NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 350

TOXICOLOGY AND CARCINOGENESIS STUDIES OF TRIBROMOMETHANE (BROMOFORM) (CAS NO. 75-25-2) IN F344/N RATS AND B6C3F1 MICE (GAVAGE STUDIES) **U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service** National Institutes of Health

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF TRIBROMOMETHANE (BROMOFORM)

(CAS NO. 75-25-2)

IN F344/N RATS AND B6C3F1 MICE

(GAVAGE STUDIES)

Ronald L. Melnick, Ph.D., Study Scientist

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

May 1989

NTP TR 350

NIH Publication No. 89-2805

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

CONTENTS

PAGE

ABST	RACT	3
EXPL	ANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	7
CONT	RIBUTORS	8
PEER	REVIEW PANEL	9
SUMM	MARY OF PEER REVIEW COMMENTS	10
I.	INTRODUCTION	11
п.	MATERIALS AND METHODS	21
ш.	RESULTS	35
	RATS	
	місе	48
IV.	DISCUSSION AND CONCLUSIONS	57
v.	REFERENCES	63

APPENDIXES

APPENDIX A	SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY	
	OF TRIBROMOMETHANE	71
APPENDIX B	SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY	
	OF TRIBROMOMETHANE	99
APPENDIX C	SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY	
	OF TRIBROMOMETHANE	125
APPENDIX D	SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY	
	OF TRIBROMOMETHANE	147
APPENDIX E	GENETIC TOXICOLOGY OF TRIBROMOMETHANE	1 69
APPENDIX F	SENTINEL ANIMAL PROGRAM	183
APPENDIX G	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN	
	NIH 07 RAT AND MOUSE RATION	187
APPENDIX H	AUDIT SUMMARY	193

·

H | Br --- C --- Br | Br

TRIBROMOMETHANE

(BROMOFORM)

CAS No. 75-25-2

CHBr₃

Molecular weight: 252.8

ABSTRACT

Tribromomethane, a chemical intermediate and solvent, has been identified as a drinking water contaminant resulting from water chlorination. Toxicology and carcinogenesis studies were conducted by administering tribromomethane (95%-97% pure) in corn oil by gavage to groups of F344/N rats and B6C3F₁ mice of each sex once or for 14 days, 13 weeks, or 2 years.

Single-Administration, Fourteen-Day, and Thirteen-Week Studies: All rats that received 2,000 mg/kg and 3/5 males and 3/5 females that received 1,000 mg/kg tribromomethane died before the end of the single-administration studies. All mice that received 2,000 mg/kg, 4/5 males and 2/5 females that received 1,000 mg/kg, and 1/5 males that received 500 mg/kg died before the end of the studies. Shallow breathing was observed for rats and male mice that received 1,000 or 2,000 mg/kg tribromomethane.

In the 14-day studies, all rats that received 600 or 800 mg/kg and 1/5 males that received 400 mg/kg tribromomethane died before the end of the studies. The final mean body weight of male rats that received 400 mg/kg was 14% lower than that of vehicle controls. One of five male mice that received 600 mg/kg and 1/5 female mice that received 800 mg/kg died before the end of the studies. Final mean body weights of dosed and vehicle control mice were comparable.

None of the rats died before the end of the 13-week studies (doses ranged from 12 to 200 mg/kg). Final mean body weights were comparable for dosed and vehicle control rats. All male rats that received 100 or 200 mg/kg tribromomethane and all female rats that received 200 mg/kg were lethargic. The incidences of cytoplasmic vacuolization of hepatocytes in dosed male rats were slightly increased compared with that in vehicle controls. The severity of this lesion was increased in the 200 mg/kg group. One of 10 female mice that received 100 mg/kg tribromomethane died before the end of the 13-week studies. The final mean body weight of mice that received 400 mg/kg was 8% lower than that of vehicle controls for males and was comparable to that of vehicle controls for females. Cytoplasmic vacuolization of hepatocytes was observed in the liver of 5/10 male mice that received 200 mg/kg and in 8/10 male mice that received 400 mg/kg tribromomethane.

Based on these results, 2-year studies of tribromomethane were conducted by administering 0, 100, or 200 mg/kg tribromomethane in corn oil by gavage, 5 days per week for 103 weeks, to groups of 50 F344/N rats of each sex and 50 female $B6C3F_1$ mice. Male $B6C3F_1$ mice were administered 0, 50, or 100 mg/kg tribromomethane on the same schedule.

Body Weights and Survival in the Two-Year Studies: Mean body weights of high dose male and female rats were 10%-28% lower than those of vehicle controls throughout the second year of the studies. Survival of the high dose group of male rats was significantly lower than that of the vehicle controls after week 91; no significant differences in survival were observed between any groups of female rats (male: vehicle control, 34/50; low dose, 30/50; high dose, 11/50; female: 34/50; 28/50; 28/50). Reduced survival for male rats given 200 mg/kg tribromomethane lowered the sensitivity of this group to detect a carcinogenic response. Mean body weights of dosed and vehicle control male mice were comparable throughout the study. Mean body weights of dosed female mice were 5%-16% lower than those of vehicle controls from week 28 to the end of the study. No significant differences in survival were observed between any groups of male mice; the survival of both dosed groups of female mice was significantly lower than that of the vehicle controls after week 77 (male: 41/50; 37/50; 36/50; female: 25/49; 15/50; 20/50). Reduced survival in all groups of female mice was at least 50% by week 92.

Nonneoplastic and Neoplastic Effects in the Two-Year Studies: Uncommon adenomatous polyps or adenocarcinomas (combined) of the large intestine (colon or rectum) were induced in three male rats (vehicle control, 0/50; low dose, 0/50; high dose, 3/50) and in nine female rats (0/50; 1/50; 8/50); the historical incidence of neoplasms of the large intestine is less than 0.2% in approximately 2,000 corn oil vehicle control male F344/N rats, and none has been observed in approximately 2,000 corn oil vehicle control female F344/N rats. Three of the neoplasms of the large intestine (one in the high dose male rats and two in the high dose female rats) were adenocarcinomas.

Focal or diffuse fatty change of the liver was observed at increased incidences in dosed rats (male: 23/50; 49/50; 50/50; female: 19/50; 39/49; 46/50). Active chronic inflammation was observed at increased incidences in dosed male and high dose female rats (male: 0/50; 29/50; 23/50; female: 9/50; 8/49; 27/50). The incidence of necrosis of the liver was increased in high dose male rats (7/50; 3/50; 20/50) and decreased in dosed females (11/50; 3/49; 2/50). Mixed cell focus was observed at increased incidences in dosed female rats (8/50; 25/49; 28/50).

Other nonneoplastic lesions observed at increased incidences in dosed rats included chronic active inflammation and squamous metaplasia of the ducts of the salivary gland (squamous metaplasia--male: 0/50; 15/50; 31/48; female: 0/49; 10/49; 16/50; chronic active inflammation--male: 0/50; 16/50; 25/48; female: 0/49; 9/49; 18/50), squamous metaplasia of the prostate gland (2/49; 6/46; 12/50), ulcers of the forestomach (male: 1/49; 5/50; 10/50), and chronic active inflammation of the lung (male: 1/50; 7/50; 15/50). Pigmentation of the spleen was also observed at an increased incidence in high dose female rats. The salivary gland and lung lesions were characteristic of infection by rat coronavirus, a virus to which a positive serologic reaction was observed early in the studies.

The incidence of follicular cell hyperplasia of the thyroid gland was increased in high dose female mice (5/49; 4/49; 19/47), and fatty change of the liver was increased in both dosed groups of female mice (1/49; 9/50; 24/50). No chemically related adverse effects were observed in male mice.

Neoplastic lesions that occurred at lower incidences in dosed animals compared with those in vehicle controls included preputial gland neoplasms in male rats (10/41; 5/38; 1/34), uterine stromal polyps in female rats (10/49; 9/50; 2/50), anterior pituitary gland adenomas in male and female rats (male: 12/50; 12/48; 2/45; female: 29/48; 12/46; 16/48), mammary gland fibroadenomas in female rats (22/50; 17/50; 6/50), and alveolar/bronchiolar neoplasms in male mice (11/50; 7/50; 2/49). Other than concomitant decreases in body weights, no other reasons are obvious to correlate these decreases with chemical administration.

Genetic Toxicology: Tribromomethane exhibited equivocal mutagenicity in Salmonella typhimurium strain TA100 in the absence of exogenous metabolic activation and in strains TA97 and TA98 when exposure occurred in the presence of hamster S9; tribromomethane produced no increases in revertant colonies in TA1535 or TA1537 with or without exogenous metabolic activation. Tribromomethane induced trifluorothymidine (Tft) resistance in mouse L5178Y cells with and without metabolic activation. When tested in cultured Chinese hamster ovary (CHO) cells for cytogenetic effects, tribromomethane produced an increase in both sister chromatid exchanges (SCEs) and chromosomal aberrations in the absence, but not in the presence, of exogenous metabolic activation. Tribromomethane caused sex-linked recessive lethal mutations in Drosophila when administered to adult males by feeding; no induction of mutations was observed when tribromomethane was administered by abdominal injection. Results of tests for reciprocal translocations in adult male Drosophila exposed to tribromomethane by feeding were negative. In vivo tests for cytogenetic effects in bone marrow cells of male B6C3F₁ mice demonstrated that intraperitoneal injection of tribromomethane induced an increase in SCEs but no increase in chromosomal aberrations. Intraperitoneal injection of tribromomethane also induced an increase in the incidence of micronucleated polychromatic erythrocytes in the bone marrow of B6C3F1 mice.

Audit: The data, documents, and pathology materials from the 2-year studies of tribromomethane have been audited. The audit findings show that the conduct of the studies is documented adequately and support the data and results given in this Technical Report.

Conclusions: Under the conditions of these 2-year gavage studies, there was some evidence of carcinogenic activity* of tribromomethane for male F344/N rats and clear evidence of carcinogenic activity for female F344/N rats, based on increased incidences of uncommon neoplasms of the large intestine. Reduced survival for male rats given 200 mg/kg tribromomethane lowered the sensitivity of this group to detect a carcinogenic response. Chemically related nonneoplastic lesions included fatty change and active chronic inflammation of the liver in male and female rats, minimal necrosis of the liver in male rats, and mixed cell foci of the liver in female rats. There was no evidence of carcinogenic activity for male B6C3F₁ mice given 50 or 100 mg/kg tribromomethane or for female B6C3F₁ mice given 100 or 200 mg/kg; male mice might have been able to tolerate a higher dose. Survival of the female mice was reduced, partly due to a utero-ovarian infection.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 7.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 10.

SUMMARY OF THE TWO-YEAR GAVAGE AND GENETIC TOXICOLOGY STUDIES OF TRIBROMOMETHANE

Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice
Doses 0, 100, or 200 mg/kg tribromo- methane in corn oil, 5 d/wk	0, 100, or 200 mg/kg tribromo methane in corn oil, 5 d/wk	o- 0, 50, or 100 mg/kg tribromo- methane in corn oil, 5 d/wk	0, 100, or 200 mg/kg tribromo- methane in corn oil, 5 d/wk
Body weights in the 2-year a Reduced in dosed groups	study Reduced in high dose group	Similar in all groups	Reduced in dosed groups
Survival rates in the 2-year 34/50; 30/50; 11/50	study 34/50; 28/50; 28/50	41/50; 37/50; 36/50	25/49; 15/50; 20/50
Nonneoplastic effects Liver: fatty change, inflam- mation, and minimal necrosis	Liver: fatty change, inflam- mation, and mixed cell foci	None	Liver: fatty change; thyroid gland: follicular cell hyperplasia
Neoplastic effects Adenomatous polyps or adeno- carcinomas (combined) in the large intestine: 0/50; 0/50; 3/50	Adenomatous polyps or ad- enocarcinomas (combined) in the large intestine: 0/50; 1/50; 8/50	None	None
Level of evidence of carcino Some evidence	genic activity Clear evidence	No evidence	No evidence
Other considerations Reduced survival in high dose group			Utero-ovarian infections and reduced survival in all groups
Genetic toxicology			
SalmonellaMouse L51'(gene mutation)(Tft resistarEquivocal withPositive withand without S9and withoutS9	ce) SCE Aberration R	Drogophila ex-Linked Reciprocal ec. Lethals <u>Translocation</u> ositive Negative	In Vivo Cytogenetics SCE/Aberration (bone marrow) Micronucle Positive/negative Positive

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that expensive to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence including: animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals tory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results ("Clear Evidence" and "Some Evidence"); one category for uncertain findings ("Equivocal Evidence"); one category for no observable effects ("No Evidence"); and one category for experiments that because of major flaws cannot be evaluated ("Inadequate Study"). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Reports series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following quintet is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemically related.
- No Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenic Activity is demonstrated by studies that because of major qualitative or quantitative limitations cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. This should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- The adequacy of the experimental design and conduct;
- Occurrence of common versus uncommon neoplasia;
- Progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- Some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- Combining benign and malignant tumor incidences known or thought to represent stages of progression in the same organ or tissue;
- Latency in tumor induction;
- Multiplicity in site-specific neoplasia;
- Metastases;
- Supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- The presence or absence of dose relationships;
- The statistical significance of the observed tumor increase;
- The concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- Survival-adjusted analyses and false positive or false negative concerns;
- Structure-activity correlations; and
- In some cases, genetic toxicology.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of Tribromomethane is based on 13-week studies that began in March 1980 and ended in June 1980 and on 2-year studies that began in February 1981 and ended in March 1983 at EG&G Mason Research Institute (Worcester, Massachusetts).

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

Ronald Melnick, Ph.D., Study Scientist

John Bucher, Ph.D. Scot L. Eustis, D.V.M., Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D.

(Discipline Leaders and Principal Contributors)

Jack Bishop, Ph.D. Douglas W. Bristol, Ph.D. R. Chhabra, Ph.D. C.W. Jameson, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. M. Vernon, Ph.D. Douglas Walters, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report for Rats on 5/13/86)

Gary Boorman, D.V.M., Ph.D. (Chair) (NTP) Michael Elwell, D.V.M., Ph.D. (NTP) Scot L. Eustis, D.V.M., Ph.D. (NTP) William Macklin, D.V.M., Ph.D. (Burroughs Wellcome Laboratories) Kunitoshi Mitsumori, D.V.M., Ph.D. (NTP) A.S. Krishna Murthy, Ph.D. (EG&G Mason Research Institute) Gary Riley, M.V.Sc., Ph.D. (Experimental Pathology Laboratories, Inc.)

(Evaluated Slides and Prepared Pathology Report for Mice on 5/13/86)

Michael Elwell, D.V.M., Ph.D. (Chair) (NTP) Gary Boorman, D.V.M., Ph.D. (NTP) Scot L. Eustis, D.V.M., Ph.D. (NTP) William Macklin, D.V.M., Ph.D. (Burroughs Wellcome Laboratories) Kunitoshi Mitsumori, D.V.M., Ph.D. (NTP) A.S. Krishna Murthy, Ph.D. (EG&G Mason Research Institute) Gary Riley, M.V.Sc., Ph.D. (Experimental Pathology Laboratories, Inc.)

Principal Contributors at EG&G Mason Research Institute (Conducted Studies and Evaluated Tissues)

Herman Lilja, Ph.D. A.S. Krishna Murthy, Ph.D. Miasnig Hagopian, Ph.D.

G. Riley, M.V.Sc., Ph.D.

Principal Contributors at Experimental Pathology Laboratories, Inc. (Provided Pathology Quality Assurance)

J. Gauchat Roger Brown, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Abigail C. Jacobs, Ph.D. John Warner, M.S. Naomi Levy, B.A.

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on tribromomethane on April 18, 1988, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate. (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly. (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors **Technical Reports Review Subcommittee**

Robert A. Scala, Ph.D. (Chair)

Senior Scientific Advisor, Medicine and Environmental Health Department Research and Environmental Health Division, Exxon Corporation East Millstone, New Jersey

Michael A. Gallo, Ph.D.

Associate Professor, Director of Toxicology Department of Environmental and Community Medicine, UMDNJ - Rutgers Medical School Piscataway, New Jersey

Ad Hoc Subcommittee Panel of Experts

John Ashby, Ph.D. Imperial Chemical Industries, PLC Central Toxicology Laboratory Alderley Park, England

Charles C. Capen, D.V.M., Ph.D. (Principal **Reviewer**) Department of Veterinary Pathobiology, Ohio State University Columbus, Ohio

Vernon M. Chinchilli, Ph.D. **Department of Biostatistics** Medical College of Virginia Virginia Commonwealth University Richmond, Virginia

Kim Hooper, Ph.D. (Principal Reviewer) Hazard Evaluation System and Information Services **Department of Health Services** State of California Berkeley, California

Donald H. Hughes, Ph.D. Scientific Coordinator, Regulatory Services Division, The Procter and Gamble Company Cincinnati, Ohio

Frederica Perera, Dr. P.H. (Principal Reviewer) Division of Environmental Sciences, School of Public Health **Columbia University** New York, New York

William Lijinsky, Ph.D. Director, Chemical Carcinogenesis Frederick Cancer Research Facility Frederick, Maryland

Franklin E. Mirer, Ph.D.* Director, Health and Safety Department International Union, United Auto Workers, Detroit, Michigan

James A. Popp, D.V.M., Ph.D. Head, Department of Experimental Pathology and Toxicology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Andrew Sivak, Ph.D. Vice President, Biomedical Science Arthur D. Little, Inc. Cambridge, Massachusetts

^{*}Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF TRIBROMOMETHANE

On April 18, 1988, the draft Technical Report on the toxicology and carcinogenesis studies of tribromomethane received public review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina.

Dr. R.L. Melnick, NIEHS, began the discussion by reviewing the experimental design, results, and proposed conclusions (some evidence of carcinogenic activity for male rats, clear evidence of carcinogenic activity for male or female mice).

Dr. Hooper, a principal reviewer, agreed with the conclusions. He commented on the negative trends for neoplasia at several sites in male rats (mononuclear cell leukemia, preputial gland adenomas/carcinomas) and in female rats (mammary gland fibroadenomas, anterior pituitary gland adenomas, endometrial stromal polyps).


Dr. Capen, the second principal reviewer, agreed with the conclusions. He noted the fairly striking increased incidence of follicular cell hyperplasia in the thyroid gland of high dose female mice and wondered about the possible mechanism.

Dr. Perera, the third principal reviewer, agreed with the conclusions for male and female rats and male mice. She said that the significantly reduced survival in exposed female mice suggested a change to inadequate study of carcinogenic activity. Dr. Melnick responded that survival in all female mice groups was greater than 50% at 92 weeks. Because the liver was the only site of significant neoplasia caused by other trihalomethanes in female mice, he thought that the survival in the present study was adequate to have detected such an effect. In other discussion, Dr. Sivak commented that since the primary rationale for the studies was based on the presence of tribromomethane in drinking water, inclusion of a comparison between drinking water levels and doses used would be helpful to the reader [see page 12].

Dr. Capen moved that the Technical Report on tribromomethane be accepted with revisons as discussed and with the conclusions as written: for male rats, some evidence of carcinogenic activity; for female rats, clear evidence of carcinogenic activity; and for male and female mice, no evidence of carcinogenic activity. Dr. Hooper seconded the motion, which was approved unanimously with 10 votes.

I. INTRODUCTION

Physical and Chemical Properties, Use, Production, and Exposure
Metabolism
Animal Toxicity
Reproductive and Developmental Toxicity
Carcinogenicity
Genetic Toxicity
Study Rationale

TRIBROMOMETHANE

(BROMOFORM)

CAS No. 75-25-2

CHBr₃

Physical and Chemical Properties, Use, Production, and Exposure

Tribromomethane is a colorless liquid (melting point: 6°-7° C; boiling point: 149.5° C at 760 mm mercury; specific gravity: 2.890; vapor pressure: 5.6 mm mercury at 25° C; percent in saturated air: 0.7% at 25° C) that is miscible with ethanol, ether, and benzene and slightly soluble in water (0.30% at 30° C) (Torkelson and Rowe, 1981; Merck, 1983). The TSCA Initial Inventory reported that domestic production of tribromomethane was 50,000-500,000 kg in 1977 (USEPA, 1987). The U.S. International Trade Commission did not report the volume of domestic production of tribromomethane for the years 1981-85 (USITC, 1986). Current production data for tribromomethane are not available.

Tribromomethane has been used as a chemical intermediate (e.g., synthesis of carbon tetrabromide); as a solvent for waxes, greases, and oils; as a high density liquid for petrographic analysis; and formerly as a sedative and an antitussive.

The major source of human exposure to trihalomethanes is drinking water (Cotruvo, 1981). Tribromomethane was detected in 27/80 water supplies in a national survey conducted by the U.S. Environmental Protection Agency (EPA) (Symons et al., 1975); the mean concentration of tribromomethane was 6.5 μ g/liter, and the concentration range was $0.8-92 \mu g/liter$. In a followup survey, tribromomethane was detected in 38/113 public water supplies; the mean concentration of tribromomethane in positive samples was 12 $\mu g/liter$ (Brass et al., 1977). Tribromomethane was detected in 22% of groundwater samples and 33% of surface water samples obtained from more than 1,000 wells and 600 surface water sites throughout New Jersey (Page, 1981).

Molecular weight: 252.8

Of synthetic organic chemicals detected in drinking water, the trihalomethanes are found most frequently and generally at the highest concentrations. Trihalomethanes are formed as by-products of water chlorination. In response to the discovery of trihalomethanes in drinking water, the EPA promulgated regulations limiting the maximum permissible contaminant level for total trihalomethanes in drinking water to 100 µg/liter (Fed. Regist., 1979). Thus, a 70-kg adult human consuming 2 liters per day of water containing 100 µg of trihalomethane per liter would receive a daily dose of trihalomethane equivalent to 2.9 µg/kg. The American Conference of Governmental Industrial Hygienists recommends a threshold limit value of 0.5 ppm (approximately 5 mg/m^3) for tribromomethane (ACGIH, 1986). Approximately 1,500 workers are potentially exposed to tribromomethane, as estimated from data compiled from the National Occupational Exposure Survey (NIOSH, unpublished data).

Tribromomethane can be produced during chlorination of surface water if bromide and organic carbon precursors are present (Williams, 1985). Bromide is oxidized to hypobromite by hypochlorous acid; the latter compound is formed when chlorine gas is dissolved in water:


If sodium or calcium hypochlorite is used as the source of chlorine, the hypochlorite ion (OCl⁻) rapidly establishes equilibrium with hypochlorous acid. Hypobromite is capable of undergoing the haloform type reaction with organic humic material or other organic precursors to produce tribromomethane (Bunn et al., 1975):

The rate of formation of trihalomethanes is dependent on the chlorine concentration, total organic carbon, pH, temperature, and bromide concentration (Umphres et al., 1981; Williams, 1985).

Trihalomethanes also are produced in cooling water used by the electric power industry when chlorine is added as a biofouling control agent (Smith et al., 1983). Tribromomethane is the major halogenated organic compound produced as a result of chlorination of seawater in ocean thermal energy conversion processes (Hartwig and Valentine, 1983). Tribromomethane also has been found in swimming pools (Beech et al., 1980).

Metabolism

Stevens and Anders (1981) proposed the reaction scheme presented on the following page for the metabolism of haloforms (shown here for tribromomethane). Studies on haloform metabolism were initiated because administration of haloforms to rats results in elevated blood carbon monoxide and carboxyhemoglobin concentrations. The metabolism of tribromomethane to carbon monoxide in rat liver is catalyzed by a microsomal cytochrome P450-dependent mono-oxygenase requiring NADPH and molecular oxygen for maximal activity; sulfhydryl compounds (e.g., glutathione) increase the rate of formation of carbon monoxide from tribromomethane (Ahmed et al., 1977). The glutathione-dependent production of carbon monoxide constitutes a detoxification pathway for dihalocarbonyls formed during biotransformation of haloforms; however, the product of this pathway (carbon monoxide) is also toxic (Stevens and Anders, 1981). Pretreatment of rats with phenobarbital or 3-methylcholanthrene increased the rate of in vitro conversion of tribromomethane to carbon monoxide (Ahmed et al., 1977), whereas only phenobarbital pretreatment led to increased blood levels of carbon monoxide after administration of tribromomethane or chloroform (trichloromethane) to rats (Anders et al., 1978; Pohl et al., 1980). Tribromomethane produced a type I binding spectrum with oxidized cytochrome P450, and the rate of biotransformation of tribromomethane to carbon monoxide was inhibited by SKF 525-A, a mixed-function oxidase inhibitor (Ahmed et al., 1977). Compared with tribromomethane, CDBr₃ (deuterium-labeled tribromomethane) was less hepatotoxic and resulted in lower levels of carbon monoxide in blood in rats (Anders et al., 1978; Pohl et al., 1980). The deuterium effect indicates that the C-H bond cleavage is the rate-limiting step in the biotransformation of tribromomethane to hepatotoxic metabolites. Dibromocarbonyl (the bromine analog of phosgene) has been suggested to be an intermediate in the metabolism of tribromomethane, since 2-oxothiazolidine-4-carboxylic acid was formed when hepatic microsomes were incubated with tribromomethane plus cysteine (Stevens and Anders, 1979). This reactive intermediate may be responsible for tribromomethane-induced hepatotoxicity (see Animal Toxicity, p. 15). Cysteine treatment of rats, before chloroform administration, decreased blood carbon monoxide levels and protected against chloroform-induced hepatotoxicity (Docks and Krishna, 1976).

2-Oxothiazolidine-4-carboxylic acid

Dibromocarbonyl also may serve as the precursor for the metabolism of tribromomethane to carbon dioxide (see reaction scheme, above). Depletion of glutathione by haloforms may also occur by reaction of the dihalocarbonyl with glutathione, forming S,S'-diglutathionyl carbonate. Liver glutathione levels were decreased in phenobarbital-pretreated Sprague Dawley rats that were subsequently dosed with chloroform (Docks and Krishna, 1976); tribromomethane was less effective than chloroform in causing glutathione depletion. The hepatotoxicity of tribromomethane and other haloforms appears to be related to their metabolism. Pretreatment of rats with phenobarbital produces parallel changes in the metabolism and hepatotoxicity of chloroform and tribromomethane, whereas sulfhydryl compounds provide a detoxification pathway for the haloforms. Tomasi et al. (1985) suggested that trihalomethanes might also undergo reductive metabolism mediated by cytochrome P450, since free radical intermediates were detected by an electron spin resonance (ESR) spin-trapping technique (spin trap: phenyl-t-butyl nitrone) in isolated hepatocytes incubated under nitrogen with several trihalomethanes and in the liver of phenobarbital-induced Wistar rats administered chloroform, tribromomethane, bromodichloromethane, or triiodomethane. In hepatocytes, the intensity of the ESR signal was reduced by exposure to oxygen or by the addition of cytochrome P450 inhibitors (SKF-525A, metyrapone, and carbon monoxide).

Trihalomethanes are rapidly absorbed after oral administration, metabolized primarily to carbon dioxide, and rapidly excreted. More than 92% of a dose of 60 mg/kg of [14C]chloroform was eliminated within 48 hours in expired air, urine, or feces from rats, mice, and squirrel monkeys (Brown et al., 1974). The conversion of the administered dose to [¹⁴C]carbon dioxide was about 85% in mice (CBA, CF/LP, and C57 Black strains), 66% in Sprague Dawley rats, and 18% in squirrel monkeys. Variability in the biotransformation and elimination of chloroform in humans was indicated in a study in which 17.8%-66.6% of a 500 mg dose of chloroform was recovered from volunteers over an 8-hour period (Cotruvo, 1981).

Animal Toxicity

Tribromomethane has been considered to be a moderately toxic chemical that can be absorbed through the lungs, gastrointestinal tract, and skin (von Oettingen, 1955). The oral LD_{50} value for tribromomethane is 1,400 and 1,550 mg/kg in male and female ICR Swiss mice (Bowman et al., 1978) and 1.388 and 1.147 mg/kg in male and female Sprague Dawley rats (Chu et al., 1980). Tribromomethane was slightly less acutely toxic than chloroform, bromodichloromethane, or chlorodibromomethane in rats and mice. In male rats, the intraperitoneal LD₅₀ value for tribromomethane is 414 µl/kg (1,196 mg/kg) (Agarwal and Mehendale, 1983), and the subcutaneous LD₅₀ value in male mice is 7.2 mmol/kg (1,820 mg/kg) (Kutob and Plaa, 1962).

Exposure to tribromomethane vapors may cause irritation to the respiratory tract, lacrimation, and liver damage (von Oettingen, 1955). Death from exposure to tribromomethane at acutely toxic dose levels is most likely due to central nervous system depression. Ataxia, sedation, and anesthesia occur shortly after exposure to tribromomethane at lethal doses (Bowman et al., 1978).

The liver and kidney have been identified as target organs of trihalomethane toxicity in singleexposure or short-term studies. Bowman et al. (1978) reported that the liver of ICR Swiss mice administered trihalomethanes at lethal doses appeared to have fatty infiltration, and the kidneys were pale. Liver changes, described as variation in size of hepatocytes and vesiculation of biliary epithelial nuclei, were observed in female Sprague Dawley rats that survived a single oral dose of tribromomethane (1,071 mg/kg or higher) (Chu et al., 1982a). Kidney changes (bilateral focal interstitial nephritis and fibrosis) were observed in Sprague Dawley rats that survived single oral doses of chloroform, bromodichloromethane, or chlorodibromomethane; however, these changes were not observed in rats exposed to tribromomethane. No pathologic changes were observed in Sprague Dawley rats exposed to tribromomethane at 5, 50, or 500 ppm (equivalent to 0.13, 1.5, and 14 mg per rat per day, respectively) in drinking water for 28 days. Sprague Dawley rats were also exposed to tribromomethane at 5, 50, 500, or 2,500 ppm in drinking water for 90 days (Chu et al., 1982b). The liver lesions were similar to those observed in the single-administration study (Chu et al., 1982a), and the severity was increased in male rats dosed with 2,500 ppm tribromomethane and in female rats dosed with 500 or 2,500 ppm tribromomethane compared with that in vehicle control (1% emulphor) rats.

Condie et al. (1983) administered tribromomethane by gavage to CD-1 mice for 14 days at doses of 0, 72, 145, or 289 mg/kg. Blood urea nitrogen (BUN) and serum creatinine levels were not altered; however, active uptake of *p*-aminohippurate into renal cortical slices was reduced, and serum glutamate-pyruvate transaminase (SGPT) levels were elevated in the high dose animals. Similar effects were observed in animals administered chloroform, bromodichloromethane, or chlorodibromomethane. Histopathologic changes in the kidney (hyperplasia of tubular epithelial cells and hypertrophy and degenerative changes in the glomerular mesangium) and liver (centrilobular cytoplasmic pallor and slight focal inflammation) were observed in the mid dose and high dose groups.

Administration of tribromomethane in corn oil by intraperitoneal injection to Sprague Dawley rats at doses up to 300 ul/kg (867 mg/kg) did not affect the levels of SGPT, serum glutamicoxaloacetic transaminase (SGOT), or serum isocitrate dehydrogenase 24 hours after administration (Agarwal and Mehendale, 1983). Furthermore, prior exposure to chlordecone at 10 ppm in the diet for 15 days did not potentiate the hepatotoxicity or lethality of tribromomethane. These findings contrast with those for chloroform in which hepatotoxicity was increased after previous exposure to chlordecone (Hewitt et al., 1979). SGPT activity was increased when tribromomethane and carbon tetrachloride were administered to Long-Evans rats by intraperitoneal injection together at doses that alone did not cause any apparent increase in SGPT activity (0.2 ml/kg [578 mg/kg] and 0.1 ml/kg. respectively) (Harris et al., 1982). These findings are indicative of an interactive hepatotoxicity for these two compounds.

Tribromomethane was administered by gavage in 10% emulphor (in deionized water) to CD-1 mice at doses of 0, 50, 125, or 250 mg/kg per day for 14 days (Munson et al., 1982). Humoral and cellular immunity, assessed by measuring the number of splenic IgM antibody-forming cells and the delayed-type hypersensitivity response, were depressed in the high dose male mice. In addition, liver weight and SGOT levels were increased and serum glucose and BUN levels were decreased in the high dose animals.

Tribromomethane also caused a dose-dependent suppression in hepatic phagocytosis (assessed by measuring the vascular clearance rate of ¹²⁵Ilabeled *Listeria monocytogenes*) in ICR mice given doses of 0.3, 12.5, or 125 mg/kg for 90 days (Munson et al., 1978). Administration of tribromomethane to ICR mice at doses of 100 or 400 mg/kg per day, for 60 days, caused a decrease in response rate in a schedule-controlled performance test (Balster and Borzelleca, 1982). Tribromomethane had minimal or no effect in other behavioral tests (screen test, swimming endurance, passive-avoidance learning, cling test, hole-board test). In studies of neurochemical changes produced by drinking water contaminants, tribromomethane did not affect catecholaminergic systems or serotonin metabolism in the brain of Swiss Webster ICR mice (Dewey et al., 1978; Martin et al., 1978). Tribromomethane inhibited the incorporation of $^{32}P_i$ and $[^{3}H]$ glycerol into phospholipid fractions of liver slices prepared from Wistar rats (Koyama and Nakazawa, 1986). These effects of tribromomethane on triacylglycerol synthesis were attributed to inhibition of glycerophosphate acyltransferase, phosphatidate phosphatase, and diacylglycerol acyltransferase activities.

Reproductive and Developmental Toxicity

Kavlock et al. (1979) performed teratology studies of organic concentrates prepared from the drinking water of five U.S. cities. In addition, because low molecular weight organohalides may be lost during the concentration procedure, a synthetic mixture was prepared based on the EPA monitoring survey of the concentrations of these compounds in 110 U.S. cities. The latter mixture contained 68.9% chloroform, 16.4% bromodichloromethane, 10.0% chlorodibromomethane, and 3.6% tribromomethane. Each of these preparations, dissolved in dimethyl sulfoxide, was administered by gavage to groups of pregnant CD-1 mice on gestation days 7-14 at dose levels equivalent to 300, 1,000, and 3,000 times the anticipated human exposure. The mice that were administered the synthetic mixture at 3,000 times the human exposure level received 10.3 mg organohalide/kg per day (the tribromomethane dose level was 0.37 mg/kg per day). No effects on fetal weight, mortality, or the occurrence of skeletal or visceral anomalies were observed in any of the exposed groups.

Ruddick et al. (1983) administered chloroform to pregnant Sprague Dawley rats by gavage from day 6 to day 15 of gestation at doses of 100, 200, or 400 mg/kg and tribromomethane, bromodichloromethane, and chlorodibromomethane at doses of 50, 100, or 200 mg/kg. Corn oil was used as the vehicle for all studies. Only tribromomethane did not have an effect on maternal body weight gain. No histopathologic changes were observed for any of the four trihalomethanes in any of the dams or fetuses, nor were there any changes in the number of resorption sites, number of fetuses per dam, average fetal weight, or occurrence of visceral anomalies. Skeletal anomalies, including the appearance of a 14th rib, intraparietal deviations, and delayed ossification of sternebrae, were observed in the tribromomethane, chloroform, and chlorodibromomethane groups. These anomalies were considered to be indicative of fetotoxic effects.

Carcinogenicity

Results of carcinogenesis studies of chloroform in Osborne-Mendel rats and B6C3F1 mice (NCI. 1976a; IARC, 1979) and of 2-year studies of the chemically related chlorodibromomethane and bromodichloromethane in F344/N rats and B6C3F₁ mice (NTP, 1985, 1987) are shown in Table 1. For the chloroform studies, rats and

mice were administered chloroform in corn oil by gavage 5 days per week for 78 weeks. The doses were 90 and 180 mg/kg for male rats and 125 and 250 mg/kg for female rats for 22 weeks; doses for female rats were then reduced to 90 and 180 mg/kg, resulting in time-weightedaverage (TWA) doses of 100 and 200 mg/kg. Doses for male mice were 100 and 200 mg/kg for 18 weeks and then were increased to 150 and 300 mg/kg (TWA doses of 138 and 277 mg/kg); doses for female mice were 200 and 400 mg/kg for 18 weeks and then were increased to 250 and 500 mg/kg (TWA doses of 238 and 477 mg/kg). Administration of chloroform produced doserelated increases in the incidences of kidney epithelial neoplasms in male rats (vehicle control, 0/19; low dose, 4/50; high dose, 12/50) and of hepatocellular carcinomas in male and female mice (male: 1/18; 18/50; 44/45; female: 0/20; 36/45: 39/41).

TABLE 1. PRIMARY SITES OF NEOPLASTIC RESPONSES IN RATS AND MICE ADMINISTERED **TRIHALOMETHANES** (a)

Chemical	Dose (mg/kg per day)	Liver	Kidney	Large Intestine
Chloroform (b)			<u> </u>	
Osborne-Mendel	rats			
Male	0,90,180	-	+	_
Female	0, 100, 200	-	-	-
B6C3F ₁ mice				
Male	0, 138, 277	+		-
Female	0, 238, 477	+	-	-
Bromodichlorometh	ane (c)			
F344/N rats				
Male	0, 50, 100	-	+	+
Female	0, 50, 100	-	+	+
B6C3F ₁ mice				
Male	0,25,50	-	+	_
Female	0, 75, 150	+	-	-
Chlorodibromometh	nane (d)			
F344/N rats				
Male	0, 40, 80	-	-	_
Female	0, 40, 80	-		-
B6C3F ₁ mice				
Male	0,50,100	±	-	_
Female	0, 50, 100	+	~	_

(a) Response: +, compound-related neoplastic lesions; ±, equivocal evidence of compound-related neoplastic lesions; -, no evidence of compound-related neoplastic lesions

(b) NCI, 1976a; IARC, 1979

(c) NTP, 1987; Dunnick et al., 1987

Administration of chlorodibromomethane by gavage in corn oil to $B6C3F_1$ mice for 2 years at doses of 50 or 100 mg/kg also produced increases in the incidence of hepatocellular neoplasms in each sex (NTP, 1985; Dunnick et al., 1985). Chlorodibromomethane was not carcinogenic in F344/N rats administered doses of 40 or 80 mg/kg for 2 years.

Oral administration of bromodichloromethane to F344/N rats for 2 years at 50 or 100 mg/kg resulted in increased incidences of tubular cell neoplasms in the kidney and adenocarcinomas and adenomatous polyps in the large intestine of both males and females (NTP, 1987; Dunnick et al., 1987). Administration of bromodichloromethane to B6C3F₁ mice for 2 years at doses of 25 or 50 mg/kg (males) and 75 or 150 mg/kg (females) resulted in increased incidences of tubular cell neoplasms in the kidney of male mice and hepatocellular neoplasms in female mice.

The carcinogenicity studies of tribromomethane, the other trihalomethane formed during chlorination of water, are described in this report.

Injection of tribromomethane at 48 mg/kg into strain A mice for 8 weeks (24 intraperitoneal injections), followed by a 16-week observation period, caused a significant increase in the number of pulmonary adenomas per mouse compared with the number in mice injected with 0.9% sodium chloride (Theiss et al., 1977). In initiation/promotion assays reported by Pereira et al. (1982), single doses of either chloroform (1.5 mmol/kg) or tribromomethane (0.8 mmol/kg, 202 mg/kg) did not cause increases in the incidence of y-glutamyl transpeptidase (GGTase)-positive foci in intact or partially hepatectomized male Sprague Dawley rats promoted with phenobarbital (500 ppm in the drinking water for 47 days). The incidence of GGTase-positive foci in the liver of rats administered an initiating dose of diethylnitrosamine (0.5 mmol/kg body weight) and promoted with chloroform (1.5 mmol/kg two times per week for 53 days) was not different from that in rats given diethylnitrosamine or chloroform alone.

Epidemiologic studies indicate that there may be an association between trihalomethanes in drinking water and increased frequencies of

bladder, colon, rectal, or pancreatic cancer in humans (Kraybill, 1980; Cotruvo, 1981; Carlo and Mettlin, 1980; Isacson et al., 1983; Crump, 1983). However, because of a number of potential confounding variables in these studies (e.g., personal habits, limited information on residential histories and past exposures), the data should be considered preliminary and incomplete. Lawrence et al. (1984) found no evidence of a relationship between exposure to trihalomethanes in drinking water and colorectal cancers in white female teachers in upstate New York. Cantor et al. (1987) demonstrated an association between consumption of chlorinated surface water and urinary bladder cancer in 10 areas of the United States.

Genetic Toxicity

Trihalomethanes are usually not mutagenic when tested in Salmonella by the plate incorporation method (Simmon et al., 1977; Rapson et al., 1980), possibly because concentrations are reduced by evaporation during incubation. There are reports of induction of gene reversion by base-pair substitution in Salmonella typhimurium strains TA100 and TA1535 when exposure to tribromomethane occurred within the closed environment of a desiccator in the absence of exogenous metabolic activation (Simmon and Tardiff, 1978; Simmon, 1981). When tribromomethane was tested by the NTP in a preincubation procedure in S. typhimurium, the evidence for mutagenicity was equivocal in strain TA100 in the absence of S9 and in strains TA97 and TA98 in the presence of Aroclor 1254-induced male Syrian hamster liver S9; tribromomethane produced no significant increases in revertant colonies in strains TA1535 or TA1537 with or without exogenous metabolic activation (Haworth et al., 1983; Table E1). Bromodichloromethane and chlorodibromomethane were also reported to be mutagenic in strain TA100 in the absence of metabolic activation (Simmon and Kauhanen, 1978; Simmon and Tardiff, 1978), whereas chloroform was not mutagenic (Gocke et al., 1981; Van Abbe et al., 1982). NTP test results for bromodichloromethane and chlorodibromomethane in Salmonella were negative (Mortelmans et al., 1986; Zeiger et al., 1987).

Tribromomethane induced trifluorothymidine resistance in mouse L5178Y cells with and without Aroclor 1254-induced male F344 rat liver S9 (Table E2). Tribromomethane also produced a significant increase in sex-linked recessive lethal mutations in Drosophila when administered to adult males by feeding; no induction of mutations was observed when tribromomethane was administered by abdominal injection (Woodruff et al., 1985; Table E5). A test for induction of reciprocal translocations in adult male Drosophila exposed to tribromomethane in feed was negative (Table E6).

Maddock and Kelly (1980) reported that exposure to tribromomethane did not cause an increase in the frequency of sister chromatid exchanges (SCEs) in 72-hour oyster toadfish leukocyte cultures. One of two NTP laboratories that tested tribromomethane for cytogenetic effects in cultured Chinese hamster ovary (CHO) cells reported that it produced an increase in both SCEs and chromosomal aberrations in the absence, but not in the presence, of exogenous metabolic activation; the second laboratory observed no such increases (Galloway et al., 1985; Tables E3 and E4). Results of NTP in vitro cytogenetic studies of bromodichloromethane and chlorodibromomethane were negative for induction of chromosomal aberrations, but treatment with chlorodibromomethane did induce an increase in SCEs in the presence of induced rat liver S9 (unpublished results). Tribromomethane, chlorodibromomethane, bromodichloromethane, and chloroform were all reported to induce SCEs and cell cycle delays in human lymphocytes treated in vitro (Morimoto and Koizumi, 1983).

Morimoto and Koizumi (1983) also reported induction of SCEs in bone marrow cells of ICR/SJ mice given oral doses of 25-200 mg/kg per day of

tribromomethane, chlorodibromomethane, bromodichloromethane, or chloroform for 4 days. The cytogenetic effects of a single intraperitoneal injection of chloroform or tribromomethane on bone marrow cells of male $B6C3F_1$ mice have also been examined in in vivo studies sponsored by the NTP (Tables E7 and E8); neither chemical induced chromosomal aberrations in bone marrow cells under the standard protocol (cells harvested 23-24 hours after treatment). Chloroform induced a positive trend for SCEs at doses of 0.42-1.67 mmol/kg (50-200 mg/kg) and 1.67-6.70 mmol/kg (200-800 mg/kg) under the standard protocol. Tribromomethane did not induce SCEs with the standard protocol; however, when cells were sampled 36 hours after exposure, the trend test was positive for induction of SCEs at doses of 0.79-3.17 mmol/kg (200-800 mg/kg), and a significant response was observed at the highest dose tested. In contrast to the results of Morimoto and Koizumi, NTP in vivo cytogenetic tests with chlorodibromomethane showed no induction of SCEs or chromosomal aberrations in mice after an intraperitoneal injection of up to 2.40 mmol/kg (NTP, unpublished results).

