		(4%)		(17%)
Hematopoietic cell proliferation	3	(6%)		(4%)		(6%)		(2%)	2	(= • • •)
Inflammation, granulomatous		. ,		. ,		(2%)		(2%)	1	(8%)
Pigmentation, hemosiderin	25	(50%)	27	(54%)		(26%)	22	(45%)		•
Lymphoid follicle, atrophy							2	(4%)		
Integumentary System										
	(40)		(49)		(40)		(50)		(92)	
Mammary gland Hyperplasia, cystic	(49)	(4%)		(6%)	(49)	(2%)	(50)	(2%)	(23)	(4%)
Metaplasia, squamous	۵	(1/0)	3	(3/0)		(2%)	1	(~ /U)	1	(1/0)
Skin	(50)		(50)		(50)	(, 0)	(50)		(6)	
Hyperkeratosis	(00)		(00)		(00)		(00)			(17%)
Ulcer					2	(4%)				. *
Subcutaneous tissue, edema			1	(2%)						
Subcutaneous tissue, inflammation,										
chronic	1	(2%)								
Subcutaneous tissue, inflammation,										(4 = 0.1)
suppurative									1	(17%)

TABLE B5
Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 ppm	625 ppm	2,500 ppm	5,000 ppm	10,000 ppm (Stop-Exposure)
Musculoskeletal System Bone Hyperostosis Inflammation, chronic Osteopetrosis Cranium, hyperostosis, focal	(50) 1 (2%)	(50)	(50) 2 (4%) 3 (6%) 1 (2%)	(50)	(1) 1 (100%)
Nervous System Brain Hydrocephalus Cerebellum, mineralization Cerebrum, degeneration, focal Hypothalamus, hemorrhage	(50) 7 (14%) 2 (4%)	(50) 12 (24%) 1 (2%) 2 (4%)	(50) 3 (6%) 1 (2%) 1 (2%)	(50) 3 (6%)	
Respiratory System Lung Congestion Infiltration cellular, mast cell Infiltration cellular, histiocyte Inflammation, granulomatous Alveolar epithelium, hyperplasia	(50) 1 (2%) 1 (2%) 2 (4%) 3 (6%)	(50) 2 (4%) 4 (8%)	(49) 5 (10%) 1 (2%)	(49) 2 (4%) 8 (16%) 3 (6%)	
Interstitium, inflammation, chronic Serosa, inflammation, chronic Nose Inflammation, suppurative	1 (2%) 1 (2%) (50) 5 (10%)	2 (4%) (50) 2 (4%)	(50) 6 (12%)	2 (4%) (50) 4 (8%)	
Special Senses System Eye Choroid, inflammation, chronic Lens, cataract	(2) 2 (100%)	(1) 1 (100%)		(1) 1 (100%)	(2) 2 (100%)
Urinary System Kidney Inflammation, chronic active Nephropathy Pigmentation, lipofuscin Renal tubule, cyst	(50) 32 (64%)	(50) 43 (86%) 1 (2%)	(50) 41 (82%) 2 (4%) 1 (2%)	(50) 1 (2%) 48 (96%) 1 (2%)	(1) 1 (100%)
Renal tubule, vacuolization cytoplasmic Urinary bladder Inflammation, chronic active Transitional epithelium, hyperplasia	(48) 1 (2%)	(49)	(49) 1 (2%)	1 (2%) (50) 1 (2%)	

APPENDIX C GENETIC TOXICOLOGY

SALMONELLA M	IUTAGENICITY TEST PROTOCOL	148
CHINESE HAMS	STER OVARY CELL CYTOGENETICS PROTOCOLS	148
MOUSE PERIPH	HERAL BLOOD MICRONUCLEUS TEST PROTOCOL	149
RESULTS		150
TABLE C1	Mutagenicity of Oxazepam in Salmonella typhimurium	151
TABLE C2	Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells	
	by Oxazepam	153
TABLE C3	Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells	
	by Oxazepam	154
TABLE C4	Frequency of Micronuclei in Peripheral Blood Erythrocytes	
	of Mice Following Treatment with Oxazepam by Feed for 14 Weeks	154

GENETIC TOXICOLOGY

SALMONELLA MUTAGENICITY TEST PROTOCOL

Testing was performed as reported by Zeiger *et al.* (1992). Oxazepam was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). Oxazepam was incubated with the *Salmonella typhimurium* tester strains TA97, TA98, TA100, TA102, and TA1535 either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver) for 20 minutes at 37° C. Top agar supplemented with L-histidine and d-biotin was added, and the contents of the tubes were mixed and poured onto the surfaces of minimal glucose agar plates. Histidine-independent mutant colonies arising on these plates were counted following incubation for 2 days at 37° C.

Each trial consisted of triplicate plates of concurrent positive and negative controls and at least three doses of oxazepam. The high dose was limited by solubility and toxicity.

In this assay, a positive response is defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/activation combination. An equivocal response is defined as an increase in revertants that is not dose related, not reproducible, or not of sufficient magnitude to support a determination of mutagenicity. A negative response is obtained when no increase in revertant colonies is observed following chemical treatment. No minimum percentage or fold increase is required for a chemical to be judged positive or weakly positive.

CHINESE HAMSTER OVARY CELL CYTOGENETICS PROTOCOLS

Testing was performed as reported by Galloway *et al.* (1987). Oxazepam was sent to the laboratory as a coded aliquot by Radian Corporation. Oxazepam was tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCEs) and chromosomal aberrations (Abs), both in the presence and absence of Aroclor 1254-induced male Sprague-Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of oxazepam. The high dose was limited by toxicity. A single flask per dose was used, and tests yielding positive results were repeated.

Sister Chromatid Exchange Test: In the SCE test without S9, CHO cells were incubated for 26 hours with oxazepam in McCoy's 5A medium. Bromodeoxyuridine (BrdU) was added 2 hours after culture initiation. After 26 hours, the medium containing oxazepam was removed and replaced with fresh medium plus BrdU and Colcemid, and incubation was continued for 2 hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with oxazepam, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing serum and BrdU and no oxazepam, and incubation proceeded for an additional 26 hours, with Colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9. All slides were scored blind, and those from a single test were read by the same person. Fifty second-division metaphase cells were scored for frequency of SCEs/cell from each dose level. Because significant chemical-induced cell cycle delay was seen at the $50~\mu g/mL$ dose without S9, incubation time was lengthened to ensure a sufficient number of scorable (second-division metaphase) cells.

Statistical analyses were conducted on the slopes of the dose-response curves and the individual dose points (Galloway *et al.*, 1987). An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. An increase of 20% or greater at any single dose was considered weak evidence of activity; increases

at two or more doses resulted in a determination that the trial was positive. A statistically significant trend $(P \le 0.05)$ in the absence of any responses reaching 20% above background led to a call of equivocal.

Chromosomal Aberrations Test: In the Abs test without S9, cells were incubated in McCoy's 5A medium with oxazepam for 12 hours; Colcemid was added and incubation continued for 2 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the Abs test with S9, cells were treated with oxazepam and S9 for 2 hours, after which the treatment medium was removed and the cells were incubated for 10 hours in fresh medium, with Colcemid present for the final 2 hours. Cells were harvested in the same manner as for the treatment without S9.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind and those from a single test were read by the same person. Two hundred first-division metaphase cells were scored at each dose level. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Chromosomal aberration data are presented as percentage of cells with aberrations. To arrive at a statistical call for a trial, analyses were conducted on both the dose response curve and individual dose points. For a single trial, a statistically significant ($P \le 0.05$) difference for one dose point and a significant trend ($P \le 0.015$) were considered weak evidence for a positive response; significant differences for two or more doses indicated the trial was positive. A positive trend test in the absence of a statistically significant increase at any one dose resulted in an equivocal call (Galloway *et al.*, 1987). Ultimately, the trial calls were based on a consideration of the statistical analyses as well as the biological information available to the reviewers.

MOUSE PERIPHERAL BLOOD MICRONUCLEUS TEST PROTOCOL

A detailed discussion of this assay is presented in MacGregor $et\ al.$ (1990). At the end of a 14-week study (NTP, 1993), peripheral blood samples were obtained from male and female B6C3F₁ mice from each dose group and smears were immediately prepared and fixed in absolute methanol. The methanol-fixed slides were stained with a chromatin-specific fluorescent dye mixture of Hoechst 33258/pyronin Y (MacGregor $et\ al.$, 1983), and coded. Slides were scanned to determine the frequency of micronuclei in 10,000 normochromatic erythrocytes (NCEs) in each of 10 animals per dose group.

The results were tabulated as the mean of the pooled results from all animals within a treatment group plus or minus the standard error of the mean. The frequency of micronucleated cells among NCEs was analyzed by a statistical software package that tested for increasing trend over dose groups with a one-tailed Cochran-Armitage trend test, followed by pairwise comparisions between each dosed group and the control group (Margolin *et al.*, 1990). In the presence of excess binomial variation, as detected by a binomial dispersion test, the binomial variance of the Cochran-Armitage test was adjusted upward in proportion to the excess variation. In the micronucleus test, an individual trial is considered positive if the trend test P value is less than or equal to 0.025 or if the P value for any single dose group is less than or equal to 0.025 divided by the number of dose groups. A final call of positive for micronucleus induction is preferably based on reproducibly positive trial (as noted above). Results of the 14-week studies were accepted without repeat tests because additional test data could not be obtained. Ultimately, the final call is determined by the scientific staff after considering the results of statistical analyses, the reproducibility of any effects observed, and the magnitude of those effects.

RESULTS

Oxazepam (3 to 3,333 μ g/plate) did not induce mutations in *S. typhimurium* strains TA97, TA98, TA100, TA102, or TA1535 when tested in a preincubation protocol with or without Aroclor 1254-induced male

Sprague-Dawley rat or Syrian hamster liver S9 (Table C1). In cytogenetic tests with cultured CHO cells, oxazepam did not induce sister chromatid exchanges (Table C2) or chromosomal Abs (Table C3), with or without S9. Cell cycle delay was noted at the $50~\mu g/mL$ dose in the SCE test without S9; harvest time was extended to allow accumulation of sufficient second-division metaphase cells for analysis. Peripheral blood samples obtained from $B6C3F_1$ mice in a 14-week toxicity study were analyzed for frequency of micronucleated NCEs; no increase in frequencies of micronucleated NCEs was observed in any of the dose groups (Table C4).