Intraperitoneal injection of tribromomethane at doses of 200-800 mg/kg induced a positive trend for micronucleated polychromatic erythrocytes in the bone marrow of $B6C3F_1$ mice (Table E9). Chloroform induced a similar increase in the incidence of micronuclei in bone marrow polychromatic erythrocytes of $B6C3F_1$ mice.

Study Rationale

Tribromomethane was selected for 2-year oral toxicology and carcinogenesis studies as part of an organohalide class evaluation because of its presence in drinking water and potential for human exposure, because carcinogenicity data on this chemical were insufficient, and because chloroform (trichloromethane) is known to cause cancer in animals. .

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF TRIBROMOMETHANE PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES SINGLE-ADMINISTRATION STUDIES FOURTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Study Design Source and Specifications of Animals Animal Maintenance Clinical Examinations and Pathology

Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF TRIBROMOMETHANE

Tribromomethane was obtained in three lots from Freeman Industries (Table 2). Purity, identity, and stability analyses were conducted at Midwest Research Institute (MRI) (Kansas City, Missouri). MRI reports on analyses performed in support of the tribromomethane studies are on file at NIEHS.

The infrared, ultraviolet, and nuclear magnetic resonance spectra of all lots (representative spectra presented in Figures 1 and 2) were consistent with those in the literature (Aldrich Library; Sadtler Standard Spectra; CRC, 1975). Purity was determined by elemental analysis, Karl Fischer water analysis, potentiometric titration in methanol solution with 0.01 N sodium hydroxide for acidic components, and gas chromatography with flame ionization detection, a nitrogen carrier at a flow rate of 65 or 70 ml/ minute, and a 20% SP2100/0.1% Carbowax 1500 column (system 1) or a 10% Carbowax 20M-TPA column (system 2). Results of elemental analyses of all lots were in agreement with the theoretical values.

Lot no. 71221 was obtained as a clear, colorless liquid with a boiling point of 149° -150° C and a density at 24° C of 2.8609 ± 0.0004 g/ml. Cumulative data indicated that this lot was approximately 95% pure. Lot no. 71221 contained

0.014% water and 10.64 ppm free acid. Fifteen impurities with a combined area 3.7% that of the major peak were detected by gas chromatographic system 1. The area of the largest impurity peak was 2.8% that of the major peak. This impurity was identified as chlorodibromomethane by gas chromatography/mass spectroscopy with a 10% SP2100 column and a helium carrier at a flow rate of 30 ml/minute. Further confirmation of the identity of this impurity was obtained by gas chromatographic system 1 with spiked and unspiked samples. Eleven impurities were detected by gas chromatographic system 2. Two impurities had areas of 0.90% and 3.2% relative to that of the major peak. The remaining impurities had a combined relative area of 0.65%.

Lot no. 33595 was obtained as a clear, slightly viscous liquid with a density at 22°-23° C of 2.8621 ± 0.0005 g/ml. Cumulative data indicated that lot no. 33595 was approximately 95% pure. This lot contained 0.028% water and less than 5 ppm free acid. Thirteen impurities that had a combined area 4.4% that of the major peak were detected by gas chromatographic system 1. The three largest peaks had areas 1.4%, 1.4%, and 0.92% that of the major peak. These impurities were not identified. Thirteen impurities were detected by gas chromatographic system 2. Two impurities had areas of 1.3% and 1.6% relative to that of the major peak. These impurities were not identified. The remaining impurities had a combined relative area of 0.64%.

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Lot Numbers 71221	71221	33595	33595; F11017
Date of Initial Use 12/7/78	4/2/79	3/6/80	Lot no. 335952/23/81; lot no. F110175/28/82
Supplier Freeman Industries (Tuckaho, NY)	Freeman Industries (Tuckaho, NY)	Freeman Industries (Tuckaho, NY)	Freeman Industries (Tuckaho, NY)

TABLE 2. IDENTITY AND SOURCE OF TRIBROMOMETHANE USED IN THE GAVAGE STUDIES

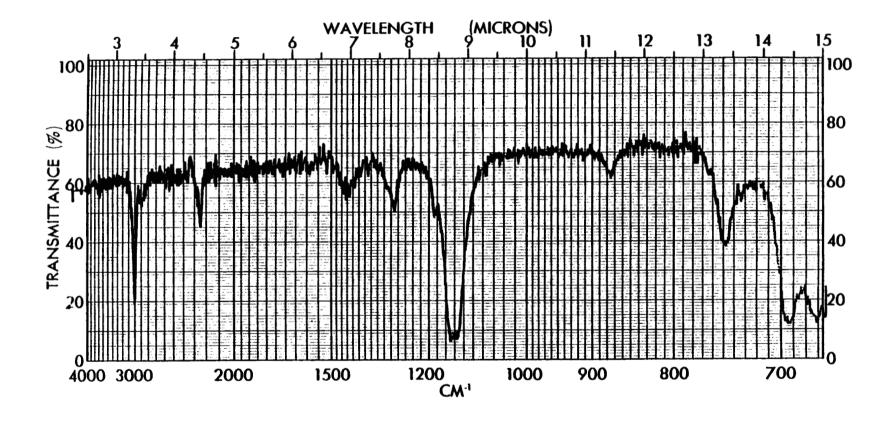


FIGURE 1. INFRARED ABSORPTION SPECTRUM OF TRIBROMOMETHANE (LOT NO. 71221)

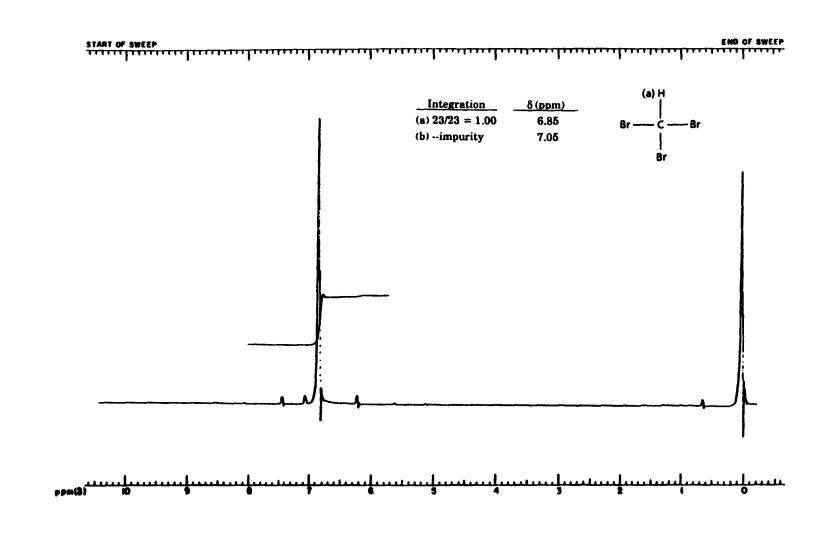


FIGURE 2. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF TRIBROMOMETHANE (LOT NO. 71221)

Cumulative data indicated that lot no. F11017, obtained as a clear, colorless liquid, was at least 97% pure. Lot no. F11017 contained 0.012% water and less than 25 ppm free acid. Twelve impurities that had a combined area 2.6% that of the major peak were detected by gas chromatographic system 1. The largest peaks had areas 1.3% and 0.8% that of the major peak. These impurities were not identified. However, analysis with standards and spiked samples on this gas chromatographic system indicated that chlorodibromomethane was not present at a concentration greater than 0.01%. Gas chromatographic system 2 detected 10 impurities with a total area 2.0% that of the major peak. The largest impurity had an area 1.4% that of the major peak. This impurity was not identified.

Stability studies performed by gas chromatography with the same column as that described above for system 2 indicated that tribromomethane was stable as a bulk chemical when kept for 2 weeks at temperatures of 5° C or lower. Some deterioration was observed at 25° C. The study laboratory stored several portions at -20° C as reference samples, and the rest was stored at $0^{\circ} \pm 5^{\circ}$ C. For the 2-year studies, lot no. 33595 was distributed into amber vials that were sealed under nitrogen and stored at -18° C or lower; lot no. F11017 was distributed into serum vials that were flushed with argon and stored under the same conditions. Aliquots of tribromomethane used for dose preparation were stored at $0^{\circ} \pm 16^{\circ}$ C for 1 month or less. Confirmation of the stability of the bulk chemical during the toxicology studies was shown by gas chromatographic analysis with the same column as that described above for system 2. No deterioration was seen over the course of the studies. The identity of the study chemical at the study laboratory was confirmed by infrared spectroscopy.

PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES

Tribromomethane and corn oil were mixed to give the desired concentrations (Table 3). Dose mixture stability studies were performed by gas chromatography of methanol extracts with the same column as that described for system 1. Tribromomethane at 2% (w/v) in corn oil was found to be stable when stored at room temperature for up to 7 days. In the 13-week studies, dose mixtures were stored at 0° \pm 5° C for no longer than 14 days. In the 2-year studies, dose mixtures were stored at 0° \pm 6° C for no longer than 7 days.

 TABLE 3. PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE STUDIES OF

 TRIBROMOMETHANE

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Preparation Tribromomethane was weighed into 50-ml serum vials, sufficient corn oil was added to bring the total volume of the mixture to 20 ml, and the vials were vigorously shaken by hand for 10 sec, producing a clear solution	Same as single-administration studies	Weighed tribromomethane was mixed by inversion with the appropriate volume of corn oil in a ground-glass stoppered cylinder until visual homo- geneity was attained	Same as 13-wk studies
Maximum Storage Time 1 d	1 wk	2 wk	1 wk
Storage Conditions 4°C	4° C under nitrogen	$0^{\circ} \pm 5^{\circ}$ C in the dark under nitrogen	$0^{\circ} \pm 6^{\circ}$ C in the dark under nitrogen until 4/15/81 when nitrogen was replaced with argon

Analysis of dose mixtures was conducted periodically at the study laboratory by gas chromatography (same column as that described for system 1) after extraction with methanol containing 0.1 mg/ml *n*-amyl alcohol as an internal standard. The results of analysis of dose mixtures in the 13-week studies are shown in Table 4. During the 2-year studies, the dose mixtures were analyzed periodically. Concentrations ranged from 93% to 561% of the target values; the second highest concentration observed was 118% of the target value (Table 5). The dose mixture containing 561% of the target concentration was administered to low dose male rats once and to low dose female rats twice. Because 40/42 dose mixtures analyzed were within 10% of the target concentrations, the dose mixtures were estimated to have been within specifications 95% of the time throughout the entire study. Results of periodic referee analysis performed by the analytical chemistry laboratory were in generally good agreement with the results from the study laboratory (Table 6).

TABLE 4. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF TRIBROMOMETHANE

<u>Concentration of Tribromomethane in Corn Oil (mg/ml)</u>			Determined as a	
Date Mixed	Target	Determined (a)	Percent of Targe	
03/06/80	2.4	3.9	(b) 162.5	
	5	4.9	98	
	10	7.3	(b) 73	
	20	18.4	92	
	40	38.1	95.3	
	80	73.5	91.9	
03/28/80	2.4	2.2	(c) 91.7	
	10	9.4	(c) 94	

(a) Results of duplicate analysis

(b) Out of specifications

(c) Remix

TABLE 5. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF TRIBROMOMETHANE

		tion of Tribromomethane arget Concentration (mg/n		
Date Mixed	10	20	40	
02/19/81		19.8	40.0	
03/27/81	10.0	20.0	39.8	
04/02/81		(b) 112.2		
04/24/81	10.6	19.5	39.8	
07/10/81	10.2	19.6	41.1	
09/11/81	9.3	19.3	39.1	
10/23/81	10.4	21.2	40.8	
11/27/81	10.2	19.3	40.3	
02/12/82	10.2	19.2	39.5	
04/23/82	10.3	19.5	39.1	
06/11/82	(c) 11.8	19.9	39.8	
06/14/82	(d) 10.4			
08/20/82	9.9	19.8	40.3	
09/10/82	10.9	19.7	40.9	
12/03/82	9.3	20.4	39.2	
01/07/83	10.2	19.7	40.5	
ean (mg/ml)	10.3	25.9	40.0	
andard deviation	0.64	23.87	0.68	
efficient of variation (percent)	6.2	92.2	1.7	
nge (mg/ml)	9.3-11.8	19.2-112.2	39.1-41.1	
Imber of samples	13	15	14	

(a) Results of duplicate analysis (b) Used for 2 days; analysis performed because of animals' toxic response. If this value is excluded, the mean and standard deviation would be 19.8 and 0.52 mg/ml.

(c) Out of specifications; used 1 day.

(d) Remix; not included in mean.

TABLE 6. RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF TRIBROMOMETHANE

		Determined Conc	entration (mg/ml)
Date Mixed	Target Concentration (mg/ml)	Study	Referee Laboratory (b)
04/24/81	20	19.5	19.11
10/23/81	40	40.8	40.0
04/23/82	10	10.3	10.16
09/10/82	20	19.7	19.6

(a) Results of duplicate analysis

(b) Results of triplicate analysis

SINGLE-ADMINISTRATION STUDIES

Five- to six-week-old male and female F344/N rats and 5- to 8-week-old male and female B6C3F₁ mice were obtained from Charles River Breeding Laboratories and held for 2 weeks before the studies began. Groups of five rats and mice of each sex were administered a single dose of 125, 250, 500, 1,000, or 2,000 mg/kg tribromomethane in corn oil by gavage and then were observed for 14 days. No controls were used. Animals were housed five per cage and received water and feed ad libitum. Further details of animal maintenance are presented in Table 7. Rats and mice were observed two times per day. A necropsy was performed on at least one animal from each sex and dose group.

FOURTEEN-DAY STUDIES

Eight-week-old male and female F344/N rats and B6C3F₁ mice were obtained from Charles River Breeding Laboratories and held for 17 days (rats) or 15 days (mice) before the studies began. Groups of five rats of each sex and groups of five female mice were administered 0, 100, 200, 400, 600, or 800 mg/kg tribromomethane in corn oil by gavage for 14 consecutive days. Groups of five male mice were administered 0, 50, 100, 200, 400, or 600 mg/kg.

Animals were housed five per cage and received water and feed ad libitum. Details of animal maintenance are presented in Table 7. Rats and mice were observed two times per day. Rats were weighed once per day and mice, on days 0 and 14 and at the end of the studies. A necropsy was performed on all animals.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated administration of tribromomethane and to determine the doses to be used in the 2-year studies.

Four- to five-week-old F344/N rats and 5- to 6week-old $B6C3F_1$ mice of each sex were obtained from Charles River Breeding Laboratories. Rats and mice were observed for 22 days before the studies began. Rats and mice were housed five per cage in polycarbonate cages. Feed and water were available ad libitum.

Groups of 10 rats of each sex were administered 0, 12, 25, 50, 100, or 200 mg/kg tribromomethane in corn oil by gavage, 5 days per week for 13 weeks. Groups of 10 mice of each sex received 0, 25, 50, 100, 200, or 400 mg/kg on the same schedule. Further experimental details are summarized in Table 7.

Animals were observed two times per day; moribund animals were killed. Individual animal weights were recorded one time per week. At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined are listed in Table 7.

TWO-YEAR STUDIES

Study Design

Groups of 50 rats of each sex and 50 female mice were administered 0, 100, or 200 mg/kg tribromomethane in corn oil by gavage, 5 days per week for 103 weeks. Groups of 50 male mice were administered 0, 50, or 100 mg/kg tribromomethane on the same schedule.

Source and Specifications of Animals

The male and female F344/N rats and B6C3F1 (C57BL/6N, female \times C3H/HeN MTV⁻, male) mice used in these studies were produced under strict barrier conditions at Charles River Breeding Laboratories under a contract to the Carcinogenesis Program. Breeding stock for the foundation colonies at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barriermaintained rooms. Rats were shipped to the study laboratory at 4-5 weeks of age, and mice at 6 weeks of age. The rats were quarantined at the study facility for 19 days, and the mice for 16 days. Thereafter, a complete necropsy was performed on five animals of each sex and species to

TABLE 7.	EXPERIMENTAL DESIGN	AND MATERIALS AND METHODS IN THE GAVAGE STUDIES				
	OF TRIBROMOMETHANE					

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL DES	IGN		
Size of Study Groups 5 males and 5 females of each species	5 males and 5 females of each species	10 males and 10 females of each species	50 males and 50 females of each species
Doses 125, 250, 500, 1,000, or 2,000 mg/kg tribromo- methane in corn oil by gavage; dose vol3 ml/kg	Rats and female mice0, 100, 200, 400, 600, or 800 mg/kg tribromomethane in corn oil by gavage; male mice0, 50, 100, 200, 400, or 600 mg/kg; dose vol5 ml/kg	Rats0, 12, 25, 50, 100, or 200 mg/kg tribromomethane in corn oil by gavage; mice0, 25, 50, 100, 200, or 400 mg/kg; dose vol5 ml/kg	Rats and female mice0, 100, or 200 mg/kg tribromomethane in corn oil by gavage; male mice 0, 50, or 100 mg/kg; dose vol 5 ml/kg
Date of First Dose 12/7/78	4/2/79	3/6/80	Rats2/23/81; mice3/6/81
Date of Last Dose N/A	4/15/79	6/4/80	Rats2/14/83; mice2/25/83
Duration of Dosing Single dose	14 consecutive d	5 d/wk for 13 wk	5 d/wk for 103 wk
Type and Frequency o Observed $1 \times h$ for $3 h$ after dosing and $2 \times d$ thereafter	f Observation Observed $2 \times d$; rats weighed $1 \times d$; mice weighed initially, after 14 d, and at the end of the studies	Observed $2 \times d$; weighed initially and $1 \times wk$ thereafter	Observed 2 \times d; weighed 1 \times wk for 12 wk and 1 \times mo thereafter
Necropsy and Histolog Necropsy performed on at least one animal of each sex and dose group	ic Examinations Necropsy performed on all animals; histologic exams not performed	Necropsy performed on all animals; the following tissues examined histologically for vehicle control and high dose groups: adrenal glands, brain, colon, esophagus, eyes (if grossly abnormal), gallbladder (mice), gross lesions and tis- sue masses, heart, kidneys, liver, lungs and bronchi, mam- mary gland, mandibular lymph nodes, pancreas, parathyroid glands, pituitary gland, prostate, testes or ovaries/uterus, sali- vary glands, skin, small intes- tine, spinal cord (if neurologic signs present), spleen, ster- nebrae, stomach, thymus, thy- roid gland, trachea, and urinary bladder; liver and spleen of 200 mg/kg male mice and liver of 100 mg/kg male mice were also examined	Necropsy performed on all ani- mals; the following tissues ex- amined histologically for vehi- cle control and high dose groups and low dose male rats: abnor- mal regional lymph nodes, adre nal glands, bone marrow, brain colon, costochondral junction, duodenum, esophagus, gallblad der (mice), heart, ileum, jeju- num, kidneys, larynx, liver, lungs and bronchi, mammary / gland, mandibular and mesen- teric lymph nodes, nose, pancre as, parathyroid glands, pitui- tary gland, prostate/testes/sem inal vesicles or ovaries/uterus, salivary glands, skin, spleen, stomach, thymus, thyroid gland tissue masses, trachea, and uri- nary bladder. Esophagus, gross lesions, kidneys, liver, lymph nodes, mammary gland, pancrea as, pituitary gland, salivary glands, thyroid gland, trachea, and uterus were examined for low dose female rats; bone, gross lesions, liver, lungs, stomach, and trachea were examined for low dose male mice; gross le- sions, liver, stomach, thyroid

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Necropsy and Histologi	c Examinations (Continued)		gland, and trachea were exam- ined for low dose female mice
ANIMALS AND ANIMA	AL MAINTENANCE		
Strain and Species F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice
Animal Source Charles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories (Portage, MI)	RatsCharles River Breeding Laboratories (Portage, MI, and Kingston, NY); miceCharles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories (Kingston, NY)
Study Laboratory EG&G Mason Research Institute	EG&G Mason Research Institute	EG&G Mason Research Institute	EG&G Mason Research Institute
Method of Animal Iden Ear punch	tification Ear punch	Ear punch	Ear punch
Time Held Before Study 14 d	y Rats17 d; mice15 d	22 d	Rats19 d; mice16 d
Age When Placed on Se Rats7-8 wk; mice7-10 wk	tudy 10 wk	Rats7-8 wk; mice8-9 wk	Rats7-8 wk; mice8 wk
Age When Killed Rats9-10 wk; mice9-12 wk	12-13 wk	Rats20-21 wk; mice21-22 wk	Rats112 wk; mice113 wk
Necropsy Dates 12/21/78	4/17/79-4/21/79	6/19/80-7/1/80	Rats2/22/83-3/3/83; mice3/7/83-3/16/83
Method of Animal Distr Assigned to groups such that for a given sex and species all cage weights were approximately equal	Same as single-administration studies	Same as single-administration studies	Animals were assigned to cage according to a table of random numbers
Feed Wayne Lab Meal® (Allied Mills, Chicago, IL); available ad libitum	Same as single-administration studies	NIH 07 Rat and Mouse Ration (Zeigler Bros., Inc., Gardners, PA); available ad libitum	Same as 13-wk studies
Bedding Aspen Bed (American Excelsior, Baltimore, MD)	Same as single-administration studies	Aspen Bed hardwood chips (American Excelsior, Baltimore, MD) or Beta Chips hardwood chips (Agway, Inc., Syracuse, NY) when Aspen Bed was not available	Same as single-administration studies

TABLE 7. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIESOF TRIBROMOMETHANE (Continued)

TABLE 7. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF TRIBROMOMETHANE (Continued)

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIM	AL MAINTENANCE (Continu	ned)	
Water Automatic watering sys- tem (Edstrom Indus- tries, Waterford, WI); available ad libitum	Same as single- administration studies	Same as single-administration studies	Same as single- administration studies
Cages Polycarbonate (Lab Products, Inc., Rochelle Park, NJ)	Same as single-administration studies	Same as single-administration studies	Same as single-administra- tion studies
Cage Filters Nonwoven fiber filters (Snow Filtration, Cincinnati, OH)	Same as single-administration studies	Same as single-administration studies	Same as single-administra- tion studies
Animals per Cage 5	5	5	5
Other Chemicals on St None	udy in the Same Room None	None	None
Animal Room Environ Temp20.6°-23.3° C; hum17%-49%; fluorescent light 12 h/d; 10 room air changes/h	ment Temp17.2°-31.1°C; hum10%-38%; fluorescent light 12 h/d; 10 room air changes/h	Temp18°-26° C; hum44%-78%; fluorescent light 12 h/d; 12 room air changes/h	Temp17.8°-26.7° C; hum10%-78%; fluorescent light 12 h/d; 13 room air changes/h

assess their health status. Rats were placed on study at 7-8 weeks of age, and mice at 8 weeks. The health of the animals was monitored during the course of the studies according to the protocols of the NTP Sentinel Animal Program (Appendix F).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid $B6C3F_1$ study animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electrophoresis profiles that demonstrate phenotype expressions of known genetic loci.

The C57BL/6N mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice

monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6N colony were used as parents for the hybrid B6C3F₁ mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but results of the studies are not affected because concurrent controls were included in each study.

Animal Maintenance

Animals were housed five per cage. Feed and water were available ad libitum. Further details of animal maintenance are given in Table 7.

Clinical Examinations and Pathology

All animals were observed two times per day, and clinical signs were recorded at least once per month. Body weights were recorded once per week for the first 12 weeks of the study and once per month thereafter. Mean body weights were calculated for each group. Animals found moribund and those surviving to the end of the studies were humanely killed. A necropsy was performed on all animals including those found dead, unless they were excessively autolyzed or cannibalized, missexed, or missing. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study.

During necropsy, all organs and tissues were examined for grossly visible lesions. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Histopathologic examination of tissues was performed according to an "inverse pyramid" design (McConnell, 1983a,b). That is, complete histopathologic examinations (Table 7) were performed on all high dose and vehicle control animals and on low dose animals dying through month 21 of the study. In addition, histopathologic examinations were performed on all grossly visible lesions in all dose groups. Potential target organs for chemically related neoplastic and nonneoplastic effects were identified from the short-term studies or the literature and were determined by examination of the pathology data; these target organs/ tissues in the lower dose groups were examined histopathologically. If mortality in the highest dose group exceeded that in the vehicle control group by 15%, complete histopathologic examinations were performed on all animals in the second highest dose group in addition to those in the high dose group.

When the pathology evaluation was completed, the slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were sent to an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assessment pathologist. The quality assessment report and slides were submitted to the Pathology Working Group (PWG) Chairperson, who reviewed all target tissues and those about which there was a disagreement between the laboratory and quality assessment pathologists.

Representative slides selected by the Chairperson were reviewed by the PWG, which includes the study pathologist, without knowledge of previously rendered diagnoses. When the consensus diagnosis of the PWG differed from that of the laboratory pathologist, the laboratory pathologist was asked to reconsider the original diagnosis. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent analysis of pathology data, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Slides/tissues are generally not evaluated in a blind fashion (i.e., without knowledge of dose group) unless the lesions in question are subtle or unless there is an inconsistent diagnosis of lesions by the laboratory pathologist. Nonneoplastic lesions are not examined routinely by the quality assessment pathologist or PWG unless they are considered part of the toxic effect of the chemical.

Statistical Methods

Data Recording: Data on body weights for this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). Other data elements were recorded in the Toxicology Data Management System. The data elements include descriptive information on the chemicals, animals, experimental design, survival, and individual pathology results, as recommended by the International Union Against Cancer (Berenblum, 1969). Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found to be missing or dead from other than natural causes; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a doserelated trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data: life table tests, logistic regression, and Fisher exact/Cochran-Armitage trend analyses. Tests of significance include pairwise comparisons of high dose and low dose groups with vehicle controls and tests for overall dose-response trends. For studies in which administration of the study compound has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. Continuitycorrected tests are used in the analysis of tumor incidence, and reported P values are one-sided. The procedures described below also were used to evaluate selected nonneoplastic lesions.

Life Table Analyses--This method of analysis assumes that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumor-bearing animals in the dosed and vehicle control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method (1959) to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely approximates time to tumor onset. In this case, the life table test also provides a comparison of the time-specific tumor incidences.

Logistic Regression Analyses -- This method of analysis assumes that all tumors of a given type were "incidental"; i.e., they did not alter the risk of death and were discovered merely as the result of death from an unrelated cause. According to this approach, tumor prevalence was modeled as a logistic function of dose and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The dosed and vehicle control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). If the tumor type is nonlethal, this comparison of the time-specific tumor prevalence also provides a comparison of the time-specific tumor incidences (McKnight and Crowley, 1984).

Fisher Exact/Cochran-Armitage Trend Analyses--In addition to survival-adjusted methods, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendixes containing the analyses of tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences. Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984, 1985) are included for those tumors appearing to show compound-related effects.

III. RESULTS

RATS

SINGLE-ADMINISTRATION STUDIES FOURTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

SINGLE-ADMINISTRATION STUDIES

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

SINGLE-ADMINISTRATION STUDIES

All 10 rats that received 2,000 mg/kg tribromomethane and 3/5 males and 3/5 females that received 1,000 mg/kg died on the day of dosing (Table 8). Shallow breathing was observed for rats that received 1,000 or 2,000 mg/kg.

FOURTEEN-DAY STUDIES

All rats that received 600 or 800 mg/kg and 1/5

males that received 400 mg/kg tribromomethane died before the end of the studies (Table 9). These rats were lethargic, had labored and shallow breathing, and were ataxic. Increased lacrimation was observed for the 800 mg/kg group. Final mean body weights of rats that received 400 mg/kg were 14% lower than that of vehicle controls for males and 4% lower for females. The thyroid gland was enlarged in 2/5 males and 2/5 females that received 800 mg/kg and in 1/5 males that received 400 mg/kg.

	Mean Body Weights (grams)					
Dose (mg/kg)	Survival (a)	Initial (b)	Final	Change (c		
IALE (d)						
125	5/5	144 ± 6	202 ± 6	$+58 \pm 4$		
250	5/5	142 ± 5	207 ± 7	$+65 \pm 3$		
500	5/5	144 ± 8	199 ± 8	+55 ± 3		
1,000	2/5	145 ± 3	193 ± 2	$+45 \pm 3$		
2,000	0/5	144 ± 4	(e)	(e)		
EMALE (d)						
125	5/5	127 ± 2	148 ± 4	$+21 \pm 3$		
250	5/5	126 ± 3	146 ± 4	$+20 \pm 2$		
500	5/5	126 ± 2	141 ± 2	$+15 \pm 1$		
1,000	2/5	126 ± 2	147 ± 4	$+19 \pm 1$		
2,000	0/5	126 ± 1	(e)	(e)		

TABLE 8. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE SINGLE-ADMINISTRATIONGAVAGE STUDIES OF TRIBROMOMETHANE

(a) Number surviving/number initially in the group; all deaths occurred on day 1.

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) LD₅₀ by Spearman-Karber method: 933 mg/kg (95% confidence interval: 669-1,301 mg/kg)

(e) No data are reported due to the 100% mortality in this group.

		Mean	Body Weights	Final Weight Relative	
Dose (mg/kg)	Survival (a)	Initial (b)	Final	Change (c)	to Vehicle Controls (percent)
MALE	- <u> </u>				,,,_,,,,,,,,,,,,,,,,,,,,,,
0	5/5	143 ± 4	201 ± 5	$+58 \pm 2$	
100	5/5	143 ± 5	210 ± 5	$+67 \pm 3$	104
200	5/5	143 ± 4	202 ± 6	$+59 \pm 2$	104
400	(d) 4/5	144 ± 4	173 ± 6	$+27 \pm 7$	86
600	(e) 0/5	143 ± 3	(f)	(f)	(f)
800	(g) 0/5	143 ± 4	(f)	(f)	(f)
FEMALE					
0	5/5	114 ± 2	138 ± 3	$+24 \pm 2$	
100	5/5	114 ± 2	146 ± 3	$+32 \pm 2$	106
200	5/5	114 ± 2	142 ± 1	$+28 \pm 2$	103
400	5/5	114 ± 2	132 ± 4	$+18 \pm 4$	96
600	(h) 0/5	114 ± 2	(f)	(f)	(f)
800	(i) 0/5	114 ± 2	(f)	(f)	(f)

TABLE 9. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY GAVAGESTUDIES OF TRIBROMOMETHANE

(a) Number surviving/number initially in the group

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Day of death: 16

(e) Day of death: 7,8,9,10,10

(f) No data are reported due to the 100% mortality in this group.

(g) Day of death: 4,4,5,5,6

(h) Day of death: 5,6,6,7,7

(i) Day of death: 5,5,5,6,6

THIRTEEN-WEEK STUDIES

None of the rats died before the end of the studies (Table 10). Final mean body weights of dosed and vehicle control rats were comparable. All males that received 100 or 200 mg/kg tribromomethane and all females that received 200 mg/kg were lethargic. Hepatocellular vacuolization was observed in most male rats (10/10 at 200 mg/kg, 8/10 at 100 mg/kg, 8/10 at 50 mg/kg, 5/10 at 25 mg/kg, 6/10 at 12 mg/kg, and 3/10 vehicle controls). The vacuoles were more numerous in the 200 mg/kg group. This liver lesion, which was not seen in females, was characterized by the presence of well-demarcated vacuoles in the cytoplasm of hepatocytes; larger vacuoles crowded the nuclei towards the periphery of the cells.

		Mean Body Weights (grams)	(grams)	Final Weight Relative	
Dose (mg/kg)	Survival (a)	Initial (b)	Final (c)	Change (d)	to Vehicle Controls (percent)
IALE					
0	10/10	158 ± 3	346 ± 7	$+188 \pm 5$	
12	10/10	160 ± 3	339 ± 4	$+179 \pm 5$	98
25	10/10	158 ± 4	348 ± 5	$+190 \pm 6$	101
50	10/10	160 ± 3	359 ± 6	$+199 \pm 6$	104
100	10/10	158 ± 3	359 ± 4	$+201 \pm 5$	104
200	10/10	159 ± 3	331 ± 4	$+172 \pm 6$	96
EMALE					
0	10/10	124 ± 1	204 ± 3	$+80 \pm 2$	
12	10/10	124 ± 1	206 ± 4	$+82 \pm 3$	101
25	10/10	124 ± 1	210 ± 2	$+86 \pm 1$	103
50	10/10	123 ± 1	206 ± 4	$+83 \pm 4$	101
100	10/10	124 ± 1	214 ± 3	$+90 \pm 2$	105
200	10/10	124 ± 1	205 ± 4	$+81 \pm 4$	100

TABLE 10. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF TRIBROMOMETHANE

(a) Number surviving/number initially in the group

(b) Initial group mean body weight \pm standard error of the mean

(c) Taken at week 12 of the studies

(d) Mean body weight change of the group \pm standard error of the mean

Dose Selection Rationale: Because of the 100% mortality in rats of each sex at 600 mg/kg and lower body weights at 400 mg/kg in the 14-day studies, doses selected for rats in the 2-year studies were 100 and 200 mg/kg tribromomethane, administered in corn oil by gavage, 5 days per week. Hepatocellular vacuolization, which was observed in vehicle control and dosed male rats in the 13-week study, was not considered to be potentially life threatening for the 2-year studies.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose male rats were

7%-11% lower than those of vehicle controls between weeks 6 and 16 and 12%-28% lower thereafter (Table 11 and Figure 3). Mean body weights of low dose male rats were 5%-14% lower than those of vehicle controls from week 44 to the end of the study. Mean body weights of high dose female rats were 5%-10% lower than those of vehicle controls between weeks 24 and 44 and 10%-25% lower thereafter. Compoundrelated clinical signs in rats included lethargy in males and females and aggressiveness in males. On April 2, 1981, all low dose rats received 500 mg/kg instead of 100 mg/kg; on April 3, 1981, two-thirds of the low dose female rats again received 500 mg/kg instead of 100 mg/kg. These animals appeared lethargic and sedated after they were dosed.

Weeks		Control		100 mg/kg		<u> </u>	200 mg/kg	
on	Av. Wt.	No. of	Av. Wt.	Wt. (percent of	No. of	Av. Wt.	Wt. (percent of	No. of
Study	(grams)	Survivors	(grams)	veh. controls)	Survivors	(grams)	veh. controls)	Survivors
MALE								
1	154	50	145	94	50	146	95	50
2 3	190 221	50 50	184 220	97 100	50 50	184 221	97 100	50 50
4	245	50	246	100	50	246	100	50
5	265	50	268	101	50	262	99	50
6 7	282 297	50 50	275 287	98 97	50 50	261 275	93 93	50 50
8	310	50	302	97	50	283	91	50
9	321	50	317	99	50	295	92	50
10 11	331 336	50 50	328 332	99 99	50 50	302 307	91 91	50 50
12	345	50	345	100	50	322	93	50
16	370	50	367	99	50	331	89	50
20 24	391 408	50 50	386 396	99 97	50 50	343 354	88 87	50 50
28	425	50	412	97	50	363	85	50
32	435	49	421	97	50	364	84	50
36 40	444 451	49 49	426 431	96 96	50 50	367 369	83 82	47 46
44	462	49	436	94	50	368	80	43
48	469	49	445	95	49	378	81	43
52 56	476 486	49 48	449 455	94 94	49 49	378 391	79 80	41 40
60	489	48	452	92	49	383	78	40
64	499	47	454	91	49	390	78	40
68 72	485 490	47 45	449 452	93 92	49 49	381 387	79 79	40 39
76	490	43	446	91	49	379	77	37
80	490	43	443	90	48	373	76	37
84 88	482 487	41 39	444 449	92 92	48 46	377 387	78 79	37 32
92	488	35	443	92 91	40	369	7 9 76	24
96	516	36	442	86	36	373	72	16
100 104	500 461	34 34	442 424	88 92	33 30	377 364	75 79	15 11
FEMALE		54	724	52	50	004		
		5 0	110	100	50	110	97	50
$1 \\ 2$	116 135	50 50	119 139	103 103	50 50	113 130	96	50
3	149	50	156	105	50	146	98	50
4	160	50	167	104	50	159	99	50
5 6	171 180	50 50	177 182	104 101	50 50	166 166	97 92	50 50
7	185	50	177	96	49	179	97	50
8	190	50	187	98	48	181	95	50
9 10	193 199	50 50	197 203	102 102	48 48	188 191	97 96	50 50
11	201	50	205	102	48	194	97	50
12	207	50	211	102	48	201	97	50
16 20	215 223	50 50	223 230	104 103	48 47	209 222	97 100	50 50
24	228	50	234	103	47	217	95	50
28	236	50	242	103	47	221	94	49
32 36	241 248	50 50	250 257	104 104	47 47	230 230	95 93	49 49
40	252	50	261	104	46	239	95	49
44	264	50 50	269	102	46	238	90	49
48 52	273 282	50 50	279 296	102 105	46 46 45	246 250	90 89	49 48 48
56	290	50	302	104	45	257	89	48 48
56 60 64 68 72 76	298	50	307	103	45 45 45 45 45 45	253	85	48 47
68	30 8 315	50 50	315 318	102 101	40 45	266 269	86 85	47
72	322	50	322	100 99	45	269	85 84	47 46
76	328	50	325	99	44	268	82	46
80 84	336 338	49 49	331 335	99 99	43 40	$264 \\ 270$	79 80	44 43
88	347	48	338	97	40 38	273	79	42
92 96 100	348	43	348	100	33 32	266	76	39
96	353	38 36	351 350	99 97	32 29 28	266 268	75 75	36 36
100	359				23			30

TABLE 11. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF TRIBROMOMETHANE

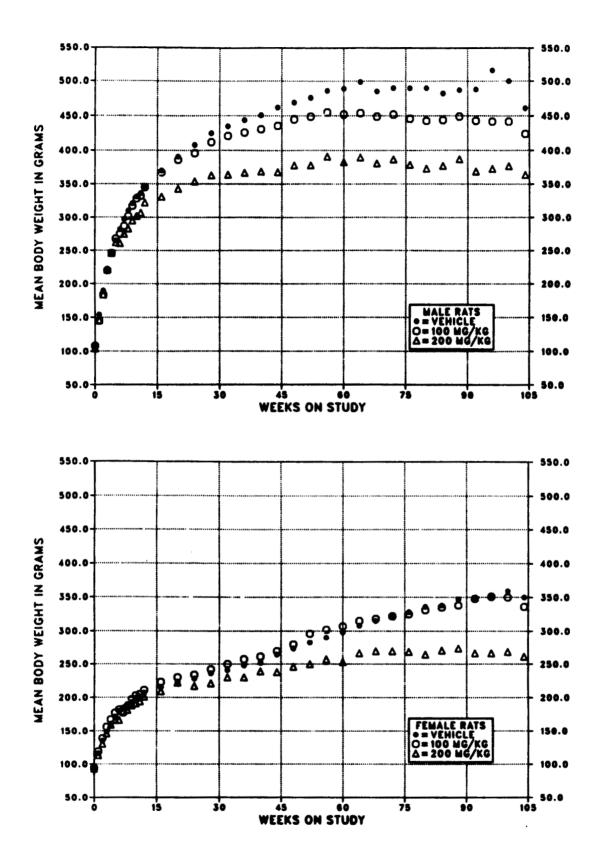


FIGURE 3. GROWTH CURVES FOR RATS ADMINISTERED TRIBROMOMETHANE IN CORN OIL BY GAVAGE FOR TWO YEARS

Tribromomethane, NTP TR 350

40

Survival

Estimates of the probabilities of survival for male and female rats administered tribromomethane at the doses used in these studies and for vehicle controls are shown in Table 12 and in the Kaplan and Meier curves in Figure 4. Survival of the high dose group of male rats was significantly lower than that of the vehicle controls after week 91. No significant differences in survival were observed between any groups of female rats.

Pathology and Statistical Analyses of Results

This section describes the statistically signifi-

cant or biologically noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions of the large intestine, liver, salivary glands, prostate gland, forestomach, lung, preputial gland, hematopoietic system, uterus, spleen, anterior pituitary gland, and mammary gland.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes A and B for male and female rats, respectively.

	Vehicle Control	100 mg/kg	200 mg/kg
MALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	16	20	39
Killed at termination	34	30	11
Survival P values (c)	<0.001	0.771	< 0.001
FEMALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	16	(d) 22	21
Accidentally killed	0	0	1
Killed at termination	33	28	28
Died during termination period	1	0	0
Survival P values (c)	0.329	0.150	0.358

TABLE 12. SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF TRIBROMOMETHANE

(a) First day of terminal-kill period: male--734; female--735

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

(d) The deaths of two animals may have been the result of overdosing.

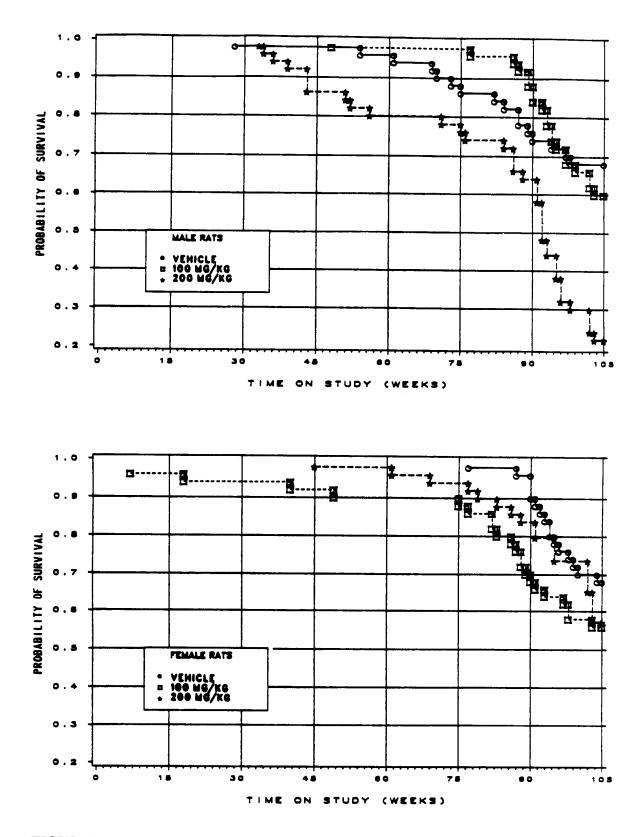


FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED TRIBROMOMETHANE IN CORN OIL BY GAVAGE FOR TWO YEARS

Tribromomethane, NTP TR 350

Large Intestine: Adenomatous polyps in female rats and adenomatous polyps or adenocarcinomas (combined) in male and female rats occurred with significant positive trends (Table 13). An adenocarcinoma of the large intestine was diagnosed in one high dose male rat and in two high dose female rats. The adenomatous polyps and adenocarcinomas were pedunculated masses up to 1 cm in diameter and occurred in the colon and rectum. Adenomatous polyps consisted of a thickened, folded, mucosal epithelium overlying a stalk of mature connective tissue. The epithelium was arranged in glandular or tubular patterns and did not show normal differentiation into goblet cells or absorptive cells. The three adenocarcinomas were minimally invasive and arose from adenomatous polyps. These lesions were diagnosed as adenocarcinomas because invasion or extension through the muscularis mucosa occurred and/or the epithelium exhibited marked dysplasia and cellular atypia.

TABLE 13.	ANALYSIS OF LARGE INTESTINE TUMORS IN RATS IN THE TWO-YEAR GAVAGE
	STUDIES OF TRIBROMOMETHANE (a)

	Vehicle Control	100 mg/kg	200 mg/kg
MALE			
Adenomatous Polyp			
Overall Rates	0/50 (0%)	0/50 (0%)	2/50 (4%)
Adenocarcinoma			
Overall Rates	0/50 (0%)	0/50 (0%)	1/50 (2%)
Adenomatous Polyp or Adenocarcinoma (b)			
Overall Rates	0/50 (0%)	0/50 (0%)	3/50 (6%)
Adjusted Rates	0.0%	0.0%	18.8%
Terminal Rates	0/34 (0%)	0/30 (0%)	1/11 (9%)
Day of First Observation			527
Life Table Tests	P = 0.008	(c)	P = 0.028
Logistic Regression Tests	P = 0.030	(c)	P = 0.092
FEMALE			
Adenomatous Polyp			
Overall Rates	0/50 (0%)	(d) 1/50 (2%)	6/50 (12%)
Adjusted Rates	0.0%	3.6%	17.6%
Terminal Rates	0/34 (0%)	1/28 (4%)	3/28 (11%)
Day of First Observation		735	637
Life Table Tests	P = 0.004	P = 0.461	P=0.013
Logistic Regression Tests	P = 0.004	P = 0.461	P = 0.015
Adenocarcinoma			
Overall Rates	0/50 (0%)	0/50 (0%)	2/50 (4%)
Adenomatous Polyp or Adenocarcinoma (e)			
Overall Rates	0/50 (0%)	(d) 1/50 (2%)	8/50 (16%)
Adjusted Rates	0.0%	3.6%	24.2%
Terminal Rates	0/34 (0%)	1/28 (4%)	5/28 (18%)
Day of First Observation	• •	735	637
Life Table Tests	P<0.001	P = 0.461	P = 0.003
Logistic Regression Tests	P<0.001	P = 0.461	P = 0.004

(a) The statistical analyses used are discussed in Section II (Statistical Methods) and Table A3 (footnotes).

(b) Historical incidence of adenomatous polyps, NOS, cystadenomas, NOS, or adenocarcinomas, NOS (combined) at study laboratory (mean): 0/285; historical incidence in NTP studies: 3/1,873 (0.2%)

(c) No P value is reported because no tumors were observed in the 100 mg/kg and vehicle control groups.

(d) Gross lesions and target organs in low dose animals were examined according to protocol (see Table 7); 18 large intestines were examined microscopically.

(e) No large intestine tumors have been observed in 1,888 corn oil vehicle control female F344/N rats.

Liver: Chemical-related nonneoplastic lesions, including fatty change, active chronic inflammation, and necrosis, occurred in the liver of dosed rats (Table 14). The fatty change was focal or diffuse in distribution and was characterized by distinct vacuoles within the cytoplasm of hepatocytes. The active chronic inflammation consisted of randomly scattered small foci of macrophages and lymphocytes. The macrophages sometimes contained granular golden pigment and clear vacuoles that probably represented fat. The necrosis that occurred in high dose male rats was minimal in extent and usually consisted of a few scattered individual pyknotic hepatocytes. Necrosis of the liver was decreased in dosed female rats.

The incidence of eosinophilic foci was slightly increased in low dose male rats, and the incidences of mixed cell foci were increased in dosed female rats relative to those in vehicle controls. Decreased incidences of basophilic foci were also observed in dosed female rats. These lesions were characterized by distinct foci of hepatocytes with cytoplasm that stained abnormally. Eosinophilic staining is often associated with increased amounts of smooth endoplasmic reticulum in the cytoplasm, whereas basophilic staining is usually associated with increased amounts of rough endoplasmic reticulum. Mixed cell foci usually contain cells that are either eosinophilic or basophilic and clear cells that contain glycogen or fat.

The incidence of neoplastic nodules in low dose female rats was increased slightly relative to that in vehicle controls. Most of the neoplastic nodules observed in dosed female rats did not fit the current NTP criteria for hepatocellular adenomas (Maronpot et al., 1986); in one high dose female rat, there was sufficient cellular atypia to fit the current criteria for hepatocellular adenoma. The neoplastic nodules were generally large foci with minimal compression caused by

TABLE 14.	ANALYSIS OF LIVER LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF
	TRIBROMOMETHANE

	Vehicle Control	100 mg/kg	200 mg/kg
MALE			
Fatty Change	23/50 (46%)	49/50 (98%)	50/50 (100%)
Active Chronic Inflammation	0/50 (0%)	29/50 (58%)	23/50 (46%)
Necrosis	7/50 (14%)	3/50 (6%)	20/50 (40%)
Eosinophilic Focus	1/50 (2%)	9/50 (18%)	4/50 (8%)
Basophilic Focus	28/50 (56%)	20/50 (40%)	24/50 (48%)
Mixed Cell Focus	10/50 (20%)	11/50 (22%)	8/50 (16%)
Neoplastic Nodule	4/50 (8%)	2/50 (4%)	0/50 (0%)
Hepatocellular Carcinoma	1/50 (2%)	0/50 (0%)	1/50 (2%)
FEMALE			
Fatty Change	19/50 (38%)	39/49 (80%)	46/50 (92%)
Active Chronic Inflammation	9/50 (18%)	8/49 (16%)	27/50 (54%)
Necrosis	11/50 (22%)	3/49 (6%)	2/50 (4%)
Eosinophilic Focus	0/50 (0%)	2/49 (4%)	2/50 (4%)
Basophilic Focus	28/50 (56%)	15/49 (31%)	13/50 (26%)
Mixed Cell Focus	8/50 (16%)	25/49 (51%)	28/50 (56%)
Neoplastic Nodule (a)			
Överall Rates	0/50 (0%)	4/49 (8%)	2/50 (4%)
Adjusted Rates	0.0%	13.8%	7.1%
Terminal Rates	0/34 (0%)	3/28 (11%)	2/28 (7%)
Day of First Observation		722	735
Life Table Tests	P=0.173	P = 0.043	P = 0.196
Logistic Regression Tests	P = 0.197	P = 0.038	P = 0.196

(a) Historical incidence at study laboratory (mean \pm SD): 6/300 (2% \pm 1%); historical incidence in NTP studies: 33/1,945 (2% \pm 2%); no hepatocellular carcinomas have been observed.

enlargement of cells or cytoplasmic vacuolization. There was no loss of normal architectural features.

Salivary Glands: Squamous metaplasia of the ducts and chronic active inflammation occurred primarily in the submaxillary salivary gland of dosed rats (squamous metaplasia--male: vehicle control, 0/50; low dose, 15/50; high dose, 31/48; female: 0/49; 10/49; 16/50; chronic active inflammation--male: 0/50; 16/50; 25/48; female: 0/49; 9/49; 18/50). The affected ducts had a thick stratified squamous epithelium instead of the usual single layer of columnar epithelium. Accumulations of neutrophils were sometimes present in the ducts, and there were infiltrations of lymphocytes and macrophages surrounding the ducts and within the interstitium of the gland. The morphologic appearance of these changes was characteristic of a sialodacryoadenitis virus infection.

Prostate Gland: Squamous metaplasia of the prostate gland was observed at increased incidences in dosed male rats (vehicle control, 2/49; low dose, 6/46; high dose, 12/50). Inflammation was observed at similar rates in vehicle control and dosed rats.

Forestomach: Ulcers were observed at increased incidences in dosed male rats (vehicle control, 1/49; low dose, 5/50; high dose, 10/50).

Lung: Chronic active inflammation was observed at increased incidences in dosed male rats (vehicle control, 1/50; low dose, 7/50; high dose, 15/50).

Preputial Gland: Carcinomas and adenomas or carcinomas (combined) in male rats occurred with significant negative trends; the incidence of adenomas or carcinomas (combined) in high dose male rats was significantly lower than that in the vehicle controls (Table 15).

TABLE 15.	ANALYSIS OF PREPUTIAL GLAND TUMORS IN MALE RATS IN TH	IE TWO-YEAR GAVAGE
	STUDY OF TRIBROMOMETHANE	

	Vehicle Control	100 mg/kg	200 mg/kg
Adenoma		<u> </u>	
Overall Rates	4/41 (10%)	3/38 (8%)	0/34 (0%)
Carcinoma			
Overall Rates	6/41 (15%)	2/38 (5%)	1/34 (3%)
Adjusted Rates	18.4%	7.5%	7.7%
Terminal Rates	5/30 (17%)	1/21 (5%)	0/10 (0%)
Day of First Observation	377	680	716
Life Table Tests	P = 0.181N	P = 0.235N	P = 0.336N
Logistic Regression Tests	P = 0.042N	P = 0.160N	P = 0.083N
Adenoma or Carcinoma (a)			
Overall Rates	10/41 (24%)	5/38 (13%)	1/34 (3%)
Adjusted Rates	31.4%	18.7%	7.7%
Terminal Rates	9/30 (30%)	3/21 (14%)	0/10 (0%)
Day of First Observation	377	632	716
Life Table Tests	P = 0.077N	P = 0.288N	P = 0.134N
Logistic Regression Tests	P = 0.008N	P=0.163N	P = 0.014N

(a) Historical incidence of preputial gland tumors at study laboratory (mean \pm SD): 12/300 (4% \pm 2%); historical incidence in NTP studies: 79/1,949 (4% \pm 4%)

Hematopoietic System: Mononuclear cell leukemia in male rats occurred with a negative trend; the incidence in the high dose group was lower than that in the vehicle controls (Table 16).

Uterus: Stromal polyps in female rats occurred with a significant negative trend; the incidence in the high dose group was significantly lower than that in the vehicle controls (Table 17).

Spleen: Pigmentation occurred at an increased incidence in high dose female rats (vehicle control, 7/49; low dose, 6/28; high dose, 29/50). The golden-brown granular pigment, characteristic

of hemosiderin, was present in macrophages.

Anterior Pituitary Gland: Adenomas of the pars distalis in female rats occurred with a significant negative trend; the incidences of adenomas in high dose male and dosed female rats were lower than those in the vehicle controls (Table 18).

Mammary Gland: Fibroadenomas in female rats occurred with a significant negative trend; the incidence in the high dose group was lower than that in the vehicle controls (Table 19). Galactocele was diagnosed in 25/44 vehicle control, 4/42 low dose, and 1/39 high dose female rats.

TABLE 16. ANALYSIS OF MONONUCLEAR CELL LEUKEMIA IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (a)

	Vehicle Control	100 mg/kg	200 mg/kg
Overall Rates	14/50 (28%)	9/50 (18%)	5/50 (10%)
Adjusted Rates	34.8%	20.4%	27.8%
Terminal Rates	9/34 (26%)	1/30 (3%)	2/11 (18%)
Day of First Observation	483	600	600
Life Table Tests	P = 0.190N	P = 0.193N	P = 0.364N
Logistic Regression Tests	P = 0.019N	P = 0.200 N	P = 0.048N

(a) Historical incidence of leukemia at study laboratory (mean \pm SD): 44/300 (15% \pm 4%); historical incidence in NTP studies: 321/1,949 (16% \pm 9%)

TABLE 17. ANALYSIS OF UTERINE STROMAL POLYPS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (a)

ljusted Rates rminal Rates y of First Observation	Vehicle Control	100 mg/kg	200 mg/kg	
Overall Rates	10/49 (20%)	9/50 (18%)	2/50 (4%)	
Adjusted Rates	26.4%	26.1%	6.2%	
Terminal Rates	7/34 (21%)	5/28 (18%)	1/28 (4%)	
Day of First Observation	630	538	665	
Life Table Tests	P = 0.040 N	P = 0.519	P = 0.033N	
Logistic Regression Tests	P = 0.018N	P = 0.572N	P = 0.019N	

(a) Historical incidence of endometrial stromal polyps at study laboratory (mean \pm SD): 70/299 (23% \pm 3%); historical incidence in NTP studies: 390/1,934 (20% \pm 7%)

	Vehicle Control	100 mg/kg	200 mg/kg
MALE	<u> </u>		
Hyperplasia			
Overall Rates	9/50 (18%)	26/48 (54%)	15/45 (33%)
Adenoma (a)			
Overall Rates	12/50 (24%)	12/48 (25%)	2/45 (4%)
Adjusted Rates	31.8%	31.9%	11.8%
Terminal Rates	9/34 (26%)	6/28 (21%)	1/11 (9%)
Day of First Observation	586	537	616
Life Table Tests	P = 0.149N	P = 0.508	P = 0.130N
Logistic Regression Tests	P = 0.024N	P = 0.567	P = 0.028N
FEMALE			
Hyperplasia			
Overall Rates	9/48 (19%)	15/46 (33%)	7/48 (15%)
Adenoma (b)			
Overall Rates	29/48 (60%)	12/46 (26%)	16/48 (33%)
Adjusted Rates	66.6%	38.1%	46.9%
Terminal Rates	19/33 (58%)	8/26 (31%)	10/27 (37%)
Day of First Observation	610	538	582
Life Table Tests	P = 0.043N	P = 0.019N	P = 0.067 N
Logistic Regression Tests	P = 0.008N	P = 0.003N	P = 0.011N

TABLE 18. ANALYSIS OF ANTERIOR PITUITARY GLAND LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF TRIBROMOMETHANE

(a) Historical incidence of adenomas or carcinomas (combined) at study laboratory (mean \pm SD): 107/294 (36% \pm 5%); historical incidence in NTP studies: 556/1,898 (29% \pm 10%)

(b) Historical incidence of adenomas or carcinomas (combined) at study laboratory (mean \pm SD): 126/294 (43% \pm 11%); historical incidence in NTP studies: 811/1,901 (43% \pm 10%)

TABLE 19. ANALYSIS OF MAMMARY GLAND TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

	Vehicle Control	100 mg/kg	200 mg/kg
	, , , , , , , , , , , , , , , , , , ,		
Overall Rates	22/50 (44%)	17/50 (34%)	6/50 (12%)
Adjusted Rates	50.9%	51.0%	18.2%
Terminal Rates	14/34 (41%)	12/28 (43%)	4/28 (14%)
Day of First Observation	537	618	543
Life Table Tests	P = 0.004 N	P = 0.509N	P = 0.004 N
Logistic Regression Tests	P<0.001N	P = 0.369N	P<0.001N

(a) Historical incidence at study laboratory (mean \pm SD): 104/300 (35% \pm 3%); historical incidence in NTP studies: 558/1,950 (29% \pm 9%)

SINGLE-ADMINISTRATION STUDIES

All mice that received 2,000 mg/kg, 4/5 males and 2/5 females that received 1,000 mg/kg, and 1/5 males that received 500 mg/kg tribromomethane died before the end of the studies (Table 20). The final mean body weights of mice that survived to the end of the studies were not affected by tribromomethane administration. Males that received 500, 1,000, or 2,000 mg/kg and females that received 1,000 or 2,000 mg/kg were lethargic. Shallow breathing was observed for males that received 1,000 or 2,000 mg/kg.

FOURTEEN-DAY STUDIES

One of five males that received 600 mg/kg and 1/5 females that received 800 mg/kg died before the end of the studies (Table 21). Final mean body weights of dosed and vehicle control mice were comparable. Ataxia and lethargy were observed in males that received 600 mg/kg tribromomethane and in females that received 600 or 800 mg/kg. Raised nodules of the stomach were observed at necropsy in 4/5 males that received 400 mg/kg, in 3/5 males and 2/5 females that received 600 mg/kg.

TABLE 20. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE SINGLE-ADMINISTRATIONGAVAGE STUDIES OF TRIBROMOMETHANE

		Mean	s)	
Dose (mg/kg)	Survival (a)	Initial (b)	Final	Change (c)
IALE (d)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
125	5/5	25.3 ± 0.9	28.2 ± 0.7	$+2.9 \pm 0.2$
250	5/5	25.0 ± 0.5	26.8 ± 0.5	$+1.8 \pm 0.5$
500	(e) 4 /5	25.3 ± 0.7	28.5 ± 1.0	$+3.2 \pm 0.9$
1,000	(f) 1/5	25.4 ± 0.7	26.0	+0.7
2,000	(g) 0/5	25.2 ± 1.0	(h)	(h)
FEMALE (i)				
125	5/5	18.5 ± 0.6	19.4 ± 0.7	$+0.9 \pm 0.2$
250	5/5	18.5 ± 0.4	19.4 ± 0.5	$+0.9 \pm 0.4$
500	5/5	18.5 ± 0.5	20.6 ± 0.7	$+2.1 \pm 0.4$
1,000	(j) 3/5	18.8 ± 0.5	21.0 ± 1.0	$+2.1 \pm 0.9$
2,000	(g) 0/5	18.8 ± 0.6	(h)	(h)

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) LD₅₀ by probit analysis: 707 mg/kg (95% confidence interval: 404-1,239 mg/kg)

(e) Day of death: 4

(f) Day of death: 4,4,5,5

(g) Day of death: 1,1,2,2,2

(h) No data are reported due to the 100% mortality in this group.

(i) LD₅₀ by Spearman-Karber method: 1,072 mg/kg (95% confidence interval: 768-1,495 mg/kg)

(j) Day of death: 2,8

		Mean	Body Weights	Final Weight Relative		
Dose (mg/kg)	Survival (a)	Initial (b)	Final	Change (c)	to Vehicle Controls (percent)	
MALE			······································			
0	(d) 4/5	23.9 ± 0.5	26.0 ± 0.4	$+ 2.2 \pm 0.5$		
50	5/5	23.9 ± 0.6	27.6 ± 0.5	$+3.7 \pm 0.2$	106.2	
100	5/5	23.8 ± 0.6	26.0 ± 0.8	$+ 2.2 \pm 0.5$	100.0	
200	5/5	24.2 ± 0.6	27.6 ± 0.4	$+3.4 \pm 0.5$	106.2	
400	5/5	23.5 ± 0.7	26.2 ± 0.5	$+2.7 \pm 0.4$	100.8	
600	(e) 4 /5	23.5 ± 0.6	26.5 ± 0.9	$+2.9 \pm 0.4$	101.9	
EMALE						
0	5/5	18.5 ± 0.4	20.4 ± 0.4	$+ 1.9 \pm 0.4$		
100	5/5	18.2 ± 0.4	21.4 ± 1.0	$+3.2 \pm 0.7$	104.9	
200	5/5	18.7 ± 0.4	22.0 ± 0.5	$+3.3\pm0.7$	107.8	
400	5/5	18.4 ± 0.5	21.8 ± 0.4	$+3.4 \pm 0.4$	106.9	
600	5/5	18.8 ± 0.6	21.2 ± 0.5	$+2.4 \pm 0.3$	103.9	
800	(f) 4/5	18.9 ± 0.5	20.3 ± 0.3	$+1.0 \pm 0.1$	99.5	

TABLE 21. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY GAVAGESTUDIES OF TRIBROMOMETHANE

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Death due to error in gavage technique

(e) Day of death: 6

(f) Day of death: 7

THIRTEEN-WEEK STUDIES

One of 10 female mice that received 100 mg/kg tribromomethane died before the end of the studies (Table 22). The final mean body weight of male mice that received 400 mg/kg was 8% lower than that of vehicle controls. Cytoplasmic vacuolization of hepatocytes was observed in the liver of 5/10 males that received 200 mg/kg and 8/10 males that received 400 mg/kg. This doserelated, minimal to moderate change involved only a few cells or was diffuse. Cytoplasmic vacuolization was not observed in hepatocytes of dosed female mice.

		Mean	Body Weights	Final Weight Relativ		
Dose (mg/kg)	Survival (a)	Initial (b)	Final (c)	Change (d)	to Vehicle Controls (percent)	
IALE					· · · · · · · · · · · · · · · · · · ·	
0	10/10	26.4 ± 0.3	35.2 ± 0.8	$+8.8 \pm 0.7$		
25	10/10	26.8 ± 0.4	36.0 ± 0.9	$+9.2 \pm 0.7$	102.3	
50	10/10	27.7 ± 0.4	36.2 ± 0.6	$+8.5 \pm 0.3$	102.8	
100	10/10	26.3 ± 0.5	37.7 ± 0.5	$+11.4 \pm 0.7$	107.1	
200	10/10	27.1 ± 0.4	34.4 ± 0.7	$+7.3 \pm 0.4$	97.7	
400	10/10	26.2 ± 0.5	32.2 ± 0.8	$+6.0 \pm 0.7$	91.5	
EMALE						
0	10/10	20.4 ± 0.3	26.5 ± 0.3	$+6.1 \pm 0.2$		
25	10/10	20.7 ± 0.2	26.9 ± 0.3	$+6.2 \pm 0.4$	101.5	
50	10/10	20.4 ± 0.3	26.8 ± 0.5	$+6.4 \pm 0.4$	101.1	
100	(e) 9/10	20.6 ± 0.2	27.9 ± 0.9	$+7.4 \pm 0.8$	105.3	
200	10/10	20.9 ± 0.3	28.0 ± 0.5	$+7.1 \pm 0.3$	105.7	
400	10/10	20.6 ± 0.3	27.5 ± 0.5	$+6.9 \pm 0.4$	103.8	

TABLE 22. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK GAVAGESTUDIES OF TRIBROMOMETHANE

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Taken at week 12 of the studies

(d) Mean body weight change of the survivors \pm standard error of the mean

(e) Week of death: 6

Dose Selection Rationale: Because of deaths of 1/5 males at 600 mg/kg and of 1/5 females at 800 mg/kg in the 14-day studies and dose-related cy-toplasmic vacuolization of the liver in males in the 13-week studies, doses selected for mice in the 2-year studies were 50 and 100 mg/kg tribro-momethane for males and 100 and 200 mg/kg for females, administered in corn oil by gavage, 5 days per week.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of dosed and vehicle control male mice were comparable throughout the study (Table 23 and Figure 5). Mean body weights of high dose female mice were 5%-16% lower than those of vehicle controls, and mean body weights of low dose female mice were 6%-11% lower from week 28 to the end of the study. No compound-related clinical signs were observed.

Weeks		hicle Control		Low Dose	<u></u>		High Dose	
on Studer	Av. Wt.	No. of	Av. Wt.	Wt. (percent of	No. of	Av. Wt.	Wt. (percent of	No. of
Study	(grams)	Survivors	(grams)	veh. controls)	Survivors	(grams)	veh. controls)	Survivors
MALE	-			50 mg/kg		100 mg/kg		
0	23.0	50	22.7	99	50	23.0	100	50
1	25.4 26.4	50 50	25.3 26.7	100 101	50 50	25.5 27.0	100 102	50 50
2 3	28.2	50	28.3	101	50	28.8	102	50
4	28.5	50	29.3	103	50	29.8	105	50
5	29.1	50	29.8	102	50	29.8	102	50
6 7	30.9	50	30.8	100	50	31.6	102	50
8	30.8 31.7	50 50	31.3 31.2	102 98	50 50	31.2 32.2	101 102	50 50
9	31.7	50	31.7	100	50	32.2	102	50
10	32.8	50	32.8	100	50	33.2	101	50
11	33.1	50	33.2	100	50	33.7	102	50
12	33.3	50	33.4	100	50	34.1	102	50
18 20	34.5 35.9	50 50	34.3 35.7	99 99	50 50	34.6 35.5	100 99	50 50
24	36.6	50	35.8	98	49	35.6	97	50
28	37.4	50	37.3	100	49	36.6	98	50
32	39.4	50	38.2	97	49	37.8	96	50
36	39.2	50	38.3	98	49	38.3	98	50
40 44	39.7 38.5	50 50	39.2 39.0	99 101	49 49	38.5 38.4	97 100	50 50
48	39.6	50	38.8	98	49	38.8	98	50
52	40.3	50	39.7	99	49	40.1	100	50
56	40.2	50	40.1	100	48	40.3	100	50
60	40.9	50	39.9	98	48	40.3	99	50
64 68	40.7 40.2	50 49	40.1 39.9	99 99	48 48	40.7 39.9	100 99	49 49
72	40.9	49	40.2	98	48	40.6	99	48
76	40.7	49	40.4	99	46	40.9	100	45
80	40.3	48	39.9	99	46	39.8	99	45
84 88	40.5 40.2	47 47	40.7 40.2	100	46	40.5 40.4	100 100	43 43
92	39.5	47	39.7	100 101	45 44	39.8	100	40
96	39.5	45	39.6	100	41	39.2	99	37
100	39.4	43	39.9	101	37	38.8	98	36
104	39.4	41	39.5	100	37	38.3	97	36
FEMALE				100 mg/kg			200 mg/kg	
0 1	18.3 19.9	50 50	18.1 19.7	99 99	50 50	17.9 19.9	98 100	50 50
2	21.3	50	21.0	99	50	21.5	101	50
3 4	22.1	50	21.3	96	50	21.4	97	50
4	22.6	50	22.6	100	50	22.5	100	50
5 6	22.9 25.6	50 50	22.7 23.4	99 91	50 50	22.8 23.6	100 92	50 50
7	23.8	50	23.4	97	50	23.5	97	50
8	24.9	50	24,5	98	50	25.2	101	50
9	25.3	50	24.8	98	50	25.6	101	50
10	26.1	50	24.8	95	50	25.0	96	50
11 12	26.1 26.1	50 50	25.3 26.1	97 100	50 50	25.7 26.5	98 102	50 50
16	27.4	49	26.7	97	50	26.4	96	50
20	28.5	49	27.8	98	50	27.6	97	50
24	28.8	49	27.7	96	50	27.7 28.8	96	50 50
28	31.2	49	28.8	92	50	28.8	92	50
32 36	32.0 32.2	49 49	29.9 30.3	93 94	50 50	29.7 30.5	93 95	50 50
40	33.0	49	31.1	94	50	31.1	94	50
44	33.0	49	31.0	94	50	30.9	94	50 49 49
48	34.2	49	31.0 31.6	92	50	30.7	90	49
52	35.5	49	33.0	93	50	32.0	90 90	48 47
56 60	36.2 37.1	49 49	33.5 33.7	93 91	50 50	32.4 33.1	90 89	47
64	37.4	49	34.2	91	50	32.8	88	45
68	37.0	49	33.3	90	50	31.8	86	44
72	38.0	48	34.6	91	46	33.8	89	44
76 80	37.4	48	34.4 33.4	92 92	44 37	33.6 32.7	90 90	44 39
80 84	36.5 36.6	48 45	33.4 33.5	92 92	37	32.7	90 89	39
88	38.1	40	33.9	89	27	33.6	88	30
92	37.9	36	34.0	90	25	33.7	89	26 22
	38.0	35	34.3	90	21	34.0	89	22
96 100	38.4	29	34.3	89	17	32.8	85	21

TABLE 23. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIESOF TRIBROMOMETHANE

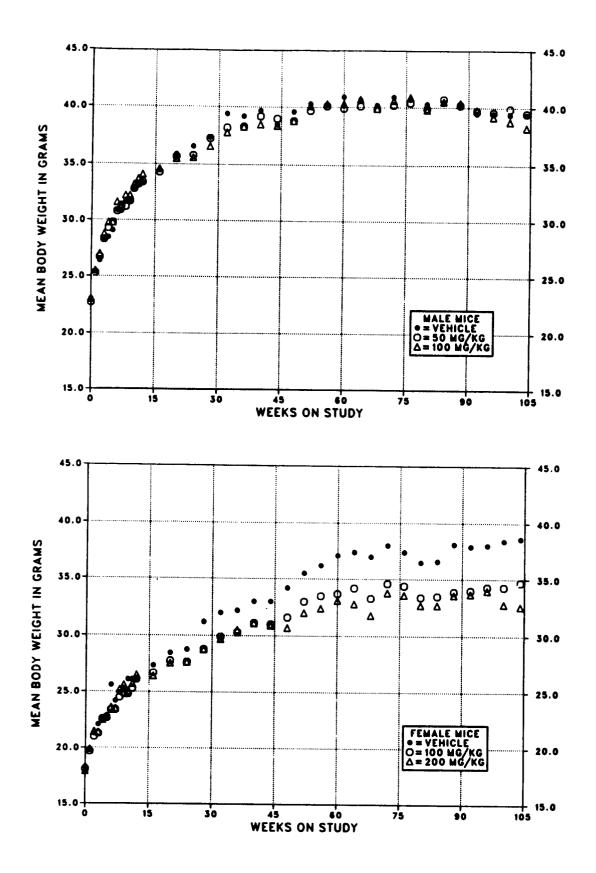


FIGURE 5. GROWTH CURVES FOR MICE ADMINISTERED TRIBROMOMETHANE IN CORN OIL BY GAVAGE FOR TWO YEARS

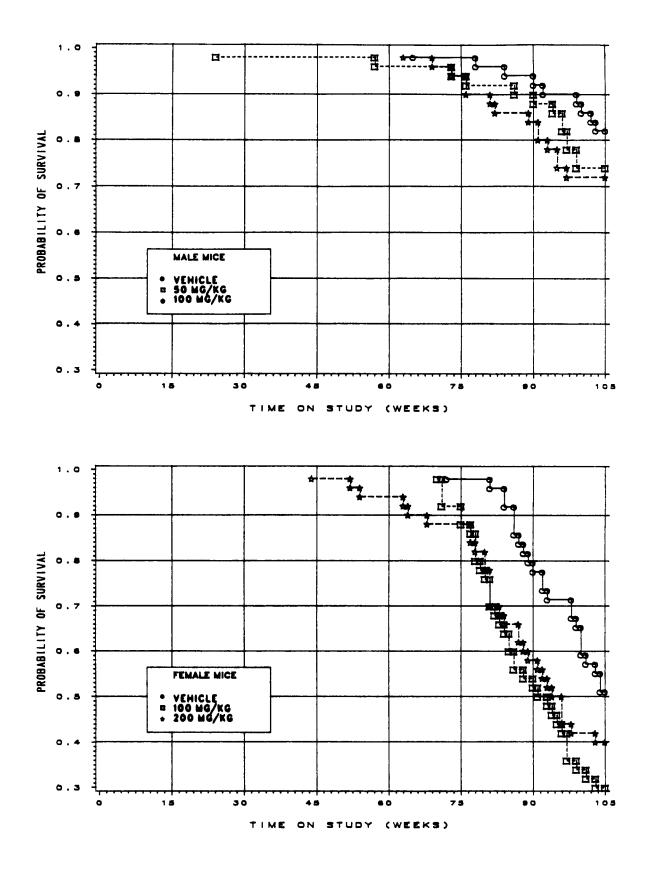
Survival

Estimates of the probabilities of survival for male and female mice administered tribromomethane at the doses used in these studies and for vehicle controls are shown in Table 24 and in the Kaplan and Meier curves in Figure 6. No significant differences in survival were observed between any groups of male mice. The survival of the low dose group of female mice was significantly lower than that of the vehicle controls after week 77; the survival of the high dose group was significantly lower than that of the vehicle controls between week 77 and week 100. Survival in each female mouse group was at least 50% at week 92. Reduced survival in the female mouse groups was partly due to a uteroovarian infection.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of mice with neoplastic or nonneoplastic lesions of the glandular stomach, thyroid gland, liver, ovary, and lung.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes C and D for male and female mice, respectively.


TABLE 24. SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF TRIBROMOMETHANE

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
MALE (a)				<u></u>
Animals initially in study	50	50	50	
Nonaccidental deaths before termination (b)	9	13	14	
Killed at termination	41	37	36	
Survival P values (c)	0.231	0.416	0.277	
FEMALE (a)				
Animals initially in study	50		50	50
Nonaccidental deaths before termination (b)	24		35	30
Animals removed, pregnant	1		0	0
Killed at termination	25		13	20
Died during termination period	0		2	0
Survival P values (c)	0.081		0.006	0.097

(a) First day of terminal-kill period: male--730; female--735

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

Tribromomethane, NTP TR 350

54

Glandular Stomach: Hyperplasia occurred at slightly increased incidences in dosed mice (male: vehicle control, 1/50; low dose, 5/50; high dose, 6/49; female: 1/47; 4/48; 4/50). This change was characterized by minimal to mild increased depth of the gastric pits and gastric glands. Epithelial cells lining the glands were fully differentiated, and there was no cellular atypia.

Thyroid Gland: Focal or multifocal follicular cell hyperplasia was observed at an increased incidence in high dose female mice (vehicle control, 5/49; low dose, 4/49; high dose, 19/47). Affected areas usually consisted of one to three follicles with enlarged columnar epithelial cells that formed irregular protrusions into the lumens of the follicles. A follicular cell adenoma was seen in 1/46 high dose male mice and 1/49 vehicle control female mice. *Liver:* Minimal to mild fatty change consisting of randomly scattered foci of hepatocytes with vacuolated cytoplasm occurred at increased incidences in dosed female mice (vehicle control, 1/49; low dose, 9/50; high dose, 24/50).

Ovary: Abscesses, characteristic of bacterial infection, were observed in 23/45 vehicle control, 31/36 low dose, and 26/49 high dose female mice. Klebsiella sp. were isolated from most of the ovarian and uterine lesions.

Lung: Alveolar/bronchiolar adenomas and alveolar/bronchiolar adenomas or carcinomas (combined) in male mice occurred with negative trends; the incidences in the high dose group were lower than those in the vehicle controls (Table 25).

 TABLE 25. ANALYSIS OF ALVEOLAR/BRONCHIOLAR LESIONS IN MALE MICE IN THE TWO-YEAR

 GAVAGE STUDY OF TRIBROMOMETHANE (a)

	Vehicle Control	50 mg/kg	100 mg/kg
Alveolar Epithelial Hyperplasia		······································	
Overall Rates	3/50 (6%)	2/50 (4%)	1/49 (2%)
Adenoma			
Overall Rates	10/50 (20%)	5/50 (10%)	2/49 (4%)
Adjusted Rates	24.4%	12.7%	5.6%
Terminal Rates	10/41 (24%)	4/37 (11%)	2/36 (6%)
Day of First Observation	730	602	730
Life Table Tests	P = 0.016N	P = 0.178N	P = 0.026N
Logistic Regression Tests	P = 0.016N	P = 0.161N	P = 0.026 N
Carcinoma			
Overall Rates	1/50 (2%)	3/50 (6%)	0/49 (0%)
Adenoma or Carcinoma (b)			
Overall Rates	11/50 (22%)	7/50 (14%)	2/49 (4%)
Adjusted Rates	26.8%	17.2%	5.6%
Terminal Rates	11/41 (27%)	5/37 (14%)	2/36(6%)
Day of First Observation	730	507	730
Life Table Tests	P = 0.012N	P = 0.288N	P = 0.015 N
Logistic Regression Tests	P = 0.009N	P = 0.236N	P = 0.015N

(a) The statistical analyses used are discussed in Section II (Statistical Methods) and Table C3 (footnotes).

(b) Historical incidence at study laboratory (mean \pm SD): 66/349 (19% \pm 7%); historical incidence in NTP studies: 325/1,985 (16% \pm 6%)

Tribromomethane, NTP TR 350

IV. DISCUSSION AND CONCLUSIONS

Toxicology and carcinogenesis studies of tribromomethane, a drinking water contaminant resulting from water chlorination, were conducted by gavage administration of this chemical (95%-97% pure) in corn oil to male and female F344/N rats and B6C3F₁ mice. Doses selected for the 2year studies, 100 or 200 mg/kg for male and female rats and female mice and 50 or 100 mg/kg for male mice, were based on results of 14-day and 13-week studies.

In the 14-day studies of tribromomethane, compound-related deaths occurred at doses of 400 mg/kg and higher in male rats and at 600 mg/kg and higher in female rats. In mice, one male that received 600 mg/kg and one female that received 800 mg/kg died. Ataxia, lethargy, and labored breathing were the major clinical signs of tribromomethane intoxication. In the 13week studies, no deaths were clearly attributable to tribromomethane, nor were significant differences in group mean body weights observed between male or female rats administered 12-200 mg/kg tribromomethane and the vehicle controls. No clear effects of compound administration on survival or body weight were observed for male or female mice administered 25-400 mg/kg tribromomethane. The only compound-related histopathologic change observed was cytoplasmic vacuolization of hepatocytes in male rats and male mice. This lesion, not considered to be life threatening, was observed in rats and mice administered other trihalomethanes, including chloroform (Bull et al., 1986), chlorodibromomethane (Condie et al., 1983; NTP, 1985; Dunnick et al., 1985), and bromodichloromethane (NTP, 1987; Dunnick et al., 1987).

In the 2-year studies, the only group in which tribromomethane caused a reduction in survival, relative to vehicle controls, was the high dose (200 mg/kg) male rats. Survival for all groups of female mice (vehicle control as well as low and high dose groups) was lower than that generally observed for corn oil gavage vehicle control female B6C3F₁ mice in 2-year studies (Haseman et al., 1985). Many of the female mice that died early were diagnosed as having utero-ovarian abscesses characteristic of a bacterial infection; Klebsiella sp. were isolated from most of these lesions (Rao et al., 1987a). Thus, a chemical effect on the reduced survival of female mice is not apparent. In spite of the life-shortening Klebsiella infection, survival of each group of female mice was at least 50% at week 92 of the study. Effects of administration of tribromomethane on body weight were apparent for low and high dose male rats, high dose female rats, and low and high dose female mice.

Adenomatous polyps and adenocarcinomas of the large intestine in male and female rats were the only neoplasms with increased incidences in rats or mice administered tribromomethane for 2 years. Neoplasms of the large intestine were also induced in F344/N rats administered bromodichloromethane for 2 years (NTP, 1987; Dunnick et al., 1987). Three neoplasms of the large intestine were observed in male rats dosed with tribromomethane at 200 mg/kg. These lesions were considered to be chemically induced. as a substantial increase in the incidence of the same neoplastic lesions was observed in nine female rats (vehicle control, 0/50; low dose, 1/50; high dose, 8/50) and because neoplasms of the large intestine are uncommon in F344/N rats: the historical incidence is less than 0.2%(3/1,873) in corn oil vehicle control male rats (Table A4a) and is 0% (0/1,888) in corn oil vehicle control female rats (Table B4a). Furthermore, since survival of male rats given 200 mg/ kg tribromomethane was markedly reduced, the sensitivity of this group to detect a carcinogenic response was lowered. The morphologic appearance of the neoplasms of the large intestine was the same as that of neoplasms caused by bromodichloromethane in male and female F344/N rats (NTP, 1987; Dunnick et al., 1987) and similar to that of neoplasms of the colon found in humans (Lane et al., 1978). In a feed study with microencapsulated tribromomethane, there was no evidence of carcinogenicity for male or female Wistar rats exposed for 24 months at concentrations of 400, 1,600, or 6,500 ppm (personal communication from Y. Kurokawa, National Institute of Hygienic Sciences, Tokyo, Japan, 1987, to R. Melnick, NTP).

In the current study, neoplastic nodules of the liver were observed in four low dose and two high dose female rats (see Table 14); however, most of these lesions did not fit the current NTP criteria for hepatocellular adenomas (Maronpot et al., 1986). The incidence of neoplastic nodules was not significantly increased in high dose female rats or in dosed male rats. Thus, the marginal increase in the incidence of neoplastic nodules in female rats was not considered to be chemically induced. A variety of nonneoplastic changes of the liver in rats, including fatty change, active chronic inflammation, and scattered minimal necrosis (males) or mixed cell foci (females), is attributed to chemical administration. Liver toxicity caused by tribromomethane may be due to covalent binding of cellular macromolecules by dibromocarbonyl, a reactive intermediate in the biotransformation of tribromomethane. The changes in the incidences of eosinophilic foci and basophilic foci in the liver of dosed female rats are also indicative of a chemical-induced cellular disturbance.

The inflammatory changes in the lung of dosed male rats and squamous metaplasia of the ducts and inflammatory changes in the salivary glands in dosed male and female rats were similar to those described for a sialodacryoadenitis (SDA) virus infection (Jacoby et al., 1975; Wojcinski and Percy, 1986). Consistent with the suggestion of a viral etiology for these lesions was the detection of antibodies to rat coronavirus/SDA early in the studies. The absence or near absence of these lesions in the vehicle control rats indicates that these lesions may resolve more slowly in dosed rats than in vehicle controls or that the dosed rats may have been more susceptible to reinfection by the virus. In either case, the lesions probably represent a combination of chemical and viral effects.

The increased incidences of squamous metaplasia of the prostate gland in dosed male rats may represent a chemical effect associated with inflammatory lesions in this gland, whereas ulcers of the forestomach in dosed male rats appear to be due to administration of tribromomethane.

Decreased incidences of preputial gland neoplasms and mononuclear cell leukemia in male rats, uterine stromal polyps and mammary gland fibroadenomas in female rats, and pituitary gland adenomas in male and female rats were observed in these studies. It is likely, however, that these changes do not represent direct chemical effects, either because the incidences of these lesions in the dosed groups were not different from historical incidences (for preputial gland, see Table A4b) or because the reduced incidences of these tumors were observed in rats with body weights that were about 10%-25% lower than those of vehicle controls. Rao et al. (1987b) showed that lower body weights are associated with a reduction in the incidences of leukemia in male F344/N rats and of mammary gland fibroadenomas and pituitary gland neoplasms in female F344/N rats. The mechanism by which reduced body weight (or reduced caloric intake) causes these changes is not fully known. Some of the negative trends for neoplasia noted above were also observed in rats administered chlorodibromomethane (mononuclear cell leukemia in males and mammary gland fibroadenomas and uterine stromal polyps in females) or bromodichloromethane (pituitary gland adenomas and mammary gland fibroadenomas in females) and may represent a biologic effect of trihalomethanes.

Toxicologic effects due to administration of tribromomethane to $B6C3F_1$ mice included hyperplasia of the glandular stomach in dosed males and follicular cell hyperplasia of the thyroid gland and cytoplasmic vacuolization of hepatocytes in dosed females. The incidences of cytoplasmic vacuolization of hepatocytes were not increased in dosed male mice, although the lesion had been observed in males at higher doses in the 13-week study.

Results of the carcinogenicity studies of five different trihalomethanes and the doses used in those studies are shown in Tables 26 and 27; expression of the dose as millimoles per kilogram body weight is preferable when making comparisons between related compounds with different molecular weights. Tribromomethane produced a weaker response than bromodichloromethane for large intestine neoplasms in male rats. At nearly equivalent daily doses (0.8 mmol/kg for tribromomethane and 0.6 mmol/kg for bromodichloromethane), the incidence of large intestine

		R	ats			Mi	ce	
	Kidney Tubular Cell Neoplasms		Large Intestine Neoplasms		Hepatocellular Neoplasms		Kidney Tubula Cell Neoplasma	
Compound	Male	Female	Male	Female	Male	Female	Male	Femalo
Chloroform (a)								
Vehicle control	0/19	0/20	(b)	(b)	1/18	0/20	(b)	(b
Low dose	4/50	0/49			18/50	36/45		
High dose	12/50	2/48			44/45	39/41		
Bromodichloromethane (c)								
Vehicle control	0/50	0/50	0/50	0/46	(b)	3/50	1/49	(b
Low dose	1/50	1/50	13/50	0/50	,	18/48	2/50	
High dose	13/50	15/50	45/50	12/47		29/50	9/50	
Chlorodibromomethane (d)								
Vehicle control	(b)	(b)	(b)	(b)	23/50	6/50	(b)	(b
Low dose					14/50	10/49		
High dose					27/50	19/50		
ribromomethane (e)								
Vehicle control	(b)	(b)	0/50	0/50	(b)	(b)	(b)	(b
Low dose			0/50	1/50			(-)	
High dose			3/50	8/50				
riiodomethane (f)	(b)	(b)	(b)	(b)	(b)	(b)	(b)	(b

TABLE 26. INCIDENCES OF COMPOUND-RELATED NEOPLASTIC LESIONS IN RATS AND MICE **ADMINISTERED TRIHALOMETHANES**

(a) NCI, 1976a; IARC, 1979 (b) No chemical-related neoplastic effects (c) NTP, 1987; Dunnick et al., 1987 (d) NTP, 1985; Dunnick et al., 1985 (e) This report (f) NCI, 1978

TABLE 27. DOSES OF TRIHALOMETHANES ADMINISTERED TO RATS AND MICE IN NCI/NTP **CARCINOGENICITY STUDIES (a)**

	Male Rats		Femal	e Rats	Male Mice		Female Mice		
	Low Dose	High Dose	Low Dose	High Dose	Low Dose	e High Dose	Low Dos	e High Dose	
	(mg/kg per day)								
Chloroform (b)	90	180	100	200	138	277	238	477	
Bromodichloromethan	e 50	100	50	100	25	50	75	150	
Chlorodibromomethan	e 40	80	40	80	50	100	50	100	
Tribromomethane	100	200	100	200	50	100	100	200	
Triiodomethane (b)	71	142	27	55	47	93	47	93	
	(mmol/kg per day)								
Chloroform	0.75	1.51	0.84	1.68	1.16	2.32	1.99	3.99	
Bromodichloromethan	e 0.31	0.61	0.31	0.61	0.15	0.31	0.46	0.92	
Chlorodibromomethan	e 0.19	0.38	0.19	0.38	0.24	0.48	0.24	0.48	
Tribromomethane	0.40	0.79	0.40	0.79	0.20	0.40	0.40	0.79	
Triiodomethane	0.18	0.36	0.07	0.14	0.12	0.24	0.12	0.24	

(a) Chloroform and triiodomethane were studied in Osborne-Mendel rats and B6C3F₁ mice. Bromodichloromethane, chlorodibromomethane, and tribromomethane were studied in F344/N rats and B6C3F₁ mice.
 (b) Doses of chloroform and triiodomethane were changed during these studies. Values given are time-weighted averages.

neoplasms was 15 times greater for bromodichloromethane. This difference, however, may in part be due to the reduced survival of the high dose male rats given tribromomethane. Bromodichloromethane also produced a 26% incidence of large intestine neoplasms at the lower dose (0.3 mmol/kg), whereas no large intestine neoplasms were observed in male rats administered 0.4 mmol/kg tribromomethane. In female rats, these two trihalomethanes were similar in potency for induction of large intestine neoplasms. The lack of large intestine tumors in rats administered chlorodibromomethane may be due to the lower daily doses used in that study; the high dose in the chlorodibromomethane study was nearly equal to the low dose in the tribromomethane study.