TABLE C1 Mutagenicity of Oxazepam in Salmonella typhimurium^a

	_		Reverta	nts/plate ^b		
Strain	Dose	-89	+ hams	ster S9	+ ra	nt S9
(µ	ıg/plate)		10%	30%	10%	30%
TA102						
	0 3 10	$\begin{array}{c} 131 \pm 2.6 \\ 136 \pm 5.7 \\ 128 \pm 10.7 \end{array}$	213 ± 5.7	341 ± 23.3	197 ± 11.5	443 ± 24.8
	33 100 333	139 ± 1.8 130 ± 8.3 43 ± 3.9^{c}	$\begin{array}{c} 223 \pm 15.0 \\ 196 \pm 10.0 \\ 170 \pm 2.7 \end{array}$	$\begin{array}{c} 295 \pm 8.1 \\ 340 \pm 24.6 \\ 358 \pm 25.0 \end{array}$	$\begin{array}{c} 216 \pm 9.5 \\ 208 \pm 6.4 \\ 204 \pm 14.3 \end{array}$	403 ± 17.1 436 ± 38.4 413 ± 22.0
	1,000 1,666 3,333	155 ± 12.4	$ 318 \pm 1.3 103 \pm 21.5^{c} 172 \pm 1.2^{c} $	166 ± 28.6	375 ± 19.9 102^{c} 133 ± 17.3^{c}	
Trial summ Positive co	nary ontrol ^d	Negative 676 ± 9.5	Negative 879 ± 17.9	Negative 2,127 ± 104.3	Negative $1,291 \pm 49.3$	Negative 1,104 ± 125.0
TA100						
	0 3 10	$\begin{array}{c} 159 \pm 8.0 \\ 118 \pm 4.6 \\ 128 \pm 5.5 \end{array}$	146 ± 1.9 144 ± 2.3	145 ± 8.1	161 ± 10.0 160 ± 9.0	149 ± 2.5
	33 100 333	$ \begin{array}{r} 126 \pm 3.3 \\ 137 \pm 14.0 \\ 139 \pm 8.9 \\ 115 \pm 9.7 \end{array} $	$ \begin{array}{r} 144 \pm 2.3 \\ 159 \pm 17.2 \\ 137 \pm 15.4 \\ 141 \pm 2.9 \end{array} $	145 ± 9.1 146 ± 2.1 113 ± 8.7	150 ± 3.0 157 ± 8.9 156 ± 8.9 133 ± 7.0	137 ± 7.4 127 ± 1.2 134 ± 4.8
	1,000 1,666	113 ± 9.7 102 ± 5.8	141 ± 2.9	93 ± 2.8 100 ± 14.9	133 ± 7.0 126 ± 2.5 135 ± 13.2	134 ± 4.8 134 ± 4.1
Trial sumn Positive co	5	Negative 316 ± 3.5	Negative 445 ± 11.7	Negative 462 ± 31.2	Negative 599 ± 23.1	Negative 244 ± 6.7
TA1535	0	20 ± 1.5	8 ± 0.9	12 ± 2.9	12 ± 1.7	14 ± 2.1
	3 10	20 ± 1.3 20 ± 2.3 19 ± 1.5	0 ± 0.9	12 ± 2.9	12 ± 1.7	14 ± 2.1
	33 100 333	$ 19 \pm 2.9 15 \pm 4.2 18 \pm 2.0 $	8 ± 3.0 11 ± 2.0 8 ± 1.0	$ 10 \pm 2.0 \\ 11 \pm 3.4 \\ 9 \pm 2.5 $	10 ± 2.0 11 ± 1.5 11 ± 0.6	14 ± 0.3 15 ± 1.5 15 ± 1.9
	1,000 1,666 3,333		$9 \pm 1.3 \\ 8 \pm 1.2^{e}$	8 ± 0.3 5 ± 0.7^{e}	$9 \pm 0.7 \\ 7 \pm 1.5^{e}$	12 ± 2.7 9 ± 0.6^{e}
Trial sumn Positive co		Negative 332 ± 10.2	Negative 180 ± 18.4	Negative 340 ± 22.8	Negative 214 ± 27.7	Negative 206 ± 4.7

TABLE C1 Mutagenicity of Oxazepam in Salmonella typhimurium (continued)

_		Reverta	nts/plate		
Strain Dose	- S9	+ hams	ter S9	+ rat	t S9
(µg/plate)		10%	30%	10%	30%
TA97					
0	184 ± 6.1	179 ± 3.0	164 ± 8.3	206 ± 1.5	209 ± 6.1
3	193 ± 7.4				
10	182 ± 2.6	163 ± 8.2		204 ± 4.2	
33	180 ± 10.5	163 ± 5.0	183 ± 6.9	203 ± 0.9	191 ± 9.1
100	160 ± 7.3	167 ± 9.0	187 ± 12.4	200 ± 3.1	150 ± 6.2
333	148 ± 12.7	175 ± 11.0	174 ± 14.0	198 ± 3.0	162 ± 17.4
1,000		172 ± 17.3	168 ± 9.1	168 ± 5.8	184 ± 16.8
3,333			$107 \pm 5.7^{\mathrm{C}}$		$139 \pm 11.2^{\circ}$
Trial summary	Negative	Negative	Negative	Negative	Negative
Positive control	403 ± 11.1	463 ± 15.8	368 ± 24.9	449 ± 10.1	454 ± 25.6
TA98					
0	18 ± 2.3	28 ± 2.0	19 ± 0.9	19 ± 1.5	23 ± 1.2
3	15 ± 2.2				
10	16 ± 2.0				
33	19 ± 2.3	18 ± 0.6	27 ± 4.3	24 ± 3.0	28 ± 2.2
100	20 ± 0.7	21 ± 2.1	27 ± 4.1	22 ± 3.7	33 ± 2.6
333	17 ± 1.7	20 ± 0.3	23 ± 3.3	23 ± 4.6	31 ± 4.7
1,000		20 ± 2.3	34 ± 2.3	14 ± 0.7	23 ± 1.7
1,666		$17 \pm 0.6^{\mathrm{e}}$	27 ± 1.5	$22 \pm 3.5^{\mathrm{e}}$	21 ± 2.3
Trial summary	Negative	Negative	Negative	Negative	Negative
Positive control	423 ± 27.7	523 ± 10.6	495 ± 21.7	202 ± 10.9	104 ± 5.9

Study performed at SRI International. A detailed protocol is presented in Zeiger et~al.~(1992). Revertants are presented as mean $\pm~$ standard error from three plates.

Slight toxicity
The positive controls in the absence of metabolic activation were sodium azide (TA100 and TA1535), 9-aminoacridine (TA97),
4-nitro-o-phenylenediamine (TA98), and mytomycin C (TA102). The positive control for metabolic activation with all strains was 2-aminoanthracene. Precipitate on plate

TABLE C2 Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by Oxazepam^a

Compound	Dose (μg/mL)	Total Cells Scored	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdU	Relative Change of SCEs/ Chromosome ^b (%)
- S9 Summary: Negative								
Dimethylsulfoxide		50 50	1,049 1,045	424 393	0.40 0.37	8.5 7.9	26.0 31.0 ^c	
Mitomycin-C	0.001 0.004	50 10	1,048 210	579 223	0.55 1.06	11.6 22.3	26.0 26.0	46.91 182.37
Oxazepam	5 17 50	50 50 50	1,048 1,048 1,048	448 428 449	$0.42 \\ 0.40 \\ 0.42$ $P = 0.061^{d}$	9.0 8.6 9.0	26.0 26.0 31.0 ^c	13.67 8.59 13.92
+ S9 Summary: Negative								
Dimethylsulfoxide		50	1,046	402	0.38	8.0	26.0	
Cyclophosphamide	0.125 0.500	50 10	1,043 209	579 205	0.55 0.98	11.6 20.5	$26.0 \\ 26.0$	44.44 155.22
Oxazepam	5 17 50	50 50 50	1,048 1,050 1,048	452 460 445	0.43 0.43 0.42	9.0 9.2 8.9	26.0 26.0 26.0	12.22 13.99 10.48
					P = 0.075			

Study performed at Sitek Research Laboratories. A detailed description of the protocol is presented in Galloway *et al.* (1987). SCE= sister chromatid exchange; BrdU= bromodeoxyuridine SCEs/chromosome in treated cells versus SCEs/chromosome in solvent control cells Because oxazepam induced a delay in the cell division cycle, harvest time was extended to maximize the number of second-division metaphase cells available for analysis.

Significance of SCEs/chromosome tested by the linear regression trend test versus log of the dose

TABLE C3 Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells by Oxazepama

_			-S9					+ S9		
	Dose T (µg/mL)	Fotal Cells Scored	No. of Abs	Abs/ Cell	Cells with Abs (%)		otal Cell Scored	s No. of Abs	Abs/ Cell	Cells with Abs (%)
	me: 14.0 l : Negative					Harvest time: 12.0 h Summary: Negative	ours			
Dimethyls	sulfoxide	200	5	0.03	1.0	Dimethylsulfoxide	200	1	0.01	0.5
Mitomycii	n-C 0.4	25	9	0.36	36.0	Cyclophosphamide 20	25	12	0.48	32.0
Oxazepam	1					Oxazepam				
•	25	200	1	0.01	0.5	43	200	0	0.00	0.0
	54	200	3	0.02	1.0	93	200	3	0.02	1.5
	116	200	0	0.00	0.0	200	200	2	0.01	1.0
					$P = 0.842^{b}$					P= 0.135

Study performed at Sitek Research Laboratories. A detailed description of the protocol is presented in Galloway et al. (1987). Abs = aberrations

TABLE C4 Frequency of Micronuclei in Peripheral Blood Erythrocytes of Mice Following Treatment with Oxazepam by Feed for 14 Weeks^a

	Dose (ppm)	Number of Mice with Erythrocytes Scored	Micronucleated NCE Cells ^b (%)
Male	0	10	0.082 ± 0.008
	625	10	0.081 ± 0.009
	1,250	10	0.078 ± 0.007
	2,500	10	0.085 ± 0.010
	5,000	10	0.074 ± 0.008
	10,000	10	0.069 ± 0.007
			$P = 0.899^{C}$
Female	0	10	0.042 ± 0.006
	625	10	0.039 ± 0.005
	1,250	10	0.034 ± 0.007
	2,500	10	0.031 ± 0.005
	5,000	10	0.042 ± 0.005
	10,000	10	0.043 ± 0.007
			P = 0.194

Study was performed at SRI International. NCE= normochromatic erythrocyte

Significance of percent cells with aberrations tested by the linear regression trend test versus log of the dose