The finding that tribromomethane was not carcinogenic for the kidney of rats or for the liver of mice was unexpected in light of the high incidences of renal neoplasms in rats and hepatocellular neoplasms in mice exposed to chloroform or bromodichloromethane by the same route of administration. Since the trihalomethanes are metabolized by similar pathways, the key factors that influenced the outcome of the carcinogenicity studies of these compounds were probably differences in doses used, disposition of the parent compound, and/or biochemical characteristics of reactive intermediates.

The first step in the metabolism of trihalomethanes involves an oxygen insertion at the C-H bond, catalyzed by a cytochrome P450-dependent mixed-function oxidase system (Stevens and Anders, 1979). In the next step, nonenzymatic loss of a hydrogen halide results in the formation of a dihalocarbonyl: dichlorocarbonyl from chloroform, dibromocarbonyl from tribromomethane, and diiodocarbonyl from triiodomethane. Because of large differences in bond energies between C-Br and C-Cl (56.2 vs. 70.4 kcal/mol), the dihalocarbonyl formed from bromodichloromethane would be almost exclusively dichlorocarbonyl, and that formed from chlorodibromomethane would be primarily chlorobromocarbonyl. Similarly, because halogens of higher molecular weight are better leaving groups, the reactivity of dihalocarbonyls with cellular nucleophiles should follow the order diiodocarbonyl > dibromocarbonyl > bromo-

chlorocarbonyl > dichlorocarbonyl. Consistent with this suggestion is the observation that the rate of metabolism of trihalomethanes to carbon monoxide in vivo (Anders et al., 1978) or by rat liver microsomal fractions (Ahmed et al., 1977) followed the halide order: triiodomethane > tribromomethane >> chlorodibromomethane > bromodichloromethane \approx chloroform. The carcinogenic potential of these compounds for liver or kidney, however, is the reverse of this order (see Table 26). One explanation for this relationship is that the cellular lifetime of intermediates, such as dibromocarbonyl, is extremely short because of their rapid reactivity with cellular nucleophiles (e.g., glutathione). Consequently, macromolecular binding to cellular constituents which might lead to neoplasm induction (e.g., DNA acylation) is reduced. Less reactive dihalocarbonyls, such as dichlorocarbonyl, may be sufficiently stable to cause such changes.

As indicated above, the metabolism of chloroform or bromodichloromethane may involve a common reactive intermediate, namely dichlorocarbonyl. Note the continuous dose response for liver carcinogenesis by these two compounds in female mice when doses are compared on a mole per kilogram basis (see Table 27). At doses nearly equal to or greater than those used in the studies of bromodichloromethane, tribromomethane was not carcinogenic for mouse liver. As discussed previously, this difference may be due to differences in reactivity of the dihalocarbonyl intermediates. Similarly, tribromomethane was not carcinogenic for the liver of female mice at doses higher than those at which chlorodibromomethane produced hepatocellular neoplasms. Although doses of triiodomethane were generally lower than those of the other trihalomethanes, the lack of a carcinogenic response by this compound may also be due to the high reactivity of the diiodocarbonyl intermediate with glutathione or other cellular nucleophiles. Species, sex, and target organ specificity for trihalomethane toxicity or carcinogenicity may be related to the disposition of the compound, the activities of the cytochrome P450dependent mixed-function oxidase systems, and/ or the concentrations of protective cytoplasmic nucleophiles. Trihalomethanes are metabolized to carbon dioxide more rapidly and to a greater extent by $B6C3F_1$ mice than by Sprague Dawley rats (Mink et al., 1986). Further experimentation is needed to evaluate these proposals concerning the mechanism of liver and kidney carcinogenicity by trihalomethanes.

Results of the present studies and those of the bromodichloromethane studies (NTP, 1987; Dunnick et al., 1987) indicate that the epithelium of the large intestine is susceptible to induction of neoplasms by trihalomethanes. A common feature of a variety of diverse compounds that have been shown to induce colon neoplasms in laboratory animals is the eventual formation of a methylating intermediate (Zedeck, 1978). For trihalomethanes, the dihalocarbonyl intermediate may be the reactive form involved in the induction of large intestine neoplasms. As suggested above for induction of renal and hepatocellular neoplasms by trihalomethanes, the selectivity of the large intestine epithelium may also be dependent on the disposition of the parent compound, the rates of activation to the dihalocarbonyl intermediate, and/or the concentrations of protective cytoplasmic nucleophiles.

Tribromomethane has been shown to be mutagenic in both in vitro and in vivo assays. Tribromomethane was mutagenic in Salmonella when tested within the closed environment of a desiccator (Simmon and Tardiff, 1978; Simmon, 1981); however, results of tests for mutagenicity in Salmonella by the plate incorporation or preincubation methods were generally negative or equivocal (Simmon et al., 1977; Rapson et al., 1980; Haworth et al., 1983; Table E1). The volatility of tribromomethane may be an important factor affecting the detection of its mutagenic activity in vitro. Bromodichloromethane and chlorodibromomethane were also mutagenic in Salmonella when tested in desiccators (Simmon and Kauhanen, 1978; Simmon and Tardiff, 1978). In an in vitro cytogenetic study of trihalomethanes in human lymphocytes, increases in SCEs were produced by tribromomethane, chlorodibromomethane, bromodichloromethane, and chloroform (Morimoto and Koizumi, 1983). In cultured CHO cells, slight increases in the frequencies of SCEs and chromosomal aberrations were observed by one of two laboratories that tested tribromomethane for the NTP (Galloway et al., 1985; Tables E3 and E4). In vivo induction of SCEs by tribromomethane has also been observed in bone marrow cells of ICR/SJ mice (Morimoto and Koizumi, 1983) and B6C3F₁ mice (Table E7). Furthermore, tribromomethane induced increases in the frequency of micronucleated polychromatic erythrocytes in the bone marrow of B6C3F₁ mice (Table E9). Thus, genotoxicity of tribromomethane has been demonstrated in a variety of test systems, and this property may be involved in the carcinogenicity of this compound.

The experimental and tabulated data for the NTP Technical Report on tribromomethane were examined for accuracy, consistency, completeness, and compliance with Good Laboratory Practice regulations. As summarized in Appendix H, the audit revealed no major problems with the conduct of the studies or with collection and documentation of the experimental data. No discrepancies were found that influenced the final interpretation of the results of these studies.

Under the conditions of these 2-year gavage studies, there was some evidence of carcinogenic activity* of tribromomethane for male F344/N rats and clear evidence of carcinogenic activity for female F344/N rats, based on increased incidences of uncommon neoplasms of the large intestine. Reduced survival for male rats given 200 mg/kg tribromomethane lowered the sensitivity of this group to detect a carcinogenic response. Chemically related nonneoplastic lesions included fatty change and active chronic inflammation of the liver in male and female rats, minimal necrosis of the liver in male rats, and mixed cell foci of the liver in female rats. There was no evidence of carcinogenic activity for male B6C3F1 mice given 50 or 100 mg/kg tribromomethane or for female $B6C3F_1$ mice given 100 or 200 mg/kg; male mice might have been able to tolerate a higher dose. Survival of the female mice was reduced, partly due to a uteroovarian infection.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 7.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 10.

V. REFERENCES

V. REFERENCES

1. Agarwal, A.K.; Mehendale, H.M. (1983) Absence of potentiation of bromoform hepatotoxicity and lethality by chlordecone. Toxicol. Lett. 15:251-257.

2. Ahmed, A.E.; Kubic, V.L.; Anders, M.W. (1977) Metabolism of haloforms to carbon monoxide. I. *In vitro* studies. Drug Metab. Dispos. 5:198-204.

3. The Aldrich Library of IR Spectra, 2nd ed. Pouchert, C.T., Ed. Milwaukee, WI: Aldrich Chemical Company, p. 49f.

4. American Conference of Governmental Industrial Hygienists (ACGIH) (1986) Threshold Limit Values and Biological Exposure Indices for 1986-1987. Cincinnati, OH: ACGIH.

5. Anders, M.W.; Stevens, J.L.; Sprague, R.W.; Shaath, Z.; Ahmed, A.E. (1978) Metabolism of haloforms to carbon monoxide II. *In vivo* studies. Drug Metab. Dispos. 6:556-560.

6. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

7. Balster, R.L.; Borzelleca, J.F. (1982) Behavioral toxicity of trihalomethane contaminants of drinking water in mice. Environ. Health Perspect. 46:127-136.

8. Beech, J.A.; Diaz, R.; Ordaz, C.; Palomeque, B. (1980) Nitrates, chlorates and trihalomethanes in swimming pool water. Am. J. Public Health 70:79-82.

9. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

10. Boorman, G.A.; Montgomery, C.A., Jr.; Eustis, S.L.; Wolfe, M.J.; McConnell, E.E.; Hardisty, J.F. (1985) Quality assurance in pathology for rodent carcinogenicity studies. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357. 11. Bowman, F.J.; Borzelleca, J.F.; Munson, A.E. (1978) The toxicity of some halomethanes in mice. Toxicol. Appl. Pharmacol. 44:213-215.

12. Brass, H.J.; Feige, M.A.; Halloran, T.; Mello, J.W.; Munch, D.; Thomas, R.F. (1977) The national organic monitoring survey: Samplings and analyses for purgeable organic compounds. Pojasek, R., Ed.: Drinking Water Quality Enhancement Through Source Protection. Ann Arbor, MI: Ann Arbor Science Publishers, Inc., pp. 393-416.

13. Brown, D.M.; Langley, P.F.; Smith, D.; Taylor, D.C. (1974) Metabolism of chloroform I. The metabolism of [¹⁴C]chloroform by different species. Xenobiotica 4:151-163.

14. Bull, R.J.; Brown, J.M.; Meierhenry, E.A.; Jorgenson, T.A.; Robinson, M.; Stober, J.A. (1986) Enhancement of the hepatotoxicity of chloroform in $B6C3F_1$ mice by corn oil: Implications for chloroform carcinogenesis. Environ. Health Perspect. 69:49-58.

15. Bunn, W.W.; Haas, B.B.; Deane, E.R.; Kleopfer, R.D. (1975) Formation of trihalomethanes by chlorination of surface water. Environ. Lett. 10:205-213.

16. Cantor, K.P.; Hoover, R.; Hartge, P.; Mason, T.J.; Silverman, D.T.; Altman, R.; Austin, D.F.; Child, M.A.; Key, C.R.; Marrett, L.D.; Myers, M.H.; Narayana, A.S.; Levin, L.I.; Sullivan, J.W.; Swanson, G.M.; Thomas, D.B.; West, D.W. (1987) Bladder cancer, drinking water source, and tap water consumption: A case-control study. J. Natl. Cancer Inst. 79:1269-1279.

17. Carlo, G.L.; Mettlin, C.J. (1980) Cancer incidence and trihalomethane concentrations in a public drinking water system. Am. J. Public Health 70:523-525.

18. Chu, I.; Secours, V.; Marino, I.; Villeneuve, D.C. (1980) The acute toxicity of four trihalomethanes in male and female rats. Toxicol. Appl. Pharmacol. 52:351-353. 19. Chu, I.; Villeneuve, D.C.; Secours, V.E.; Becking, G.C. (1982a) Toxicity of trihalomethanes: I. The acute and subacute toxicity of chloroform, bromodichloromethane, chlorodibromomethane and bromoform in rats. J. Environ. Sci. Health B17:205-224.

20. Chu, I.; Villeneuve, D.C.; Secours, V.E.; Becking, G.C. (1982b) Trihalomethanes: II. Reversibility of toxicological changes produced by chloroform, bromodichloromethane, chlorodibromomethane and bromoform in rats. J. Environ. Sci. Health B17:225-240.

21. Clive, D.; Johnson, K.O.; Spector, J.F.S.; Batson, A.G.; Brown, M.M.M. (1979) Validation and characterization of the L5178Y/TK $^{+/-}$ mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.

22. Condie, L.W.; Smallwood, C.L.; Laurie, R.D. (1983) Comparative renal and hepatotoxicity of halomethanes: Bromodichloromethane, bromoform, chloroform, dibromochloromethane and methylene chloride. Drug Chem. Toxicol. 6:563-578.

23. Cotruvo, J.A. (1981) THMs in drinking water. Environ. Sci. Technol. 15:268-274.

24. Cox, D.R. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

25. CRC Handbook of Chemistry and Physics (1975) 56th ed. Boca Raton, FL: Chemical Rubber Company Press, p. C-369.

26. Crump, K.S. (1983) Chlorinated drinking water and cancer: The strength of the epidemiologic evidence. Jolley, R.L.; Brungs, W.A.; Cotruvo, J.A.; Cumming, R.B.; Mattice, J.S.; Jacobs, V.A., Eds.: Water Chlorination: Environmental Impact and Health Effects, Vol. 4. Environment, Health, and Risk, Book 2. Ann Arbor, MI: Ann Arbor Science Publishers, Inc., pp. 1481-1491.

27. Dewey, W.L.; Martin, B.R.; Bagshaw, B.; Marston, A.; Montgomery, J. (1978) The effects of organic water contaminants on catecholaminergic neurons in mouse brain. Toxicol. Appl. Pharmacol. 45:328. 28. Dinse, G.E.; Haseman, J.K. (1986) Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. Fundam. Appl. Toxicol. 6:44-52.

29. Dinse, G.E.; Lagakos, S.W. (1983) Regression analysis of tumour prevalence data. J. R. Stat. Soc. C32:236-248.

30. Docks, E.L.; Krishna, G. (1976) The role of glutathione in chloroform-induced hepatotoxicity. Exp. Mol. Pathol. 24:13-22.

31. Dunnick, J.K.; Haseman, J.K.; Lilja, H.S.; Wyand, S. (1985) Toxicity and carcinogenicity of chlorodibromomethane in Fischer 344/N rats and $B6C3F_1$ mice. Fundam. Appl. Toxicol. 5:1128-1136.

32. Dunnick, J.K.; Eustis, S.L.; Lilja, H.S. (1987) Bromodichloromethane, a trihalomethane that produces neoplasms in rodents. Cancer Res. 47:5189-5193.

33. Federal Register (Fed. Regist.) (1979) National interim primary drinking water regulations control of trihalomethanes in drinking water; Final Rule. 44:68624-68705.

34. Galloway, S.M.; Bloom, A.D.; Resnick, M.; Margolin, B.H.; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.

35. Gart, J.J.; Chu, K.C.; Tarone, R.E. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.

36. Gocke, E.; King, M.-T.; Eckhardt, K.; Wild, D. (1981) Mutagenicity of cosmetics ingredients licensed by the European Communities. Mutat. Res. 90:91-109.

37. Harris, R.N.; Ratnayake, J.H.; Garry, V.F.; Anders, M.W. (1982) Interactive hepatotoxicity of chloroform and carbon tetrachloride. Toxicol. Appl. Pharmacol. 63:281-291. 38. Hartwig, E.O.; Valentine, R. (1983) Bromoform production in tropical open-ocean waters: Ocean thermal energy conversion chlorination. Jolley, R.L.; Brungs, W.A.; Cotruvo, J.A.; Cumming, R.B.; Mattice, J.S.; Jacobs, V.A., Eds.: Water Chlorination: Environmental Impact and Health Effects, Vol. 4. Environment, Health, and Risk, Book 2. Ann Arbor, MI: Ann Arbor Science Publishers, Inc., pp. 311-330.

39. Haseman, J.K.; Huff, J.; Boorman, G.A. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.

40. Haseman, J.K.; Huff, J.; Rao, G.N.; Arnold, J.; Boorman, G.A.; McConnell, E.E. (1985) Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. J. Natl. Cancer Inst. 75:975-984.

41. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. 5(Suppl. 1):3-142.

42. Hewitt, W.R.; Miyajima, H.; Cote, M.G.; Plaa, G.L. (1979) Acute alteration of chloroform induced hepato- and nephrotoxicity by mirex and Kepone. Toxicol. Appl. Pharmacol. 48:509-527.

43. International Agency for Research on Cancer (IARC) (1979) IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 20. Some Halogenated Hydrocarbons. Lyon: IARC, pp. 401-427.

44. Isacson, P.; Bean, J.A.; Lynch, C. (1983) Relationship of cancer incidence rates in Iowa municipalities to chlorination status of drinking water. Jolley, R.L.; Brungs, W.A.; Cotruvo, J.A.; Cumming, R.B.; Mattice, J.S.; Jacobs, V.A., Eds.: Water Chlorination: Environmental Impact and Health Effects, Vol. 4. Environment, Health, and Risk, Book 2. Ann Arbor, MI: Ann Arbor Science Publishers, Inc., pp. 1353-1364. 45. Jacoby, R.O.; Bhatt, P.N.; Jonas, A.M. (1975) The pathogenesis of sialodacryoadenitis in gnotobiotic rats. Vet. Pathol. 12:196-209.

46. Kaplan, E.L.; Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457-481.

47. Kastenbaum, M.A.; Bowman, K.O. (1970) Tables for determining the statistical significance of mutation frequencies. Mutat. Res. 9:527-549.

48. Kavlock, R.; Chernoff, N.; Carver, B.; Kopfler, F. (1979) Teratology studies in mice exposed to municipal drinking water concentrates during organogenesis. Food Cosmet. Toxicol. 17:343-347.

49. Koyama, Y.; Nakazawa, Y. (1986) Comparison of the effect of trihalomethanes on lipid metabolism in rat liver slice. Toxicol. Lett. 31:37-44.

50. Kraybill, H.F. (1980) Evaluation of public health aspects of carcinogenic/mutagenic biore-fractories in drinking water. Prev. Med. 9:212-218.

51. Kutob, S.D.; Plaa, G.L. (1962) A procedure for estimating the hepatotoxic potential of certain industrial solvents. Toxicol. Appl. Pharmacol. 4:354-361.

52. Lane, N.; Fenoglio, C.M.; Kaye, G.I.; Pascal, R.R. (1978) Defining the precursor tissue of ordinary large bowel carcinoma: Implications for cancer prevention. Lipkin, M.; Good, R., Eds.: Gastrointestinal Tract Cancer. New York: Plenum Press, pp. 295-324.

53. Lawrence, C.E.; Taylor, P.R.; Trock, B.J.; Reilly, A.A. (1984) Trihalomethanes in drinking water and human colorectal cancer. J. Natl. Cancer Inst. 72:563-568.

54. Linhart, M.S.; Cooper, J.; Martin, R.L.; Page, N.; Peters, J. (1974) Carcinogenesis Bioassay Data System. Comput. Biomed. Res. 7:230-248. 55. Maddock, M.B.; Kelly, J.J. (1980) A sister chromatid exchange assay for detecting genetic damage to marine fish exposed to mutagens and carcinogens. Water Chlorination: Environ. Impact Health Eff. 3:835-844.

56. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

57. Margolin, B.H.; Collings, B.J.; Mason, J.M. (1983) Statistical analysis and sample-size determinations for mutagenicity experiments with binomial responses. Environ. Mutagen. 5:705-716.

58. Margolin, B.H.; Resnick, M.A.; Rimo, J.Y.; Archer, P.; Galloway, S.M.; Bloom, A.D.; Zeiger, E. (1986) Statistical analysis for in vitro cytogenetic assays using Chinese Hamster ovary cells. Environ. Mutagen. 8:183-204.

59. Maronpot, R.R.; Boorman, G.A. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

60. Maronpot, R.R.; Montgomery, C.A., Jr.; Boorman, G.A.; McConnell, E.E. (1986) National Toxicology Program nomenclature for hepatoproliferative lesions of rats. Toxicol. Pathol. 14:263-273.

61. Martin, B.R.; Dewey, W.L.; Beckner, J.S.; Borzelleca, J.F. (1978) Synthesis and metabolism of brain serotonin in mice following acute exposure to several haloalkanes. Toxicol. Appl. Pharmacol. 45:329.

62. McConnell, E.E. (1983a) Pathology requirements for rodent two-year studies. I. A review of current procedures. Toxicol. Pathol. 11:60-64.

63. McConnell, E.E. (1983b) Pathology requirements for rodent two-year studies. II. Alternative approaches. Toxicol. Pathol. 11:65-76.

64. McConnell, E.E.; Solleveld, H.A.; Swenberg, J.A.; Boorman, G.A. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. 76:283-289.

65. McFee, A.F.; Lowe, K.W.; San Sebastian, J.R. (1983) Improved sister-chromatid differentiation using paraffin-coated bromodeoxyuridine tablets in mice. Mutat. Res. 119:83-88.

66. McKnight, B.; Crowley, J. (1984) Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am. Stat. Assoc. 79:639-648.

67. The Merck Index (1983) 10th ed. Rahway, NJ: Merck & Co., Inc., p. 195.

 Mink, F.L.; Brown, T.J.; Rickabaugh, J. (1986) Absorption, distribution, and excretion of ¹⁴C-trihalomethanes in mice and rats. Bull. Environ. Contam. Toxicol. 37:752-758.

69. Morimoto, K.; Koizumi, A. (1983) Trihalomethanes induce sister chromatid exchanges in human lymphocytes *in vitro* and mouse bone marrow cells *in vivo*. Environ. Res. 32:72-79.

70. Mortelmans, K.; Haworth, S.; Lawlor, T.; Speck, W.; Tainer, B.; Zeiger, E. (1986) Salmonella mutagenicity tests. II. Results from the testing of 270 chemicals. Environ. Mutagen. 8(Suppl. 7):1-119.

71. Munson, A.E.; Sanders, V.M.; Borzelleca, J.F.; Tardiff, R.G.; Barrett, B.A. (1978) Reticuloendothelial system function in mice exposed to four haloalkanes: Drinking water contaminants. Toxicol. Appl. Pharmacol. 45:329-330.

72. Munson, A.E.; Sain, L.E.; Sanders, V.M.; Kauffmann, B.M.; White, K.L., Jr.; Page, D.G.; Barnes, D.W.; Borzelleca, J.F. (1982) Toxicology of organic drinking water contaminants: Trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane. Environ. Health Perspect. 46:117-126.

73. Myhr, B.; Bowers, L.; Caspary, W.J. (1985) Assays for the induction of gene mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells in culture. Prog. Mutat. Res. 5:555-568.

74. National Cancer Institute (NCI) (1976a) Report on Carcinogenesis Bioassay of Chloroform. National Technical Information Service, PB-264018.

75. National Cancer Institute (NCI) (1976b) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Technical Report No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 65 p.

76. National Cancer Institute (NCI) (1978) Bioassay of Iodoform for Possible Carcinogenicity. NCI Technical Report No. 110. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

77. National Institutes of Health (NIH) (1978) Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

78. National Toxicology Program (NTP) (1985) Toxicology and Carcinogenesis Studies of Chlorodibromomethane in F344/N Rats and B6C3F₁ Mice. NTP Technical Report No. 282. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. 174 p.

79. National Toxicology Program (NTP) (1987) Toxicology and Carcinogenesis Studies of Bromodichloromethane in F344/N Rats and $B6C3F_1$ Mice. NTP Technical Report No. 321. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. 182 p.

80. Page, G.W. (1981) Comparison of groundwater and surface water for patterns and levels of contamination by toxic substances. Environ. Sci. Technol. 15:1475-1481.

81. Pereira, M.A.; Lin, L.-H.C.; Lipitt, J.M.; Herren, S.L. (1982) Trihalomethanes as initiators and promoters of carcinogenesis. Environ. Health Perspect. 46:151-156. 82. Pohl, L.R.; Martin, J.L.; Taburet, A.M.; George, J.W. (1980) Oxidative bioactivation of haloforms into hepatotoxins. Coon, M.J.; Conney, A.H.; Estabrook, R.W.; Gelboin, H.V.; Gillette, J.R.; O'Brien, P.J., Eds.: Microsomes, Drug Oxidations, and Chemical Carcinogenesis, Vol. II. New York: Academic Press, pp. 881-884.

83. Rao, G.N.; Hickman, R.L.; Seilkop, S.K.; Boorman, G.A. (1987a) Utero-ovarian infection in aged B6C3F1 mice. Lab. Animal Sci. 37:153-158.

84. Rao, G.N.; Piegorsch, W.W.; Haseman, J.K. (1987b) Influence of body weight on the incidence of spontaneous tumors in rats and mice of long-term studies. Am. J. Clin. Nutr. 45:252-260.

85. Rapson, W.H.; Nazar, M.A.; Butsky, V.V. (1980) Mutagenicity produced by aqueous chlorination of organic compounds. Bull. Environ. Contam. Toxicol. 24:590-596.

86. Ruddick, J.A.; Villeneuve, D.C.; Chu, I. (1983) A teratological assessment of four trihalomethanes in the rat. J. Environ. Sci. Health. B18:333-349.

87. Sadtler Standard Spectra. NMR No. 6375M. Philadelphia: Sadtler Research Laboratories.

88. Simmon, V.F. (1981) Applications of the Salmonella/microsome assay. Stich, H.F.; San, R.H.C., Eds.: Short-Term Tests for Chemical Carcinogens, pp. 120-126.

89. Simmon, V.F.; Kauhanen, K. (1978) *In Vitro* Microbiological Mutagenicity Assays of Bromodichloromethane. Final Report. EPA Contract No. 68-03-11-74. Menlo Park, CA: SRI International. 18 p.

90. Simmon, V.F.; Tardiff, R.G. (1978) The mutagenic activity of halogenated compounds found in chlorinated drinking water. Water Chlorination: Environ. Impact Health Eff. 2:417-431. 91. Simmon, V.F.; Kauhanen, K.; Tardiff, R.G. (1977) Mutagenic activity of chemicals identified in drinking water. Dev. Toxicol. Environ. Sci. 2:249-258.

92. Smith, J.H.; Harper, J.C.; DaRos, B.C. (1983) Atmospheric emissions from electric power plant cooling systems. Jolley, R.L.; Brungs, W.A.; Cotruvo, J.A.; Cumming, R.B.; Mattice, J.S.; Jacobs, V.A., Eds.: Water Chlorination: Environmental Impact and Health Effects, Vol. 4. Environment, Health, and Risk, Book 2. Ann Arbor, MI: Ann Arbor Science Publishers, Inc., pp. 391-404.

93. Stevens, J.L.; Anders, M.W. (1979) Metabolism of haloforms to carbon monoxide III. Studies on the mechanism of the reaction. Biochem. Pharmacol. 28:3189-3194.

94. Stevens, J.L.; Anders, M.W. (1981) Metabolism of haloforms to carbon monoxide. IV. Studies on the reaction mechanism in vivo. Chem. Biol. Interact. 37:365-374.

95. Symons, J.M.; Bellar, T.A.; Carswell, J.K.; DeMarco, J.; Kropp, K.L.; Robeck, G.G.; Seeger, D.R.; Slocum, C.J.; Smith, B.L.; Stevens, A.A. (1975) National organics reconnaissance survey for halogenated organics. J. Am. Water Works Assoc. 67:634-646.

96. Tarone, R.E. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

97. Theiss, J.C.; Stoner, G.D.; Shimkin, M.P.; Weisburger, E.K. (1977) Test for carcinogenicity of organic contaminants of United States drinking waters by pulmonary tumor response in strain A mice. Cancer Res. 37:2717-2720.

98. Tomasi, A.; Albano, E.; Biasi, F.; Slater, T.F.; Vannini, V.; Dianzani, M.U. (1985) Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by the ESRspin trapping technique. Chem. Biol. Interact. 55:303-316.

99. Torkelson, T.R.; Rowe, V.K. (1981) Halogenated aliphatic hydrocarbons. Clayton, G.D.; Clayton, F.E., Eds.: Patty's Industrial Hygiene and Toxicology, 3rd ed. New York: John Wiley & Sons, Inc., 2B:3469-3470. 100. Umphres, M.D.; Trussell, A.R.; Tate, C.H.; Trussell, H.R. (1981) Trihalomethanes in drinking water. Water Eng. Manage. 128:65-76.

101. U.S. Environmental Protection Agency (USEPA) (1987) TSCA Initial Inventory (Data Base).

102. U.S. International Trade Commission (USITC) (1986) Synthetic Organic Chemicals, United States Production and Sales, 1985. USITC Publication No. 1892. Washington, DC: U.S. Government Printing Office.

103. Van Abbe, M.J.; Green, T.J.; Jones, E.; Richold, M.; Roe, F.J.C. (1982) Bacterial mutagenicity studies on chloroform in vitro. Food Chem. Toxicol. 20:557-561.

104. von Oettingen, W.F. (1955) The halogenated aliphatic, olefinic, cyclic, aromatic, and aliphatic-aromatic hydrocarbons including the halogenated insecticides, their toxicity and potential dangers. The Halogenated Hydrocarbons, Toxicity, and Potential Dangers. PHS No. 414. Washington, DC: U.S. Government Printing Office.

105. Williams, D.T. (1985) Formation of trihalomethanes in drinking water. IARC Sci. Publ. 68:69-88.

106. Wojcinski, Z.H.; Percy, D.H. (1986) Sialodacryoadenitis virus-associated lesions in the lower respiratory tract of rats. Vet. Pathol. 23:278-286.

107. Woodruff, R.C.; Mason, J.M.; Valencia, R.; Zimmering, S. (1985) Chemical mutagenesis testing in *Drosophila*: V. Results of 53 coded compounds tested for the National Toxiclogy Program. Environ. Mutagen. 7:677-702.

108. Zedeck, M.S. (1978) Experimental colon carcinogenesis. Lipkin, M.; Good, R., Eds.: Gastrointestinal Tract Cancer. New York: Plenum Press, pp. 343-360. 109. Zeiger, E.; Anderson, B.; Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W. (1987) Salmonella mutagenicity tests. III. Results from the testing of 255 chemicals. Environ. Mutagen. 9(Suppl. 9):1-110. 110. Zimmering, S.; Mason, J.M.; Valencia, R.; Woodruff, R.C. (1985) Chemical mutagenesis testing in *Drosophila*. II. Results of 20 coded compounds tested for the National Toxicology Program. Environ. Mutagen. 7:87-100.

APPENDIX A

SUMMARY OF LESIONS IN MALE RATS IN

THE TWO-YEAR GAVAGE STUDY OF

TRIBROMOMETHANE

TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO- YEAR GAVAGE STUDY OF TRIBROMOMETHANE	72
TABLE A2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	76
TABLE A3	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	88
TABLE A4a	HISTORICAL INCIDENCE OF LARGE INTESTINE TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	92
TABLE A4b	HISTORICAL INCIDENCE OF PREPUTIAL GLAND TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	92
TABLE A4c	HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	93
TABLE A4d	HISTORICAL INCIDENCE OF ANTERIOR PITUITARY GLAND TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	94
TABLE A5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	95

PAGE

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study	50		50		50	
Animals removed	50		50		50	
Animals examined histopathologically	50		50		50	
ALIMENTARY SYSTEM		<u></u>				
Intestine large	(50)		(50)		(50)	
Adenocarcinoma					1	(2%)
Leukemia mononuclear	1	(2%)				
Polyp adenomatous					2	(4%)
Intestine small	(49)		(50)		. (50)	
Leukemia mononuclear	1	(2%)				
Mesothelioma malignant					2	(4%)
Lymphoid nodule, leukemia mononuclear		(2%)				
Liver	(50)	(2.4)	(50)		(50)	
Hepatocellular carcinoma		(2%)	~	(100)		(2%)
Leukemia mononuclear		(28%)		(18%)	5	(10%)
Neoplastic nodule Mesentery	4 *(50)	(8%)	2 *(50)	(4%)	#/EAN	
Fat, leukemia mononuclear		(2%)	*(50)		*(50)	
Fat, mesothelioma malignant	1	(2%)			1	(2%)
Pancreas	(50)		(50)		(50)	(2%)
Leukemia mononuclear		(6%)		(4%)		(2%)
Mesothelioma malignant	J	(0%)	2	(4,70)		(2%)
Acinus, adenoma	1	(2%)	3	(6%)	-	(2%)
Salivary glands	(50)	(4 /0)	(50)	(0/0)	(48)	(470)
Leukemia mononuclear		(2%)	(00)		(40)	
Sarcoma	•	(1,0)	1	(2%)		
Schwannoma malignant			•	(2,0)	1	(2%)
Stomach	(49)		(50)		(50)	(= /0 /
Leukemia mononuclear		(8%)	((,	
Forestomach, fibrosarcoma			1	(2%)		
CARDIOVASCULAR SYSTEM			<u></u>		<u> </u>	
Heart	(50)		(50)		(50)	
Leukemia mononuclear		(14%)		(12%)		(4%)
ENDOCRINE SYSTEM			<u></u>	····		
Adrenal gland	(48)		(50)		(50)	
Leukemia mononuclear	6	(13%)		(12%)		(6%)
Bilateral, medulla, pheochromocytoma benigi	n 3	(6%)	1	(2%)	2	(4%)
Medulla, pheochromocytoma benign	13	(27%)	10	(20%)	6	(12%)
Islets, pancreatic	(48)		(50)		(50)	
Adenoma		(8%)		(6%)	1	(2%)
Pituitary gland	(50)		(48)		(45)	
Leukemia mononuclear		(6%)		(2%)		(2%)
Pars distalis, adenoma		(22%)		(21%)		(2%)
Pars distalis, adenoma, multiple		(2%)		(4%)		(2%)
Thyroid gland	(49)		(49)		(47)	
Leukemia mononuclear		(4%)				
C-cell, adenoma	2	(4%)	1	(2%)		(6%)
C-cell, carcinoma			_			(2%)
Follicular cell, carcinoma			3	(6%)	2	(4%)
ENERAL BODY SYSTEM						
Tissue, NOS	*(50)		*(50)		*(50)	
Adenoma			1	(2%)		

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

N N	Vehicle	Control	Low	Dose	High	Dose
GENITAL SYSTEM						
Epididymis	(45)		(49)		(41)	
Mesothelioma benign	(10)			(2%)	(41)	
Mesothelioma malignant			•	(2.0)	2	(5%)
Preputial gland	(41)		(38)		(34)	(0,0)
Adenoma		(10%)		(8%)	(01)	
Carcinoma		(12%)		(5%)	1	(3%)
Leukemia mononuclear	1	(2%)				
Bilateral, carcinoma	1	(2%)				
Prostate	(49)		(46)		(50)	
Leukemia mononuclear	4	(8%)			1	(2%)
Seminal vesicle	*(50)		*(50)		*(50)	
Leukemia mononuclear	2	(4%)				
Mesothelioma malignant					1	(2%)
Testes	(50)		(50)		(50)	
Leukemia mononuclear	3	(6%)				
Bilateral, interstitial cell, adenoma	33	(66%)	41	(82%)	29	(58%)
Interstitial cell, adenoma	13	(26%)		(8%)		(16%)
Tunic, mesothelioma benign		(4%)		(2%)	Ū	
Tunic, mesothelioma malignant					4	(8%)
HEMATOPOIETIC SYSTEM					<u></u>	
Bone marrow	(50)		(50)		(48)	
Leukemia mononuclear	(00)			(2%)		(2%)
Lymphoma malignant lymphocytic			1	(270)		(2%)
Lymph node	(50)		(48)		(49)	(2/0)
Carcinoma, metastatic, lung	(00)		(40)			(2%)
Carcinoma, metastatic, thyroid gland						(2%)
Axillary, leukemia mononuclear	1	(2%)			1	(270)
Lumbar, leukemia mononuclear		(4%)				
Mandibular, leukemia mononuclear		(16%)	5	(10%)	2	(6%)
Mediastinal, hepatocellular carcinoma,	0	(1070)	0	(10,0)	0	(0/0)
metastatic	1	(2%)				
Mediastinal, leukemia mononuclear		(18%)	5	(10%)	4	(8%)
Mediastinal, lymphoma malignant lymphocyti	c	(10,0)	U	$(10, \mathbf{k})$		(2%)
Mesenteric, leukemia mononuclear		(12%)	3	(6%)		(8%)
Pancreatic, leukemia mononuclear		(8%)	Ŭ			(2%)
Spleen	(50)		(50)		(50)	
Leukemia mononuclear	(= -)	(28%)		(18%)		(10%)
Mesothelioma malignant			0	(-0.0)		(2%)
Thymus	(47)		(46)		(41)	(4,0)
Leukemia mononuclear	• •	(11%)	(,	(2%)		(5%)
NTEGUMENTARY SYSTEM			. <u></u>		un:nautona,tama	
Mammary gland	(20)		(15)		(19)	
Fibroadenoma		(20%)	(10)		(10)	
Fibroadenoma, multiple		(5%)	1	(7%)		
Skin	(49)	(- / * /	(49)		(50)	
Basosquamous tumor benign		(4%)	(40)		(00)	
Keratoacanthoma		(2%)				
Squamous cell carcinoma		(2%)	1	(2%)		
Sebaceous gland, adenoma				(2%)		
Subcutaneous tissue, fibroma	4	(8%)		(8%)		
Subcutaneous tissue, fibrosarcoma	т			(2%)		
Subcutaneous tissue, norosarcoma	1	(2%)	1	(270)		
Subcutaneous tissue, sarcoma		(2%)				
Subcudancous dissue, sal collia	1	(4/0)				

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle	Control	Low	Dose	High	Dose
MUSCULOSKELETAL SYSTEM				<u> </u>		<u></u>
Skeletal muscle	*(50)		*(50)		*(50)	
Hepatocellular carcinoma, metastatic	1	(2%)				
Mesothelioma malignant					1	(2%)
NERVOUS SYSTEM						
Brain	(50)		(50)		(50)	
Astrocytoma malignant	_			(2%)	_	
Leukemia mononuclear	5	(10%)	2	(4%)	2	(4%)
RESPIRATORY SYSTEM						
Lung	(50)		(50)		(50)	
Alveolar/bronchiolar adenoma			1	(2%)		(2%)
Carcinoma						(2%)
Carcinoma, metastatic, thyroid gland		(0~)			1	(2%)
Hepatocellular carcinoma, metastatic Leukemia mononuclear		(2%)	0	(1 G d)	4	(901.)
Leukemia mononuciear Lymphoma malignant lymphocytic	12	(24%)	8	(16%)		(8%) (2%)
Squamous cell carcinoma, multiple	1	(2%)			1	(270)
Nose	(45)		(46)		(38)	
Carcinoma	(40)		+ ,	(2%)	(00)	
Leukemia mononuclear	1	(2%)	-			
Squamous cell carcinoma, metastatic, skin		(2%)				
SPECIAL SENSES SYSTEM	•••••••					
Harderian gland	*(50)		*(50)		*(50)	
Adenoma			· · ·	(2%)	(20)	
Zymbal gland	*(50)		*(50)		*(50)	
Carcinoma	1	(2%)	2	(4%)	1	(2%)
URINARY SYSTEM				,		
Kidney	(50)		(50)		(50)	
Leukemia mononuclear	9	(18%)	6	(12%)	4	(8%)
Renal tubule, adenocarcinoma					1	(2%)
Renal tubule, adenoma		(2%)				
Urinary bladder	(48)	(00)	(49)		(50)	
Leukemia mononuclear Mossthaliama malignant	3	(6%)				(90)
Mesothelioma malignant					1	(2%)
SYSTEMIC LESIONS						
Multiple organs	*(50)		*(50)		*(50)	
Leukemia mononuclear		(28%)		(18%)	5	(10%)
Mesothelioma benign Mesothelioma malignant	2	(4%)	1	(2%)	A	(90%)
Lymphoma malignant lymphocytic						(8%) (2%)
					1	(270)
NIMAL DISPOSITION SUMMARY						
Animals initially in study	50		50		50	
Terminal sacrifice	34		30		11	
Natural death	9		3		6	
Moribund sacrifice	7		17		33	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle Control	Low Dose	High Dose
FUMOR SUMMARY			
Total animals with primary neoplasms **	49	49	42
Total primary neoplasms	130	112	75
Total animals with benign neoplasms	46	47	38
Total benign neoplasms	104	91	55
Total animals with malignant neoplasms	25	21	14
Total malignant neoplasms	26	22	20
Total animals with secondary neoplasms ***	2		2
Total secondary neoplasms	4		3

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. ** Primary tumors: all tumors except secondary tumors *** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF TRIBROMOMETHANE: VEHICLE CONTROL

0 3	0				-	5	3	4	8	8	9	1	4	9 7	9 9	0 6	0 6	0 6	0 6	0 6	0 6	0 6	0 6	0 6
4	8 4	0 9 2	0 1 2	0 5 2	0 9 5	0 6 2	0 2 2	0 8 1	0 5 5	0 1 3	0 7 4	0 6 3	0 8 3	0 7 3	0 9 4	0 2 1	0 2 4	0 2 5	0 3 3	0 1 4	0 3 1	0 3 2	0 3 5	0 4 1
	+++++++++++++++++++++++++++++++++++++++	++++	++	+++		+++++++++++++++++++++++++++++++++++++++	+++	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	++++	+++	++++	+	+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++	+
						x					·				·		·							·
+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
						л		x																
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
			v			v		v	v				v	х		v		v	v					
			n			л		л	â				A			Â		л	л					
						+									+							+		
+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
		•	•	,	·	x	,		•				x				•		x					
+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+
+	+	+	+	+	М	+	+	۲	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
						X			Х				х						X					
				-																				
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
			Å					А	A										х					
								_								_				_				
+	+	+	+ v	+	+	+	+	+ v	*	+	+	+	+ v	+	+	+	+	+	*	+	+	+	+	+
			~					~	a				A						~					
											v					Х								
+	+	+	+	+	+	+	+	+	+	х +	х +	х +	+	+	+	+	+	+	л +	+	х +	+	х +	+
												-												X
		+								+				+		+	+	+			+	м	+	++
				'	,	T.	Ŧ	x	x	'		r	Ŧ	F	Ŧ	7			x		F	т	r	7
								х	х		х							х		х			х	
+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
			x			x										,							·	•
															X									
																_								
м	М				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	-	-	_	М	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	М
	х																							
									х															
+	+	Ŧ	+	+	+	+	+	4	+	Ŧ	+	4	4	Ŧ	Ŧ	L.	+	м	+	Ŧ	+	+	1	L.
7	C.	ſ	F	г	r	x	г	x	x	r	r	1-	٣	r	r	٢	r	***	x	r	r	۲	r	٢
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	÷	+		+	+	+	+	+	+	+	+	+	+	+	+		÷	+	+	+	+
,	•	*	x	,	1		'		x	,	,	•	•	'		1	,			'	,	'	4	1
		v		v	х	x		X	v	v	v	X	X	v	v	v	х	Х	х	v	х	х	v	Х
		л		л					X.	X	A			X	X	X				л			X	
	+ + + +	+ + + + + + M M + + + + +	+ + + + + + M M + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & + & + & + & + & + & + & + & + & + $	+ +	+ + + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																

+ Tissue examined microscopically Not examined - Present but not examined microscopically I Insufficient tissue

M Missing A: Autolysis precludes examination X Incidence of listed morphology

TABLE A2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE RATS:	VEHICLE	CONTROL
				(Continued)			