Mean \pm standard error Significance of percent micronucleated cells tested by the one-tailed trend test (Margolin *et al.*, 1990); significant at P \leq 0.025

APPENDIX D CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

PROCUREMEN	NT AND CHARACTERIZATION OF OXAZEPAM	156
PREPARATION	N AND ANALYSIS OF DOSE FORMULATIONS	157
FIGURE D1	Infrared Absorption Spectrum of Oxazepam	158
FIGURE D2	Nuclear Magnetic Resonance Spectrum of Oxazepam	159
TABLE D1	Preparation and Storage of Dose Formulations	
	in the 2-Year Feed Study of Oxazepam	160
TABLE D2	Analysis of Dose Formulations Administered to Rats	
	in the 2-Year Feed Study of Oxazepam	161

CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

PROCUREMENT AND CHARACTERIZATION OF OXAZEPAM

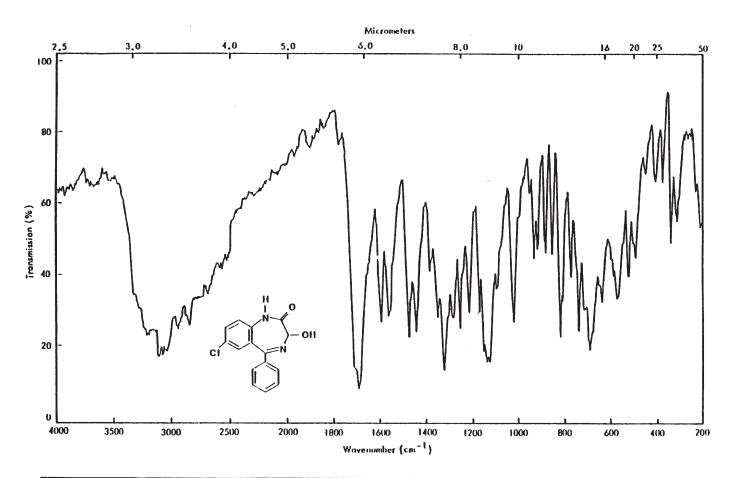
Oxazepam was obtained from Roussel Corporation (Englewood Cliffs, NJ) in one lot (86017.01), which was used during the 2-year study. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute (Kansas City, MO). Reports on analyses performed in support of the oxazepam studies are on file at the National Institute of Environmental Health Sciences.

Initially, comparisons were made between samples from the two shipping containers of lot 86017.01. The samples were blended for 15 minutes before being analyzed by high-performance liquid chromatography (HPLC) using the following system: Hewlett-Packard RP-18 column using a solvent system consisting of A) water containing 1% glacial acetic acid and B) methanol containing 1% glacial acetic acid, with a solvent ratio of A:B (50:50), at a flow rate of 1 mL/minute. Detection was with ultraviolet light at 254 nm. Results indicated that the two subbatches were identical within the limits of experimental error.

The chemical, a white, powdered solid, was identified as oxazepam by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. All spectra were consistent with the literature spectra (Florey, 1974) of oxazepam. The infrared and nuclear magnetic resonance spectra are presented in Figures D1 and D2. The observed melting point of 204.5° C was consistent with a literature reference (*Merck Index*, 1989), although the sample decomposed upon heating.

The purity of oxazepam was determined by elemental analyses, Karl Fischer water analysis, functional group titration for phenol, thin-layer chromatography (TLC), and HPLC. Functional group titration was performed by dissolving a sample in dimethylformamide and titrating with 0.1 N tetrabutylammonium hydroxide. The titration was monitored potentiometrically with a glass indicating electrode and a calomel reference electrode containing methanolic 1 M tetrabutylammonium chloride. TLC was performed on Silica Gel 60 F-254 plates with two solvent systems: 1) chloroform:methanol (10:1) and 2) ethyl acetate: methanol:glacial acetic acid (80:20:10). Anthracene in methanol was used as an internal standard. Visualization was accomplished with ultraviolet light (254 and 366 nm) and a spray of 37% formaldehyde solution in concentrated sulfuric acid followed by heating for 5 to 10 minutes at 120° C. HPLC was performed with the system described in the subbatch comparison.

Elemental analyses for carbon, hydrogen, nitrogen, and chlorine were in agreement with the theoretical values for oxazepam. Karl Fischer water analysis indicated $0.026\% \pm 0.001\%$ water. Functional group titration indicated a purity of $101.4\% \pm 0.5\%$. TLC analysis using system 1 indicated a major spot and one trace impurity; using system 2, a major spot was observed. HPLC resolved a major peak with no impurity peaks with areas 0.1% or greater relative to the major peak. Major peak comparison between this lot and a United States Pharmacopeia XXI (USP) oxazepam standard indicated a purity of $103\% \pm 1\%$ for lot 86017.01 relative to the reference standard. The overall purity of lot 86017.01 was determined to be greater than 99%.


Accelerated stability studies of the bulk chemical were performed by the analytical chemistry laboratory. HPLC was performed using the system described above except with a solvent ratio of 35:65. These studies indicated that oxazepam was stable as a bulk chemical for 2 weeks when stored protected from light at temperatures up to 60° C. To ensure the stability during the 2-year study, the bulk chemical was stored at room temperature, protected from light, in metal cans or amber glass bottles. The stability of the bulk chemical was monitored periodically at the study laboratory with the HPLC system described above. No degradation of the bulk chemical was observed.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS

The dose formulations were prepared every 2 weeks by mixing oxazepam with feed (Table D1). Mixtures were made by preparing an oxazepam/feed premix by hand and then blending the premix with feed in a Patterson-Kelly twin-shell blender for 15 minutes, using an intensifier bar for the initial 5 minutes. Formulations were stored in polyethylene bags inside polypropylene buckets at 5° C, protected from light, for up to 21 days.

Homogeneity and stability studies of a 500 ppm dose formulation were performed by the analytical chemistry laboratory. Samples were extracted with methanol, centrifuged, and mixed with internal standard solution (acetophenone in methanol). The samples were then mixed with additional methanol and further diluted with deionized water. HPLC was performed with a Burdick and Jackson C_{18} column with a mobile phase of water:methanol:glacial acetic acid (43:57:1) at a flow rate of 1 mL/minute and ultraviolet detection at 254 nm. Homogeneity was confirmed, and the dose formulation was determined to be stable for at least 3 weeks when stored protected from light at 5° C.

Periodic analyses of the dose formulations of oxazepam were conducted at the study laboratory using HPLC. Dose formulations were analyzed every 8 weeks during the study; animal room samples were analyzed initially and twice a year thereafter (Table D2). All 50 dose formulations were within 10% of the target concentrations; 89% (17/19) of the animal room samples analyzed were within 10% of the target concentrations. One animal room sample was 12% greater than the theoretical value; this was attributed to a difference between the standard curves for the dose formulation and animal room sample analyses.

Abscissa Expansion Suppression	Ordinate Expansion 1 % 10-100 ABS	Respo	use	Time Drive	Single Beam
Sample <u>8412 - 01</u> Oxazepsun Lot No.: 86017.01	Remarks <u>Trimmer Comb in Reference</u>		Solvent		Cell Path .~16% (w/w) in a Potassium Bromide disc
Batch No.: 01 Sub Batch: A Tank: BS/CV-2063			Concentration		Reference

FIGURE D1
Infrared Absorption Spectrum of Oxazepam

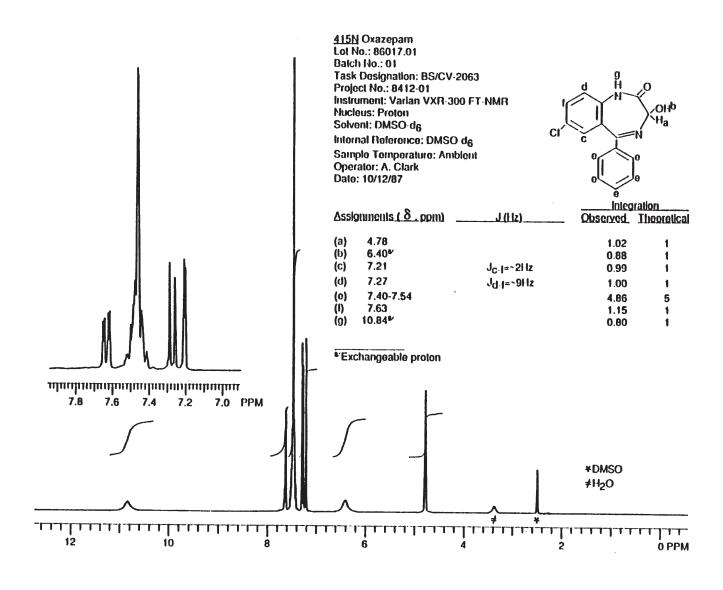


FIGURE D2 Nuclear Magnetic Resonance Spectrum of Oxazepam

TABLE D1

Preparation and Storage of Dose Formulations in the 2-Year Feed Study of Oxazepam

Preparation

A premix of feed and oxazepam was prepared, then layered with the remaining feed and blended in a Patterson-Kelly twin-shell blender with the intensifier bar on for 5 minutes and off for 10 minutes. Doses were prepared every 2 weeks.

Chemical Lot Number

86017.01

Maximum Storage Time

3 weeks

Storage Conditions

Stored in polyethylene bags inside polypropylene buckets, protected from light, at $5\,^\circ$ C

Study Laboratory

Battelle Columbus Laboratories (Columbus, OH)

TABLE D2
Analysis of Dose Formulations Administered to Rats in the 2-Year Feed Study of Oxazepam

Date Prepared	Date Analyzed	Target Concentration (ppm)	Determined Concentration ^a (ppm)	Difference from Target (%)
13 September 1991	19 September 1991	625 1,250 2,500 5,000 10,000	613 1,250 2,550 4,980 9,810	-2 0 + 2 0 -2
	2 October 1991 ^b	625 1,250 2,500 5,000 10,000	607 1,260 2,500 4,700 10,100	-3 +1 0 -6 +1
8 November 1991	11 November 1991	625 1,250 2,500 5,000 10,000	612 1,240 2,490 4,940 9,900	-2 -1 0 -1 -1
3 January 1992	7 January 1992	625 1,250 2,500 5,000 10,000	658 1,280 2,590 5,000 10,100	+ 5 + 2 + 4 0 + 1
28 February 1992	28 February 1992	625 1,250 2,500 5,000 10,000	644 1,290 2,590 5,040 9,870	+ 3 + 3 + 4 + 1 - 1
	19 March 1992 ^b	625 1,250 2,500 5,000 10,000	697 1,330 2,650 5,340 10,400	+ 12 + 6 + 6 + 7 + 4
24 April 1992	27 April 1992	625 2,500 5,000	627 2,550 5,000	0 + 2 0
19 June 1992	23 June 1992	625 2,500 5,000	599 2,530 4,700	-4 +1 -6
14 August 1992	14-15 August 1992	625 2,500 5,000	604 2,500 4,830	-3 0 -3
	8-9 September 1992 ^b	625 2,500 5,000	581 2,220 5,040	-7 -11 +1
9 October 1992	9-10 October 1992	625 2,500 5,000	603 2,440 4,860	-4 -2 -3

TABLE D2 Analysis of Dose Formulations Administered to Rats in the 2-Year Feed Study of Oxazepam (continued)

Date Prepared	Date Analyzed	Target Concentration (ppm)	Determined Concentration (ppm)	Difference from Target (%)
4 December 1992	5-8 December 1992	625 2,500 5,000	625 2,750 4,870	0 + 10 - 3
29 January 1993	29-30 January 1993	625 2,500 5,000	650 2,630 5,300	+ 4 + 5 + 6
	19 February 1993 ^b	625 2,500 5,000	611 2,550 5,080	-2 +2 +2
26 March 1993	26-27 March 1993	625 2,500 5,000	617 2,490 5,280	-1 0 +6
21 May 1993	24-25 May 1993	625 2,500 5,000	654 2,650 5,360	+ 5 + 6 + 7
16 July 1993	16 July 1993	625 2,500 5,000	571 2,530 4,970	-9 + 1 -1
	6 August 1993 ^b	625 2,500 5,000	642 2,570 5,030	+ 3 + 3 + 1
13 September 1993	14 September 1993	625 2,500 5,000	605 2,500 4,810	-3 0 -4

Results of duplicate analyses Animal room samples

APPENDIX E FEED AND COMPOUND CONSUMPTION IN THE 2-YEAR FEED STUDIES OF OXAZEPAM

TABLE E1	Feed and Compound Consumption by Male Rats in the 2-Year Feed Study	
	of Oxazepam	16 4
TABLE E2	Feed and Compound Consumption by Female Rats in the 2-Year Feed Study	
	of Oxazepam	166

TABLE E1
Feed and Compound Consumption by Male Rats in the 2-Year Feed Study of Oxazepam

	0 р	pm		625 ppm			2,500 ppm	
Week	Feed (g/day) ^a	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day ^b (mg/kg)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg)
1	15.1	132	13.7	132	65	11.9	132	226
2	15.6	172	16.5	179	57	16.0	174	230
4	18.3	240	18.7	246	48	19.0	242	196
5	16.8	257	18.0	265	43	17.7	262	169
8	15.7	310	16.5	315	33	16.3	306	133
9	17.4	323	17.9	326	34	17.2	314	137
12	16.6	356	17.8	354	31	17.4	343	127
13	17.8	367	19.2	366	33	18.5	349	132
17	17.0	402	17.3	391	28	17.1	375	114
21	17.0	422	17.4	413	26	16.1	393	102
25	16.8	442	17.3	434	25	17.5	408	107
29	17.3	462	16.5	448	23	15.9	426	93
33	16.3	477	16.1	459	22	16.4	437	94
37	15.9	479	16.4	465	22	15.6	438	89
41	17.0	487	16.2	471	22	16.5	443	93
45	16.7	492	15.9	479	21	16.7	451	92
49	16.4	497	16.4	485	21	15.3	454	84
53	17.0	503	16.3	492	21	16.4	449	91
57	16.0	509	15.9	496	20	15.1	451	84
61	14.8	509	15.0	488	19	14.0	449	78
65	15.9	504	15.2	486	19	14.9	445	84
69	15.9	506	16.1	492	21	15.7	443	88
73	15.2	508	15.0	487	19	14.4	434	83
77	16.4	500	16.3	478	21	15.4	432	89
78	14.9	500	14.2	476	19	14.5	431	84
81	15.4	493	13.7	471	18	13.4	414	81
85	15.2	495	14.9	463	20	14.9	407	92
88	14.6	493	14.5	452	20	13.2	396	83
93	14.7	489	15.0	449	21	14.8	397	93
97	14.0	470	16.0	441	23	15.4	372	104
101	11.7	459	14.5	429	21	15.7	349	112
104	14.8	463	16.7	428	24	15.1	341	111
	11.0	100	10.7	120	₩ 1	10.1	011	111
Aean for	weeks							
-13	16.7	270	17.3	273	43	16.7	265	169
4-52	16.7	462	16.6	449	23	16.3	425	97
3-104	15.1	493	15.3	468	20	14.9	414	90

TABLE E1 Feed and Compound Consumption by Male Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 p	pm		5,000 ppm			10,000 ppm	
Week	Feed (g/day)	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg)
1	15.1	132	10.8	132	409	10.4	132	791
2	15.6	172	15.3	168	456	14.8	164	901
4	18.3	240	19.1	238	400	19.3	232	833
5	16.8	257	17.5	254	346	17.5	247	711
8	15.7	310	17.3	294	294	16.1	284	568
9	17.4	323	18.6	304	307	17.1	290	591
12	16.6	356	16.7	331	253	16.9	322	524
13	17.8	367	18.8	338	277	18.1	323	561
17	17.0	402	16.5	355	233	17.4	344	506
21	17.0	422	18.0	375	240	17.3	358	485
25	16.8	442	16.3	386	212	16.7	366	457
29	17.3	462	16.5	400	207	16.0	361	
33	16.3	477	15.5	401	193	17.9	404	
37	15.9	479	15.6	401	194	17.3	424	
41	17.0	487	16.2	411	197	17.4	437	
45	16.7	492	17.7	420	211	16.6	449	
49	16.4	497	16.6	421	197	17.0	462	
53	17.0	503	16.6	420	198	17.3	467	
57	16.0	509	16.0	417	191	16.2	472	
61	14.8	509	15.1	403	187	15.6	473	
65	15.9	504	15.6	396	197	16.0	469	
69	15.9	506	16.2	388	209	15.6	469	
73	15.2	508	16.4	363	226	15.3	474	
77	16.4	500	14.9	358	207	16.2	469	
78	14.9	500	15.2	351	216	15.6	469	
81	15.4	493	14.3	334	214	14.7	458	
85	15.2	495	15.8	328	241	14.7	445	
88	14.6	493	14.3	313	229	12.6	425	
93	14.7	489	14.6	314	233	12.9	427	
97	14.0	470	16.8	333	252	14.5	403	
101	11.7	459	7.6	285	133			
104	14.8	463						
Mean for	weeks							
-13	16.7	270	16.8	258	343	16.3	249	685
4-52	16.7	462	16.5	397	209	17.1	401	482 ^c
3-104	15.1	493	15.0	357	210	15.2	455	102

Grams of feed consumed per animal per day
 Milligrams of oxazepam consumed per kilogram body weight per day
 Mean for weeks 14-27

TABLE E2
Feed and Compound Consumption by Female Rats in the 2-Year Feed Study of Oxazepam

	0 р	DM		625 ppm		2,500 ppm			
	Feed (g/day) ^a	Body Weight	Feed (g/day)	Body Weight	Dose/ Day ^b	Feed (g/day)	Body Weight	Dose/ Day	
Week	3 7/	(g)	9 7/	(g)	(mg/kg)	9 3/	(g)	(mg/kg)	
1	11.0	111	10.6	111	59	9.6	111	216	
2	11.1	129	11.7	132	55	11.3	133	212	
4	12.2	153	12.7	159	50	12.3	157	196	
5	11.5	162	11.5	167	43	12.0	165	183	
8	11.2	182	10.8	185	37	10.4	180	144	
9	10.9	187	11.2	188	37	10.9	182	149	
12	11.0	200	11.0	200	34	10.7	194	138	
13	10.6	203	11.6	206	35	11.0	197	140	
17	11.3	216	11.6	218	33	10.9	207	131	
21	10.6	223	10.8	226	30	10.1	216	117	
25	10.9	234	10.3	235	27	10.6	224	119	
29	10.9	241	11.8	245	30	10.8	232	116	
33	10.6	247	10.6	253	26	9.7	238	102	
37	10.9	255	10.1	258	25	9.8	243	101	
41	11.3	263	11.2	270	26	10.3	249	103	
45	12.4	273	10.9	280	24	10.8	259	104	
49	12.3	286	11.5	289	25	10.1	264	96	
53	11.0	298	11.4	301	24	10.0	272	92	
57	11.8	308	11.6	311	23	10.7	277	96	
61	11.4	315	11.1	318	22	10.2	284	89	
65	11.3	322	11.3	323	22	11.1	296	94	
69	12.1	328	11.9	328	23	12.1	303	100	
73	11.4	328	11.3	330	21	10.5	302	87	
77	11.8	328	11.8	333	22	11.0	304	90	
81	11.8	333	12.0	341	22	11.8	308	96	
85	12.2	339	11.7	339	21	11.6	316	92	
88	12.3	343	11.5	343	21	11.4	316	90	
93	11.6	343	11.3	344	20	11.4	317	90	
97	11.7	343	11.5	348	21	11.0	314	88	
101	12.1	348	11.1	345	20	10.1	314	81	
104	11.1	348	11.2	343	20	9.5	296	80	
Mean for	weeks								
1-13	11.2	166	11.4	169	44	11.0	165	172	
14-52	11.2	249	11.0	253	27	10.3	237	110	
53-104	11.7	330	11.5	332	22	10.9	301	90	

TABLE E2 Feed and Compound Consumption by Female Rats in the 2-Year Feed Study of Oxazepam (continued)