WEEKS ON STUDY 1 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 ō 6 ō 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 ō 6 TOTAL. TISSUES TUMORS CARCASS ID 0 (0 0 0 Ω ſ 0 0 Ø 0 0 0 0 0 1 072 075 42 43 4 45 1 15 $\frac{2}{3}$ 5 53 54 6 64 65 82 8 9 9 3 õ 0 2 0 3 0 4 0 5 1 ALIMENTARY SYSTEM 47 50 Esophagus Intestine large Leukemia mononuclear +++ M + + +++ ++ ++ ++ +++ +++ + +++ Μ 49 1 + Intestine small + + ++ + + + + Leukemia mononuclear Lymphoid nodule, leukemia monuc Hepatocellular carcinoma Leukemia mononuclear Neoplastic nodule + + 50 + + ŧ 1 14 4 4 1 X X X X х х х х Neoplastic nodule Mesentery Fat, leukemia mononuclear Pancreas Leukemia mononuclear Acinus, adenoma Salivary glands Leukemia mononuclear Stomach 50 3 1 50 1 49 4 Stomach Leukemia mononuclear 4 + + + + + + + ж. + + + + CARDIOVASCULAR SYSTEM Heart Leukemia mononuclear * X 50 7 ۰ + + + t + t + + t + ٠ + + + * x + *x Leukemia mononuclear ENDOCRINE SYSTEM Adrenal gland Leukemia mononuclear Bilateral, medulla, pheochromocytoma benign Medulla, pheochromocytoma benign Islets, pancreatic Adenoma Parathyroid gland Pituitary gland Leukemia mononuclear Pars distalis, adenoma multiple Thyroid gland Leukemia mononuclear C cell, adenoma + + + М + + + + м 48 6 + + + + + + + + + + + + + + x X X $3 \\ 13 \\ 48 \\ 4 \\ 20 \\ 50 \\ 3 \\ 11 \\ 1 \\ 49 \\ 2 \\ 2 \\ 2$ X + X + X + X + х + X + х + м + X M + М + + + + + + + + + + X M М М м м + м + M + М +++ ++ М М +++ М М М М + + + + ÷ + + + X X х x х X + + + + + + + + + + + + + + + X GENERAL BODY SYSTEM None GENITAL SYSTEM Epididymis Preputial gland Adenoma Carcinoma Leukemia mononuclear Bilateral, carcinoma + + + + + + X 45 41 4 5 1 +++ +++ ++ ÷ x x x x х X + Prostate Leukemia mononuclear Seminal vesicle Leukemia mononuclear 49 ŧ + + + + ÷ + + + + + + + + + + ++ $\begin{array}{r}
 4 \\
 50 \\
 2 \\
 50 \\
 33 \\
 13 \\
 2
 \end{array}$ + + + Leukemia mononuclear Leukemia mononuclear Bilateral, interstitial ceil, adenoma Interstitial cell, adenoma Tunic, mesothelioma benign + + + + + ÷ + + + + + + х х х х x X х х X X х х x x x x x x x x х х Х x x x X х

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

WEEKS ON STUDY	0 2 9	0 5 4	0 6 2	0 6 9	0 7 1	0 7 4	0 7 5	0 8 3	0 8 4	0 8 8	0 8 8	0 8 9	0 9 1	0 9 4	0 9 7	0 9 9	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	$\begin{array}{c}1\\0\\6\end{array}$
CARCASS ID	0 3 4	0 8 4	0 9 2	0 1 2	0 5 2	0 9 5	0 6 2	0 2 2	0 8 1	0 5 5	0 1 3	0 7 • 4	0 6 3	0 8 3	0 7 3	0 9 4	0 2 1	0 2 4	0 2 5	0 3 3	0 1 4	0 3 1	0 3 2	0 3 5	0 4 1
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Axillary, leukemia mononuclear Lumbar, leukemia mononuclear Mandibular, leukemia mononuclear Mediastinal, hepatocellular carcinoma,	+++	+ +	+ +	+ + x	+ +	++++	+ + X	+ +	+ + X	+ + X X	++++	++++	+ +	+ + X X X X	+ +	++++	+ + x	+++	+++	+ + x	++++	++++	++++	+++	+ +
metastatic Mediastinal, leukemia mononuclear Mesentenc, leukemia mononuclear Pancreatic, leukemia mononuclear Spieen Leukemia mononuclear Thymus Leukemia mononuclear	+	+ +	+ +	+ X +	+ +	+ M	x x + x + x	+ +	X X X + X + X + X	X X X + X + X + X	+ +	+ +	+ +	X X X + X +	x + +	+ M	X X + X +	+ +	+ X +	X X + X + X + X	+ +	+ +	+ +	+ +	+ +
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma	M	м	+	+	М	+	+	м	+	+	М	М	м	М	+	+	м	* X	м	+	М	М	М	+	*
Fibroadenoma, multiple Skin Basosquamous tumor benign Keratoacanthoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+
Squamous cell carcinoma Subcutaneous tissue, fibroma Subcutaneous tissue, osteosarcoma Subcutaneous tissue, sarcoma						x					x		x			x						x			
MUSCULOSKELETAL SYSTEM Bone Skoletal muscle Hepatocellular carcinoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ + X	+ +	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Leukemia mononuclear	+	+	+	+ x	+	+	+	+	+	* x	+	+	+	* x	+	+	* x	+	+	* x	+	+	+	+	+
RESPIRATORY SYSTEM Lung Hepatocellular carcinoma, metastatic		+	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear Squamous cell carcinoma, multiple Nose Leukemia mononuclear	-	-	-	х -	_	+	х +	X +	х +	X + v	+	+	+	X +	+	+	х +	+	+	х +	+	+	+	+	+
Squamous cell carcinoma, metastatic, skin Trachea	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSES SYSTEM Zymbal gland Carcinoma						<u> </u>												+ x							
URINARY SYSTEM Kidney Leukemia mononuclear	+	+	+	* x	+	+	* x	+	+ x	* X	+	+	+	* x	+	+	+ X	+	+	* x	+	+	+	+	+
Renal tubule, adenoma Urnary bladder Leukema mononuclear	+	+	÷	+	+	+	* x	÷	+	М	+	A	+	+	+	+	+	+	+	* x	+	+	+	+	+

TABLE A2.	INDIVIDUAL AN	NIMAL TUMOR	l PATHOLOGY	OF	MALE RATS:	VEHICLE C	CONTROL
			(Continued	l)			

WEEKS ON STUDY	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	TOTAL:								
CARCASS ID	0 4 2	0 4 3	0 4 4	0 4 5	0 1 1	0 1 5	0 2 3	0 5 1	0 5 3	0 5 4	0 6 1	0 6 4	0 6 5	0 7 1	0 7 2	0 7 5	0 8 2	0 8 5	0 9 1	0 9 3	1 0 1	1 0 2	1 0 3	1 0 4	1 0 5	TISSUES
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Axillary, leukemia mononuclear Lumbar, leukemia mononuclear Mandibular, leukemia mononuclear Mediastinal, hepatocellular carcinoma,	+++	++++	+ + +	++++	++++	+++++	++++	+++	+++	+ +	++++	+ + X	+++	+ +	++	++++	+ +	+ +	+ +	+ +	+++	++++	+ +	+ +	+++	50 50 1 2 8
metastinan, nepaternian cartinona, metastatic Mesenteric, leukemia mononuclear Pancreatic, leukemia mononuclear Spleen Leukemia mononuclear Thymus Leukemia mononuclear	+	+ +	+ +	+ +	++	+ +	+ +	+++	x + x +	+ +	+ +	x + x + x	+ +	+ X +	+ +	+ +	+ +	+ +	+ M	+ +	+ +	+ +	x + x +	+ X +	+ X +	1 9 6 4 50 14 47 5
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Fibroadenoma, multiple Skin Basosquamous tumor benign Keratoacanthoma Squamous cell carcinoma	M +	M +	M + X	M +	M +	++	M + X	+	++		M +		M +	M +	M +	M +	+ x + x	м + Х	M +	M +	+ X M	M +	+ +	++	* *	20 4 1 49 2 1 1 4
Subcutaneous tissue, fibroma Subcutaneous tissue, osteosarcoma Subcutaneous tissue, sarcoma MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Skeletal muscle Hepatocellular carcinoma, metastatic NERVOUS SYSTEM																	·····									2
Brain Leukemia mononuclear RESPIRATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 5
Lung Hepatocellular carcinoma, metastatic Leukemia mononuclear Squamous cell carcinoma, multiple Nose	+	++	+++	++	+ +	+	++	++	+ X +	+ +	++	+ X +	++	+ X +	+ +	+ +	+ +	++	+ +	++	+	+	+ X +	+ +	+ X +	50 1 12 1 45 1
Leukemia mononuclear Squamous cell carcinoma, metastatic, skin Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
SPECIAL SENSES SYSTEM Zymbal gland Carcinoma		,																								1 1
URINARY SYSTEM Kidney Leukemia mononuclear Renal tubule, adenoma Urinary bladder Leukemia mononuclear	++	++	+	+ +	+	+	+	++	+	+	+	* x * x	+	+	+	+	+	+	+	+ X +	+	+	+	+	* *	50 9 1 48 3

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF TRIBROMOMETHANE: LOW DOSE

WEEKS ON STUDY	0 4 9	0 7 7	0 8 6	0 8 7	0 8 9	0 8 9	0 9 0	0 9 1	0 9 2	0 9 3	0 9 3	0 9 5	0 9 5	0 9 5	0 9 7	0 9 8	1 0 0	1 0 2	1 0 2	1 0 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	1 8 4	1 9 1	$\frac{1}{2}$	2 0 4	1 9 2	1 1 1	1 1 2	2 0 5	1 8 2	1 5 1	1 6 5	1 9 3	1 4 5	1 6 1	$1 \\ 7 \\ 2$	$\frac{1}{2}$	1 8 3	1 3 1	1 9 5	1 5 3	1 1 3	1 1 4	1 1 5	$\frac{1}{2}$	$\frac{1}{2}$
ALIMENTARY SYSTEM Esophagus Intestine large Intestine small Liver Leukemia mononuclear Neoplastic nodule Mesentery	+ + + + +	M + + + +	M + + + X	M + + X	M + + + X	++++ ++ X	M + + +	+ + + + X	++++++	 + + + + +	+++++	+ + + + X X	+++++	M + + + X	++++++	M + + +	++++++	+ + + + X	+ + + +	++++++	+++++	+ + +	+ + + X	++++++	+ + + +
Pancreas Leukemia mononuclear Acinus, adenoma	+	+ +	+	+	+ + X	+	+	* x	+	+	+	+	+	+	+	+	+	+ +	+	+	+ v	+	+	+	+
Salivary glands Sarcoma Stomach	+++++	+	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	* *	+ +	+ +	+	+ +	+ +	++	++	4 +	+ +	+ +	+ +	+ +
Forestomach, fibrosarcoma CARDIOVASCULAR SYSTEM	_			·						x															
Heart Leukemia mononuclear	+	+	*	*	*	*	+	*	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Adrenai gland Leukemia mononuclear Bilateral, medulla, pheochromocytoma	+	+	*	+	* x	+	+	+ X	+	+	+	+ X	+	+ X	+	+	+	* X	+	+	+	+	+	+	+
benign Medulla, pheochromocytoma benign Islets, pancreatic Adenoma	+	+	+	+	X +	+	+	+	+	+	X +	+	+	+	x +	X +	X +	+	+	+	+	+	X +	+	+
Parathyroid gland Pituitary gland Leukemia mononuclear	M +	+ +	+ +	+ +	м +	+ +	М +	M +	+ +	+ +	М +	М + Х	М +	M +	X + +	M +	M +	+ +	M +	+ +	+ +	+ +	М +	М +	M +
Pars distalis, adenoma Pars distalis, adenoma, multiple Thyroid gland C-cell, adenoma Follicular cell, carcinoma	+	х +	+	+	X +	+	Х M	х +	+	+	Х +	+	+	+	+	Х +	+	+	+	+ X	X +	+	+	+	+
GENERAL BODY SYSTEM Tissue, NOS Adenoma	-																								···
GENITAL SYSTEM Epididymis Mesothelioma benign	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Preputial gland Adenoma Carcinoma Prostate	+	+	+	+	+	+	+	* *	м +	+	+	+	+	м +	+	+ X	+	+	+	+	+	+ м	+	+	+ M
Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma Tunic, mesothelioma benign	++	+ + X	+ + X	+ + X	+ + X	+ +	+ +	+ X	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	++	+ + X	+ + X	+ + X	́м + Х	+ + X	+++	+ + X	+ + X	+ + X

WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	$ \begin{array}{c} 1\\ 0\\ 5 \end{array} $	$\begin{array}{c}1\\0\\6\end{array}$	1 0 6	1 0 6	1 0 6	$\begin{array}{c}1\\0\\6\end{array}$	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	TOTAL:
CARCASS ID	$\frac{1}{2}$ 5	$\frac{1}{3}{2}$	1 3 3	1 3 4	1 3 5	1 4 1	$\frac{1}{4}$	1 4 4	1 4 3	1 5 2	1 5 4	1 5 5		1 6 3	1 6 4	1 7 1	1 7 3	1 7 4	1 7 5	1 8 1	1 8 5	1 9 4	2 0 1	$2 \\ 0 \\ 2$	2 0 3	TISSUES
ALIMENTARY SYSTEM Esophagus Intestine large Intestine small Liver Leukemia mononuclear Neoplastic nodule Mesentery Pancreas Leukemia mononuclear Acinus, adenoma Salivary glands Sarooma Stomach	+++++++++++++++++++++++++++++++++++++++	++++ + + +	++++ + + X+ +	+++++++++++++++++++++++++++++++++++++++	++++ +++++++++++++++++++++++++++++++++	M++++ + + +	M + + + + + + +	++++ ++++ +++++	++++ + + +	++++ + + +	M+++++++++++++++++++++++++++++++++++++	++++ + + +	++++ + + +	+++++++++++++++++++++++++++++++++++++++	++++ + + +	+++++ + X++	++++ + + +	+++++++++++++++++++++++++++++++++++++++	++++ + + +	++++ + + +	++++ + + +	++++ + + +	M++++++++	M + + + + + + + +	M + + + + + + + +	36 50 50 50 2 4 50 2 3 50 50 50
Forestomach, fibrosarcoma CARDIOVASCULAR SYSTEM Heart Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 6
ENDOCRINE SYSTEM Adrenal gland Leukemia mononuclear Bilateral, medulla, pheochromocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 6
benign Medulla, pheochromocytoma benign Islets, pancreatic Adenoma Parathyroid gland Pitutary gland Leukemia mononuclear Pars distalis, adenoma Pars distalis, adenoma, multiple Thyroid gland C-ceil, adenoma Follicular cell, carcinoma	X + + + + + X	+ X + X + X +	+ M +	+ + + X	X + + + +	+ + +	+ +++ +	+ + +	X + + + X +	+ + +	+ M +	+ M +	+ M +	+ + + X +	X + M + +	+ M +	+ + M +	+ M +	+ + + X + X	+ M +	X + M + +	+ X M + +	+ + X +	+ M +	+++++++	$ \begin{array}{c} 1 \\ 10 \\ 50 \\ 3 \\ 20 \\ 48 \\ 1 \\ 10 \\ 2 \\ 49 \\ 1 \\ 3 \\ \end{array} $
GENERAL BODY SYSTEM Tissue, NOS Adenoma								*																		1 1
GENITAL SYSTEM Epididymis Mesothelioma benign Preputial giand Adenoma Carcinoma Prostate Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma Tunic, mesothelioma benign	+ + + X	+ M ++ X	+ + + + X	+ M ++ X	+ M ++ X	+ + + + X	+ + + *	+ M + + X	+ M + + X	+ + X + + X	+ M ++ + X	+ + + *	+ M ++ X	+ + x + + + x	+ + + + + + x	+ + X + + + X	+ M ++ X	+ + + *	+ + + + + X	+ M ++ X	+ + + + + X	+ X + MM + X X	+ + + + X	+ + + + + X	+ + + + + + X	49 1 38 3 2 46 48 50 41 4 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

					æ	on		ueu	.,																
WEEKS ON STUDY	0 4 9	0 7 7	0 8 6	0 8 7	0 8 9	0 8 9	0 9 0	0 9 1	0 9 2	0 9 3	0 9 3	0 9 5	0 9 5	0 9 5	0 9 7	0 9 8	1 0 0	$1 \\ 0 \\ 2$	1 0 2	1 0 3	1 0 5	1 0 5	1 0 5	$1 \\ 0 \\ 5$	$\begin{array}{c}1\\0\\5\end{array}$
CARCASS ID	1 8 4	1 9 1	$\frac{1}{2}$	2 0 4	1 9 2	1 1 1	$\frac{1}{2}$	2 0 5	$\frac{1}{8}$	1 5 1	1 6 5	1 9 3	1 4 5	1 6 1	1 7 2	$\frac{1}{2}$	1 8 3	1 3 1	1 9 5	1 5 3	1 1 3	1 1 4	1 1 5	$\frac{1}{2}$	$\frac{1}{2}{4}$
HEMATOPOIETIC SYSTEM Bone marrow Leukemia mononuclear Lymph node Mandibular, leukemia mononuclear Mediastinal, leukemia mononuclear	+++	+ +	+ + X X	+ + X X	+ + + X X	+ + X X	+ +	+ + X	+ +	+ +	+ +	+ + X	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +
Mesenteric, leukemia mononuclear Spleen Leukemia mononuclear Thymus Leukemia mononuclear	++	+ +	X + X +	X + X + X + X	* X +	X + X +	+ +	+ X +	+ +	+ +	+ +	* * +	+ +	+ X +	+ +	+ +	+ +	+ X +	+ +	+ +	+ +	+ +	* * +	+ +	+ +
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma, multiple Skin Squamous cell carcinoma Sebaceous gland, adenoma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, fibrosarcoma	+++	M +	M +	M +	M +	+ +	M +	M +	M +	++	M +	+ + X	м +	M +	++	M +	+ +	M +	м +	+ +	м + х	+++	M +	M +	+ +
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Astrocytoma malignant Leukemia mononuciear	+ X	+	+	+ x	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Leukemia mononuclear Nose Carcinoma Trachea	+ - +	+ + + +	+ x + x + + +	+ X + +	+ X + +	+ X + +	+++++	+ X + +	+ + +	+++++	+++++	+ X + +	+ + +	+ X + +	+++++	+++++	+ + +	+ + +	+ + +	+++++	++++	++++	+ X + +	+++++	++++++
SPECIAL SENSES SYSTEM Eye Harderian gland Adenoma Zymbal gland Carcinoma					•						+ x												+		
URINARY SYSTEM Kidney Leukemia mononuclear Urinary bladder	+++	+ +	* *	+ X +	* *	+ +	+++	+ x +	++	+ +	++	* *	+ +	++	++	++	+ +	* *	+ M	++	+ +	÷ +	+ +	++	++

TABLE A2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	RATS:	LOW	DOSE
				(Continued	i)				

WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 6	TOTAL:																
CARCASS ID	$\frac{1}{2}$ 5	1 3 2	1 3 3	1 3 4	1 3 5	1 4 1	1 4 2	1 4 4	1 4 3	1 5 2	1 5 4	1 5 5	1 6 2	1 6 3	1 6 4	1 7 1	1 7 3	1 7 4	1 7 5	1 8 1	1 8 5	1 9 4	2 0 1	2 0 2	2 0 3	TISSUES
HEMATOPOIETIC SYSTEM Bone marrow Leukemia mononuclear Lymph node Mandibular, leukemia mononuclear Mediastinal, leukemia mononuclear	+++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ M	+ +	++	+ м	++	+ +	++	+ +	+ +	+ +	++	50 1 48 5 5
Mesenteric, leukemia mononuclear Spieen Leukemia mononuclear Thymus Leukemia mononuclear	+++	+ +	+ М	+ M	+ +	+ +	+ +	+ +	+ +	+ +	+ М	+ М	+ +	3 50 9 46 1												
INTEGUMENTARY SYSTEM Mammary gland Fibroatenoma, multiple Skin Squamous cell carcinoma Sebaceous gland, adenoma Subcutaneous tissue, fibrosarcoma	M + X	M +	M +	M +	M I	M +	М +	* * +	M +	M +	м +	м +	M +	M +	M + X	+ + X	M +	м +	+ +	+ +	+ +	M +	M +	+ +	M + X X	15 1 49 1 1 4 1
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NERVOUS SYSTEM Brain Astrocytoma malignant Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 2
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Leukemia mononuclear Nose	+	+	+	+	+	+	+	+	+	+	+	+	+ M	+	+	+	+	+	+	+ M	++	+++	+	+ м	++	50 1 8 46
Carcinoma Trachea	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
SPECIAL SENSES SYSTEM Eye Harderian gland Adenoma Zymbal gland Carcinoma					*	+++			+ x																	1 3 1 2 2
URINARY SYSTEM Kidney Leukemia mononuclear Urinary bladder	+++	++	+ +	+ +	++	++	++	+++	+ +	++	++	++	++	++	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	++	++	+++	50 6 49

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF TRIBROMOMETHANE: HIGH DOSE

WEEKS ON STUDY	0 3 3	0 3 4	0 3 6	0 4 0	0 4 3	0 4 4	0 4 4	0 5 1	0 5 2	0 5 7	0 7 2	0 7 6	0 7 7	0 8 5	0 8 6	0 8 6	0 8 7	0 8 8	0 9 1	0 9 2	0 9 2	0 9 2	0 9 2	0 9 2	0 9 2
CARCASS ID	2 9 2	2 3 2	2 8 4	2 5 3	2 2 1	2 2 4	2 2 5	2 4 5	2 8 2	2 9 5	2 9 1	2 4 1	2 6 4	2 3 3	2 6 1	3 0 5	3 0 4	2 3 5	3 0 3	2 3 4	2 7 2	2 1 3	2 4 3	2 8 1	2 1 5
ALIMENTARY SYSTEM Esophagus Intestine large Adenocarcinoma	+++	M +	+ +	M +	M +	M +	M +	+++	++++	м +	++++	++++	+	+++	+++	+++	+++	+++	+++	+++	+ +	++++	+++	M +	+ +
Polyp adenomatous Intestine small Mesothelioma malignant	+	+	+	+	+	+	+	ŧ	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+
Liver Hepatocsilular carcinoma Leuksmia mononuclear Mesentery	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+ X	+	+	+	* x	+	+	+	+	+	+
Fat, mesothelioma malignant Pancreas Leukemia mononuclear Mesothelioma malignant	+	+	+	+	+	+	+	X + X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Acinus, adenoma Salivary glands Schwannoma malignant	+	÷	+	+	+	+	+	+	+	M	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
CARDIOVASCULAR SYSTEM Heart Leukemia mononuclear	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+
ENDOCRINE SYSTEM Adrenal gland Leukemia mononuclear Bilateral, medulla, pheochromocytoma benign	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+
Meduila, pheochromocytoma benign Islets, paccreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +
Parathyroid gland Pituitary gland Leukemia mononuclear Pars distalis, adenoma Pars distalis, adenoma, multiple	М +	M +	+ +	M +	M +	М +	M +	+ +	+ +	M M	+ +	M +	M +	+ +	M +	м +	н М	+ + x	+ + X	M +	М +	М +	++	т м	М +
Thyroid gland C-cell, adenoma C-cell, carcinoma	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+ X X
Follicular cell, carcinoma GENERAL BODY SYSTEM None															X										х
GENITAL SYSTEM Epididymis Mesothelioma malignant	-	-	-	-	м	M	M	-	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+ *
Preputial gland Carcinoma Prostate	+	+	+	+	+	+	+	+	+	+	m. +	+	+	+	m. +	+	+	+	+	+	+ +	+	+	+	+
Leukemia mononuclear Seminal vesicle Mesothelioma malignant	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma Tunic, mesothelioma malignant	+	+	+	+	+	+	+	÷ x	+	+	+ X	+	+ X	*	+	*	+ X	*	+ X	+ X	*	*	+ X	*	x x

TABLE A2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	RATS:	HIGH	DOSE
				(Continued	l)				

								(C	on	un	ueo	'														
WEEKS ON STUDY	0 9 2	0 9 3	0 9 3	0 9 5	0 9 5	0 9 6	0 9 6	0 9 6	0 9 6	0 9 9	1 0 2	1 0 3	1 0 3	1 0 4	1 0 5	TOTAL:										
CARCASS ID	2 4 2	2 1 4	2 4 4	2 2 3	2 7 5	2 2 2	2 5 5	2 6 2	2 3 1	2 6 3	3 0 1	2 5 2	3 0 2	2 7 1	2 1 1	2 1 2	2 5 1	2 5 4	2 6 5	2 7 3	2 7 4	2 8 3	2 8 5	2 9 3	2 9 4	TISSUES
ALIMENTARY SYSTEM Esophagus Intestine large	++++	+++	++	 + +	++	+ + +	+++	+++	+++	++++	+++	+++	++++	+ + x	 +	+++	++++	M +	+++	++	+++	 + +	+++	+++	+ + +	42 50
Adenocarcinoma Polyp adenomatous Intestine small	+	+	+	+	+	+	+	+	<u>+</u>	+	+	+	+	Х +	+	+	+	+	+	+	+	X +	+	+	+	1 2 50 2
Mesothelioma malignant Liver Hepatocellular carcinoma Leukemia mononuclear	+	+	+	+	+	+	+	+	X +	+ X	+	+	+	+	+	+	+ X	+	+ X	+	+	+	+	+	+	50 1 5
Mesentery Fat, mesothelioma malignant Pancreas	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	3 1 50
Leukemia mononuclear Mesothelioma malignant Acinus, adenoma	+	L				X			X	x				_				-		-	1	Ŧ	Ŧ			1 2 1 48
Salivary glands Schwannoma malignant Stomach	+	+	х +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 1 50
CARDIOVASCULAR SYSTEM Heart Leukemia mononuclear	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	50 2
ENDOCRINE SYSTEM Adrenal giand Leukemia mononuclear Bilateral, medulla, pheochromocytoma	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	50 3
benign Medulla, pheochromocytoma benign Islets, pancreatic	+	+	+	+	+	X +	÷	+	X +	+	+	х +	+	+	+	+	+	х +	X +	+	X +	+	X +	+	+	2 6 50 1
Adenoma Parathyroid gland Pituitary gland Leukemia mononuclear	M +	M +	M +	м +	+ +	M +	X + +	M +	+ +	+ м	+ +	M M	М +	M +	M +	+ +	M +	М +	М +	M +	M +	+ +	+ +	M +	M +	18 45 1
Pars distalis, adenoma, multiple Pars distalis, adenoma, multiple Thyroid gland C-cell, adenoma C-cell, carcinoma Follicular cell, carcinoma	+	+	*	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	м	X M	+	+	+	+	1 47 3 1 2
GENERAL BODY SYSTEM																	-									
GENITAL SYSTEM Epididymis Mesothelioma malignant	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	41 2
Preputial gland Carcinoma Prostate	M +	+ +	+ +	+ +	м +	+ +	+ +	+ +	+ +	++++	+	+	* * +	+ +	+ +	++	+ +	+	+ +	+ +	+ +	м +	+ +	+	+	34 1 50 1
Leukemia mononuclear Seminal vesicle Mesothelioma malignant Testes	++	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	* +	+ +	++	+ +	50 1 50												
Bilateral, interstitial cell, adenoma Interstitial cell, adenoma Tunic, mesothelioma malignant	x	x	x	x	x	X	X	x	x x	X	x	x	x	* X	x	x	x	x	x	x	X	x	x	x	x	29 8 4

TABLE A2.	INDIVIDUAL ANIMAI	TUMOR	PATHOLOGY	OF	MALE	RATS:	HIGH DO	SE
			(Continued	l)				

WEEKS ON STUDY	0 3 3	0 3 4	0 3 6	0 4 0	0 4 3	0 4 4	0 4 4	0 5 1	0 5 2	0 5 7	0 7 2	0 7 6	0 7 7	0 8 5	0 8 6	0 8 6	0 8 7	0 8 8	0 9 1	0 9 2	0 9 2	0 9 2	0 9 2	0 9 2	0 9 2
CARCASS ID	2 9 2	2 3 2	2 8 4	2 5 3	2 2 1	2 2 4	2 2 5	2 4 5	2 8 2	2 9 5	2 9 1	2 4 1	2 6 4	2 3 3	2 6 1	3 0 5	3 0 4	2 3 5	3 0 3	2 3 4	2 7 2	2 1 3	2 4 3	2 8 1	2 1 5
HEMATOPOIETIC SYSTEM Bone marrow Leukemia mononuciear	-	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м
Lymphoma malignant lymphocytic Lymph node Carcinoma, metastatic, thyroid gland	+	÷	+	+	+	+	+	+	+	X +	+	+	М	+	+	+	+	+	+	+	+	+	+	+	*
Carcinoma, metastatic, lung Mandibular, leukemia mononuclear Mediastinal, leukemia mononuclear Mediastinal, lymphoma malignant														X	X X				x						
lymphocytic Mesenteric, leukemia mononuclear Pancreatic, leukemia mononuclear										X					x				X X						
Spleen Leukemia mononuclear Mesothelioma malignant	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	*	+	+	+	* X	+	+	+	+	+	+
Thymus Leukemia mononuclear	+	+	+	+	М	М	М	М	+	М	+	+	+	+	М	+	+	+	* x	+	+	+	+	+	+
INTEGUMENTARY SYSTEM Mammary gland Skin	M +	+++	M +	м +	М +	м +	M +	++++	+ +	M +	+ +	+ +	+ +	M +	M +	м +	+ +	M +	м +	M +	м +	+++++	++++	м +	+++
MUSCULOSKELETAL SYSTEM Bone Skeletai muscle Mesothelioma malignant	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Leukemia mononuclear	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma Carcinoma, metastatic, thyroid gland Leukemia mononuclear														X	x				x						x
Lymphoma malignant lymphocytic Nose Trachea		- +	- +	- +	- +	- +	- +	 +	- +	x +	м +	+ +	 + +	+ +	+ +	M +	+ +	+ +	+ +						
SPECIAL SENSES SYSTEM Harderian gland Zymbal gland	-	• •									+	 +													
Carcinoma URINARY SYSTEM	_											X													
Kidney Leukemia mononuclear Renal tubule, adenocarcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	* X X	+	+	+	+	+	+
Urinary bladder Mesothelioma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

) _'

Leukemia mononuclear X 2 INTEGUMENTARY SYSTEM M + + M M + M M + + M + M M + M M + + M	
CARCASS 2 </th <th></th>	
Bone marrow + + + + + + + + + + + + + + + + + + +	
Lymph node + + + + + + + + + + + + + + + + + + +	Bone marrow Leukemia mononuclear
Mardibular, laukemia mononuclear Mediastinal, lymphoma malignant lymphocytic X X 3 Masenteric, laukemia mononuclear Pancreatic, laukemia mononuclear Pancreatic, laukemia mononuclear X X 4 Mesenteric, laukemia mononuclear Pancreatic, laukemia mononuclear Mesenteric, laukemia mononuclear X X X 4 Masenteric, laukemia mononuclear Pancreatic, laukemia mononuclear X X X 4 Mesenteric, laukemia mononuclear Mesenteric, laukemia mononuclear X X X 4 Musculear X X X 4 Mesenteric, laukemia mononuclear X X X 4 Thymus + + + + + + + + + + + + + + + + + + +	Lymph node Carcinoma, metastatic, thyroid gland
Méseiteric, leukemia mononuclear X X 4 Pancreatic, leukemia mononuclear Spleen X X 4 Spleen Leukemia mononuclear X X 1 Mesothelioma malignant + + + + + + + + + + + + + + + + + + +	Mandibular, leukemia mononuclear Mediastinal, leukemia mononuclear Mediastinal, lymphoma malignant
Leukemia mononuclear X X X 5 Mesothelioma malignant Thymus + + + + + + + + + + + + + + + + + + +	Mesenteric, leukemia mononuclear Pancreatic, leukemia mononuclear
INTEGUMENTARY SYSTEM Mammary gland Skin M + + M M + M M + + M + M M + M M + + M M M M M M M M Skin MUSCULOSKELETAL SYSTEM Bone Skletal muscle Mesothelioma malignant NERVOUS SYSTEM Brain Leukemia mononuclear RESPIRATORY SYSTEM	Leukemia mononuclear Mesothelioma malignant Thymus
Skin + + + + + + + + + + + + + + + + + + +	INTEGUMENTARY SYSTEM
Bone Skeletal muscle Mesothelioma malignant + + + + + + + + + + + + + + + + + + +	Skin
Brain + + + + + + + + + + + + + + + + + + +	MUSCULOSKELETAL SYSTEM Bone Skeletai muscle Mesothelioma malignant
	Brain
Lung + + + + + + + + + + + + + + + + + + +	Lung Alveolar/bronchiolar adenoma
Carcinoma, metastatic, thyroid gland Leuksmia mononuclear X X 4 Lymphoma malignant lymphocytic 1	Carcinoma, metastatic, thyroid gland Leukemia mononuclear Lymphoma malignant lymphocytic
	Nose Trachea
SPECIAL SENSES SYSTEM Harderian gland + 2 Zymbal gland 1 Carcinoma 1	Harderian gland Zymbal gland
URINARY SYSTEM + + + + + + + + + + + + + + + + + + +	Kidney Leukemia mononuclear
Renal tubule, adenocarcinoma 1 Urinary bladder + + + + + + + + + + + + + + + + + + +	Urinary bladder

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
Adrenal Gland Medulla: Pheochromocytom	a		
Overall Rates (a)	16/48 (33%)	11/50 (22%)	8/50 (16%)
Adjusted Rates (b)	45.1%	30.0%	49.2%
Terminal Rates (c)	13/32 (41%)	6/30 (20%)	4/11 (36%)
Day of First Observation	611	621	643
Life Table Tests (d)	P = 0.510	P = 0.209N	P = 0.415
Logistic Regression Tests (d)	P = 0.132N	P = 0.110N	P = 0.245N
Cochran-Armitage Trend Test (d)	P = 0.029N	r = 0.11014	F = 0.24014
Fisher Exact Test (d)	F = 0.0231	P = 0.152N	P=0.039N
Preputial Gland: Adenoma			
Overall Rates (a)	4/41 (10%)	2/20 (00)	0/94 (0%)
Adjusted Rates (b)		3/38 (8%)	0/34 (0%)
•	13.3%	11.6%	0.0%
Terminal Rates (c)	4/30 (13%)	2/21 (10%)	0/10 (0%)
Day of First Observation	734	632	
Life Table Tests (d)	P = 0.219N	P = 0.655N	P = 0.274N
Logistic Regression Tests (d)	P = 0.118N	P = 0.573N	P = 0.270 N
Cochran-Armitage Trend Test (d)	P = 0.070 N		
Fisher Exact Test (d)		P = 0.543N	P = 0.083 N
Preputial Gland: Carcinoma			
Överall Rates (a)	6/41 (15%)	2/38 (5%)	1/34 (3%)
Adjusted Rates (b)	18.4%	7.5%	7.7%
Terminal Rates (c)	5/30 (17%)	1/21 (5%)	0/10 (0%)
Day of First Observation	377	680	716
Life Table Tests (d)	P = 0.181N	P = 0.235N	P = 0.336N
Logistic Regression Tests (d)	P = 0.042N	P = 0.160N	P = 0.083N
Cochran-Armitage Trend Test (d)	P = 0.046N		1 - 0.00011
Fisher Exact Test (d)	1 -0.04011	P = 0.158N	P=0.088N
Preputial Gland: Adenoma or Carcinoma			
Overall Rates (a)	10/41 (24%)	5/99 (1900)	1/34 (3%)
Adjusted Rates (b)		5/38(13%)	
	31.4%	18.7%	7.7%
Terminal Rates (c)	9/30 (30%)	3/21 (14%)	0/10 (0%)
Day of First Observation	377 D 000001	632 D 0 000N	716
Life Table Tests (d)	P = 0.077 N	P = 0.288N	P = 0.134N
Logistic Regression Tests (d)	P = 0.008N	P = 0.163N	P = 0.014N
Cochran-Armitage Trend Test (d)	P = 0.006N		D
Fisher Exact Test (d)		P = 0.163N	P = 0.008N
ancreatic Islets: Adenoma			
Overall Rates (a)	4/48 (8%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	12.5%	9.3%	5.3%
Terminal Rates (c)	4/32 (13%)	2/30 (7%)	0/11 (0%)
Day of First Observation	734	679	670
Life Table Tests (d)	P = 0.428N	P = 0.530N	P = 0.554N
Logistic Regression Tests (d)	P = 0.251 N	P = 0.464N	P=0.373N
Cochran-Armitage Trend Test (d)	P = 0.122N		
Fisher Exact Test (d)		P = 0.477N	P = 0.168N
iver: Neoplastic Nodule			
Overall Rates (a)	4/50 (8%)	2/50 (4%)	0/50 (0%)
Adjusted Rates (b)	11.0%	5.8%	0.0%
Terminal Rates (c)	3/34 (9%)	1/30 (3%)	0/11 (0%)
Day of First Observation	5/34 (9%) 610	659	0/11 (0/0)
Life Table Tests (d)			D-0 990N
	P = 0.122N	P = 0.362N	P = 0.220N
Logistic Regression Tests (d)	P = 0.054N	P = 0.320N	P = 0.109N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.037N	P=0.339N	P=0.059N

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
Large Intestine: Adenomatous Polyp or A	Adenocarcinoma	<u> </u>	3
Overall Rates (a)	0/50 (0%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	0.0%	0.0%	18.8%
Terminal Rates (c)	0/34 (0%)	0/30 (0%)	1/11 (9%)
Day of First Observation			527
Life Table Tests (d)	P = 0.008	(e)	P = 0.028
Logistic Regression Tests (d)	P = 0.030	(e)	P = 0.092
Cochran-Armitage Trend Test (d)	P=0.037		
Fisher Exact Test (d)		(e)	P = 0.121
liver: Neoplastic Nodule or Hepatocellul	ar Carcinoma		
Overall Rates (a)	5/50 (10%)	2/50 (4%)	1/50 (2%)
Adjusted Rates (b)	13.5%	5.8%	3.1%
Terminal Rates (c)	3/34 (9%)	1/30 (3%)	0/11 (0%)
Day of First Observation	610	659	636
Life Table Tests (d)	P = 0.194N	P = 0.239N	P = 0.343N
Logistic Regression Tests (d)	P = 0.082N	P = 0.204 N	P = 0.161N
Cochran-Armitage Trend Test (d)	P = 0.060 N		
Fisher Exact Test (d)	0100011	P = 0.218N	P = 0.102N
Mammary Gland: Fibroadenoma			
Overall Rates (a)	5/50 (10%)	1/50 (2%)	0/50 (0%)
Adjusted Rates (b)	14.7%	3.3%	0.0%
Terminal Rates (c)	5/34 (15%)	1/30 (3%)	0/11(0%)
Day of First Observation	734	734	
Life Table Tests (d)	P = 0.057N	P = 0.132N	P = 0.215N
Logistic Regression Tests (d)	P = 0.057N	P = 0.132N	P = 0.215N
Cochran-Armitage Trend Test (d)	P = 0.011N		
Fisher Exact Test (d)		P = 0.102N	P = 0.028 N
Pancreas: Acinar Adenoma			
Overall Rates (a)	1/50 (2%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	2.9%	10.0%	5.0%
Terminal Rates (c)	1/34 (3%)	3/30 (10%)	0/11 (0%)
Day of First Observation	734	734	666
Life Table Tests (d)	P=0.285	P = 0.261	P = 0.563
Logistic Regression Tests (d)	P = 0.417	P = 0.261	P = 0.691
Cochran-Armitage Trend Test (d)	P = 0.610N		
Fisher Exact Test (d)		P=0.309	P = 0.753N
Pituitary Gland/Pars Distalis: Adenoma			
Overall Rates (a)	12/50 (24%)	12/48 (25%)	2/45 (4%)
Adjusted Rates (b)	31.8%	31.9%	11.8%
Terminal Rates (c)	9/34 (26%)	6/28 (21%)	1/11 (9%)
Day of First Observation	586	537	616
Life Table Tests (d)	P = 0.149N	P = 0.508	P = 0.130N
Logistic Regression Tests (d)	P = 0.024N	P = 0.567	P = 0.028N
Cochran-Armitage Trend Test (d)	P = 0.011N		
Fisher Exact Test (d)		P=0.547	P = 0.007 N
ubcutaneous Tissue: Fibroma			
Overall Rates (a)	4/50 (8%)	4/50 (8%)	0/50 (0%)
Adjusted Rates (b)	10.8%	13.3%	0.0%
Terminal Rates (c)	3/34 (9%)	4/30 (13%)	0/11 (0%)
Day of First Observation	514	734	
Life Table Tests (d)	P = 0.253N	P = 0.589	P = 0.214N
Logistic Regression Tests (d)	P = 0.103N	P = 0.620N	P = 0.084N
Cochran-Armitage Trend Test (d)	P = 0.060N		
Fisher Exact Test (d)		P = 0.643N	P=0.059N

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OFTRIBROMOMETHANE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
Subcutaneous Tissue: Fibroma, Sarcoma, or J	Fibrosarcoma		<u> </u>
Overall Rates (a)	5/50 (10%)	5/50 (10%)	0/50 (0%)
Adjusted Rates (b)	13.4%	15.6%	0.0%
Terminal Rates (c)	3/34 (9%)	4/30 (13%)	0/11 (0%)
Day of First Observation	514	659	0,11 (0,0)
Life Table Tests (d)	P = 0.195N	P = 0.582	P = 0.158N
Logistic Regression Tests (d)	P = 0.061 N	P = 0.609N	P = 0.048N
		F = 0.00914	F = 0.0401
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.036N	P = 0.630N	D0.099N
Fisher Exact Test(d)		P=0.630N	P = 0.028N
Sestis: Adenoma			
Overall Rates (a)	46/50 (92%)	45/50 (90%)	37/50 (74%)
Adjusted Rates (b)	100.0%	97.8%	100.0%
Terminal Rates (c)	34/34 (100%)	29/30 (97%)	11/11(100%)
Day of First Observation	429	537	499
Life Table Tests (d)	P<0.001	P = 0.432	P<0.001
Logistic Regression Tests (d)	P = 0.234N	P = 0.134N	P = 0.250N
Cochran-Armitage Trend Test (d)	P = 0.008N		
Fisher Exact Test (d)	4 -0.00011	P = 0.500 N	P=0.016N
Chyroid Gland: C-Cell Adenoma Overall Rates (a)	2/49 (4%)	1/49 (2%)	3/47 (6%)
Adjusted Rates (b)	5.7%	3.3%	13.2%
Terminal Rates (c)	1/34 (3%)	1/30 (3%)	0/9 (0%)
Day of First Observation	688	734	603
Life Table Tests (d)	P = 0.152	P = 0.532N	P = 0.209
Logistic Regression Tests (d)	P=0.303	P = 0.488N	P = 0.383
Cochran-Armitage Trend Test (d)	P = 0.383		
Fisher Exact Test (d)		P = 0.500 N	P = 0.480
Thyroid Gland: C-Cell Adenoma or Carcinom	a		
Overall Rates (a)	2/49 (4%)	1/49 (2%)	4/47 (9%)
Adjusted Rates (b)	5.7%	3.3%	16.5%
Terminal Rates (c)	1/34 (3%)	1/30 (3%)	0/9 (0%)
Day of First Observation	688	734	603
Life Table Tests (d)		-	
	P = 0.065	P = 0.532N	P = 0.107
Logistic Regression Tests (d)	P = 0.166	P = 0.488N	P = 0.233
Cochran-Armitage Trend Test (d)	P = 0.224		
Fisher Exact Test (d)		P = 0.500 N	P = 0.319
hyroid Gland: Follicular Cell Carcinoma			
Overall Rates (a)	0/49 (0%)	3/49 (6%)	2/47 (4%)
Adjusted Rates (b)	0.0%	9.7%	6.5%
Terminal Rates (c)	0/34 (0%)	2/30 (7%)	0/9 (0%)
Day of First Observation	0/0=(0/0)	721	600
Life Table Tests (d)	P = 0.054	P = 0.103	P = 0.188
Logistic Regression Tests (d)	P = 0.134	P = 0.114	P = 0.229
Cochran-Armitage Trend Test (d)	P = 0.190	D 0.101	D 0.007
Fisher Exact Test (d)		P = 0.121	P=0.237
lematopoietic System: Mononuclear Leukemi	a		
Overall Rates (a)	14/50 (28%)	9/50 (18%)	5/50 (10%)
Adjusted Rates (b)	34.8%	20.4%	27.8%
Terminal Rates (c)	9/34 (26%)	1/30 (3%)	2/11 (18%)
Day of First Observation	483	600	600
Life Table Tests (d)	P = 0.190N	P = 0.193N	P = 0.364N
Logistic Regression Tests (d)	P = 0.0190 N P = 0.019N		
		P = 0.200N	P = 0.048N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.015N	P = 0.171N	P = 0.020N

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
All Sites: All Mesothelioma			
Overall Rates (a)	2/50 (4%)	1/50 (2%)	4/50 (8%)
Adjusted Rates (b)	5.9%	3.3%	14.4%
Terminal Rates (c)	2/34 (6%)	1/30 (3%)	0/11 (0%)
Day of First Observation	734	734	356
Life Table Tests (d)	P = 0.076	P = 0.544N	P = 0.121
Logistic Regression Tests (d)	P = 0.247	P = 0.544N	P = 0.337
Cochran-Armitage Trend Test (d)	P = 0.238		
Fisher Exact Test (d)		P = 0.500N	P = 0.339

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 100 mg/kg and vehicle control groups.