	0 p	pm		5,000 ppm		10,000 ppm			
Week	Feed (g/day)	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg)	
1	11.0	111	8.9	111	400	8.1	111	730	
2	11.1	129	11.9	134	444	11.8	133	886	
4	12.2	153	11.9	158	376	12.4	156	793	
5	11.5	162	11.0	164	333	11.4	162	707	
8	11.2	182	10.6	177	300	11.1	175	636	
9	10.9	187	11.1	182	306	10.9	177	612	
12	11.0	200	10.7	191	281	10.8	187	578	
13	10.6	203	10.7	192	279	10.8	188	576	
17	11.3	216	10.6	203	262	10.8	197	548	
21	10.6	223	10.1	208	242	10.2	202	504	
25	10.9	234	10.0	216	232	9.5	208	459	
29	10.9	241	10.3	225	229	10.5	198		
33	10.6	247	9.3	229	203	12.7	224		
37	10.9	255	9.6	235	204	10.8	235		
41	11.3	263	9.7	241	202	11.3	245		
45	12.4	273	11.1	251	221	12.0	255		
49	12.3	286	9.8	251	195	11.4	266		
53	11.0	298	9.4	256	184	11.5	277		
57	11.8	308	10.1	261	193	12.3	290		
61	11.4	315	9.6	265	181	12.0	304		
65	11.3	322	10.1	270	187	12.1	316		
69	12.1	328	11.1	278	199	12.2	323		
73	11.4	328	9.9	277	178	11.4	324		
77	11.8	328	11.8	285	207	11.9	330		
81	11.8	333	10.4	283	184	11.2	331		
85	12.2	339	10.7	288	186	11.7	336		
88	12.3	343	10.5	287	183	12.6	346		
93	11.6	343	10.5	282	186	11.5	352		
97	11.7	343	10.9	282	193	12.0	357		
101	12.1	348	10.5	285	183	10.3	356		
104	11.1	348	11.1	284	196	10.1	346		
1ean for									
-13	11.2	166	10.9	164	340	10.9	161	690	
4-52	11.2	249	10.1	229	221	11.0	225	504 ^c	
3-104	11.7	330	10.5	277	189	11.6	328		

Grams of feed consumed per animal per day Milligrams of oxazepam consumed per kilogram body weight per day Mean for weeks 14-27

APPENDIX F INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH-07 RAT AND MOUSE RATION

TABLE F1	Ingredients of NIH-07 Rat and Mouse Ration	170
TABLE F2	Vitamins and Minerals in NIH-07 Rat and Mouse Ration	170
TABLE F3	Nutrient Composition of NIH-07 Rat and Mouse Ration	171
TARLE F4	Contaminant Levels in NIH-07 Rat and Mouse Ration	172

TABLE F1 Ingredients of NIH-07 Rat and Mouse Ration^a

$\mathbf{Ingredients}^{\mathrm{b}}$	Percent by Weight	
Ground #2 yellow shelled corn	24.50	
Ground hard winter wheat	23.00	
Soybean meal (49% protein)	12.00	
Fish meal (60% protein)	10.00	
Wheat middlings	10.00	
Dried skim milk	5.00	
Alfalfa meal (dehydrated, 17% protein)	4.00	
Corn gluten meal (60% protein)	3.00	
Soy oil	2.50	
Dried brewer's yeast	2.00	
Dry molasses	1.50	
Dicalcium phosphate	1.25	
Ground limestone	0.50	
Salt	0.50	
Premixes (vitamin and mineral)	0.25	

TABLE F2 Vitamins and Minerals in NIH-07 Rat and Mouse Ration^a

	Amount	Source	
Vitamins			
A	5,500,000 IU	Stabilized vitamin A palmitate or acetate	
D_2	4,600,000 IU	D-activated animal sterol	
$egin{array}{c} ext{D}_3 \ ext{K}_3 \end{array}$	2.8 g	Menadione	
α-Tocopheryl acetate	20,000 IŬ		
Choline	560.0 g	Choline chloride	
Folic acid	2.2 g		
Niacin	30.0 g		
d-Pantothenic acid	18.0 g	d-Calcium pantothenate	
Riboflavin	3.4 g		
Thiamine	10.0 g	Thiamine mononitrate	
B ₁₂	4,000 μg		
Pyridoxine	1.7 g	Pyridoxine hydrochloride	
Biotin	140.0 mg	d-Biotin	
Minerals			
Iron	120.0 g	Iron sulfate	
Manganese	60.0 g	Manganous oxide	
Zinc	16.0 g	Zinc oxide	
Copper	4.0 g	Copper sulfate	
Iodine	1.4 g	Calcium iodate	
Cobalt	0.4 g	Cobalt carbonate	
	-		

^a Per ton (2,000 lb) of finished product

 $NCI,\ 1976;\ NIH,\ 1978$ Ingredients were ground to pass through a U.S. Standard Screen No. 16 before being mixed.

TABLE F3
Nutrient Composition of NIH-07 Rat and Mouse Ration

Nutrient	Mean ± Standard Deviation	Range	Number of Samples
Protein (% by weight)	23.43 ± 0.51	22.3) 24.2	23
Crude fat (% by weight)	5.38 ± 0.19	5.10) 5.70	23
Crude fiber (% by weight)	3.25 ± 0.22	2.90) 3.80	23
Ash (% by weight)	6.53 ± 0.25	6.08) 7.03	23
Amino Acids (% of total diet)			
Arginine	1.280 ± 0.083	1.110) 1.390	11
Cystine	0.308 ± 0.071	0.181) 0.400	11
Glycine	1.158 ± 0.048	1.060) 1.220	11
Histidine	0.584 ± 0.027	0.531) 0.630	11
Isoleucine	0.917 ± 0.033	0.867) 0.965	11
Leucine	1.975 ± 0.051	1.850) 2.040	11
Lysine	1.274 ± 0.049	1.200) 1.370	11
Methionine	0.437 ± 0.109	0.306) 0.699	11
Phenylalanine	0.999 ± 0.120	0.665) 1.110	11
Threonine	0.904 ± 0.058	0.824) 0.985	11
Tryptophan	0.218 ± 0.153	0.107) 0.671	11
Tyrosine	0.685 ± 0.094	0.564) 0.794	11
Valine	1.086 ± 0.055	0.962) 1.170	11
Essential Fatty Acids (% of total diet)			
Linoleic	2.407 ± 0.227	1.830) 2.570	10
Linolenic	0.259 ± 0.065	0.100) 0.320	10
Vitamins			
Vitamin A (IU/kg)	$6,667 \pm 553$	5,940) 8,580	23
Vitamin D (IU/kg)	$4,450 \pm 1,382$	3,000) 6,300	4
α-Tocopherol (ppm)	35.43 ± 8.98	22.5) 48.9	11
Thiamine (ppm)	17.35 ± 3.14	12.0) 25.0	23
Riboflavin (ppm)	7.83 ± 0.923	6.10) 9.00	11
Niacin (ppm)	99.22 ± 24.27	65.0) 150.0	11
Pantothenic acid (ppm)	30.55 ± 3.52	23.0) 34.6	11
Pyridoxine (ppm)	9.11 ± 2.53	5.60) 14.0	11
Folic acid (ppm)	2.46 ± 0.63	1.80) 3.70	11
Biotin (ppm)	0.268 ± 0.047	0.190) 0.354	11
Vitamin B ₁₂ (ppb)	40.5 ± 19.1	10.6) 65.0	11
Choline (ppm)	$2,991 \pm 382$	2,300) 3,430	10
Minerals	4.47 0.00	4.00 \ 4.00	00
Calcium (%)	1.17 ± 0.09	1.02) 1.32	23
Phosphorus (%)	0.92 ± 0.06	0.770) 1.00	23
Potassium (%)	0.886 ± 0.063	0.772) 0.971	9
Chloride (%)	0.529 ± 0.087	0.380) 0.635	9
Sodium (%)	0.316 ± 0.033	0.258) 0.371	11
Magnesium (%)	0.166 ± 0.010	0.148) 0.181	11
Sulfur (%)	0.272 ± 0.059	0.208) 0.420	10
Iron (ppm)	350.5 ± 87.3	255.0) 523.0	11
Manganese (ppm)	92.48 ± 5.14	81.7) 99.4	11
Zinc (ppm)	59.33 ± 10.2	46.1) 81.6	11
Copper (ppm)	11.81 ± 2.50	8.09) 15.4	11
Iodine (ppm)	3.54 ± 1.19	1.52) 5.83	10
Chromium (ppm) Cobalt (ppm)	1.66 ± 0.46	$0.85) 2.09 \\ 0.49) 1.15$	11 7
Copait (hhiii)	0.76 ± 0.23	0.40 / 1.10	1

TABLE F4 Contaminant Levels in NIH-07 Rat and Mouse Ration^a

	Mean ± Standard Deviation ^b	Range	Number of Samples
ontaminants			
Arsenic (ppm)	0.57 ± 0.13	0.03) 0.80	23
Cadmium (ppm)	0.12 ± 0.08	0.04) 0.20	23
Lead (ppm)	0.30 ± 0.13	0.18) 0.70	23
Mercury (ppm) ^c	0.02	0.02) 0.03	23
Selenium (ppm)	0.36 ± 0.08	0.10) 0.40	23
Aflatoxins (ppm)	< 5.0	0.10) 0.10	23
Nitrate nitrogen (ppm) _d	6.43 ± 2.62	1.80) 11.0	23
Nitrite nitrogen (ppm) ^d	0.45 ± 0.64	0.02) 2.90	23
BHA (ppm) ^e	1.43 ± 1.88	1.00) 10.0	23
BHT (ppm) ^e	1.30 ± 0.88	1.0) 5.00	23
Aerobic plate count (CFU/g)	$135,565 \pm 173,947$	10,000) 630,000	23
Coliform (MPN/g)	100 ± 244	3) 1,100	23
Escherichia coli (MPN/g)	< 3.0	3) 1,100	23
Salmonella (MPN/g)	Negative		23
Total nitrosoamines (ppb) ^f	9.66 ± 4.73	4.80) 19.70	23
N-Nitrosodimethylamine (ppb) ^f	7.48 ± 4.38	3.40) 18.00	23
<i>N</i> -Nitrosopyrrolidine (ppb) ^f	2.21 ± 1.13	1.00) 5.80	23
13	2.21 ± 1.13	1.00) 3.00	23
esticides (ppm)			
α-BHC	< 0.01		23
β-ВНС	< 0.02		23
ү-ВНС	< 0.01		23
δ-BHC	< 0.01		23
Heptachlor	< 0.01		23
Aldrin	< 0.01		23
Heptachlor epoxide	< 0.01		23
DDE	< 0.01		23
DDD	< 0.01		23
DDT	< 0.01		23
HCB	< 0.01		23
Mirex	< 0.01		23
Methoxychlor	< 0.05		23
Dieldrin	< 0.01		23
Endrin	< 0.01		23
Telodrin	< 0.01		23
Chlordane	< 0.05		23
Toxaphene	< 0.10		23
Estimated PCBs	< 0.20		23
Ronnel	< 0.01		23
Ethion	< 0.02		23
Trithion	< 0.05		23
Diazinon	< 0.10		23
Methyl parathion	< 0.02		23
Ethyl parathion	< 0.02		23
Malathion	0.14 ± 0.16	0.05) 0.48	23
Endosulfan I	< 0.01	•	23
Endosulfan II	< 0.01		23
Endosulfan sulfate	< 0.03		23

CFU= colony forming units; MPN= most probable number; BHC= hexachlorocyclohexane or benzene hexachloride For values less than the limit of detection, the detection limit is given as the mean.

All but three values were less than detection limit; detection limit is used for the low end of the range.

Sources of contamination: alfalfa, grains, and fish meal Sources of contamination: soy oil and fish meal All values were corrected for percent recovery.

APPENDIX G SENTINEL ANIMAL PROGRAM

METHODS	8	174
RESULTS		174

SENTINEL ANIMAL PROGRAM

METHODS

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals and the study animals are all subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Serum samples were collected from randomly selected rats during the 2-year study. Blood from each animal was collected and allowed to clot, and the serum was separated. The samples were processed appropriately and sent to Microbiological Associates Inc. (Bethesda, MD), for determination of antibody titers. The laboratory serology methods and viral agents for which testing was performed are tabulated below; the times at which the blood was collected during the studies are also listed.

Method and Test

Time of Analysis

6, 12, and 18 months, study termination

2-Year Study

ELISA

Mycoplasma arthritidis	Study termination
Mycoplasma pulmonis	Study termination
PVM (pneumonia virus of mice)	6, 12, and 18 months, study termination
RCV/SDA (rat coronavirus/sialodacryoadenitis virus)	6, 12, and 18 months, study termination
Sendai	6, 12, and 18 months, study termination
Hemagglutination Inhibition	
H-1 (Toolan's H-1 virus)	6, 12, and 18 months, study termination

RESULTS

KRV (Kilham rat virus)

Two rats had positive titers to *M. arthritidis* at study termination. Further evaluations of the serum positive for *M. arthritidis* by immunoblot and Western blot procedures indicated that the positive titers may have been due to cross reaction with antibodies of nonpathogenic *Mycoplasma* or other agents. Only sporadic samples were positive, and there were no clinical findings or histopathologic changes of *M. arthritidis* infection in animals with positive titers. Accordingly, the *M. arthritidis*-positive titers were considered false positives.

APPENDIX H EARLY RESPONSES OF F344/N RATS TO OXAZEPAM

Michael L. Cunningham and John R. Bucher Environmental Toxicology Program National Institute of Environmental Health Sciences Research Triangle Park, North Carolina

Introduction	ON	176
MATERIALS A	AND METHODS	176
RESULTS		178
REFERENCES		180
TABLE H1	Survival, Body Weights, and Feed Consumption of Male F344/N Rats	
	Administered Oxazepam in Feed for 90 Days	181
TABLE H2	BrdU and Proliferating Cell Nuclear Antigen Labeling Indices,	
	Liver Weight/Body Weight Ratios, and Total Body Burden of Male F344/N Rats	
	Administered Oxazepam in Feed for 90 Days	182
TABLE H3	Clinical Chemistry Data for Male F344/N Rats Administered Oxazepam	
	in Feed for 90 Days	183
TABLE H4	Serum Oxazepam Concentrations in Male F344/N Rats Administered Oxazepam	
	in Feed for 90 Days	184

EARLY RESPONSES OF F344/N RATS TO OXAZEPAM

Introduction

Oxazepam and related benzodiazepine drugs are used in the treatment of anxiety. Most clinically useful drugs for this purpose are variants of the 1,4-benzodiazepine structure comprising two aromatic rings and a seven-membered heterocycle. One of the aromatic rings is fused to the seven-membered ring and contains a chloro-substituent or some other electronegative group. All clinically important derivatives contain a 5-aryl or 5-cyclohexenyl group. Most of the drugs vary in substituent groups at the 1 and 3 positions (*Goodman and Gilman's*, 1990). Oxazepam, known under the trade name Serax®, is produced and sold by Wyeth Laboratories and has been on the market since 1965.

Two million six hundred thousand prescriptions for oxazepam were written in the United States in 1983, and oxazepam ranked 132nd and 125th in overall frequency of prescriptions written for all drugs in 1984 and 1985, respectively (Anonymous, 1986; C. Baum correspondence, 1986). Oxazepam is also a common metabolite of several other benzodiazepines, some of which are more widely prescribed. These include diazepam (Valium®), for which 25.5 million prescriptions were written in 1983, making it the fourth most prescribed drug. The use of benzodiazepines in the general population in the United States has been reported to be as high as 7% (Pedersen and Lavik, 1991).

In NTP studies, oxazepam was not mutagenic in any of several strains of *Salmonella typhimurium*, nor did it induce sister chromatid exchanges or chromosomal aberrations in cultured Chinese hamster ovary cells with or without metabolic activation. However, Fox and Lahcen (1974) observed liver neoplasms in oxazepam-treated Swiss-Webster mice during the course of reproductive toxicity studies, and oxazepam caused increased incidences of liver neoplasms in male and female Swiss-Webster and $B6C3F_1$ mice in 2-year NTP feed studies (NTP, 1993). A 2-year feed study was subsequently started using F344/N rats. Because of the resemblance of the mouse results to those with other apparently nonnecrogenic and nongenotoxic liver carcinogens and the earlier observation that oxazepam was hepatocarcinogenic in both Swiss-Webster and $B6C3F_1$ mice, oxazepam was concurrently evaluated for clinical pathology and hepatocellular cell replication in a 13-week feed study with male F344/N rats. Exposure concentrations administered via feed were identical to those in the $B6C3F_1$ mouse study (Cunningham *et al.*, 1994a). Serum oxazepam levels were also evaluated for comparison to the previous mouse studies and to therapeutic human levels.

MATERIALS AND METHODS

Animals

Male Fisher 344/N rats (Charles River Breeding Laboratories, Raleigh, NC) weighing 150 g were fed a standard NIH 31 diet *ad libitum* and exposed to a daily cycle of alternating 12-hour periods of light and dark. The rats were acclimated to this environment for 2 weeks prior to the beginning of the study; animal rooms were maintained at 21° to 23° C and 40% to 60% relative humidity throughout the study. Rats were randomly assigned to exposure groups of 10 animals per group and allowed 7 days to adapt to a new cage environment and the powdered chow mixture (without oxazepam) described below. Experiments were performed according to the guidelines established in the NIH Guide for the Care and Use of Laboratory Animals. Animals were killed by CO_2 asphyxiation and exsanguination. Blood samples were allowed to clot for approximately 30 minutes at room temperature, after which they were centrifuged at 5,000 × g for 5 minutes. Serum was collected and immediately analyzed for activities or concentrations of the following: albumin, total protein, alkaline phosphatase, alanine aminotransferase, creatine kinase, sorbitol dehydrogenase, 5′-nucleotidase, total bile acids, creatinine, and total cholesterol. All analyses were performed using a Monarch 2000 chemistry analyzer (Instrumentation Laboratories, Lexington, MA). Except for total bile acids and 5′-nucleotidase, all assays were performed using reagent kits and standard applications developed for the analyzer by the manufacturer. Assays for total bile acids and 5′-nucleotidase

were developed for the analyzer using reagent kits obtained from Sigma Chemical Company (St. Louis, MO). Experimental effects for clinical chemistry measurements were identified by analysis of variance. Significant differences between animals in exposed and control groups were detected using Dunnett's multiple comparison test (Dunnett, 1955).

Chemical Exposure

Oxazepam was acquired from the National Toxicology Program repository from the lots used for the 2-year carcinogenicity studies. Dosed feed was prepared biweekly in 7-kg batches by Radian Corporation (Research Triangle Park, NC) by mixing ground feed and oxazepam in a Patterson-Kelly blender for 15 minutes with the intensifier bar in operation for the first 5 minutes. Aliquots were analyzed by high-performance liquid chromatography (HPLC) using acetophenone as the internal standard (details available upon request). Concentrations of oxazepam in feed were within 10% of target concentrations. Control animals received an identical powdered chow mixture with no oxazepam. Powdered chow was delivered to rats in stainless steel hanging feeders covered with wire mesh to prevent feed scattering. Estimations of feed consumption were performed weekly.

Cell Proliferation Measurements

Seven days before the end of the study, osmotic minipumps (Model 2002, Alza Corporation, Palo Alto, CA) were implanted subcutaneously into the backs of the rats. These minipumps delivered 30 mg bromodeoxyuridine (BrdU) (Sigma Chemical Co.) per hour, which was incorporated into the DNA of newly replicating cells. At the end of the study, animals were killed by CO₂ inhalation, and blood was collected for clinical chemistry measurements and analysis of oxazepam levels. Livers and kidneys were blotted and weighed. A mid-lobe radial section of the right anterior lobe was fixed in neutral buffered formalin for 24 hours. A cross section of small intestine was also fixed as a positive control for the proper operation of the minipump and the staining technique because these cells are constantly in S phase. Tissues were embedded in paraffin, and serial sections were mounted onto slides coated with poly-l-lysine. Following deparaffination and rehydration, one set of slides was stained with hematoxylin and eosin for histological analysis, and another set was stained immunohistochemically for BrdU incorporation as described previously (Cunningham and Matthews, 1991; Cunningham et al., 1991, 1994a, 1994b). Slides were treated with 2 N HCl for 30 minutes at 37 °C to allow the DNA to become single stranded. The acid treatment was quenched with boric acid buffer (pH 7.6) for 1 minute at room temperature, followed by digestion in 0.01% trypsin (Sigma Chemical Co.) and rinsed in PBT [phosphate buffer, pH 7.2, containing 1% bovine serum albumin (Sigma Chemical Co.), 0.05% Tween 20 (Bio-Rad, Richmond, CA) and 7.2% NaCl]. Nonspecific antibody binding was eliminated by blocking (20 minutes) with normal horse serum (1:20) (Vector Laboratories, Inc., Burlington, CA). Following a PBT wash, the slides were incubated with a 1:50 dilution of mouse monoclonal antibody to BrdU (Becton Dickenson, Mountain View, CA) for 20 minutes at room temperature. Following two PBT washes, the slides were incubated with a 1:100 dilution of a biotinylated horse antimouse antibody (Vector Laboratories, Inc.; rat absorbed) for 20 minutes at room temperature and visualized with the avidin biotin peroxidase complex (ABC) method using a Vectastain peroxidase standard kit (Vector Laboratories, Inc.). Nuclei binding the ABC reagent (labeled nuclei) were stained for 6 minutes with 3,3'diaminobenzidine (Sigma Chemical Co.) to give a dark brown color, and nonlabeled nuclei were stained with hematoxylin to yield a blue color. Random areas of the slides were chosen for counting stained and unstained hepatocyte nuclei (> 1,000 hepatocytes/rat). Statistics were performed using Student's t-test.