TABLE A4a. HISTORICAL INCIDENCE OF LARGE INTESTINE TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Incidence in Vehicle Controls			
on Research Institute			
0/285			
(b) 3/1,873 (0.2%)			
	son Research Institute 0/285		

(a) Data as of April 29, 1987, for studies of at least 104 weeks (b) Includes one adenomatous polyp, NOS, one cystadenoma, NOS, and one adenocarcinoma, NOS

TABLE A4b. HISTORICAL INCIDENCE OF PREPUTIAL GLAND TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

		Incidence in Vehicle Controls				
Study	Adenoma	Carcinoma	Adenoma or Carcinoma			
Historical Incidence at EG&G	Mason Research Insti	itute				
Diglycidyl resorcinol ether	0/50	1/50	1/50			
Diglycidyl resorcinol ether	1/50	(b) 2/50	(b) 3/50			
1,2-Dichloropropane	0/50	(b) 2/50	(b) 2/50			
Chlorodibromomethane	1/50	0/50	1/50			
1-Butyl chloride	1/50	2/50	3/50			
Bromodichloromethane	0/50	2/50	2/50			
TOTAL	3/300 (1.0%)	9/300 (3.0%)	12/300 (4.0%)			
SD (c)	1.10%	1.67%	1.79%			
Range (d)						
High	1/50	2/50	3/50			
Low	0/50	0/50	1/50			
Overall Historical Incidence						
TOTAL	37/1,949 (1.9%)	(e) 42/1,949 (2.2%)	(e) 79/1,949 (4.1%)			
SD (c)	3.01%	2.36%	3.93%			
Range (d)						
High	7/50	5/50	9/50			
Low	0/50	0/50	0/50			

(a) Data as of April 29, 1987, for studies of at least 104 weeks(b) Includes one squamous cell carcinoma

(c) Standard deviation
(d) Range and SD are presented for groups of 35 or more animals.

(e) Includes three squamous cell carcinomas and seven adenocarcinomas, NOS

TABLE A4c. HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS ADMINISTERED CORNOIL BY GAVAGE (a)

	Incidence in Vehicle Controls	
Historical Incidence at EG&G Mason Res	earch Institute	<u></u>
Diglycidyl resorcinol ether	5/50	
Diglycidyl resorcinol ether	6/50	
1,2-Dichloropropane	8/50	
Chlorodibromomethane	6/50	
<i>n</i> -Butyl chloride	11/50	
Bromodichloromethane	8/50	
TOTAL	44/300 (14.7%)	
SD (b)	4.32%	
Range (c)		
High	11/50	
Low	5/50	
Overall Historical Incidence		
TOTAL	321/1,949 (16.5%)	
SD(b)	8.95%	
Range (c)		
High	22/50	
Low	1/50	

(a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

	Incidence in Vehicle Controls					
Study	Adenoma	Carcinoma	Adenoma or Carcinoma			
listorical Incidence at EG&	&G Mason Research Instit	ute				
Diglycidyl resorcinol ether	17/49	0/49	17/49			
Diglycidyl resorcinol ether	17/50	0/50	17/50			
,2-Dichloropropane	19/50	3/50	22/50			
Chlorodibromomethane	12/49	3/49	15/49			
-Butyl chloride	18/48	1/48	19/48			
Bromodichloromethane	13/48	4/48	17/48			
TOTAL	96/294 (32.7%)	11/294 (3.7%)	107/294 (36.4%)			
SD(b)	5.58%	3.54%	4.71%			
lange (c)						
High	19/50	4/48	22/50			
Low	12/49	0/50	15/49			
Overall Historical Incidence	e					
TOTAL	(d) 519/1,898 (27.3%)	(e) 38/1,898 (2.0%)	(d,e) 556/1,898 (29.3%)			
SD(b)	10.31%	2.61%	10.48%			
Range (c)						
High	26/48	4/47	26/48			
Low	5/50	0/50	6/50			

TABLE A4d. HISTORICAL INCIDENCE OF ANTERIOR PITUITARY GLAND TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of April 29, 1987, for studies of at least 104 weeks (b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.
(d) Includes 34 chromophobe adenomas and 1 acidophil adenoma

(e) Includes four chromophobe carcinomas and three adenocarcinomas, NOS

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study	50					
Animals removed	50		50		50	
Animals examined histopathologically	50		50		50	
ALIMENTARY SYSTEM	·····		- <u></u>			
Intestine large	(50)		(50)		(50)	
Abscess	1	(2%)				
Hemorrhage		(2%)				(2%)
Parasite		(4%)	5	(10%)	5	(10%)
Cecum, inflammation, chronic active	1	(2%)				(0.01)
Colon, erosion	1	(901)			1	(2%)
Colon, hyperplasia, lymphoid Lymphoid nodule, hyperplasia	1	(2%)	,	(0a)		(001)
Intestine small	(49)		(50)	(2%)	(50)	(2%)
Ileum, fibrosis	(47)		(50)			(2%)
Ileum, necrosis						(2%)
Liver	(50)		(50)		(50)	2 /0 /
Basophilic focus		(56%)		(40%)		(48%)
Clear cell focus				(4%)	- 1	
Degeneration, cystic				(2%)		
Eosinophilic focus	1	(2%)		(18%)	4	(8%)
Fatty change, diffuse	5	(10%)	13	(26%)		(54%)
Fatty change, focal	18	(36%)	36	(72%)	23	(46%)
Focal cellular change				(2%)		
Hepatodiaphragmatic nodule				(2%)		
Hyperplasia, focal		(4%)		(2%)		
Hyperplasia, multifocal	2	(4%)		(4%)		
Inflammation, chronic active		(****		(58%)		(46%)
Mixed cell focus		(20%)		(22%)		(16%)
Necrosis		(14%)		(6%)		(40%)
Bile duct, hyperplasia Mesentery		(78%)		(74%)		(44%)
Artery, necrosis, fibrinoid	(4)	(950)	(4)		(3)	
Fat, inflammation, chronic active		(25%) (25%)	1	(25%)		
Fat, necrosis		(50%)		(25%)	1	(33%)
Pancreas	(50)	(00%)	(50)	(10%)	(50)	(33%)
Acinus, atrophy		(12%)		(18%)		(6%)
Acinus, hyperplasia		(8%)		(4%)		(6%)
Artery, necrosis, fibrinoid		(2%)	-		·	/
Artery, thrombus					1	(2%)
Salivary glands	(50)		(50)		(48)	
Atrophy				(2%)	1	(2%)
Atrophy, focal	1	(2%)		(2%)	-	(0.7.)
Fibrosis				(2%)		(2%)
Inflammation, chronic active				(4%)	3	(6%)
Duct, ectasia Duct, inflammation, chronic active				(10%)	90	(46%)
Duct, metaplasia, squamous				(28%) (30%)		(46%)
Stomach	(49)		(50)		(50)	(00%)
Forestomach, acanthosis		(2%)		(2%)	(00)	
Forestomach, fibrosis	•	(= ·• /		(4%)		
Forestomach, hyperkeratosis	6	(12%)		(16%)	4	(8%)
Forestomach, hyperplasia, basal cell						(6%)
Forestomach, inflammation, chronic active	4	(8%)	4	(8%)		(20%)
Forestomach, necrosis		(6%)				
Forestomach, ulcer		(2%)	5	(10%)	10	(20%)
Glandular, necrosis					1	(2%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

	Vehicle	Control	Low	Dose	High	Dose
CARDIOVASCULAR SYSTEM						
Heart	(50)		(50)		(50)	
Cardiomyopathy		(84%)	,	(78%)		(46%)
ENDOCRINE SYSTEM						
Adrenal gland	(48)		(50)		(50)	
Cyst	(40)			(4%)	(50)	
Thrombus	1	(2%)	4	(470)		
Cortex, hyperplasia		(6%)	1	(2%)		
Cortex, hypertrophy, focal	0		1	(470)	1	(2%)
Cortex, necrosis	1	(2%)	1	(2%)		(2%)
Medulla, hyperplasia		(44%)		(32%)		(12%)
Islets, pancreatic	(48)	· ·	(50)		(50)	(1470)
Hyperplasia	• •	(4%)		(6%)		(4%)
Pituitary gland	(50)	1	(48)	(0,0)	(45)	
Pars distalis, angiectasis		(22%)		(25%)		(2%)
Pars distalis, cyst		(4%)		(4%)	1	(270)
Pars distalis, typerplasia		(18%)		(4%)	15	(33%)
Pars intermedia, hyperplasia	-	(18%)	20	0-101	10	(0070)
Pars nervosa, cyst		(2%)			1	(2%)
Thyroid gland	(49)		(49)		(47)	(270)
Mineralization	(43)		(407			(2%)
Necrosis					_	(2%)
C-cell, hyperplasia	3	(6%)	2	(6%)	1	(470)
Capsule, necrosis, fibrinoid		(2%)	0	(0,6)		
Follicle, cyst	1	(270)			1	(2%)
Follicular cell, hyperplasia						(2%)
SENERAL BODY SYSTEM None			,			
				·····		
ENITAL SYSTEM			<u> </u>			
Epididymis	(45)		(49)		(41)	
Epididymis Inflammation, chronic active					1	(2%)
Epididymis Inflammation, chronic active Preputial gland	(41)		(49) (38)			(2%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis	(41) 2	(5%)	(38)		1 (34)	
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active	(41) 2 7	(17%)	(38)	(29%)	1 (34)	(2%) (29%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization	(41) 2 7 1	(17%) (2%)	(38)		1 (34) 10	(29%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis	(41) 2 7 1 7	(17%)	(38) 11 3	(29%) (8%)	1 (34) 10 7	
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate	(41) 2 7 1 7 (49)	(17%) (2%) (17%)	(38) 11 3 (46)	(8%)	1 (34) 10 7 (50)	(2 9%) (21%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis	(41) 2 7 1 7 (49) 2	(17%) (2%) (17%) (4%)	(38) 11 3 (46)		1 (34) 10 7 (50)	(29%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute	(41) 2 7 1 7 (49) 2 1	(17%) (2%) (17%) (4%) (2%)	(38) 11 3 (46) 4	(8%) (9%)	1 (34) 10 (50) 5	(29%) (21%) (10%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active	(41) 2 7 1 7 (49) 2 2 1 16	(17%) (2%) (17%) (4%) (2%) (33%)	(38) 11 (46) 4 17	(8%) (9%) (37%)	1 (34) 10 7 (50) 5 19	(29%) (21%) (10%) (38%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active Metaplasia, squamous	(41) 2 7 1 7 (49) 2 2 1 16	(17%) (2%) (17%) (4%) (2%)	(38) 11 3 (46) 4 17 6	(8%) (9%) (37%) (13%)	1 (34) 10 7 (50) 5 19 12	(29%) (21%) (10%) (38%) (24%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active Metaplasia, squamous Mineralization	(41) 2 7 1 7 (49) 2 1 16 2	(17%) (2%) (17%) (4%) (2%) (33%) (4%)	(38) 11 3 (46) 4 17 6 1	(8%) (9%) (37%) (13%) (2%)	1 (34) 10 7 (50) 5 19 12 12	(29%) (21%) (10%) (38%) (24%) (2%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active Metaplasia, squamous Mineralization Epithelium, hyperplasia	(41) 2 7 1 7 (49) 2 1 1 16 2	(17%) (2%) (17%) (4%) (2%) (33%)	(38) 11 3 (46) 4 17 6 1 2	(8%) (9%) (37%) (13%)	1 (34) 10 7 (50) 5 19 12 12 1 3	(29%) (21%) (10%) (38%) (24%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active Metaplasia, squamous Mineralization Epithelium, hyperplasia Seminal vesicle	(41) 2 7 1 7 (49) 2 1 16 2 1 (50)	(17%) (2%) (17%) (4%) (2%) (33%) (4%) (2%)	(38) 11 3 (46) 4 17 6 1	(8%) (9%) (37%) (13%) (2%)	1 (34) 10 7 (50) 5 19 12 12	(29%) (21%) (10%) (38%) (24%) (2%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, acute Inflammation, chronic active Metaplasia, squamous Mineralization Epithelium, hyperplasia Seminal vesicle Atrophy	(41) 2 7 1 7 (49) 2 1 16 2 1 (50)	(17%) (2%) (17%) (4%) (2%) (33%) (4%)	(38) 11 3 (46) 4 17 6 1 2	(8%) (9%) (37%) (13%) (2%)	1 (34) 10 7 (50) 5 19 12 1 3 (50)	(29%) (21%) (10%) (38%) (24%) (2%) (6%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active Metaplasia, squamous Mineralization Epithelium, hyperplasia Seminal vesicle Atrophy Inflammation	(41) 2 7 1 7 (49) 2 1 16 2 1 (50) 1	(17%) (2%) (17%) (4%) (2%) (33%) (4%) (2%)	(38) 11 3 (46) 4 17 6 1 2 (48)	(8%) (9%) (37%) (13%) (2%)	1 (34) 10 7 (50) 5 19 12 1 3 (50) 1	(29%) (21%) (10%) (38%) (24%) (2%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active Metaplasia, squamous Mineralization Epithelium, hyperplasia Seminal vesicle Atrophy Inflammation Testes	(41) 2 7 1 7 (49) 2 1 16 2 1 (50)	(17%) (2%) (17%) (4%) (2%) (33%) (4%) (2%)	(38) 11 3 (46) 4 17 6 1 2 (48) (50)	(8%) (9%) (13%) (2%) (4%)	$ \begin{array}{c} 1\\ (34)\\ 10\\ 7\\ (50)\\ 5\\ 19\\ 12\\ 1\\ 3\\ (50)\\ 1\\ (50) \end{array} $	(29%) (21%) (10%) (38%) (24%) (2%) (6%) (2%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active Metaplasia, squamous Mineralization Epithelium, hyperplasia Seminal vesicle Atrophy Inflammation Testes Spermatocele	(41) 2 7 1 7 (49) 2 1 16 2 1 (50) 1 (50)	(17%) (2%) (17%) (4%) (2%) (33%) (4%) (2%) (2%)	(38) 11 3 (46) 4 17 6 1 2 (48) (50) 1	(8%) (9%) (13%) (2%) (4%)	$ \begin{array}{c} 1\\ (34)\\ 10\\ 7\\ (50)\\ 5\\ 19\\ 12\\ 1\\ 3\\ (50)\\ 1\\ (50)\\ 1 \end{array} $	(29%) (21%) (10%) (38%) (24%) (2%) (6%) (2%) (2%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active Metaplasia, squamous Mineralization Epithelium, hyperplasia Seminal vesicle Atrophy Inflammation Testes Spermatocele Interstitial cell, hyperplasia	(41) 2 7 1 7 (49) 2 1 16 2 1 (50) 1 (50) 37	(17%) (2%) (17%) (4%) (2%) (33%) (4%) (2%) (2%) (2%)	(38) 11 3 (46) 4 17 6 1 2 (48) (50) 1 39	 (8%) (9%) (37%) (13%) (2%) (4%) 	1 (34) 10 7 (50) 5 19 12 1 3 (50) 1 (50) 1 39	 (29%) (21%) (10%) (38%) (24%) (2%) (6%) (2%) (2%) (2%) (2%) (78%)
Epididymis Inflammation, chronic active Preputial gland Fibrosis Inflammation, chronic active Mineralization Necrosis Prostate Fibrosis Inflammation, acute Inflammation, chronic active Metaplasia, squamous Mineralization Epithelium, hyperplasia Seminal vesicle Atrophy Inflammation Testes Spermatocele	(41) 2 7 1 7 (49) 2 1 16 2 1 (50) 1 (50) 37	(17%) (2%) (17%) (4%) (2%) (33%) (4%) (2%) (2%)	(38) 11 3 (46) 4 17 6 1 2 (48) (50) 1 39 38	(8%) (9%) (13%) (2%) (4%)	1 (34) 10 7 (50) 5 19 12 12 1 3 (50) 1 (50) 1 39 33	(29%) (21%) (10%) (38%) (24%) (2%) (6%) (2%) (2%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle	Control	Low	Dose	High	Dose
HEMATOPOIETIC SYSTEM					·····	
Lymph node	(50)		(48)		(49)	
Lumbar, pigmentation		(2%)	(10)			(2%)
Mandibular, infiltration cellular, plasma cell			4	(8%)	-	(22,00)
Mandibular, necrosis	-			(2%)		
Mediastinal, angiectasis	2	(4%)	-	(=)	3	(6%)
Mediastinal, congestion	-		1	(2%)		(2%)
Mediastinal, depletion lymphoid			-	(2%)		(2%)
Mediastinal, hemorrhage	1	(2%)	•	(2,0)		(2%)
Mediastinal, pigmentation		(4%)				(24%)
Mesenteric, angiectasis		(2%)			12	(4470)
Mesenteric, infiltration cellular, mast cell	•				9	(4%)
Pancreatic, angiectasis	1	(2%)			4	(4170)
Pancreatic, pigmentation	1	~~ /U /			1	(2%)
Spleen	(50)		(50)		(50)	(270)
Cyst	(00)			(2%)	(00)	
Depletion lymphoid			1	(270)		(001)
Fibrosis			0	(101)	4	(8%)
Fibrosis Hematopoietic cell proliferation	20	(60%)	-	(4%) (72%)	05	1700
Infarct	30	(00%)	30	(1270)		(70%)
Pigmentation	1	(2%)	9	(4%)	1	(2%)
Thymus	(47)	(470)	(46)	(470)	(41)	
Epithelial cell, hyperplasia		(4%)	(40)		(41)	
Spinienal cent, hyperplasia		(me770)				
NTEGUMENTARY SYSTEM						
Mammary gland	(20)		(15)		(19)	
Galactocele		(5%)	(10)		(20)	
Skin	(49)	(0,0)	(49)		(50)	
Acanthosis		(2%)	(+3)		(00)	
Cvst	1		1	(2%)		
Cyst epithelial inclusion	1	(2%)	1	(470)		
Hemorrhage	1	(470)			1	(2%)
Hyperkeratosis	n	(4%)	1	(2%)	1	4701
Inflammation, chronic active	4	(-270)		(2%)		
Necrosis	9	(4%)	J	(070)	0	(4%)
	2	(1777)	1	(20)	2	(4)70)
Subcutaneous tissue, necrosis			1	(2%)		
USCULOSKELETAL SYSTEM						
Bone	(50)		(50)		(49)	
Joint, tarsal, hyperostosis		(2%)	(-3)		()	
······						
IERVOUS SYSTEM						
Brain	(50)		(50)		(50)	
	,			(4%)	,	
Hemorrhage				(2%)		
Artery, thrombus			1	(=,-,	2	(4%)
			1		2	(4%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THETWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle	Control	Low	Dose	High	Dose
RESPIRATORY SYSTEM				<u></u>		
Lung	(50)		(50)		(50)	
Bronchiectasis		(2%)	(00)			(2%)
Edema	-	(4%)	3	(6%)	•	
Infiltration cellular, histiocytic		(16%)		(18%)	13	(26%)
Inflammation, acute		(2%)	Ū	(10%)		(4%)
Inflammation, chronic active		(2%)	7	(14%)		(30%)
Inflammation, granulomatous	1	(270)	((1470)		(30%)
Mineralization				(00)		(2%)
		(00)		(2%)		
Alveolar epithelium, hyperplasia	3	(6%)	6	(12%)		(8%)
Bronchiole, inflammation, acute						(6%)
Bronchus, metaplasia, squamous						(2%)
Nose	(45)		(46)		(38)	
Inflammation, chronic active	1	(2%)	3	(7%)	4	(11%)
Metaplasia, squamous					1	(3%)
Nasolacrimal duct, inflammation					1	(3%)
Inflammation, chronic active					1	(50%)
URINARY SYSTEM					1	(50%)
····	(50)		(50)		(50)	(50%)
URINARY SYSTEM Kidney Cyst		(2%)		(2%)	(50)	(50%)
URINARY SYSTEM Kidney		(2%)		(2%)	(50)	
URINARY SYSTEM Kidney Cyst		(2%)	1		(50)	(2%)
URINARY SYSTEM Kidney Cyst Fibrosis	1	(2%)	1	(2%) (2%)	(50) 1 1	(2%) (2%)
URINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal	1		1		(50) 1 1 1	(2%)
URINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Necrosis	1	(2%)	1	(2%)	(50) 1 1 1 2	(2%) (2%) (2%) (4%)
JRINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Necrosis Nephropathy	1		1		(50) 1 1 1 2 45	(2%) (2%) (2%) (4%) (90%)
JRINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Necrosis Necrosis Nephropathy Artery, necrosis, fibrinoid	1	(2%)	1	(2%)	(50) 1 1 2 45 1	(2%) (2%) (2%) (4%) (90%) (2%)
JRINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Necrosis Necrosis Nephropathy Artery, necrosis, fibrinoid Pelvis, inflammation, acute	1	(2%)	1	(2%)	(50) 1 1 1 2 45 1 1	(2%) (2%) (2%) (4%) (90%) (2%) (2%)
JRINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Necrosis Nephropathy Artery, necrosis, fibrinoid Pelvis, inflammation, acute Renal tubule, degeneration	1	(2%)	1	(2%)	(50) 1 1 2 45 1 1 1	(2%) (2%) (4%) (90%) (2%) (2%) (2%)
JRINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Necrosis Nephropathy Artery, necrosis, fibrinoid Pelvis, inflammation, acute Renal tubule, degeneration Transitional epithelium, hyperplasia	1 1 46	(2%)	1 1 50	(2%)	(50) 1 1 1 2 45 1 1 1 1 1	(2%) (2%) (2%) (4%) (90%) (2%) (2%)
URINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Necrosis Nephropathy Artery, necrosis, fibrinoid Pelvis, inflammation, acute Renal tubule, degeneration Transitional epithelium, hyperplasia Urinary bladder	1 1 46 (48)	(2%) (92%)	1	(2%)	(50) 1 1 1 2 45 1 1 1 1 (50)	(2%) (2%) (4%) (90%) (2%) (2%) (2%) (2%)
JRINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Necrosis Nephropathy Artery, necrosis, fibrinoid Pelvis, inflammation, acute Renal tubule, degeneration Transitional epithelium, hyperplasia Urinary bladder Hemorrhage	1 1 46 (48) 3	(2%) (92%) (6%)	1 1 50 (49)	(2%)	(50) 1 1 1 2 45 1 1 1 (50) 2	(2%) (2%) (4%) (90%) (2%) (2%) (2%) (2%) (2%)
URINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Necrosis Nephropathy Artery, necrosis, fibrinoid Pelvis, inflammation, acute Renal tubule, degeneration Transitional epithelium, hyperplasia Urinary bladder Hemorrhage Inflammation, chronic active	1 1 46 (48) 3 1	(2%) (92%) (6%) (2%)	1 1 50 (49)	(2%)	(50) 1 1 1 2 45 1 1 1 (50) 2 2	(2%) (2%) (4%) (90%) (2%) (2%) (2%) (2%) (2%) (4%)
URINARY SYSTEM Kidney Cyst Fibrosis Fibrosis, focal Hydronephrosis Nephropathy Artery, necrosis, fibrinoid Pelvis, inflammation, acute Renal tubule, degeneration Transitional epithelium, hyperplasia Urinary bladder Hemorrhage	1 1 46 (48) 3 1 1	(2%) (92%) (6%)	1 1 50 (49)	(2%)	(50) 1 1 1 2 45 1 1 1 (50) 2 2 3	(2%) (2%) (4%) (90%) (2%) (2%) (2%) (2%) (2%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

APPENDIX B

SUMMARY OF LESIONS IN FEMALE RATS IN

THE TWO-YEAR GAVAGE STUDY OF

TRIBROMOMETHANE

		PAGE
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO- YEAR GAVAGE STUDY OF TRIBROMOMETHANE	101
TABLE B2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	104
TABLE B3	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	114
TABLE B4a	HISTORICAL INCIDENCE OF LARGE INTESTINE TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	117
TABLE B4b	HISTORICAL INCIDENCE OF LIVER TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	117
TABLE B4c	HISTORICAL INCIDENCE OF UTERINE ENDOMETRIAL STROMAL POLYPS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	118
TABLE B4d	HISTORICAL INCIDENCE OF ANTERIOR PITUITARY GLAND TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	119
TABLE B4e	HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	120
TABLE B5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	121

Tribromomethane, NTP TR 350

.

	venicie	Control	Low	Dose	High	Dose
Animals initially in study	50		50		50	
Animals removed	50		50		50	
Animals examined histopathologically	50		50		50	
ALIMENTARY SYSTEM						
Intestine large	(48)		*(50)		(49)	
Adenocarcinoma					2	(4%)
Leukemia mononuclear	1	(2%)				
Polyp adenomatous				(2%)	6	(12%)
Intestine small	(48)		*(50)		(49)	
Leukemia mononuclear		(2%)				
Liver	(50)		(49)		(50)	
Leukemia mononuclear		(18%)	13	(27%)	6	(12%)
Lymphoma malignant histiocytic	1	(2%)				
Neoplastic nodule			4	(8%)		(2%)
Neoplastic nodule, multiple					-	(2%)
Pancreas	(48)		(49)		(50)	
Leukemia mononuclear		(2%)				(2%)
Acinus, adenoma	1	(2%)			2	(4%)
Acinus, adenoma, multiple					1	(2%)
Acinus, carcinoma			1	(2%)		
Salivary glands	(49)		(49)		(50)	
Leukemia mononuclear	1	(2%)				
Stomach	(50)		*(50)		(50)	
Leukemia mononuclear	2	(4%)			1	(2%)
Forestomach, papilloma squamous	1	(2%)				
CARDIOVASCULAR SYSTEM						
Heart	(50)		*(50)		(50)	
Leukemia mononuclear		(14%)		(4%)	,	(8%)
Pericardium, alveolar/bronchiolar carcinoma		(==:;)	-		-	(0.07
metastatic	,				1	(2%)
NDOCDINE SYSTEM					· · · · · · · · · · · · · · · · · · ·	
ENDOCRINE SYSTEM Adrenal gland	/EA\				(E0)	
Leukemia mononuclear	(50)	(12%)	*(50)	(8%)	(50)	(4%)
Medulla, pheochromocytoma benign		(4%)	4	(070)	-	(4%)
Islets, pancreatic	(48)		(49)		(50)	(0.90)
Adenoma		(4%)	(457)		(00)	
Pituitary gland	(48)		(46)		(48)	
Leukemia mononuclear		(6%)		(4%)	(40)	
Pars distalis, adenoma		(54%)		(22%)	16	(33%)
Pars distalis, adenoma, multiple		(6%)		(4%)	10	
Thyroid gland	(50)		(47)		(49)	
C-cell, adenoma		(8%)		(6%)		(4%)
C-cell, carcinoma		(2%)	5		4	
Follicular cell, adenoma		(2%)	1	(2%)	9	(4%)
		(2%)		(2%)		(2%)

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF TRIBROMOMETHANE

None

	Vehicle	Control	Low	Dose	High	Dose
GENITAL SYSTEM	· · · · · · · · ·					
Clitoral gland	(34)		*(50)		(39)	
Adenoma	(01)			(2%)		(5%)
Carcinoma	1	(3%)		(2%)	-	
Ovary	(50)	(0.07	*(50)	(2,0)	(50)	
Granulosa cell tumor	(,		(+-)	(2%)		(2%)
Leukemia mononuclear	6	(12%)		(4%)		(4%)
Uterus	(49)		(50)		(50)	
Leiomyosarcoma		(2%)			,	
Leukemia mononuclear		(2%)	1	(2%)	1	(2%)
Polyp stromal		(18%)		(18%)		(4%)
Polyp stromal, multiple		(2%)	•		-	
Sarcoma stromal		(2%)				
Vagina	*(50)	(= ///	*(50)		*(50)	
Squamous cell carcinoma	(00)			(2%)	(00)	
	· · · · · · · · · · · · · · · · · · ·					
HEMATOPOIETIC SYSTEM Bone marrow	(48)		*(50)		(50)	
Leukemia mononuclear		(2%)	(30)			(2%)
Lymph node	(50)	(270)	*(50)		(49)	(270)
Axillary, leukemia mononuclear	(00)			(4%)	(43)	
Lumbar, leukemia mononuclear	9	(4%)	4	(4970)		
		• •	-	(100)		(00)
Mandibular, leukemia mononuclear		(10%)		(10%)		(2%)
Mediastinal, leukemia mononuclear		(8%)		(8%)		(4%)
Mesenteric, leukemia mononuclear	-	(10%)		(14%)		(4%)
Pancreatic, leukemia mononuclear		(4%)	-	(8%)	1	(2%)
Renal, leukemia mononuclear		(2%)		(4%)		
Spleen	(49)		*(50)		(50)	
Leukemia mononuclear	-	(16%)		(26%)		(12%)
Thymus	(48)		*(50)		(48)	
Leukemia mononuclear		(8%)	1	(2%)	1	(2%)
Lymphoma malignant lymphocytic		(2%)				
Epithelial cell, thymoma, NOS	1	(2%)				
NTEGUMENTARY SYSTEM			·····			····
Mammary gland	(44)		*(50)		(39)	
Adenocarcinoma, multiple		(2%)	(50)		(39)	
Fibroadenoma		(32%)	16	(32%)	¢	(15%)
Fibroadenoma, multiple		(18%)			0	(10%)
Leukemia mononuclear	0	(10%)		(2%) (2%)		
Skin	(50)		۱ *(50)	(270)	(50)	
Subcutaneous tissue, fibrosarcoma		(2%)	(00)		(00)	
Subcutaneous tissue, norosarcoma Subcutaneous tissue, sarcoma	1	(470)	,	(2%)		
Cabcutaneous ussue, sarcoma			I	(470)		
MUSCULOSKELETAL SYSTEM None			~			<u></u>
VERVOUS SYSTEM						
	-		#/ E A \		(FO)	
Brain	(50)		*(50)		(50)	(0.01)
Astrocytoma malignant	-	(07)			1	(2%)
Leukemia mononuclear	3	(6%)				

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle	Control	Low	Dose	High	Dose
RESPIRATORY SYSTEM	······	····			····	
Lung	(50)		*(50)		(50)	
Alveolar/bronchiolar adenoma	2	(4%)	1	(2%)	-	(2%)
Alveolar/bronchiolar carcinoma, multiple					1	(2%)
Carcinoma, metastatic, clitoral gland				(2%)		
Leukemia mononuclear	7	(14%)	10	(20%)	5	(10%)
SPECIAL SENSES SYSTEM None	, <u></u>	- <u></u> .		<u>,</u>	<u>. </u>	
URINARY SYSTEM				<u></u>		<u> </u>
Kidney	(50)		(50)		(50)	
Leukemia mononuclear	7	(14%)	7	(14%)	3	(6%)
Sarcoma						(2%)
Pelvis, transitional epithelium, papilloma						(2%)
Renal tubule, adenoma						(2%)
Urinary bladder	(45)		*(50)		(46)	
Leukemia mononuclear	2	(4%)			2	(4%)
SYSTEMIC LESIONS				<u> </u>		
Multiple organs	*(50)		*(50)		*(50)	
Lymphoma malignant lymphocytic		(2%)				
Leukemia mononuclear		(18%)	13	(26%)	6	(12%)
Lymphoma malignant histiocytic	1	(2%)				
ANIMAL DISPOSITION SUMMARY						
Animals initially in study	50		50		50	
Terminal sacrifice	33		28		28	
Natural death	4		6		2	
Moribund sacrifice	13		16		19	
Gavage death					1	
IUMOR SUMMARY						
Total animals with primary neoplasms **	47		37		38	
Total primary neoplasms	93		68		60	
Total animals with benign neoplasms	41		28		33	
Total benign neoplasms	74		49		47	
Total animals with malignant neoplasms	17		18		10	
Total malignant neoplasms	18		18		12	
Total animals with secondary neoplasms ***			1		1	
Total secondary neoplasms			1		1	
Total animals with neoplasms	-		_		_	
uncertain benign or malignant	1		1		1	
Total uncertain neoplasms	1		1		1	

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. ** Primary tumors: all tumors except secondary tumors *** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE B2.	INDIVIDUAL	ANIMAL TUMOR	PATHOLOGY	OF FEMALE RA	TS IN THE TWO-YEAR
	GAVA	AGE STUDY OF T	RIBROMOMETH	HANE: VEHICLE	CONTROL

WEEKS ON STUDY	0 7 7	0 8 8	0 9 0	0 9 0	0 9 0	0 9 2	0 9 2	0 9 3	0 9 5	0 9 5	0 9 6	0 9 6	0 9 8	0 9 9	1 0 1	1 0 5	1 0 6								
CARCASS ID	4 0 5	4 0 2	3 4 3	3 5 5	4 0 4	3 3 2	3 1 5	3 1 4	3 5 1	3 2 4	3 8 4	3 2 1	3 6 1	3 9 3	3 3 4	3 7 2	3 3 1	3 7 4	3 1 1	3 1 2	3 1 3	3 2 2	3 2 3	3 2 5	3 3 3
ALIMENTARY SYSTEM												-												·	
Esophagus	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	A	+	+	+	+	+	+	+	+
Leukemia mononuclear Intestine small		1		<u>т</u>	<u>ـ</u>	+	1			L.	+	ъ	+	т	т			+	+	+	+	-	1	+	L
Leukemia mononuclear	1 1	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	Ŧ	-	Ŧ	Ŧ	Ŧ	Ŧ	~	A	Ŧ	Ŧ	Ŧ	Ŧ	-	-	Ŧ	Ŧ
Liver	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear							X	X			X			X			х								X
Lymphoma malignant histiocytic Mesenterv						т																	+		
Pancreas	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	М	A	+	+	+	+	+	+	+	+
Leukemia mononuclear	1																								
Acinus, adenoma																			X						
Salivary glands Leukemia mononuclear	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear											*														
Forestomach, papilloma squamous		X																							
CARDIOVASCULAR SYSTEM																						-			
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear							X	X			X			X			X								
ENDOCRINE SYSTEM																									
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear							Х	X						X			X								
Medulla, pheochromocytoma benign Islets, pancreatic	1				1				4.							м									+
Adenoma	, +	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	141	~	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
Parathyroid gland	M	М	+	+	М	+	+	+	+	М	+	М	м	+	М	+	М	М	M	+	+	М	+	М	М
Pituitary gland Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+
Leukema mononuclear Pars distalis, adenoma		x	x	x	x	x			x	x		X		x		x	X	x	x	x	x	x	X		
Pars distalis, adenoma, multiple		~	A	A		A			ñ	•		~		~		A		A	A	A	~	A	4	х	
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
C-cell, adenoma C-cell, carcinoma																									X
Follicular cell, adenoma																								X	
Follicular cell, carcinoma																									
GENERAL BODY SYSTEM																									
None	1																								
GENITAL SYSTEM																									
Clitoral gland	+	м	м	+	+	м	+			м	+	м		1	L	м	м		м	+			т		1
Carcinoma		141	twi	Τ.	x	144	Ŧ	Ŧ	Ŧ	191	Ŧ	141	Ŧ	Ŧ	Ŧ	143	144	Ŧ	141	Ŧ	Ŧ	-	Ŧ	Ŧ	Ŧ
Ovary	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear Uterus	1.						X	X			X						X								
Leiomyosarcoma	+	+	+	+	+	+	+	+	M	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear															~										
Polyp stromal	Į				X							X											X		
Polyp stromal, multiple Sarcoma stromal	x														X										
Sarcoma scromai	A																								

+: Tissue examined microscopically : Not examined -: Present but not examined microscopically I: Insufficient tissue

M: Missing A: Autolysis precludes examination X: Incidence of listed morphology

108	1 0 6	1 0 6	1 0 6	1 0 6	1 0 8	1 0 6	1 0 6	1 0 6	1 0 6	106	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 7	107	1 0 7	107	1 0 7	1 0 7	
33	3 4 1	3 4 2	3 4 4	3 4 5	3 5 2	3 5 3	3 5 4	3 6 2	3 6 3	3 6 4	3	3 7 1	37	375	3 8 2	3 8 5	3 9 2	4 0 1	3 8 1	3 8 3	3 9 1	3 9 4	3 9 5	4 0 3	TOTAL: TISSUES TUMORS
_			<u> </u>				<u> </u>			-															
+	+ +	+++	+++	++	++	++	+ +	++	+ +	+ +	+ +	+++	++	+ +	++++	+ +	++	+ +	++	++	+	м +	++	++	48 48 1
+	+	+	+	+	+	+	+	+	+	+	÷	л + т	+	+	+	+	+	+	+	+	+	+	+	+	48
+	+	+	+	+ X	+	+	+	*	+	+	+	÷ x	+	*	+	+	+	+	+	+	+	+	+	+	50 9 1
+	+	+	+	+	+	+	+	+	+	+ +	+	*	+	+	+	+ +	+	+	+	+	+	+	+	+	4 48 1
+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	49
+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	50 2 1
+	+	+	+	+	+	+	+	+	+	+	+	*	+	*	+	+	+	+	+	+	+	+	+	+	50 7
+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	* *	+	+	+	+	+	+	+	+	+	+	50 6
+	+	+	+	X +	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	x +	2 48 2
M +	× + +	+	M +	+	м +	M M	+++	ж М +	M +	M +	M +	м +	M +	M +	M +	+ +	+ +	M +	M +	+++	++++	M +	M +	++++	21 48
x		x	x	x			x		Y		¥	X		X X	x		x						X	x	3 26 3
+	+	+	*	+	+	+	+	+	÷	+	+	+	+	+	+	+	*	+ X	+	+	+	+	+	*	50 4 1
				x																					
			<u> </u>												· · · ·										
+	+	м	+	+	+	м	+	+	+	+	+	+	+	M	M	M	+	+	M	+	+	M	+	M	34
+	+	+	+	+	+	+	+	+	+	+	+	* X	+	*	+	+	+	+	+	+	+	+	+	+.	50 6
+	+	+	+	+	+	+	+	+	+	+ X	+	÷ x	+ X	+	+ X	+	+ x	+	+ X	+	+	+	+ x	+	49 1 9 1
	6 3 3 5 ++++++++++++++++++++++++++++++++	6 6 3 3 4 5 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + X X	6 6 6 3 3 3 3 4 4 5 1 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + X X X	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6	6 6	6 6	6 6	6 6	6 7 5 1 2 4 5 2 3 4 2 3 4 5 1 1 +	$\hat{6}$	$\hat{6}$	$\hat{6}$ $\hat{7}$ $\hat{7}$ $\hat{7}$ $\hat{8}$ $\hat{5}$ $\hat{1}$ $\hat{3}$	$\hat{6}$	$\hat{6}$	6 7 7 7 8 8 9 0 5 1 3 5 2 5 2 1 +	6 6	6 6	8 6 6 6 6 6 6 6 6 6 6 6 7 7 3	8 6 6 6 6 6 6 6 6 7 7 7 3	6 6	8 6 7

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

WEEKS ON STUDY	0 7 7	0 8 8	0 9 0	0 9 0	0 9 0	0 9 2	0 9 2	0 9 3	0 9 5	0 9 5	0 9 6	0 9 6	0 9 8	0 9 9	1 0 1	1 0 5	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6
CARCASS ID	4 0 5	4 0 2	3 4 3	3 5 5	4 0 4	3 3 2	3 1 5	3 1 4	3 5 1	3 2 4	3 8 4	3 2 1	3 6 1	3 9 3	3 3 4	3 7 2	3 3 1	3 7 4	3 1 1	3 1 2	3 1 3	3 2 2	3 2 3	3 2 5	3 3 3
HEMATOPOIETIC SYSTEM Bone marrow Leukemia mononuclear Lymph node Lumbar, leukemia mononuclear Mandibular, leukemia mononuclear Mediastinal, leukemia mononuclear Mesenteric, leukemia mononuclear	++	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	++	+ + X X X	++	+ +	+ + X X	+++	A +	+ + XXXX X	+ +	++	+ +	++	+ +	++	++	++
Pancreatic, leukemia mononuclear Renal, leukemia mononuclear Spleen Leukemia mononuclear Thymus Leukemia mononuclear Lymphoma malignant lymphocytic Epithelial cell, thymoma, NOS	++	+ M	+ +	+ +	+ +	+ +	+ x + x	+ x + x + x	+ +	+ +	+ X + X	+ +	+ +	x + x +	+ +	A +	+ X M	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma, multiple Fibroadenoma Fibroadenoma, multiple Skin Subcutaneous tissue, fibrosarcoma	+ X +	+ X +	+ X +	+ X +	+ X +	+ X +	+	+	++	+	+	+ X +	+ X +	+	м +	M +	+	++	+ X +	+ X +	+	+ X +	+	+	+ X +
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Leukemia mononuclear	+	+	+	+	+	+	*	+	+	+	+	+	+	*	+	+	*	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Leukemia mononuclear Nose Trachea	+ ++	+ + + +	+ + +	+ + + +	+ + + +	++++	+ X + +	+ X + +	++++	+ M +	+ X + +	++++	+ M +	+ X X + +	+++	++++	+ X + +	++++	* * +	++++	++++	+ + +	+ + + +	++++	+ + +
SPECIAL SENSES SYSTEM Harderian gland								+		·····															
URINARY SYSTEM Kidney Leukemia mononuclear Urinary bladder Leukemia mononuclear	++++	+ +	+ +	+ +	+ +	+ +	* *	* *	+ +	+ +	* *	+ +	+ +	* *	+ M	+ A	× A	+ +	+ A	+ + +	+ +	+ +	+ +	+ +	+ +

WEEKS ON STUDY	1 0 6	1 0 6	1 0 6	1 0 8	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 7	1 0 7	$\begin{array}{c}1\\0\\7\end{array}$	1 0 7	1 0 7	1 0 7	TOTAL:								
CARCASS ID	3 3 5	3 4 1	3 4 2	3 4 4	3 4 5	3 5 2	3 5 3	3 5 4	3 6 2	3 6 3	3 6 4	3 6 5	3 7 1	-3 7 3	3 7 5	3 8 2	3 8 5	3 9 2	4 0 1	3 8 1	3 8 3	3 9 1	3 9 4	3 9 5	4 0 3	TISSUES
HEMATOPOIETIC SYSTEM Bone marrow Leukemia mononuclear Lymph node Lumbar, leukemia mononuclear Maadibular, leukemia mononuclear Mesenteric, leukemia mononuclear	· + +	++	++	++	M +	++	++	++	++	+++	++	++	+x + x x x x x x x x x x x x x x x x x	+ +	+ + X X	++	+ +	+ +	+	++	+	+	+ +	+ +	+	48 1 50 2 5 4 5
Pancreatic, leukemia mononuclear Renal, leukemia mononuclear Spleen Leukemia mononuclear Thymus Leukemia mononuclear Lymphoma maligmant jumphocytic Epithelial cell, thymoma, NOS	++	+ +	+ X +	+ +	+ +	+ +	X	+ +	+ X + X	+ +	+ +	+ +	+ +	2 1 49 8 48 48 4 1 1												
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma, multiple Fibroadenoma, multiple Skin Subcutaneous tissue, fibrosarcoma	+	M +	+ X +	+	+	+ X +	м +	M +	+ X +	+	+ X +	+ X +	+	+	+	+ X +	м +	+	+ X +	+ X +	+ X +	+	+ + X	+ X +	+ X +	44 1 14 8 50 1
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NERVOUS SYSTEM Brain Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 3
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Leukemia mononuclear Nose Trachea	+	++++	++++	+ + +	++++	+ + + +	+ ++	+++++	+ + +	++++	+++++	++++	+ X + +	++++	+ X + +	+ + + +	+ + +	+ + +	+ + + +	++++	+ + +	++++	+ + + +	+++++	++++	50 2 7 48 50
SPECIAL SENSES SYSTEM Harderian gland	•																									1
URINARY SYSTEM Kidney Leukemia mononuclear Urinary bladder Leukemia mononuclear	+ M	+ +	+ +	++	+ +	* * *	++	+ X + X	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	50 7 45 2							