Serum Oxazepam Analysis

Frozen serum was allowed to thaw, and 0.1 mL aliquots were made basic with 10 μ L 0.1 M NaOH. Parent oxazepam was extracted from the aqueous layer with 1 mL ethyl acetate followed by centrifugation (1,500 rpm for 5 minutes). The organic layer containing the oxazepam was removed and evaporated to dryness under nitrogen. Samples were reconstituted in 100 μ L 0.05 M 60% methanol:40% phosphate buffer; pH 2.8). Samples were analyzed for oxazepam by HPLC (Waters Associates, Milford, MA); the system consisted of two Model 510 HPLC pumps, a 712 WISP multiple sample injector, a

490E multiwavelength detector at 230 nm, and a C_{18} column. Samples were run isocratically at 0.8 mL/minute in a methanol:phosphate buffer (60:40) carrier. Serum oxazepam was quantitated against an oxazepam standard curve created with spiked serum standards.

RESULTS

All rats survived to the end of the study, although oxazepam had a sedative effect on the rats in the 5,000 ppm groups. Rats in the 2,500 and 5,000 ppm groups consumed significantly less feed than did controls at the 15-, 30-, and 45-day intervals (Table H1). Other sporadic differences in feed consumption were also noted. Animals in the 2,500 and 5,000 ppm groups were observed to be sluggish for the first 2 to 4 weeks, but activity levels appeared normal thereafter. On day 15, the final mean body weights and body weight gains of the 2,500 and 5,000 ppm groups were significantly less than those of the control group, but were similar on day 30. The mean body weight gains of the 5,000 ppm group were less than those of the control group on days 45 and 90 as was that of 2,500 ppm rats on day 90 (Table H1).

The amount of hepatocellular proliferation was examined in relation to the amount of oxazepam consumed and the relative increase in liver weight over the course of this study. Male rats exposed to 2,500 or 5,000 ppm oxazepam exhibited a significant increase in the rate of hepatocyte cell proliferation as determined by BrdU incorporation as well as by PCNA staining at the 15-day time point (Table H2). By day 15, BrdU labeling indices in these groups were approximately three- to five-fold the untreated control indices, respectively. Both labeling indices in these groups were also significantly elevated compared to those of the controls on day 30, but this increase more likely reflects the variably lowered control labeling observed for both BrdU labeling and PCNA labeling. Labeling indices of all exposed groups were similar to those of the controls for both BrdU and PCNA at the 45- and 90-day time points.

Liver weight/body weight ratios in the 2,500 and 5,000 ppm groups were significantly greater than the control value at all time points (Table H2). Liver weight/body weight ratios in the 25 and 125 ppm groups were slightly elevated only at the 45-day time point. Rats exposed to 5,000 ppm oxazepam received approximately 19,000 mg oxazepam/kg body weight over 90 days.

Slight variations in serum activities of alanine aminotransferase, alkaline phosphatase, and 5′-nucleotidase were observed in the serum of rats exposed to 2,500 or 5,000 ppm oxazepam at various time points (Table H3). Other mild but statistically significant changes included decreases in cholesterol concentrations in the 2,500 and 5,000 ppm groups on days 30 and 90 and in the 5,000 ppm group on day 45, and an increase in bile acid concentration in the 5,000 ppm group on day 30. Increases in albumin concentrations occurred in 5,000 ppm rats on days 30 and 45 and in 2,500 and 5,000 ppm rats on day 90. Mild, statistically significant decreases in activities of sorbitol dehydrogenase and creatinine occurred in exposed groups. None of these changes was considered to have biological importance.

Histopathologic evaluation of hematoxylin- and eosin-stained slides revealed little histologic evidence of cytotoxicity or hepatocyte degeneration and no generalized or periportal inflammation. The major histological feature of rats exposed to oxazepam was hypertrophy, characterized by enlarged hepatocytes with pale pink, nonvacuolated cytoplasm. In the 25 and 125 ppm groups, hypertrophy was centrilobular, was consistent with proliferation of smooth endoplasmic reticulum, and encompassed hepatocytes two to six cells deep emanating from the central vein. At 2,500 and 5,000 ppm, hypertrophy became more extensive, and the area of enlargement of hepatocytes included the periportal region. Although the largest

hepatocytes were usually found around the central vein, all hepatocytes in rats exposed to 2,500 or 5,000 ppm were markedly enlarged and pale, causing generalized occlusion of sinusoids.

Serum oxazepam concentrations increased as a function of exposure concentration in all groups (Table H4). The highest serum oxazepam concentration, approximately 3.63 μ g/mL, occurred in the 5,000 ppm group on day 90. Serum oxazepam concentrations appeared unstable between 15 and 90 days in the 2,500 and 5,000 ppm groups, dropping after 15 days and returning to high concentrations by 90 days. This was apparently due to the induction of drug metabolizing (Phase I) and conjugating enzymes (Phase II), with a concomitant increase in total body clearance of oxazepam (Griffin and Burka, 1995). The serum oxazepam concentrations observed in rats are approximately 10% of those attained in mice exposed for the same amount of time to the same exposure concentrations in earlier studies (Cunningham *et al.*, 1994a).

REFERENCES

Anonymous (1986). Top 200 Drugs of 1985: A 1.4% increase in refills nudges 1985 rxs 1.1% ahead of 1984 volume. *Pharm. Times* **52**, 25-33.

Cunningham, M.L., and Matthews, H.B. (1991). Relationship of hepatocarcinogenicity and hepatocellular proliferation induced by mutagenic noncarcinogens vs carcinogens. II. 1- vs 2-nitropropane. *Toxicol. Appl. Pharmacol.* **110**, 505-513.

Cunningham, M.L., Foley, J., Maronpot, R.R., and Matthews, H.B. (1991). Correlation of hepatocellular proliferation with hepatocarcinogenicity induced by the mutagenic noncarcinogen:carcinogen pair — 2,6- and 2,4-diaminotoluene. *Toxicol. Appl. Pharmacol.* **107**, 562-567.

Cunningham, M.L., Maronpot, R.R., Thompson, M., and Bucher, J.R. (1994a). Early responses of the liver of B6C3F1 mice to the hepatocarcinogen oxazepam. *Toxicol. Appl. Pharmacol.* **124**, 31-38.

Cunningham, M.L., Elwell, M.R., and Matthews, H.B. (1994b). Relationship of carcinogenicity and cellular proliferation induced by mutagenic noncarcinogens vs carcinogens. III. Organophosphate pesticides vs *tris*(2,3-dibromopropyl)phosphate. *Fundam. Appl. Toxicol.* **23**, 363-369.

Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. *J. Am. Stat. Assoc.* **50**, 1096-1121.

Fox, K.A., and Lahcen, R.B. (1974). Liver-cell adenomas and peliosis hepatis in mice associated with oxazepam. *Res. Commun. Chem. Pathol. Pharmacol.* **8**, 481-488.

Goodman and Gilman's The Pharmacological Basis of Therapeutics (1990). 8th ed. (A.G. Gilman, T.W. Rall, A.S. Nies, and P. Taylor, Eds.), p. 357. Pergamon Press, Inc., New York.

Griffin, R.J., and Burka, L.T. (1995). Metabolism and elimination of oxazepam in F344 rats. *Drug Metab. Dispos.* **23**, 232-239.

National Toxicology Program (NTP) (1993). Toxicology and Carcinogenesis Studies of Oxazepam (CAS No. 604-75-1) in Swiss-Webster and $B6C3F_1$ Mice (Feed Studies). Technical Report Series No. 443. NIH Publication No. 93-3359. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

Pedersen, W., and Lavik, N.J. (1991). Adolescents and benzodiazepines: Prescribed use, self-medication and intoxication. *Acta Psychiatr. Scand.* **84**, 94-98.

TABLE H1 Survival, Body Weights, and Feed Consumption of Male F344/N Rats Administered Oxazepam in Feed for 90 Days

			Mean Body Weight ^b (g)		Final Weight Relative	Feed
Concentration (ppm)	Survival ^a	Initial	Final	Change	to Controls (%)	Consumption ^c
15 Days						
0	10/10	201 ± 6	247 ± 10	46 ± 7		14.1
25	10/10	200 ± 5	243 ± 6	43 ± 4	93	12.8*
125	10/10	201 ± 5	246 ± 7	45 ± 4	98	13.2
2,500	10/10	196 ± 6	$235 \pm 8**$	$38 \pm 10^*$	83	11.7*
5,000	10/10	203 ± 6	$233 \pm 12^*$	$32 \pm 8**$	70	9.8*
30 Days						
0	10/10	198 ± 6	278 ± 9	79 ± 6		15.2
25	10/10	200 ± 5	$287 \pm 7*$	87 ± 5	110	14.3**
125	10/10	200 ± 6	280 ± 7	80 ± 7	101	13.9**
2,500	10/10	197 ± 7	276 ± 11	79 ± 9	100	13.4**
5,000	10/10	$192~\pm~8$	265 ± 17	74 ± 13	94	12.6**
45 Days						
0	10/10	199 ± 7	299 ± 13	100 ± 11		14.4
25	10/10	202 ± 9	310 ± 11	108 ± 5	108	14.6
125	10/10	198 ± 6	307 ± 14	110 ± 12	110	14.2
2,500	10/10	195 ± 7	292 ± 16	98 ± 16	98	13.2*
5,000	10/10	198 ± 6	286 ± 9	$87 \pm 10^{**}$	87	12.9*
90 Days						
0	10/10	197 ± 7	337 ± 20	140 ± 19		13.4
25	10/10	199 ± 6	340 ± 13	142 ± 11	101	13.4
125	10/10	194 ± 6	341 ± 13	146 ± 14	104	14.1*
2,500	10/10	211 ± 8	334 ± 18	123 ± 14*	88	14.1*
5,000	10/10	212 ± 10	317 ± 34	105 ± 28**	75	13.7*
2,222	-00					

^{*} Significantly different (P $\!\leq\! 0.05)$ from the control group by Dunnett's test ** $P \!\leq\! 0.02$

a Number of animals surviving/number initially in group
b Weights and weight changes are given as mean ± standard deviation.
c Feed consumption is given as grams consumed per animal per day.

TABLE H2 BrdU and Proliferating Cell Nuclear Antigen Labeling Indices, Liver Weight/Body Weight Ratios, and Total Body Burden of Male F344/N Rats Administered Oxazepam in Feed for 90 Daysa

Concentration (ppm)	Number of Rats	BrdU Labeling Index ^b	Fold Increase Over Control	PCNA Labeling Index	Fold Increase Over Control	Liver Weight/ Body Weight (%)	Total Cumulative Dose ^c (mg/kg)
15 Days							
0	10	3.18 ± 1.3		0.5 ± 0.3		4.0 ± 0.2	
25	10	1.42 ± 0.7	0.45	0.4 ± 0.2	0.8	3.9 ± 0.1	19
125	10	1.94 ± 0.2	0.61	0.2 ± 0.1	0.4	3.9 ± 0.2	101
2,500	10	$11.1 \pm 7.3*$	3.49	$1.2 \pm 0.7^*$	2.4	$4.9 \pm 0.2**$	1,868
5,000	10	$16.7 \pm 7.7**$	5.25	$1.2~\pm~0.5^*$	2.4	$5.6 \pm 0.3**$	3,155
30 Days							
0	10	0.4 ± 0.2		0.1 ± 0.1		3.7 ± 0.2	
25	10	0.5 ± 0.3	1.25	0.3 ± 0.3	3.0	3.9 ± 0.2	37
125	10	0.5 ± 0.2	1.25	$0.3 \pm 0.2*$	3.0	3.8 ± 0.2	186
2,500	10	$1.4 \pm 1.4^*$	3.50	$0.6 \pm 0.3^*$	6.0	$4.9 \pm 0.3**$	3,641
5,000	10	$3.7 \pm 1.8**$	9.25	$0.6~\pm~0.4^*$	6.0	$5.5 \pm 0.2**$	7,105
45 Days							
0	10	2.6 ± 0.7		0.8 ± 0.4		3.5 ± 0.2	
25	10	1.0 ± 0.7	2.60	0.4 ± 0.3	0.5	$3.8 \pm 0.1**$	53
125	10	1.6 ± 1.7	0.62	0.7 ± 0.4	0.9	$3.9 \pm 0.2**$	260
2,500	10	3.3 ± 1.4	1.27	0.3 ± 0.2	0.4	$4.7 \pm 0.2**$	5,086
5,000	10	3.4 ± 1.2	1.31	0.3 ± 0.2	0.4	$5.5 \pm 0.2**$	10,150
90 Days							
0	10	1.4 ± 0.3		0.2 ± 0.1		3.3 ± 0.1	
25	10	1.4 ± 0.5	1.00	0.1 ± 0.1	0.5	3.3 ± 0.2	89
125	10	1.2 ± 0.4	0.86	0.2 ± 0.1	1.0	3.4 ± 0.1	466
2,500	10	0.6 ± 0.2	0.43	0.2 ± 0.2	1.0	$4.5 \pm 0.2**$	9,501
5,000	10	0.8 ± 0.4	0.57	0.3 ± 0.1	1.5	$5.1 \pm 0.3**$	19,448

Significantly different ($P \le 0.05$) from the control group by Dunnett's test $P \le 0.01$ Labeling indices and liver weight data are presented as mean \pm standard deviation. BrdU= bromodeoxyuridine; PCNA= proliferating cell nuclear antigen
Number of hepatocytes with labeled nuclei/1,000 hepatocytes scored

Data are calculated as (oxazepam concentration)(feed consumption)(days on study)/final mean body weight.

TABLE H3 Clinical Chemistry Data for Male F344/N Rats Administered Oxazepam in Feed for 90 Days^a

Concentration (ppm)	tration m)	AP (IU/L)	ALT (IU/L)	CK (IU/L)	SDH (IU/L)	5'N (IU/L)	Bile Acids (µmol/L)	Albumin (g/dL)	Protein (g/dL)	Creatinine (mg/dL)	Cholesterol (mg/dL)
15 Days 0 25 125 2,500 5,000	(n = 10) (n = 10) (n = 9) (n = 10) (n = 10)	143 ± 8 146 ± 13 136 ± 12 145 ± 11 176 ± 19**	44 ± 9.4 38 ± 3.0 33 ± 2.8 42 ± 5.4 44 ± 4.4	136 ± 43 342 ± 116 217 ± 113 199 ± 48 135 ± 54	21 ± 10 14 ± 3.4* 12 ± 3.0** 17 ± 2.1 19 ± 2.1	26 ± 1.5 28 ± 1.4 27 ± 2.4 30 ± 3.0** 35 ± 4.0**	30 ± 6.8 33 ± 8.4 28 ± 4.8 32 ± 9.5 35 ± 14	4.5 ± 0.3 4.7 ± 0.4 4.6 ± 0.2 4.7 ± 0.2 4.8 ± 0.3	7.5 ± 0.4 7.4 ± 0.3 7.2 ± 0.6 7.6 ± 0.3 7.7 ± 0.2	0.91 ± 0.07 0.94 ± 0.05 0.85 ± 0.07 $0.79 \pm 0.03**$ $0.74 \pm 0.05**$	70 ± 6 67 ± 5 64 ± 4 60 ± 6 71 ± 18
30 Days 0 25 125 2,500 5,000	(n = 10) (n = 10) (n = 9) (n = 10) (n = 10)	130 ± 6 128 ± 6 115 ± 11 119 ± 9* 122 ± 10	47 ± 6.5 41 ± 4.2** 37 ± 2.4** 32 ± 1.8** 28 ± 4.5**	195 ± 66 161 ± 81 152 ± 66 310 ± 99* 188 ± 88	17 ± 3.4 18 ± 3.1 15 ± 2.7 14 ± 1.7 15 ± 1.7	28.7 ± 4.9 29.5 ± 2.5 26.3 ± 1.7 23.9 ± 1.0 36.2 ± 24	28 ± 6 26 ± 6 25 ± 7 32 ± 8 40 ± 12**	4.2 ± 0.2 4.3 ± 0.2 4.0 ± 0.2 4.5 ± 0.2 4.5 ± 0.2	7.2 ± 0.6 7.5 ± 0.4 7.4 ± 0.3 7.7 ± 0.2* 7.8 ± 0.3**	0.84 ± 0.1 $0.72 \pm 0.08*$ $0.72 \pm 0.1*$ $0.68 \pm 0.04**$ $0.62 \pm 0.09**$	74 ± 7 68 ± 6 62 ± 5 ** 50 ± 4 ** 51 ± 11 **
45 Days 0 25 125 2,500 5,000	(n = 10) (n = 10) (n = 10) (n = 10) (n = 10)	117 ± 6 116 ± 7 113 ± 5 114 ± 11 115 ± 11	54 ± 7.9 52 ± 10 $42 \pm 5.0**$ $34 \pm 4.8**$ $35 \pm 7.1**$	150 ± 59 235 ± 66** 148 ± 27 105 ± 23 194 ± 84	27 ± 7.7 25 ± 7.3 23 ± 5.3 19 ± 3.3** 16 ± 2.3**	27.0 ± 1.3 30.2 ± 2.3** 29.8 ± 1.5* 30 ± 3.2 31 ± 2.2**	26 ± 5 25 ± 4 23 ± 8 30 ± 8 27 ± 12	$4.1 \pm 0.2 \\ 4.3 \pm 0.2 \\ 4.2 \pm 0.3 \\ 4.3 \pm 0.4 \\ 4.6 \pm 0.4 \\$	7.5 ± 0.3 7.4 ± 0.5 7.5 ± 0.3 7.0 ± 0.3 7.0 ± 0.5 $7.0 \pm 0.5*$	0.96 ± 0.05 $1.05 \pm 0.08*$ $0.91 \pm 0.06*$ $0.83 \pm 0.05**$ $0.88 \pm 0.08*$	70 ± 3 73 ± 6 71 ± 7 66 ± 14 58 ± 6**
90 Days 0 25 125 2,500 5,000	$\begin{pmatrix} n=10 \\ (n=10) \\ ($	113 ± 6 $94 \pm 8**$ $92 \pm 6**$ 107 ± 5 $92 \pm 22**$	62 ± 22 47 ± 6* 46 ± 5* 39 ± 6** 36 ± 8**	291 ± 71 $162 \pm 65*$ $183 \pm 110*$ 317 ± 111 281 ± 96	24 ± 13 18 ± 3 17 ± 3 15 ± 4** 16 ± 3*	29 ± 1.3 29 ± 1.2 29 ± 1.9 26 ± 1.5** 28 ± 1.4	28 ± 10 26 ± 9 32 ± 10 25 ± 6 28 ± 8	3.7 ± 0.1 3.7 ± 0.2 3.8 ± 0.4 $4.0 \pm 0.1**$ $4.2 \pm 0.2**$	7.5 ± 0.2 7.2 ± 0.2 7.3 ± 0.3 7.3 ± 0.3 $7.9 \pm 0.2**$ $8.1 \pm 0.4**$	$\begin{array}{c} 1.07 \pm 0.07 \\ 0.91 \pm 0.03** \\ 0.89 \pm 0.06** \\ 0.93 \pm 0.05** \\ 0.87 \pm 0.07** \end{array}$	76 ± 6 75 ± 5 74 ± 7 57 ± 5** 61 ± 8**

^{*} Significantly different ($P \le 0.05$) from the control group by Dunnett's test

** $P \le 0.01$ Data are presented as mean \pm standard deviation. AP = alkaline phosphatase; ALT = alanine aminotransferase; CK = creatine kinase; SDH = sorbitol dehydrogenase; 5 "N = 5 -nucleotidase

TABLE H4
Serum Oxazepam Concentrations in Male F344/N Rats Administered Oxazepam in Feed for 90 Days^a

Concentration (ppm)	15 Days	30 Days	45 Days	90 Days
25	0.03 ± 0.02	0.04 ± 0.01	0.02 ± 0.01	0.03 ± 0.01
125	0.03 ± 0.02 0.07 ± 0.02	0.07 ± 0.01 0.07 ± 0.02	0.02 ± 0.01 0.12 ± 0.01	0.08 ± 0.03
2,500	0.70 ± 0.13	0.39 ± 0.16	0.52 ± 0.27	3.05 ± 0.16
5,000	$2.64~\pm~0.90$	1.31 ± 0.37	$1.37~\pm~0.23$	3.63 ± 1.38
5,000	2.64 ± 0.90	1.31 ± 0.37	1.37 ± 0.23	3.63 ± 1.38

^a Values are expressed in μ g/mL serum \pm standard deviation for groups of 10 animals. Limit of quantification= 0.025 μ g/mL