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF TRIBROMOMETHANE: LOW DOSE

WEEKS ON	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	1	1	1	1
STUDY	07	0 8	1 9	4 0	4 9	7 5	7 7	8 3	8 3	8 4	8 7	8 7	8 9	8 9	9 0	9 0	9 2	9 4	9 7	9 9	9 9	0 4	0 5	0 6	0 6
CARCASS ID	4 9 5	472	4 4 2	4 1 1	5 0 5	5 0 4	4 2 2	4 5 5	5 0 3	4 7 5	4 5 4	4 8 2	4 1 3	4 6 5	4 4 3	4 8 5	4 9 3	473	4 5 1	4 1 4	4 9 2	4 3 4	4 3 2	4 1 2	4 1 5
ALIMENTARY SYSTEM Esophagus	+	+	M	 		 		-				-		м						 +	+		+		+
Intestine large Polyp adenomatous	+	÷	Ä	÷	÷	÷	÷	÷	÷	÷	Ă	÷	÷	+	÷	÷	÷	•	+	•	÷	•	·		,
Intestine small Liver Leukemia mononuclear	++	++	A M	++	+ +	+ +	+ +	+ + X	+ + X	+ + X	A + X	+ +	+ +	+ + X	+ + X	+ * X	++	*	*	+	*	+	+	+	+
Neoplastic nodule Mesentery Pancreas	+	+	+	+	+	+	м	+	+	+	+	+	+++	+	+	+++	+	+	+	+	+	X +	X +	+	+
Acinus, carcinoma Salivary glands Stomach	+	+ +	м +	++	+	++	+++++++++++++++++++++++++++++++++++++++	+	+	+++	+++	+++	++++	+++	+ +	++	++	+	+++	++	++++	+	+++	+	+++
CARDIOVASCULAR SYSTEM Heart	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+								
Leukemia mononuclear									*	*	•														
ENDOCRINE SYSTEM Adrenal gland Leukemia mononuclear	+	+	+	+	+	+	+	+	м	*	+	+	+	* x	+	+ X	+				*				
Islets, pancreatic Parathyroid gland	+ M	++	+ M	+ M	+ +	+	M M	+ M	+ M	4 + +	+++	+++	ф м	++++	+ м	÷ M	+	+	+	+	÷	+	+	+	+
Pituitary gland Leukemia mononuclear	M	÷	+	+	Ŧ	M M	+	+	+	Ŧ	+	+	+	÷	+	+	÷	÷	+	+	‡	+	M	+	+
Pars distalis, adenoma							x				x				x			^			~	v		v	
Pars distalis, adenoma, multiple Thyroid gland	+	+	м	м	+	+	+	+	*	* x	+	+	+	+	+	+	+	+	+	+	+	х +	+	Х +	+
C-cell, adenoma Follicular cell, adenoma Follicular cell, carcinoma									X	x															
GENERAL BODY SYSTEM None																									
GENITAL SYSTEM Clitoral gland	-	-	-	_	-	÷	м	+	+	+	+	+	м	м	м	+	+					-			
Adenoma Carcinoma																	x								
Ovary Granulosa cell tumor	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+					
Leukemia mononuclear Uterus	+	+	+	+	+	+	+	+	+	X +	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	÷
Leukemia mononuclear Polyp stromal							x	x	x									x				x		x	
Vagina Squamous cell carcinoma																					+				
HEMATOPOIETIC SYSTEM Bone marrow	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+								
Lymph node Axillary, leukemia mononuclear	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+
Mandibular, leukemia mononuclear Mediastinal, leukemia mononuclear									X	x				X		x		XXXXX							
Mesenteric, leukemia mononuclear Pancreatic, leukemia mononuclear								x	XX	x				X X X		x		XX	x						
Renal, leukemia mononuclear Spleen									X						T		L.				+			-	
Leukemia mononuclear					Ţ	Ţ	Ţ	x	*	*	x	Ť	Ţ	*	×	x	Ţ	x	x		x			Ŧ	
Thymus Leukemia mononuclear	+	M	М	201	+	+	+	+	*	+	M	+	*	+	+	+	+								
INTEGUMENTARY SYSTEM Mammary gland	м	м	M	м	+	+	м	+	+	+	м	+	t	+	÷	+	+	<u>+</u>	+	ţ	+	÷	÷	<u>+</u>	+
Fibroadenoma Fibroadenoma, multiple Leukemia mononuclear													•		~			v		^		•	л	•	~
Skin Subcutaneous tissue, sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	*	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+								
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+								
RESPIRATORY SYSTEM	-	 	м	*	*			+	<u>ــــــــــــــــــــــــــــــــــــ</u>	 +	 	 		•	 +		+	·	+				+		
Alveolar/bronchiolar adenoma Carcinoma, metastatic, clitoral gland		Ŧ	141	τ'	Ŧ	-	٣	Ŧ	*	*	*	+	*	7	x	٣	x		7				٠		
Leukemia mononuclear Nose	_	-	_	_	_	+	+	X	X	X +	X	÷	÷	X	X +	X +	+		x						
Trachea	+	+	M	+	+	÷	÷	÷	÷	÷	÷	÷	+	+	÷	÷	÷	+	+	+	+	+	+	+	+
SPECIAL SENSES SYSTEM																		+			+				
Eye																		_	_						
	+	+	+	+	+	+	+	+	*	+	+	+	+	* *	+	+	+	+ x	+	+	±	+	+	+	+

WERG ON D 1									•																		
Limits of the second	WEEKS ON STUDY																									1 0 6	
Excelaring Transport +															4 6 2											ō	TISSUES TUMORS
Liver, monomolear who have been an analysis of the second	Esophagus Intestine large Polyp adenomatous	+		+	+	+	+	+	+	+	+	+	+	+ + x	+	+	+	+	+	+	+	+	+	+	+	+	18
Actions & derisons & String & Strin	Liver Leukemia mononuclear Neoplastic nodule Mesentery	+	+ X	+	+	+	+	+	+	*	+	+	+	+	+	* x	+ X	*	+	+	+	+	+	+	+	+	49 13 4 3
Heart clarkami mononuclear 16 ENDOCRINE SYSTEM Anna igian Charla giana per clarka, sacrestar per clarka, sacrestar per clarka, sacrestar per clarka, sacrestar per clarka, sacrestar per clarka, second per clarka, second	Acinus, carcinoma Salivary glands	++	+	+ + +	+ + +	+	+	+ + +	+	+	+	+	+	+	+	+	+	+	+ + +	+	+	+	* *	+	+	+ +	1 49
Advands enore training and training enore end enore end end enore training enore end end end end end end end end end en	Heart							_																			16 2
None +	Adrenal gland Leukemia mononuclear Islets, pancreatic Parathyroid gland Pituitary gland Leukemia mononuclear Pars distalis, adenoma Pars distalis, adenoma, multiple Thyroid gland C-ceill, adenoma Follicular ceil, adenoma	+++++++++	+ + +	+	+ + +	+	+ + M +	+++++++	+ + x +	++++++++	++++	+++++	+ + X +	+++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++ + x +	+ + +	+++++	+ + +	+++++++		+ + +	+ + X	4 49 16 46 2 10 2 47 3 1
Citional giad Cartinoma Cartinoma Cartinoma Cartinoma Cartinoma Cartinoma Cartinoma Cartinoma Subrutaneouclear FUNDATES SYSTEM Some Subrutaneouclear Subrutaneouc	None	-																							<u></u>		
Leukemia mononuclear Utarus Laukemia mononuclear Polyp stromal Yagina Squanou cell carcinoma HEMATOPOLETIC SYSTEM Bone marrow Lymph node Artilary, leukemia mononuclear Mediatular, leukemia mononuclear Pancreatic, leukemia mononuclear Thymas Leukemia mononuclear Musculuser Spleen Leukemia mononuclear Musculuser Subculase mis mononuclear Musculuser Subculase actionar Musculuser Musculuser Subculase actionar Musculuser Subculase actionar Musculuser System Brein Musculuser System Brein Musculuser System Brein Musculuser System Brein Musculuser System Brein Musculuser System Musculuser System Brein Musculuser System Brein Musculuser System Brein Musculuser System Musculuser System Musculuser System Musculuser System Musculuser System Musculuser System Musculuser System Musculuser System Musculuser System Musculuser System Musculuser System Musculuser System Soculuser System	Clitoral gland Adenoma Carcinoma Ovary																		*					_			1 1 20
Bone marrow Lymph node Axillary, leukemia mononuclear Mandbulkeria mononuclear Mandbulkeria mononuclear X Mesenteri, leukemia mononuclear X Renal, leukemia mononuclear X Renal, leukemia mononuclear X Renal, leukemia mononuclear X Renal, leukemia mononuclear X Spin X Renal, leukemia mononuclear X Renal, leukemia mononuclear X Renal, leukemia mononuclear X Spin X Mammary glad + Pibroadenome, multiple X Leukemia mononuclear X Skin X Subutatasous tissue, sarcoma M MUSCULOSKELETAL SYSTEM 1 Brain - Musel of bronchiolar adenoma - Carcinoma, metastatic, citoral gland - Luug draftbronchiolar adenoma - Tractea + + Eye - URINARY SYSTEM + Kidney - Leukemia mononuclear <	Leukemia mononuclear Uterus Leukemia mononuclear Polyp stromal Vagina	+	+ X + X	+	+	+	+ X	+	+ x	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	х +	+	2 50 1 9 2
Pancrestic, leukemia mononuclear X X 4 Splen X X X 2 Splen X X X 13 Leukemia mononuclear X X X 14 Intrecumentaria mononuclear X X X 13 Intrecumentaria mononuclear X X X 14 Mammary gland + + + + + + + + + + + + + + + + + + +	Bone marrow Lymph node Axillary, leukemia mononuclear Mandibular, leukemia mononuclear Mediastinal, leukemia mononuclear	+	+	+	+	+	+		+	+	+	+		+		+ x	+	+	+	+	+	+	+	+	+	+	47 2 5 4
Mammary gland + + + + + + + + + + + + + + + + + + +	Pancreatic, leukemia mononuclear Renal, leukemia mononuclear Spleen Leukemia mononuclear Thymus							+		*		+				X		*							+	+ +	4 28 13 14
Subcutaneous tissue, sarcoms 1 MUSCULOSKELETAL SYSTEM 16 Bone 16 NEEVOUS SYSTEM 17 RESPIRATORY SYSTEM 11 Lung + + + + Alveolar/bronchiolar adenoma 1 17 Carcinome, metastic, citoral gland 1 10 Leukemia mononuclear X X Nose + + + Trachea + + + SPECIAL SENSES SYSTEM + + + Eye + + + UBINARY SYSTEM + + + Kidney + + + + Leukemia nononuclear X X 10 Y + + + + + SPECIAL SENSES SYSTEM + + + + + Kidney + + + + + + Leukemia nononuclear X X 7 7	Mammary gland Fibroadenoma Fibroadenoma, multiple Leukemia mononuclear				+	+	М	*	* x	+	+	+	+	*	+	+	м	*	+	+	*	+	+	+ x	+	+	16 1 1
Bone 16 NERVOUS SYSTEM 17 Brain 17 RESPIRATORY SYSTEM 1 Lung + + + + + + + + + + + + + + + + + + +	Subcutaneous tissue, sarcoma	+	M	+		+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	
RESPIRATORY SYSTEM 1 Lung + + + + + + + + + + + + + + + + + + +	Bone NERVOUS SYSTEM				_																						
Alveolar/bronchiolar adenoma Carcinoma, metastatic, clitoral gland Leukemia mononuclear 1 Nose X X Nose + + + + + + + + + + + + + + 47 SPECIAL SENSES SYSTEM Eye + + + + + + + + 47 URINARY SYSTEM Kidney Leukemia mononuclear + + + + + + + + 50	RESPIRATORY SYSTEM																										
SPECIAL SENSES SYSTEM + 3 URINARY SYSTEM + + + + + 50 Leukemia mononuclear X - - - 7	Alveolar/bronchiolar adenoma Carcinoma, metastatic, clitoral gland Leukemia mononuclear Nose			+	+	+	+	+	+	+ x +	+	+	+	+	+		+	+	+	+	+	+	+		+	+	1 10 12
Kidney + + + + + + + + + + + + + + + + + + +	SPECIAL SENSES SYSTEM	-									-				-							-			+		
	Kidney Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	7

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF TRIBROMOMETHANE: HIGH DOSE

WEEKS ON STUDY	0 2 5	0 4 6	0 6 2	0 6 9	0 7 8	0 8 0	0 8 4	0 8 6	0 8 9	0 9 1	0 9 2	0 9 5	0 9 5	0 9 5	1 0 2	1 0 2	1 0 2	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 6	1 0 6	1 0 8
CARCASS ID	5 2 4	5 9 1	5 8 5	5 3 2	5 3 1	5 5 2	6 0 4	5 5 4	5 5 3	5 4 1	6 0 3	5 9 2	5 8 4	5 3 5	5 2 1	5 9 5	5 1 3	5 6 4	5 5 1	5 6 2	6 0 2	5 4 4	5 1 1	5 1 2	5 1 4
ALIMENTARY SYSTEM Esophagus Intestine large	++++	++	+++	+++	+ A	+++	+ +	+ +	+ +	+ +	+ +	+	+ +	+++	+ +	+	+++	+++	+ +	++++	++++	+ +	+ +	+ +	+ +
Adenocarcinoma Polyp adenomatous Intestine small Liver Leuksmia mononuclear Neoplastic nodule	++++	+ +	+ +	+ + X	A +	+++	+ +	+ +	+ +	X + +	+ +	+ +	+ +	X + +	X + + X	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	X + +	+ +
Neoplastic nodule, multiple Mesentery Pancreas Leukemia mononuclear Acinus, adenoma	+	+	+	+	+ +	÷	÷	+	+	+ +	÷	+	+	+ X	+	+	+	+	+	+	+ +	+	* x	÷	+
Acinus, adenoma, multiple Salivary glands Stomach Leukemia mononuclear	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +
CARDIOVASCULAR SYSTEM Heart Leukemia mononuclear Pericardium, alveolar/bronchiolar carcinoma, metastatic	+	+	+	*	+	+	+	+	+	+	+	+	+	+	*	*	+	+	+	+	+	+	*	+	+
ENDOCRINE SYSTEM Adrenal gland Leukemia mononuclear Medulla, pheochromocytoma benign	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	* X	+	+	+ x	+	+	+	+	+	+
Islets, parcreatic Parathyroid gland Pfuitary gland Pars distalis, adenoma Thyroid gland C-cell, adenoma Follicular cell, adenoma Follicular cell, accinoma	+ M +	+ M + +	++++++++	+ M + +	+ м м	+ + + +	+ M + X +	+ M + +	+++++++++++++++++++++++++++++++++++++++	+ M + +	+ M + +	+ M + X +	+ M + +	+ + + +	+ + + + X	+ M + X + X	+ + + X +	+ + + X +	н м +	+ M + X +	+ M + +	+ M + +	+ M + +	+ + + +	+++++
GENERAL BODY SYSTEM None																									
GENITAL SYSTEM Clitoral gland Adenoma Ovary Granulosa cell tumor Leukemia mononuclear Uterus Leukemia mononuclear Polyp stromal	- + +	- + +	- + +	+ + +	M + +	M + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	M + +	+ + + x	+ + x + x	+++++	+++++	+ + +	+ + +	+ + +	+ + +	++++	+ + X +	+ + +	+++++

												·/														
WEEKS ON STUDY	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	TOTAL:
CARCASS ID	5 1 5	5 2 2	5 2 3	525	5 3 3	5 4 3	5 5 5	5 6 1	5 7 1	5 4 2	5 4 5	5 6 3	5 6 5	5 7 2	5 7 3	5 7 4	5 7 5	5 8 1	5 8 2	5 8 3	5 8 4	5 9 3	5 9 4	6 0 1	6 0 5	TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Intestine large Adenocarcinoma	+	+ +	+++	++x	+++	+++	+ +	+ +	‡	++	+ +	+ +	++	+++	+ +	+++	+ +	+ +	м +	+ + X	++++	+ +	+++	+++	+ +	49 49 2
Polyp adenomatous Intestine small Liver Leukemia mononuclear Neoplastic nodule	+++++	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ + x	+ +	X + +	X + +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ + X	6 49 50 6 1
Neoplastic nodule, multiple Mesentery Pancreas Leukemia mononuclear	+	+	+	+	+	+	+	+	х +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 3 50 1
Acinus, adenoma Acinus, adenoma, multiple Salivary glands Stomach Leukemia mononuclear	++++	+ +	+ +	+ +	x + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	+ +	+ +	+ +	+ +	+ +	2 1 50 50 1
CARDIOVASCULAR SYSTEM Heart Leukemia mononuclear Pericardium, alveolar/bronchiolar carcinoma, metastatic	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 4 1
ENDOCRINE SYSTEM Adrenal gland																										
Leukemia giand Leukemia mononuclear Medulla, pheochromocytoma benign Islets, pancreatic Parathyroid giand Pituitary gland Pars distalis, adenoma Thyroid giand C-cell, adenoma Follicular cell, adenoma Follicular cell, carvinoma	+ + M + X +	+ + + + +	+ M +	+ x+++x+	+ + + M +	+ + + +	+ +++X+	≁ X + M + +	+ + + X +	+ + M + +	+ + + + X +	+ + M + +	+ +++X+	+ + + +	+ +++ +	+ +++ +	+ + M + X + X	+ + M + X	+ + M + X +	+ + M + X +	+++++++++++++++++++++++++++++++++++++++	+ +M+ +	+ + M + X + X	+ + M + +	+ ++ +	50 2 3 50 20 48 16 49 2 2 1
GENERAL BODY SYSTEM None																										
GENITAL SYSTEM Clitoral gland Adenoma Ovary Granulosa cell tumor Leukemia mononuclear Uterus	+++++	+ +	+ + +	+ + +	+++++	+ + +	++++++	M + +	M + +	** *	+ + +	++++++	+ + +	M + +	M + +	+ + x +	+ + +	** *	M + +	++++++	+ + +	+++++	+ + +	+++++	+ + +	39 2 50 1 2 50
Leukemia mononuclear Polyp stromal																					X					$\frac{1}{2}$

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE

(Con	tinued)	
------	---------	--

WEEKS ON STUDY	0 2 5	0 4 6	0 6 2	0 6 9	0 7 8	0 8 0	0 8 4	0 8 6	0 8 9	0 9 1	0 9 2	0 9 5	0 9 5	0 9 5	1 0 2	1 0 2	1 0 2	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 6	1 0 6	1 0 6
CARCASS ID	5 2 4	5 9 1	5 8 5	5 3 2	5 3 1	5 5 2	6 0 4	5 5 4	5 5 3	5 4 1	6 0 3	5 9 2	5 3 4	5 3 5	5 2 1	5 9 5	5 1 3	5 6 4	5 5 1	5 6 2	6 0 2	5 4 4	5 1 1	5 1 2	5 1 4
HEMATOPOIETIC SYSTEM Bone marrow Leukemia mononuclear Lymph node Mandibular, leukemia mononuclear Mediastinal, leukemia mononuclear Mesenteric, leukemia mononuclear Pancreatic, leukemia mononuclear	++	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+	++	+	+ + X X X X	+ +	+ +	+ +	++	+ +	+ +	+ +	+ X + X X	+ +	++
Spieen Leukemia mononuclear Thymus	++	+ M	+ +	+ x +	+ +	x + x + x + x	* *	+ +	+ +	+ M	+ +	+ +	+ +	+ X +	+ +	+ +									
INTEGUMENTARY SYSTEM Mammary gland Fubroadenoma Skun	- M +	M +	M +	++	* *	++	+++	+	+	+	+ X +	++	+ +	++	++	+	+++	+ +	+	+ +	++	++	* X +	+ +	M +
MUSCULOSKELETAL SYSTEM Bone	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Astrocytoma malignant	-	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
multiple Leukemia mononuclear Nose Trachea	-+	- +	- +	х +	+ +	X + +	X + +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	+ +									
SPECIAL SENSES SYSTEM Eye Hardenan gland	-		++++			+ +	-												-		+ +		+		
URINARY SYSTEM Kidney Leukemia mononuclear Sarcoma Pelvis, transitional epithelium,	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	*	*	+	+	+	+	+	+	* X	+	+
papilloma Renal tubule, adenoma Urnary bladder Leukemia mononuclear	м	+	+	+	+	+	М	+	+	+	+	+	Х +	+	, X	+	+	+	+	+	+	+	*	+	+

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE

(Cont	tinued)
-------	---------

WEEKS ON STUDY	1 0 6	TOTAL:																								
CARCASS ID	5 1 5	5 2 2	5 2 3	5 2 5	5 3 3	5 4 3	5 5 5	5 6 1	5 7 1	5 4 2	5 4 5	5 6 3	5 6 5	5 7 2	5 7 3	5 7 4	5 7 5	5 8 1	5 8 2	5 8 3	5 8 4	5 9 3	5 9 4	6 0 1	6 0 5	TISSUES TUMORS
HEMATOPOIETIC SYSTEM Bone marrow Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Lymph node Mandibular, leukemia mononuclear Mediastinal, leukemia mononuclear Mesenteric, leukemia mononuclear	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1 2 2 1
Pancreatic, leukemia mononuclear Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear Thymus Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	х +	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	6 48 1
INTEGUMENTARY SYSTEM Mammary gland Fibroadsnoma	+	*	+	+	м	+	+	м	м	+ ¥	+	+	+	м	м	+	* *	+	M	м	+	+	+	+	+	39
Skin	+	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NERVOUS SYSTEM Brain Astrocytoma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	50 1
multiple Leukemia mononuclear											x														x	1
Nose Trachea	++++	+ +	46 50																							
SPECIAL SENSES SYSTEM Eye Harderian gland						+																				4 4
URINARY SYSTEM Kidney Leukemia mononuclear Sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 3 1
Pelvis, transitional epithelium, papilloma Renal tubule, adenoma Urinary bladder Leukemia mononuclear	+	+	M	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	м	+	+	+	+	+	+	1 1 46 2

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

	Vehicle Control	100 mg/kg	200 mg/kg
Adrenal Gland Medulla: Pheochromocytor	na	· · · · · · · · · · · · · · · · · · ·	
Overall Rates (a)	2/50 (4%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	5.9%	0.0%	10.0%
Terminal Rates (c)	2/34 (6%)	0/28 (0%)	2/28 (7%)
Day of First Observation	735	0,20 (0.07)	721
Life Table Tests (d)	P = 0.331	P = 0.282N	P = 0.422
Logistic Regression Tests (d)	P = 0.359	P = 0.282N	P = 0.458
Cochran-Armitage Trend Test (d)	P = 0.390		
Fisher Exact Test (d)		P = 0.247 N	P=0.500
Large Intestine: Adenomatous Polyp			
Overall Rates (a)	0/50 (0%)	(e) 1/50 (2%)	6/50 (12%)
Adjusted Rates (b)	0.0%	3.6%	17.6%
Terminal Rates (c)	0/34(0%)	1/28 (4%)	3/28 (11%)
Day of First Observation		735	637
Life Table Tests (d)	P = 0.004	P = 0.461	P = 0.013
Logistic Regression Tests (d)	P = 0.004	P = 0.461	P = 0.015
Cochran-Armitage Trend Test (d)	P = 0.005		
Fisher Exact Test (d)		P = 0.500	P = 0.013
Large Intestine: Adenomatous Polyp or Ad			
Overall Rates (a)	0/50 (0%)	(e) 1/50 (2%)	8/50 (16%)
Adjusted Rates (b)	0.0%	3.6%	24.2%
Terminal Rates (c)	0/34 (0%)	1/28 (4%)	5/28 (18%)
Day of First Observation		735	637
Life Table Tests (d)	P<0.001	P = 0.461	P = 0.003
Logistic Regression Tests (d)	P<0.001	P = 0.461	P = 0.004
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P<0.001	P = 0.500	P = 0.003
risher Brace rest (u)		1 - 0.000	1 - 0.000
Liver: Neoplastic Nodule			
Overall Rates (a)	0/50 (0%)	4/49 (8%)	2/50 (4%)
Adjusted Rates (b)	0.0%	13.8%	7.1%
Terminal Rates (c)	0/34 (0%)	3/28 (11%)	2/28 (7%)
Day of First Observation		722	735
Life Table Tests (d)	P = 0.173	P = 0.043	P = 0.196
Logistic Regression Tests (d)	P = 0.197	P = 0.038	P=0.196
Cochran-Armitage Trend Test (d)	P=0.223		
Fisher Exact Test (d)		P = 0.056	P = 0.247
Mammary Gland: Fibroadenoma			
Overall Rates (a)	22/50 (44%)	17/50 (34%)	6/50 (12%)
Adjusted Rates (b)	50.9%	51.0%	18.2%
Terminal Rates (c)	14/34 (41%)	12/28 (43%)	4/28 (14%)
Day of First Observation	537	618	543
Life Table Tests (d)	P = 0.004N	P = 0.509N	P = 0.004N
Logistic Regression Tests (d)	P<0.001N	P = 0.369N	P<0.001N
Cochran-Armitage Trend Test (d)	P<0.001N	B 0.0001	
Fisher Exact Test (d)		P = 0.206N	P<0.001N
Pancreas: Acinar Adenoma	140 (07)	040 (07)	0/20/075
Overall Rates (a)	1/48 (2%)	0/49 (0%)	3/50 (6%)
Adjusted Rates (b)	3.0%	0.0%	9.7%
Terminal Rates (c)	1/33 (3%)	0/28 (0%)	2/28 (7%)
Day of First Observation	735	D 0 20037	665
Life Table Tests (d)	P = 0.151	P = 0.533N	P = 0.257
Logistic Regression Tests (d)	P = 0.173	P = 0.533N	P=0.293
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.185	P = 0.495N	P = 0.324

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY
OF TRIBROMOMETHANE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
Pancreas: Acinar Adenoma or Carcinoma	······································		
Overall Rates (a)	1/48 (2%)	1/49 (2%)	3/50 (6%)
Adjusted Rates (b)	3.0%	3.6%	9.7%
Terminal Rates (c)	1/33 (3%)	1/28 (4%)	2/28 (7%)
Day of First Observation	735	735	665
Life Table Tests (d)	P = 0.169	P = 0.725	P = 0.257
Logistic Regression Tests (d)	P = 0.196	P = 0.725	P=0.293
Cochran-Armitage Trend Test (d)	P = 0.212		
Fisher Exact Test (d)		P = 0.747 N	P = 0.324
ituitary Gland/Pars Distalis: Adenoma			
Overall Rates (a)	29/48 (60%)	12/46 (26%)	16/48 (33%)
Adjusted Rates (b)	66.6%	38.1%	46.9%
Terminal Rates (c)	19/33 (58%)	8/26 (31%)	10/27 (37%)
Day of First Observation	610	538	582
Life Table Tests (d)	P = 0.043N	P = 0.019N	P = 0.067N
Logistic Regression Tests (d)	P = 0.008N	P = 0.003 N	P = 0.011N
Cochran-Armitage Trend Test (d)	P = 0.005N		
Fisher Exact Test (d)		P<0.001N	P = 0.007 N
Thyroid Gland: C-Cell Adenoma			
Overall Rates (a)	4/50 (8%)	3/47 (6%)	2/49(4%)
Adjusted Rates (b)	11.8%	8.3%	7.1%
Terminal Rates (c)	4/34 (12%)	1/27 (4%)	2/28 (7%)
Day of First Observation	735	577	735
Life Table Tests (d)	P = 0.348N	P = 0.613N	P = 0.429N
Logistic Regression Tests (d)	P = 0.292N	P = 0.553 N	P = 0.429 N
Cochran-Armitage Trend Test (d)	P = 0.274N		
Fisher Exact Test (d)		P = 0.535N	P = 0.349N
hyroid Gland: C-Cell Adenoma or Carcin	oma		
Overall Rates (a)	5/50(10%)	3/47 (6%)	2/49 (4%)
Adjusted Rates (b)	14.7%	8.3%	7.1%
Terminal Rates (c)	5/34 (15%)	1/27 (4%)	2/28 (7%)
Day of First Observation	735	577	735
Life Table Tests (d)	P = 0.230N	P = 0.479N	P = 0.298N
Logistic Regression Tests (d)	P = 0.185N	P = 0.421 N	P = 0.298N
Cochran-Armitage Trend Test (d)	P = 0.167 N		
Fisher Exact Test (d)		P=0.393N	P = 0.226N
hyroid Gland: Follicular Cell Adenoma o	r Carcinoma		
Overall Rates (a)	2/50 (4%)	2/47 (4%)	3/49 (6%)
Adjusted Rates (b)	5.9%	7.4%	8.9%
Terminal Rates (c)	2/34 (6%)	2/27 (7%)	1/28 (4%)
Day of First Observation	735	735	713
Life Table Tests (d)	P=0.353	P = 0.610	P = 0.453
Logistic Regression Tests (d)	P = 0.371	P = 0.610	P = 0.461
Cochran-Armitage Trend Test (d)	P=0.398		
Fisher Exact Test (d)		P = 0.668	P=0.490
iterus: Stromal Polyp			
Overall Rates (a)	10/49 (20%)	9/50 (18%)	2/50 (4%)
Adjusted Rates (b)	26.4%	26.1%	6.2%
Terminal Rates (c)	7/34 (21%)	5/28 (18%)	1/28 (4%)
Day of First Observation	630	538	665
Life Table Tests (d)	P = 0.040N	P = 0.519	P = 0.033N
Logistic Regression Tests (d)	P = 0.018N	P = 0.572N	P = 0.019N
Cochran-Armitage Trend Test (d)	P = 0.014N		
		P = 0.480N	

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
ematopoietic System: Mononuclear Leukemia	L		
Overall Rates (a)	9/50 (18%)	(f) 13/50 (26%)	6/50 (12%)
Adjusted Rates (b)	22.8%	32.3%	17.5%
Terminal Rates (c)	5/34 (15%)	3/28(11%)	3/28 (11%)
Day of First Observation	642	576	483
Life Table Tests (d)	P = 0.386N	P = 0.122	P = 0.390 N
Logistic Regression Tests (d)	P = 0.257 N	P = 0.237	P = 0.293 N
Cochran-Armitage Trend Test (d)	P = 0.261 N		
Fisher Exact Test (d)		P = 0.235	P = 0.288N

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) Eighteen large intestines were examined microscopically.

(f) Twenty-eight spleens were examined microscopically.

TABLE B4a. HISTORICAL INCIDENCE OF LARGE INTESTINE TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

	Incidence in Vehicle Controls	
Historical Incidence at EG&G Ma	son Research Institute	
TOTAL	0/282	
Overall Historical Incidence		
TOTAL	0/1,888	

(a) Data as of April 29, 1987, for studies of at least 104 weeks

TABLE B4b. HISTORICAL INCIDENCE OF LIVER TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Incidence of Neoplastic Nodules in Vehicle Controls							
istorical Incidence at EG&G Mason Research Institute								
glycidyl resorcinol ether	1/50							
glycidyl resorcinol ether	2/50							
-Dichloropropane	1/50							
lorodibromomethane	0/50							
Butyl chloride	1/50							
modichloromethane	1/50							
OTAL	6/300 (2.0%)							
SD (b)	1.26%							
ge (c)								
High	2/50							
)W	0/50							
rall Historical Incidence								
TOTAL	33/1,945 (1.7%)							
SD (b)	2.18%							
nge (c)								
High	5/50							
Low	0/50							

(a) Data as of April 29, 1987, for studies of at least 104 weeks; no malignant tumors have been observed.
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

TABLE B4c. HISTORICAL INCIDENCE OF UTERINE ENDOMETRIAL STROMAL POLYPS IN FEMALEF344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Incidence in Vehicle Controls							
Historical Incidence at EG&G Mason Research Institute								
Diglycidyl resorcinol ether	11/50							
Diglycidyl resorcinol ether	12/50							
,2-Dichloropropane	10/50							
Chlorodibromomethane	14/50							
1-Butyl chloride	12/50							
Bromodichloromethane	11/49							
TOTAL	70/299 (23.4%)							
SD (b)	2.69%							
lange (c)								
High	14/50							
Low	10/50							
Overall Historical Incidence								
TOTAL	390/1,934 (20.2%)							
SD (b)	6.53%							
Range (c)								
High	17/50							
Low	5/50							

(a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

TABLE B4d. HISTORICAL INCIDENCE OF ANTERIOR PITUITARY GLAND TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

		Incidence in Vehicle Controls					
Study	Adenoma	Carcinoma	Adenoma or Carcinoma				
Historical Incidence at EG&	G Mason Research Institute	2					
Diglycidyl resorcinol ether	18/50	1/50	19/50				
Diglycidyl resorcinol ether	16/50	2/50	17/50				
1,2-Dichloropropane	16/49	3/49	19/49				
Chlorodibromomethane	11/47	5/47	16/47				
n-Butyl chloride	22/49	2/49	24/49				
Bromodichloromethane	27/49	4/49	31/49				
TOTAL	110/294 (37.4%)	17/294 (5.8%)	126/294 (42.9%)				
SD(b)	11.13%	3.15%	11.41%				
Range (c)							
High	27/49	5/47	31/49				
Low	11/47	1/50	17/50				
Overall Historical Incidence							
TOTAL	(d) 760/1,901 (40.0%)	(e) 53/1,901 (2.8%)	(d,e)811/1,901 (42.7%)				
SD(b)	10.34%	2.81%	10.43%				
Range (c)							
High	32/49	5/47	33/49				
Low	9/50	0/50	11/50				

(a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) Includes 72 chromophobe adenomas
(e) Includes 4 chromophobe carcinomas and 10 adenocarcinomas, NOS

TABLE B4e. HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE F344/N RATSADMINISTERED CORN OIL BY GAVAGE (a)

Study	Incidence of Fibroadenomas in Vehicle Controls								
Historical Incidence at EG&G Mason Research Institute									
Diglycidyl resorcinol ether	18/50								
Diglycidyl resorcinol ether	17/50								
1,2-Dichloropropane	15/50 18/50								
Chlorodibromomethane n-Butyl chloride	16/50								
Bromodichloromethane	20/50								
TOTAL	104/300 (34.7%)								
SD (b)	3.50%								
Range (c)									
High	20/50								
Low	15/50								
Overall Historical Incidence									
TOTAL	(d) 558/1,950 (28.6%)								
SD (b)	9.09%								
Range (c)									
High	26/50								
Low	7/50								

(a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) Includes six adenomas, NOS, one papillary adenoma, five cystadenomas, and one papillary cystadenoma

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study		<u> </u>	50	<u> </u>	50	
Animals removed	50		50		50	
Animals examined histopathologically	50		50		50	
ALIMENTARY SYSTEM	. .					
Intestine large	(48)		(18)		(49)	
Parasite	5	(10%)	1	(6%)	7	(14%)
Cecum, inflammation, acute					1	(2%)
Colon, fibrosis		(2%)				
Colon, necrosis		(2%)		(6%)		
Intestine small	(48)		(16)	(0~)	(49)	
Lymphoid nodule, mineralization	(20)			(6%)	(50)	
Liver Basophilic focus	(50)	(56%)	(49)	(010)	(50)	(000)
Clear cell focus	20	(070)	15	(31%)		(26%) (2%)
Cyst			9	(4%)	1	(470)
Eosinophilic focus				(4%)	9	(4%)
Fatty change, diffuse	g	(16%)		(27%)		(40%)
Fatty change, focal		(22%)		(53%)		(40%) (52%)
Hepatodiaphragmatic nodule		(6%)		(4%)		(4%)
Hyperplasia, diffuse	Ū	(0,0)	-	(4,0)		(2%)
Hyperplasia, focal			1	(2%)		(2%)
Hyperplasia, multifocal	1	(2%)		(4%)		(2%)
Inflammation, chronic active		(18%)		(16%)		(54%)
Mixed cell focus		(16%)		(51%)		(56%)
Necrosis	11	(22%)	3	(6%)		(4%)
Bile duct, hyperplasia	17	(34%)	10	(20%)	4	(8%)
Mesentery	(4)		(3)		(3)	
Artery, necrosis, fibrinoid			1	(33%)		
Fat, inflammation, chronic active				(33%)		
Fat, necrosis		(100%)		(67%)		(100%)
Pancreas	(48)		(49)		(50)	
Acinus, atrophy		(25%)		(14%)	-	(6%)
Acinus, hyperplasia	3	(6%)		(4%)	3	(6%)
Artery, inflammation, chronic active				(2%)		
Artery, necrosis, fibrinoid				(4%)		
Artery, pigmentation Salivary glands	(49)		(49)	(2%)	(50)	
Inflammation, chronic active	(43)		(49)			(6%)
Acinus, hyperplasia					-	(2%)
Duct, ectasia			1	(2%)		(16%)
Duct, inflammation, chronic active				(18%)	-	(30%)
Duct, metaplasia, squamous			10	(20%)		(32%)
Stomach	(50)		(26)		(50)	
Forestomach, acanthosis	6	(12%)	7	(27%)	4	(8%)
Forestomach, hyperkeratosis		(14%)		(31%)		(8%)
Forestomach, inflammation, chronic active		(6%)		(12%)		(4%)
Forestomach, ulcer	2	(4%)		(15%)	1	(2%)
Glandular, abscess			1	(4%)		
Glandular, hyperplasia, lymphoid						(2%)
Glandular, inflammation, chronic active				(4%)	1	(2%)
Glandular, necrosis			1	(4%)		
CARDIOVASCULAR SYSTEM	<u></u>			·····		
Heart	(50)		(16)		(50)	
Cardiomyopathy	34	(68%)	12	(75%)	22	(44%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THETWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

	Vehicle	Control	Low	Dose	High	Dose
ENDOCRINE SYSTEM	<u> </u>		<u>•</u>			
Adrenal gland	(50)		(18)		(50)	
Necrosis		(2%)	• • - •	(11%)	(00)	
Cortex, hyperplasia		(2%)	_	,	3	(6%)
Medulla, hyperplasia		(8%)	3	(17%)	7	(14%)
Islets, pancreatic	(48)		(49)		(50)	
Ectopic tissue			1	(2%)		
Parathyroid gland	(21)		(16)		(20)	
Hyperplasia			1	(6%)		
Pituitary gland	(48)		(46)		(48)	
Pars distalis, angiectasis		(56%)		(24%)		(19%)
Pars distalis, cyst	-	(13%)		(17%)		(4%)
Pars distalis, hyperplasia	9	(19%)	15	(33%)		(15%)
Pars intermedia, cyst						(2%)
Pars intermedia, hyperplasia		(4%)				(2%)
Thyroid gland	(50)		(47)	(00)	(49)	
Necrosis C coll humania	~	(190)	_	(2%)	~	(00)
C-cell, hyperplasia	9	(18%)		(15%)	3	(6%)
Follicular cell, cyst			1	(2%)		
GENERAL BODY SYSTEM None						
GENITAL SYSTEM		- · · · · · · · · · · · · · · · · · · ·			·	
Clitoral gland	(34)		(9)		(39)	
Inflammation, chronic active		(6%)		(11%)		(5%)
Necrosis		(6%)	•	(11/0)		(8%)
Ovary	(50)		(20)		(50)	(0,0)
Cyst	,	(10%)		(10%)		(6%)
Inflammation, chronic active		(4%)	-	(•	
Mineralization		(2%)				
Necrosis	_	,	1	(5%)		
Interstitium, hyperplasia	1	(2%)	-	(2.0)		
Uterus	(49)		(50)		(50)	
Angiectasis		(2%)	(00)			
Decidual reaction			1	(2%)		
Hemorrhage	1	(2%)	_		1	(2%)
Inflammation, chronic active		(2%)				(4%)
Mineralization	1	(2%)				
Necrosis	1	(2%)				
HEMATOPOIETIC SYSTEM						
Lymph node	(50)		(47)		(49)	
Lumbar, pigmentation				(2%)	•	
Mandibular, hematopoietic cell proliferation					1	(2%)
Mandibular, infiltration cellular, plasma cell			^1	(2%)		(6%)
Mandibular, pigmentation						(2%)
Mediastinal, congestion						(2%)
Mediastinal, infiltration cellular, mast cell	_					(2%)
Mediastinal, pigmentation	2	(4%)		(4%)		(12%)
Mesenteric, depletion lymphoid			1	(2%)		(4%)
Mesenteric, infiltration cellular, mast cell						(2%)
Mesenteric, pigmentation						(2%)
Pancreatic, infiltration cellular, mast cell			-	(1 m)	1	(2%)
Pancreatic, infiltration cellular, plasma cell Pancreatic, pigmentation			2	(4%)		(2%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THETWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

v	ehicle	Control	Low	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)						
Spleen	(49)		(28)		(50)	
Depletion lymphoid	1	(2%)	2	(7%)	2	(4%)
Hematopoietic cell proliferation	35	(71%)	17	(61%)	39	(78%)
Hemorrhage	1	(2%)				
Necrosis	1	(2%)	1	(4%)		
Pigmentation	7	(14%)	6	(21%)	29	(58%)
Thymus	(48)		(14)		(48)	
Infiltration cellular, lymphocytic			1	(7%)	1	(2%)
Epithelial cell, hyperplasia	1	(2%)				
INTEGUMENTARY SYSTEM						
Mammary gland	(44)		(42)		(39)	
Galactocele	25	(57%)	4	(10%)	1	(3%)
Necrosis			1	(2%)		
Skin	(50)		(46)		(50)	
Hyperkeratosis			1	(2%)		
Inflammation, chronic active					1	(2%)
MUSCULOSKELETAL SYSTEM None				······		
NERVOUS SYSTEM		<u></u>		<u> </u>		
Brain	(50)		(17)		(50)	
Brain stem, hemorrhage	2	(4%)				
Cerebellum, hemorrhage	2	(4%)			1	(2%)
Cerebellum, inflammation, chronic active					1	(2%)
RESPIRATORY SYSTEM						
Lung	(50)		(32)		(50)	
Infiltration cellular, histiocytic	11	(22%)	8	(25%)	16	(32%)
Inflammation, chronic	1	(2%)				
Inflammation, chronic active	4	(8%)	4	(13%)	4	(8%)
Inflammation, granulomatous			1	(3%)	1	(2%)
Alveolar epithelium, hyperplasia	1	(2%)	1	(3%)		
Bronchus, metaplasia, squamous					1	(2%)
Nose	(48)		(12)		(46)	
Hemorrhage				(8%)		
Inflammation, chronic active			2	(17%)		(4%)
Metaplasia, squamous						(2%)
Nasolacrimal duct, inflammation, chronic activ		(2%)				(2%)
Trachea	(50)		(47)		(50)	
Inflammation, acute						(4%)
Inflammation, chronic active					3	(6%)
SPECIAL SENSES SYSTEM		······································			<u> </u>	
Eye			(3)		(4)	
Inflammation, acute						(25%)
Synechia						(25%)
Lens, cataract			2	(67%)		(50%)
Lens, inflammation, acute					1	(25%)
Lens, synechia			2	(67%)		
Harderian gland	(1)				(4)	
Abscess						(75%)
Duct, metaplasia, squamous						(25%)

	Vehicle	Control	Low	Dose	High	Dose
JRINARY SYSTEM						
Kidney	(50)		(50)		(50)	
Cyst			1	(2%)	1	(2%)
Necrosis					2	(4%)
Nephropathy	40	(80%)	41	(82%)	46	(92%)
Transitional epithelium, hyperplasia				(4%)	1	(2%)
Transitional epithelium, metaplasia, oss	eous		-	(= ,	1	(2%)
Transitional epithelium, mineralization					1	(2%)
Urinary bladder	(45)		(14)		(46)	()
Hemorrhage	1	(2%)	(1	(2%)
Inflammation, chronic active	2	(4%)			1	(2%)
Mineralization	-	(-,-,	2	(14%)	•	
Necrosis	1	(2%)	2	(***/*)		
Transitional epithelium, hyperplasia	•		1	(7%)		

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THETWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

APPENDIX C

SUMMARY OF LESIONS IN MALE MICE IN THE

TWO-YEAR GAVAGE STUDY OF

TRIBROMOMETHANE

PAGE	
------	--

TABLE C1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	127
TABLE C2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	130
TABLE C3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	138
TABLE C4	HISTORICAL INCIDENCE OF ALVEOLAR/BRONCHIOLAR TUMORS IN MALE $B6C3F_1$ MICE ADMINISTERED CORN OIL BY GAVAGE	141
TABLE C5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	142

Tribromomethane, NTP TR 350

Ve	hicle	Control	Low	Dose	High	Dose
Animals initially in study	50		50		50	
Animals removed	50		50		50	
Animals examined histopathologically	50		50		50	
ALIMENTARY SYSTEM				<u>,</u>		
Gallbladder	(46)		*(50)		(30)	
Lymphoma malignant lymphocytic					1	(3%)
Intestine small	(50)		*(50)		(46)	
Hepatocholangiocarcinoma, metastatic		(2%)				
Polyp adenomatous		(2%)	.= 4.			
Liver	(50)	(00)	(50)		(49)	
Hemangioma Hemangiosarcoma	Ţ	(2%)		(2%)		
Hemangiosarcoma Hemangiosarcoma, multiple	1	(2%)	1	(2%)	9	(4%)
Hepatocellular carcinoma		(10%)	e	(12%)		(4%) (12%)
Hepatocellular carcinoma, multiple		(10%)		(12%)	0	(1270)
Hepatocellular adenoma		(4%) (20%)		(4.%) (18%)	٩	(16%)
Hepatocellular adenoma, multiple		(2%)		(18%)	0	(10%)
Hepatocholangiocarcinoma		(2%)	4	(= /0 /		
Lymphoma malignant histiocytic		(2%)				
Lymphoma malignant lymphocytic	•	(= /0)			2	(4%)
Lymphoma malignant						(2%)
Lymphoma malignant mixed	1	(2%)			-	(= ///
Osteosarcoma, metastatic	-	(2.0)	1	(2%)		
Pancreas	(49)		*(50)	(=)	(48)	
Lymphoma malignant undifferentiated cell type		(2%)	(2,			
Stomach	(50)		(50)		(49)	
Forestomach, papilloma squamous			4	(8%)		
CARDIOVASCULAR SYSTEM None						<u> </u>
CARDIOVASCULAR SYSTEM None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma		(2%) (2%)		(2%) (2%)	1 (46)	(2%) (2%) (2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland	1		1		1 1 (46)	(2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma GENERAL BODY SYSTEM	1		1		1 1 (46)	(2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma GENERAL BODY SYSTEM None GENITAL SYSTEM None	1		1		1 1 (46)	(2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma GENERAL BODY SYSTEM None GENITAL SYSTEM None HEMATOPOIETIC SYSTEM Bone marrow	1		1		1 1 (46)	(2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma GENERAL BODY SYSTEM None SENITAL SYSTEM None HEMATOPOIETIC SYSTEM Bone marrow Lymphoma malignant mixed	1 (48)		1 1 *(50)		1 (46) 1	(2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma GENERAL BODY SYSTEM None SENITAL SYSTEM None HEMATOPOIETIC SYSTEM Bone marrow Lymphoma malignant mixed Lymph node	1 (48)	(2%)	1 1 *(50)		1 (46) 1	(2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma GENERAL BODY SYSTEM None GENITAL SYSTEM Bone marrow Lymphoma malignant mixed Lymph node Axillary, lymphoma malignant histiocytic	1 (48) (50) 1 (47) 1	(2%)	1 1 *(50) *(50)		1 (46) 1 (48)	(2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma GENERAL BODY SYSTEM None SENITAL SYSTEM None HEMATOPOIETIC SYSTEM Bone marrow Lymphoma malignant mixed Lymph node Axillary, lymphoma malignant histiocytic Axillary, lymphoma malignant undifferentiated	1 (48) (50) 1 (47) 1	(2%) (2%) (2%)	1 1 *(50) *(50)		1 (46) 1 (48)	(2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma GENERAL BODY SYSTEM None GENITAL SYSTEM None HEMATOPOIETIC SYSTEM Bone marrow Lymphoma malignant mixed Lymph node Axillary, lymphoma malignant histiocytic Axillary, lymphoma malignant undifferentiated cell type	1 (48) (50) (50) (47) 1 1	(2%) (2%) (2%) (2%)	1 1 *(50) *(50)		1 (46) 1 (48)	(2%)
None ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Osteosarcoma, metastatic Capsule, adenoma Medulla, pheochromocytoma benign Thyroid gland Follicular cell, adenoma GENERAL BODY SYSTEM None GENITAL SYSTEM None HEMATOPOIETIC SYSTEM Bone marrow Lymphoma malignant mixed Lymph node Axillary, lymphoma malignant histiocytic Axillary, lymphoma malignant undifferentiated	1 (48) (50) 1 (47) 1 1 1	(2%) (2%) (2%)	1 1 *(50) *(50)		1 (46) 1 (48)	(2%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

Ve	hicle	Control	Low	Dose	High	Dose
HEMATOPOIETIC SYSTEM						
Lymph node (Continued)	(47)		*(50)	I	(43)	
Lumbar, lymphoma malignant histiocytic	1	(2%)				
Lumbar, lymphoma malignant lymphocytic	1	(2%)			1	(2%)
Mandibular, lymphoma malignant histiocytic	1	(2%)				
Mandibular, lymphoma malignant mixed	1	(2%)				
Mandibular, lymphoma malignant						
undifferentiated cell type	1	(2%)			1	(2%)
Mediastinal, hepatocholangiocarcinoma,						
metastatic	1	(2%)				
Mediastinal, lymphoma malignant histiocytic	1	(2%)				
Mediastinal, lymphoma malignant lymphocytic	1	(2%)			1	(2%)
Mediastinal, lymphoma malignant						
undifferentiated cell type	1	(2%)				
Mesenteric, lymphoma malignant histiocytic	1	(2%)				
Mesenteric, lymphoma malignant lymphocytic	1	(2%)			2	(5%)
Mesenteric, lymphoma malignant						
undifferentiated cell type	3	(6%)			-	(2%)
Pancreatic, lymphoma malignant lymphocytic					-	(2%)
Renal, lymphoma malignant lymphocytic					1	(2%)
Renal, lymphoma malignant mixed		(2%)				
Thoracic, lymphoma malignant histiocytic		(2%)				
Spleen	(50)		*(50)		(49)	
Hemangioma		(2%)				
Lymphoma malignant histiocytic		(2%)				
Lymphoma malignant lymphocytic		(2%)			2	(4%)
Lymphoma malignant mixed		(2%)			_	
Lymphoma malignant undifferentiated cell type		(4%)			-	(2%)
Thymus	(35)		*(50)		(30)	
Lymphoma malignant lymphocytic		(0.01)			1	(3%)
Lymphoma malignant mixed		(3%)				
Lymphoma malignant undifferentiated cell type	1	(3%)				
NTEGUMENTARY SYSTEM						
Mammary gland	(1)		*(50)			
Adenoma	1	(100%)				
Skin	(48)		*(50)		(49)	
Subcutaneous tissue, fibroma	3	(6%)	5	(10%)	2	(4%)
Subcutaneous tissue, fibrosarcoma	2	(4%)	7	(14%)	4	(8%)
Subcutaneous tissue, hemangioma	1	(2%)				
Subcutaneous tissue, neurofibrosarcoma	1	(2%)	1	(2%)		
Subcutaneous tissue, sarcoma			1	(2%)		
IUSCULOSKELETAL SYSTEM None						

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle	Control	Low	Dose	High	Dose
RESPIRATORY SYSTEM		, <u></u> ,			<u> </u>	
Lung	(50)		(50)		(49)	
Alveolar/bronchiolar adenoma	10	(20%)	5	(10%)	2	(4%)
Alveolar/bronchiolar carcinoma	1	(2%)	2	(4%)		
Alveolar/bronchiolar carcinoma, multiple			1	(2%)		
Fibrosarcoma, metastatic, skin				(2%)		
Hepatocellular carcinoma, metastatic		(4%)	3	(6%)	2	(4%)
Hepatocholangiocarcinoma, metastatic	1	(2%)				
Lymphoma malignant histiocytic						(2%)
Lymphoma malignant lymphocytic					1	(2%)
Lymphoma malignant mixed	1	(2%)	_			
Osteosarcoma, metastatic			1	(2%)		
SPECIAL SENSES SYSTEM						
Harderian gland	*(50)		*(50)		*(50)	
Adenoma	2	(4%)	1	(2%)	1	(2%)
URINARY SYSTEM			<u></u>			
Kidney	(50)		*(50)		(49)	
Hepatocholangiocarcinoma, metastatic		(2%)	(00)		(,	
Lymphoma malignant lymphocytic	•	(2.0)			1	(2%)
Lymphoma malignant mixed	1	(2%)			-	
Lymphoma malignant undifferentiated cell t		(2%)				
SYSTEMIC LESIONS		<u></u>		····		<u></u>
Multiple organs	*(50)		*(50)		*(50)	
Hemangioma		(6%)		(2%)		
Lymphoma malignant histiocytic		(2%)	_		1	(2%)
Lymphoma malignant undifferentiated cell	3	(6%)				(2%)
Multiple organs	*(50)		*(50)		*(50)	
Lymphoma malignant mixed	1	(2%)				
Hemangiosarcoma	1	(2%)	1	(2%)	2	(4%)
Lymphoma malignant lymphocytic	1	(2%)			2	(4%)
Lymphoma malignant					1	(2%)
ANIMAL DISPOSITION SUMMARY				- <u></u>		
Animals initially in study	50		50		50	
Natural death	4		7		10	
Terminal sacrifice	41		37		36	
Moribund sacrifice	5		6		4	
TUMOR SUMMARY				<u></u>		<u> </u>
Total animals with primary neoplasms **	34		33		27	
Total primary neoplasms	52		49		32	
Total animals with benign neoplasms	25		24		13	
Total benign neoplasms	33		28		15	
Total animals with malignant neoplasms	17		20		15	
Total malignant neoplasms	19		21		17	
Total animals with secondary neoplasms ***	3		5		2	
rour anninans with secondary neoprasins						

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 Primary tumors: all tumors except secondary tumors
 Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGESTUDY OF TRIBROMOMETHANE: VEHICLE CONTROL

WEEKS ON STUDY	0 6 5	0 7 8	0 8 4	0 9 0	0 9 2	9 9	1 0 0	1 0 2	1 0 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6
CARCASS ID	0 1 1	0 8 3	0 3 5	1 0 2	0 2 3	0 2 1	0 7 2	0 5 4	0 5 5	0 1 4	0 3 3	0 4 3	0 5 1	0 6 1	0 8 2	0 9 1	0 9 2	0 9 5	1 0 3	0 1 2	0 4 4	0 6 5	0 7 5	1 0 1	0 1 3
ALIMENTARY SYSTEM Esophagus Galibladder Intestine large Intestine small Hepatocholangiocarcinoma, metastatic	+ M + +	+++++	+ M + +	M + + +	+++++	+++++	++++	+++++	+ A + +	M + + + +	M++++	+ + + +	++++++	+ + + +	+ + + +	+++++	+++++	++++++	+++++	+++++	+ + + +	+ + + +	+++++	++++++	++++++
Polyp adenomatous Liver Hemangioma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+
Hemangiosarcoma, multiple Hepatocellular carcinoma Hepatocellular carcinoma, multiple Hepatocellular adenoma Hepatocellular adenoma, multiple Hepatocholangiocarcinoma	x			x	x	X	x	X X		x	x												X X	x	
Lymphoma malignant histiocytic Lymphoma malignant mixed Mesentery Pancreas Lymphoma malignant undifferentiated cell type	+	+	м	+	+	+	+ +	+	÷	+	÷	+	+	+	+	+	+	+	+	+	х +	+	+	+	÷
cell type Salivary glands Stomach	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
CARDIOVASCULAR SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Adrenai gland Capsule, adenoma Medulla, pheochromocytoma benign	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Islets, pancreatic Parathyroid gland Pituitary gland Thyroid gland	+ M + M	+ M + +	M + + +	+ M + + + +	+ + + +	+ M + + + +	+ + M +	+ + + M +	+ + + +	+ M + +	+ + + M +	+ M + +	+ M + + +	++++	+++++	+ M + +	+ + + +	+ + + +	+ M + +	+ M + +	+ M + +	+ M + +	+ + + +	+ M + +	+ M + +
GENERAL BODY SYSTEM None			· <u></u>							-															
GENITAL SYSTEM Epididymis Preputial gland Prostate Seminal vesicle	 + +	M + +	M + +	++++	++++	++++	+++++	++++	++++	++++	++++	+++++	++++	++++	++++	+ M M	 + ++ +	++++	+++++	++++++	+++++	+++++	+++++	+++++	+ M +
Testes	+	+	+	÷	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	+	÷	÷	÷	÷	÷	÷	÷	÷

+: Tissue examined microscopically : Not examined -: Present but not examined microscopically I: Insufficient tissue

M: Missing A: Autolysis precludes examination X: Incidence of listed morphology

TABLE C2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE MICE:	VEHICLE	CONTROL
				(Continue	d)			

WEEKS ON STUDY	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	
CARCASS ID	0 1 5	0 2 2	0 3 1	0 3 2	0 3 4	0 2 4	0 2 5	0 4 1	0 4 2	0 4 5	0 5 2	0 5 3	0 6 2	0 6 3	0 6 4	0 7 1	0 7 3	0 7 4	0 8 1	0 8 4	0 8 5	0 9 3	0 9 4	1 0 4	1 0 5	TOTAL: TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Galibiadder Intestine large Intestine small Hepatocholangiocarcinoma, metastatic Polyp denomatous	++++++	+ + + +	+ + + +	+ M + + +	+ + + +	M ++ +	++++++	+ + + +	+ + + +	+ + + +	+++++	++++	+ + + +	+ + + + +	++++++	+++++	++++++	+ + + + X	+++++	+ + + +	+++++	++++	+++++	++++++	+++++	46 46 50 50 1 1
Liver Hemangiosarcoma, multiple Hepatoceilular carcinoma Hepatoceilular carcinoma, multiple Hepatocellular adenoma, multiple Hepatocellular adenoma, multiple Hepatocholangiocarcinoma	+ X	+	+	+ x	+	+ X	+	+ X	÷	+	÷	+	* X	+	+	+ X	+	+ X	+ X	÷	+	+	+	+	+ X	50 1 5 2 10 1
Lymphoma malignant histiocytic Lymphoma malignant histiocytic Mesentery Pancreas Lymphoma malignant undifferentiated cell type Salivary glands	+	+	x + +	+	+	+	++++++	+	+	+	+	+	+	+	+	+	+	++	+ X +	+	+	+	+	+	+	1 1 2 49 1 50
Stomach CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	++	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	50
ENDOCRINE SYSTEM Adrenal gland Capsule, adenoma Medulla, pheochromocytoma benign Islets, pancreatic Parathyroid gland Pituitary gland Thyroid gland	+ + M + +	+ + M + +	+ + + M+	+ + M + *	+ + M + +	+ + M + +	+ + M + M	+ + M +	+++++	+ ++++	+ ++++	++++++	++++++	+ ++++	+ + M + +	+ + + + +	+ + M + +	+ ++++	+ + + + +	+ ++++	+ + + M+	+X ++++	+ + M++	+ + M + +	+ X ++++	49 1 1 49 25 45 48
GENERAL BODY SYSTEM None GENITAL SYSTEM Epididymis Preputial giand Prostate Seminal vesicle Testes	+++++	+ M + +	+ +++	+++++	++++++	+ ++++	+ +++++	++++++	+ ++++	+ + + + +	++++++	++++++	++++++	+++++++	+ ++++	+ + + +	++++++	++++++	+++++	+++++	+ +++	+ +++	+++++	+ + + + +	+ + M + +	47 7 46 49 50

WEEKS ON STUDY	0 6 5	0 7 8	0 8 4	0 9 0	0 9 2	0 9 9	1 0 0	1 0 2	1 0 3	1 0 5	1 0 5	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6								
CARCASS ID	0 1 1	0 8 3	0 3 5	1 0 2	0 2 3	0 2 1	0 7 2	0 5 4	0 5 5	0 1 4	0 3 3	0 4 3	0 5 1	0 6 1	0 8 2	0 9 1	0 9 2	0 9 5	1 0 3	0 1 2	0 4 4	0 6 5	0 7 5	1 0 1	0 1 3
HEMATOPOIETIC SYSTEM																		1					 		
Bone marrow Lymphoma malignant mixed	†	Ŧ	Ŧ	Ť	Ŧ	Ţ	+		-	Ť	Ţ		Ţ	-	· · ·	Ţ	т	.			x		Ţ		
Lymph node Axillary, lymphoma malignant histiocytic Axillary, lymphoma malignant undifferentiated cell type Inguinal, lymphoma malignant	+	+	+	+	+	+	+	м	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+
histiocytic Inguinal, lymphoma malignant mixed Lumbar, lymphoma malignant histiocytic Lumbar, lymphoma malignant lymphocytic Mandibular, lymphoma malignant histiocytic		x																			x				
Mandibular, lymphoma malignant mixed Mandibular, lymphoma malignant undifferentiated cell type Mediastinal, hepatocholangiocarcinoma, metastatic Mediastinal, lymphoma malignant																					X				
histiocytic Mediastinal, lymphoma malignant lymphocytic Mediastinal, lymphoma malignant undifferentiated cell type Mesenteric, lymphoma malignant		x	x																						
histiocytic Mesenteric, lymphoma malignant lymphocytic Mesenteric, lymphoma malignant undifferentiated cell type Renal, lymphoma malignant mixed Thoracic, lymphoma malignant		x	x																		x				
histiocytic Spleen Hemangioma	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+	+	+
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated ceil type		X	x																		x				
Thymus Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	М	+	÷ x	М	M	+	М	+	М	+	+	+	+	+	M	м	+	+	+	+	*	+	+	+	+
INTEGUMENTARY SYSTEM Mammary gland Adenoma	м	м	м	м	M	M	м	м	м	м	M	м	M	м	м	м	м	м	м	M	M	м	M	м	м
Skin	+	+	+	+	+	+	+	+	+	М	+	+	+	*	+	+	+	+	M	+	+	+	+	+	+
Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, hemangioma Subcutaneous tissue, neurofibrosarcoma				x	x				x					~											
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+ *	*	+	+	*	+	+	* x	+	+
Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic Hepatocholangiocarcinoma, metastatic Lymphoma malignant mixed						x		x				x								~	x				
Nose Trachea	+	++	++	+ +	++	++	+ +	++	++	++++	м +	++++	++++	+ +	+++	++++	++	+ +	+	+ +	+ +	+ +	+ +	++	м +
SPECIAL SENSES SYSTEM Harderian gland Adenoma	-																								
URINARY SYSTEM Kidney Hepatocholangiocarcinoma, metastatic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+
Urinary bladder	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

									on	LI II I	ucu	9														
WEEKS ON STUDY	1 0 8	1 0 6																								
CARCASS ID	0 1 5	0 2 2	0 3 1	0 3 2	0 3 4	0 2 4	0 2 5	0 4 1	0 4 2	0 4 5	0 5 2	0 5 3	0 6 2	0 6 3	0 6 4	0 7 1	0 7 3	0 7 4	0 8 1	0 8 4	0 8 5	0 9 3	0 9 4	1 0 4	1 0 5	TOTAL: TISSUES TUMORS
HEMATOPOIETIC SYSTEM								<u> </u>																		
Bone marrow Lymphoma malignant mixed	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Lymph node Axillary, lymphoma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	47
histiocytic Axillary, lymphoma malignant			X																							1
undifferentiated cell type Inguinal, lymphoma malignant																			x							1
histiocytic Inguinal, lymphoma malignant mixed			X																							
Lumbar, lymphoma malig histiocytic Lumbar, lymphoma malig lymphocytic Mandibular, lymphoma malignant			X																							
histiocytic Mandibular, lymphoma malig mixed Mandibular, lymphoma malignant undifferentiated cell type			X																x							
Mediastinal, hepatocholangiocarcinoma,																		v	~							
metastatic Mediastinal, lymphoma malignant																		X								1
histiocytic Mediaștinal, lymphoma malignant	-		X																							1
lymphocytic Mediastinal, lymphoma malignant																										1
undifferentiated cell type Mesenteric, lymphoma malignant																										1
histiocytic Mesenteric, lymphoma malignant	1		X																							1
lymphocytic																										1
Mesenteric, lymphoma malignant undifferentiated cell type																			x					x		3
Renal, lymphoma malignant mixed Thoracic, lymphoma malignant	1																									1
histiocytic Spleen	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
Hemangioma Lymphoma malignant histiocytic			x																							
Lymphoma malignant lymphocytic Lymphoma malignant mixed																										1
Lymphoma malignant undifferentiated cell type																			x							2
Thymus	+	М	М	+	М	M	+	M	+	+	М	+	+	+	+	м	+	М	÷	+	+	+	+	+	+	35
Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type																										1
INTEGUMENTARY SYSTEM Mammary gland Adenoma	м	M	M	м	M	*	м	M	M	м	м	м	м	M	м	М	м	M	м	м	м	М	м	м	м	1 1
Skin Subcutaneous tissue, fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	* X	+	+	+	+	+	+	+	48 3
Subcutaneous tissue, fibrona Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, hemangioma Subcutaneous tissue, neurofibrosarcoma																	л	•	X							3 2 1 1
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM	-	 		 		*			+	+	 +		 +	 +	+	 +	 -					 +		 +	+	50
Lung Alveolar/bronchiolar adenoma		Ŧ	x	Ŧ	Ŧ	Ŧ	۰	7	Ŧ	٣	7	*	x	+	Ŧ	٣	Ŧ	٣	x	+	x	*	٣	+	x	10
Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic																										
Hepatocholangiocarcinoma, metastatic Lymphoma malignant mixed																		X								1
Nose Trachea	++++	+++	+ +	+++	+++	+ +	+ +	м +	+++	+++	+++	+ +	+ +	+ +	++	+ +	+ +	++++	+ +	+ +	+ +	+ +	M. +	+++	+ +	45 50
SPECIAL SENSES SYSTEM																										
Harderian gland Adenoma																* X	*									2 2
URINARY SYSTEM Kidney			 		 +	+	 	+	+	+	+	+	+	+	+		*		 		+				+	50
Hepatocholangiocarcinoma, metastatic	ļ	т	Ŧ	Ŧ	٣	*	+	7		٣	*	7		7	٣	-	Ŧ	x	T	٣	T	Ŧ	Ŧ	٣	7	1
Lymphoma malignant mixed Lymphoma malignant undifferentiated																										
cell type Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	M	X +	+	+	+	+	+	+	1 48
					_				_																	I I

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE: LOW DOSE

CARCASS 4 7 7 9 5 </th <th>WEEKS ON</th> <th>0</th> <th>0</th> <th>0</th> <th>0 7</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>1</th>	WEEKS ON	0	0	0	0 7	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
ID 2 5 8 5 2 2 2 0 2 8 0 7 1 </td <td>STUDY</td> <td>4</td> <td>5 7</td> <td></td> <td></td> <td>8 6</td> <td></td> <td>9 4</td> <td>9 6</td> <td></td> <td>9 7</td> <td>9 7</td> <td></td> <td></td> <td>0 5</td> <td>0 5</td> <td></td> <td>0 5</td> <td></td> <td></td> <td>0 5</td> <td>0 5</td> <td>0 5</td> <td></td> <td></td> <td></td>	STUDY	4	5 7			8 6		9 4	9 6		9 7	9 7			0 5	0 5		0 5			0 5	0 5	0 5			
Berghagst Linkstice argo + </td <td></td> <td>6</td> <td></td> <td>ĩ</td> <td></td> <td></td> <td></td> <td>1 3 2</td> <td></td> <td></td> <td></td> <td></td>		6																ĩ				1 3 2				
Indexise large Hereingen + + + + + + + + + + + + + + + + + + +	ALIMENTARY SYSTEM											+														
Interimental Hermangoancona Hermang	Gallbladder					+	+			т		Ŧ														
Liver Herangion Hera					+++			+						+												
Hemagingarcona X	Liver	÷		÷	+	÷	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+
Instructional multiple (departicular excitional multiple (departicular excitional multiple) Obtaces room, metstatic Staticary flands X X X X X Massivery Staticary flands X X X X X X Staticary flands Staticary flands X X X X X Staticary flands Staticary flands X X X X X Staticary flands Staticary flands X X X X X Staticary flands Y																		x								
Stepacoscillutar adeoora X X X X Mesanchy Netationa N +	Hepatocellular carcinoma					X	X					-				X							X	X		
Hepstcollular admona, multiple Obligators X +	Hepatocellular carcinoma, multiple Hepatocellular adenoma		x						X	X		Λ										X				
Massistry +	Hepatocellular adenoma, multiple				v																					
Skivard: Skivard: Forstonach, papilons squanous Forstonach, papilons squanous CARDOVASUALAR VSTEM Heat CARDOVASUALAR VSTEM Heat CARDOVASUALAR VSTEM Heat Cardovascina, matatatic Cardovascina, matatatatic Cardovascina, matatatatic Cardovascina, matatatatic Cardovascina, matatatatic Cardovascina, matatatatic	Mesentery				~					+																
Storatch Porstonated, papillom squamous + + + + + + + + + + + + + + + + + + +		1 +	+++	++	+++++++++++++++++++++++++++++++++++++++	++++	+						+	+										+		
CARDOVASCULAR SYSTEM Heat Heat Heat Heat Heat Heat Heat Heat	Stomach	÷	÷	÷	÷	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+
Heat: + <td>Forestomach, papilloma squamous</td> <td></td> <td>x</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td>	Forestomach, papilloma squamous															x									X	
ENDOLINE SYSTEM + + + + + + + + + + + + + + + + + + +		—	+	+	+	+	+																			
Adrena igland + <		_	•	•	,		•																			
Observation metastatic Capute, actionation lists, partnerstop X X Idest, partnerstop + <t< td=""><td>Adrenal gland</td><td> +</td><td>+</td><td></td><td></td><td>+</td><td>+</td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td></t<>	Adrenal gland	+	+			+	+			+								+							+	
Islate, panceratic Parathyroid gland + + + + + + + + + + + + + + + + + + +	Osteosarcoma, metastatic				х													Ŧ								
Ptutizry gland Thrvid gland None CENTYAL BODY SYSTEM None CENTYAL SYSTEM CENTYAL SYSTEM CENTYAL SYSTEM CENTYAL SYSTEM Boid Blood Boos marrow Lymph nois Lymph nois Lymph nois Subcutaneous tissue, fabroas rooma Subcutaneous tissue, sarooma MUSCULOSKELETAL SYSTEM Boas MUSCULOSKELETAL SYSTEM Musculaseous tissue, sarooma MUSCULOSKELETAL SYSTEM Brain RUSPRATORY SYSTEM H + + + + + + + + + + + + + + + + + + +	Islets, pancreatic												÷	+				A						+		
Thyroid gland + + + + + + + + + + + + + + + + + + +	Parathyroid gland Pituitary gland																									
Nose GENITAL SYSTEM preprinting Proputal gland Subitation Factor Statistice Testas H H H <td></td> <td></td> <td></td> <td>÷</td> <td>÷</td> <td>÷</td> <td>÷</td> <td></td>				÷	÷	÷	÷																			
Epidial gland Proputial gland Proputia																										
Epidial gland Proputial gland Proputia	GENITAL SYSTEM																									
Protected Seminal vesicle Testes Bood Bone marrow Lymph node Bone marrow Lymph node Subcutaneous tissue, fibroar oma Subcutaneous tissue, fibroar oma Subcutaneous tissue, fibroar oma Subcutaneous tissue, sarroma Bone H + + + + + + + + + + + + + + + + + +	Epididymis	-	-	+	+	+	+	+						+												
Saminal vasicle + + + + + + + + + + + + + + + + + + +	Proputal gland	+		+	+	+	+							+		+			+							
Blood Bons amsrow Lymph acids Spleen Thymus H + + + + + + + + + + + + + + + + + + +			+	++			+ +	+		+				+										+		
Bone marrow Lymph node Spiesa+ + + + + + + + + + + + + + + + + + +		-																								
Lymph node + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+																			
Thymus M + + + M + + + + NTECUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma M M M M M M Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, fibrosarcoma MUSCULOSKELETAL SYSTEM Bona H + + + + + + + + + + + + + + + + + + +	Lymph node	+	÷	÷		+	M			+		M	+					+		+						
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, neurofibrosarcoma Subcutaneous tissue, sarcoma MUSCULOSKELETAL SYSTEM Bone + + + + + + + + + + + + + + + + + + +	Thymus	. M.	+	÷	+		+	+			+	+	÷	+				Ŧ	+		÷					
Skin + + + + + + + + + + + + + + + + + + +	INTEGUMENTARY SYSTEM																								·	
Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, neurofibrosarcoma Subcutaneous tissue, sercoma MUSCULOSKELETAL SYSTEM Bone + + + + + + + + + + + + + + + + + + +	Skin										+		+	+		+				+		+				
Subcutaneous tissue, sarcoma MUSCULOSKELETAL SYSTEM Bone + + + + + + + + + + + + + + + + + + +	Subcutaneous tissue, fibroma										v		X	¥		X										
MUSCULOSKELETAL SYSTEM Boae + + + + + + + + + + + + + + + + + + +	Subcutaneous tissue, neurofibrosarcoma										Λ.		Δ.	•												
Bons + + + + + + + + + + + + + + + + + + +	Subcutaneous tissue, sarcoma																									
Brain + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma Multiple Fibrosarcoma, metastatic, skin Hepatocellular carcinoma, metastatic Osteosarcoma, metastatic Nose Trachea SPECIAL SENSES SYSTEM Harderian gland Adenoma URINARY SYSTEM Kidnew	NERVOUS SYSTEM	_																								
Lung + + + + + + + + + + + + + + + + + + +	Brain	+	+	+	+	+	+																			
Alveolar/bronchiolar adenoma X X X Alveolar/bronchiolar carcinoma X X X Alveolar/bronchiolar carcinoma, multiple V Fibrosarcoma, metastatic, skin V Hepatocellular carcinoma, metastatic V Osteosarcoma, metastatic V Nose T Trachea V V V V V V V V V V V V V V V V V V V	RESPIRATORY SYSTEM					*		+	*	+		+	+	+	+	+		*					*			+
Alveolar/bronchiolar carcinoma, multiple Fibrosarcoma, metastatic, skin Hepatocellular carcinoma, metastatic Osteosarcoma, metastatic Nose Tachea SPECIAL SENSES SYSTEM Harderian gland Adenoma URINARY SYSTEM Kidney + + + + + + + + + + + + + + + + + + +	Alveolar/bronchiolar adenoma	T	Ŧ	Ŧ	Ŧ	x	Ŧ	т	т	Ŧ	Ŧ	Ŧ	Ŧ	T	Ŧ	Ŧ	x	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	.T.	x	Ŧ	Ŧ
Fibrosarcoma, metastatic, skin Hepatocellular carcinoma, metastatic Ostoosarcoma, metastatic Nose Trachea Harderian gland Adenoma URINARY SYSTEM Kidney + + + + + + + + + + + + + + + + + + +	Alveolar/bronchiolar carcinoma,			x													X									
Octoosarcoma, metastatic X Nose + + + + Trachea - + + + + SPECIAL SENSES SYSTEM + + + + + + + + + + + + + + + + + + +	Fibrosarcoma, metastatic, skin					-	-				X	-														
Nosa + + + + Trachea + + + + + + + + + + + + + + + + + + +					x	X	X					x														
SPECIAL SENSES SYSTEM Harderian gland + + + Adenoma X URINARY SYSTEM Kidney + + + + + + + + + + + + + + + + + + +	Nose	II	-+	++++		++	+++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Harderian gland + + + + + + + + + + + + + + + + + + +			'							•	·	·	,	•				,	,		'			'	'	e.
Kidney + + + + + + + + + + + + + + + + + + +	Harderian gland				* X									+												
Kidney $+ + + + + + + + + + + + + + + + + + + $		-																								
	Kidney Urinary bladder	+	++		++++	++	++			+++		+		+					+	+	+				+	

TABLE C2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	MICE:	LOW D	OSE
				(Continued	d)				

WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	TOTAL.
CARCASS ID	1 4 3	1 4 4	1 4 5	1 5 2	1 5 3	1 5 4	1 5 5	1 6 1	1 6 4	1 6 5	1 7 1	1 7 2	1 7 3	1 7 5	1 8 1	1 8 2	1 8 3	1 8 5	1 9 1	2 0 4	2 0 5	1 9 2	1 9 3	1 9 4	1 9 5	TISSUES TUMORS
ALIMENTARY SYSTEM																								-		
Esophagus Gallbladder	1			+		+							+	+						+			+			13
Intestine large	1												+													67
Intestine small	Ι.																									6
Liver Hemangioma	1	+	+	*	+	+	Ŧ	+	+	+	+	+	+	+	+	x	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma Hepatocellular carcinoma																		x								1 6
Hepatocellular carcinoma, multiple	[A							X	2
Hepatocellular adenoma Hepatocellular adenoma, multiple	X						X		X							x				x	x	X				92
Osteosarcoma, metastatic	1																									1
Mesentery Pancreas																										1 9
Salıvary glands														+					+					,		8
Stomach Forestomach, papilloma squamous	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	× X	x	+	Ŧ	Ŧ	+	Ŧ	+	+	+	50
CARDIOVASCULAR SYSTEM Heart															-,									·		6
ENDOCRINE SYSTEM																										
Adrenal gland							+																			9
Osteosarcoma, metastatic Capsule, adenoma																										1
Islets, pancreatic	1																									9
Parathyroid gland Pituitary gland																			м							4
Thyroid gland	ł																									6
GENERAL BODY SYSTEM None		<u>. </u>																			·					
GENITAL SYSTEM			·														_									
Epididymis															+					+						7
Preputial gland Prostate					+					+					+				+						+	96
Seminal vesicle Testes					+															+					+	10
HEMATOPOIETIC SYSTEM	┝				_																					ļ
Blood	ł												÷													1
Bone marrow Lymph node	}						+			+		+		+							+	+				6 15
Spleen					+				+										+			÷				18
Thymus																										6
INTEGUMENTARY SYSTEM																										
Mammary gland Skin						+			+	+		+	+		+		+	+		+	+	+				23 5
Subcutaneous tissue, fibroma]								x	X			X					X				x				57
Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, neurofibrosarcoma						x			л	A								A				A				1 1
Subcutaneous tissue, sarcoma												X														1
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
NERVOUS SYSTEM	·																									
Brain																_										6
RESPIRATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma							·					x	•					x								5
Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma,																										2
multiple Fibrosarcoma, metastatic, skin														X												1
Hepatocellular carcinoma, metastatic																										3
Osteosarcoma, metastatic Nose																										1 4
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
	J																									
SPECIAL SENSES SYSTEM																										2
SPECIAL SENSES SYSTEM Hardenan gland Adenoma																										1
Harderian gland Adenoma URINARY SYSTEM																										
Hardeman gland Adenoma			+	+				+	+		+					<u>. </u>			-,		<u> </u>				+	1 20 7

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGESTUDY OF TRIBROMOMETHANE: HIGH DOSE

WEEKS ON	10	0	0			0	~	0	0		~	-	<u> </u>				1				1		- 1		
STUDY	6 3	6 9	0 7 3	0 7 6	7 6	8 1	8 2	8 9	9 1	9 1	0 9 3	9 5	9 5	0 9 7	0 5	0 5	0 5	0 5	0 5	1 0 5	0 5	0 5	1 0 5	0 5	0 5
CARCASS ID	2 9 1	2 9 2	2 9 3	2 7 3	2 9 5	3 0 5	2 2 5	2 3 3	3 0 4	3 0 1	2 8 4	2 6 1	2 6 2	2 6 5	2 6 3	2 1 1	2 2 2	2 2 4	2 3 1	2 4 1	2 5 3	2 7 2	2 8 1	2 8 2	3 0 2
ALIMENTARY SYSTEM Esophagus Gallbladder	 + +	+ M	. + . M	+ M	+++		 м	+ M	M M	M M	+++	+ M	 Å	 M	+	±	+	+	+	+	+	 +	+ M	 M	+ +
Lymphoma malignant lymphocytic Intestine large Intestine small	++	++	· +	+	, + +	++++	++++	AA	M	+ M	+ +	++++	++++	++++	, + +	+++	+++	+++	, + +	× + +	• •	, + +	++++	++++	+ +
Liver Hemangiosarcoma, multiple Hepatocellular carcinoma	+	+		+	÷	+	+ X	÷	+	M	÷	*	+ X	÷ X	*	+	÷	+	+	+	+	+	÷	+	+
Hepatocellular adenoma Lymphoma malignant lymphocytic Lymphoma malignant						x		x	X											x	x	x			
Pancreas Salivary glands Stomach Tooth	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	· + · +	+ + +	+ + +	++++	+ + +	+ + +	M M +	M M M	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	+ + +	+ + +	+ + +
CARDIOVASCULAR SYSTEM Heart		+	• +	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+
ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Capsule, adenoma	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+
Islets, pancreatic Parathyroid gland	++	+ M	L M		++	++++	+++	++	M M	M M	+ +	, M	, м	+ +	+++	, M	н М	+++	++++	, м	+++	, M	++	++	++
Pituitary gland Thyroid gland Follicular cell, adenoma	++	+ +		M M	+ +	+ +	M +	+ +	M M	M M	м +	+ +	+ +	M +	+ +	+ +	+ +	M +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
GENERAL BODY SYSTEM None																									
GENITAL SYSTEM Epididymis Preputial gland	+		+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	++++	+++	+	+
Prostate Semnal vesicle Testes		++	+	++++	+++++	+++	+++++	M +	M M M	M +	+++++	+ +	++++	M +	+++++++++++++++++++++++++++++++++++++++	++++	++++	++	+++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++	+++++++++++++++++++++++++++++++++++++++
HEMATOPOIETIC SYSTEM				+									· ·												
Lymph node Lumbar, lymphoma malignant lymphocytic Mandibular, lymphoma malignant	+++++	+ +	++	+ +	+ M	+ + X	ф М	+ +	н М	M M	+ +	+ +	+ +	м	+ +	, М	+ +	+ +	+ +	+ +	М +	+ +	н М	+ +	+ +
undifferentiated cell type Mediastinal, lymphoma malignant lymphocytic																				x					
Mesenteric, lymphoma malignant lymphocytic Mesenteric, lymphoma malignant undufferentiated cell type Benemetric lumphoma malignant						x														x					
Pancreatic, lymphoma malignant lymphocytic Renal, lymphoma malignant lymphocytic Spleen	+	+	+	+	+	÷	+	+	+	м	+	+	+	÷	+	+	+	+	+	X X +	+	+	+	+	+
Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type			м	v	м	л	м	v	M	v	v	v	м	M		м			v	x	M				
Thymus Lymphoma malignant lymphocytic INTEGUMENTARY SYSTEM			IVI	M				IVI.		TAT	M	M 	M	M	•	м 	+	+	м. 	*	м 		+	+	м
Mammary gland Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	M +	M +	М +	M + X	M +	м +	M. +	M +	M M	M +	M. + X	M +	M +	м +	M +	м +	M +	м + х	M +	М +	M +	М +	M +	M +	М +
MUSCULOSKELETAL SYSTEM Bone		+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain		+	+	+	+	+	+	+	м	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM																							<u> </u>		
Lung Alveolar/bronchiolar adenoma Hepatoceilular carcinoma, metastatic Lymphoma malignant histocytic	+	+	+	+	+	+ x	+ X	+ X	+	М	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant lymphocytic Nose Trachea	-+	+	+ +	+ +	+ +	++	+ +	+ +	M +	M M	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
SPECIAL SENSES SYSTEM Harderian gland Adenoma																									
URINARY SYSTEM Kidney		+	+	+	+	÷	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant lymphocytic Urinary bladder	_ +	+	+	+	+	*	+	A	м	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																								-	

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

WEEKS ON STUDY	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	TOTAL
CARCASS ID	2 1 2	2 1 3	2 1 4	2 1 5	2 2 1	2 2 3	2 3 2	2 3 4	2 3 5	2 4 2	2 4 3	2 4 4	2 4 5	2 5 1	2 5 2	2 5 4	2 5 5	2 6 4	2 7 1	2 7 4	2 7 5	2 8 3	2 8 5	2 9 4	3 0 3	TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Gallbladder Lymphoma malignant lymphocytic Intestine large Intestine small	+ M + +	+ + + +	+ M +++	+ + + +	++++++	++ ++	M M + +	+ + + +	+++++	++++	+++++	++ + ++	++++	++++++	+ + + + + + + + + + + + + + + + + + +	+ M ++	++++	н М + + + +	+ M ++	+++++	+++++	+ M +++	+++++	++ ++	++ ++ ++	47 30 1 48 46
Liver Hemangiosarcoma, multiple Hepatocellular carcinoma Hepatocellular adenoma Lymphoma malignant lymphocytic Lymphoma malignant	+	+	+	+ X	+	+	+ x	+	+	+	+ x	+	+	+	+	+	+ x	+	+	+	+	+ X	+ x	+	+ X	49 2 6 8 2 1
Pancreas Saivary glands Stomach Tooth	+++++	+ + +	+ + + +	+ + +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	48 48 49 1
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ENDOCRINE SYSTEM Adrenal gland Lymphoma malignant lymphocytic Capsule, adenoma Islets, pancreatic	+	+	+	+	+	+ X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1 1 48
Parathyroid gland Pituitary gland Thyroid gland Follicular cell, adenoma	M + +	+ + +	+ + +	+ + +	+ + +	М + +	М + +	M + + X	+ + +	М + +	+ + +	+ + +	+ M +	+ + +	, + + +	, + + +	м́ + +	М + +	M + +	м м +	м́ + М	M M +	M + +	М + +	M + +	26 40 46 1
GENERAL BODY SYSTEM None																										
GENITAL SYSTEM Epidudymis Preputai gland Prostate Seminal vesicle Testes	+++++	+++++	+++++	M M M M	+ + + +	+ + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + +	+ + + +	+ ++++	+ + + +	+ + + + +	+ + + + +	+++++	+ ++++	+ + + + +	+ + + +	+ + + + +	+ + + +	+ ++++	+ + + + + + + +	+ + + + +	+ + + +	+ +++	+ + + +	47 10 45 48 48
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lumbar, lymphoma malig lymphocytic Mandibular, lymphoma malignant undifferentizate cell type Mediastinal, lymphoma malignant lymphocytic Messenteric, lymphoma malignant lymphocytic Messenteric, lymphoma malignant undifferentizated cell type	++	++++	+++	+++	++++	+++	+++	+++	++++	++++	+++	+++	+++	+++	++++	+++	++++	+++	+++++++++++++++++++++++++++++++++++++++	++++	+++	++ x x	++++	+++	++++	48 43 1 1 1 2 1
Pancreatic, lymphoma malignant lymphocytic Renai, lymphoma malig lymphocytic Spleen Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated	+	÷	+	÷	÷	÷	+	÷	÷	÷	+	+	+	÷	+	÷	+	÷	+	÷	÷	t	+	+	÷	1 1 49 2
cell type Thymus Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	М	М	+	X +	+	+	+	1 30 1
INTEGUMENTARY SYSTEM Memmary gland Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	м +	M +	M +	M +	м +	м +	M +	M +	M +	M +	M †	M +	м +	M +	M +	M +	M +	M +	м + х	M +	M +	M +	м + Х	М +	M + X	49 2 4
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Hepatocellular carcinoma, metastatic Lymphoma malignant histocytic Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	ż	+	+	+	+	+	+	+	+	*	+	+	49 2 2 1 1
Nose Trachea	+++	++	++	++++	+++	++	++	++	++	+	++	++	++	++	++	++	++++	++	+ +	++	+ +	++	++	++	++	46 49
SPECIAL SENSES SYSTEM Hardeman gland Adenoma												*								+						3
URINARY SYSTEM Kidney Lymphoma malignant lymphocytic Urinary bladder	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	49 1 47

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

	Vehicle Control	50 mg/kg	100 mg/kg
Liver: Hepatocellular Adenoma		<u></u>	
Overall Rates (a)	11/50 (22%)	11/50 (22%)	8/49 (16%)
Adjusted Rates (b)	24.6%	26.8%	21.4%
Terminal Rates (c)	8/41 (20%)	8/37 (22%)	7/36 (19%)
Day of First Observation	455	393	632
Life Table Tests (d)		P = 0.500	
	P = 0.383N		P = 0.419N
Logistic Regression Tests (d)	P = 0.283N	P = 0.561 N	P = 0.333N
Cochran-Armitage Trend Test (d)	P = 0.282N		D 0 0001
Fisher Exact Test (d)		P = 0.595N	P = 0.323N
liver: Hepatocellular Carcinoma			
Overall Rates (a)	7/50 (14%)	8/50 (16%)	6/49 (12%)
Adjusted Rates (b)	15.4%	19.3%	14.4%
Terminal Rates (c)	3/41 (7%)	5/37 (14%)	2/36 (6%)
Day of First Observation	642	602	50 9
Life Table Tests (d)	P = 0.552N	P = 0.421	P = 0.603 N
Logistic Regression Tests (d)	P = 0.423N	P = 0.507	P = 0.425N
Cochran-Armitage Trend Test (d)	P = 0.459N		
Fisher Exact Test (d)		P = 0.500	P = 0.516N
Liver: Hepatocellular Adenoma or Carcin	oma		
Overall Rates (a)	16/50 (32%)	19/50 (38%)	14/49 (29%)
Adjusted Rates (b)	33.8%	43.5%	33.6%
Terminal Rates (c)			
	10/41 (24%)	13/37 (35%)	9/36 (25%)
Day of First Observation	455 D=0.597	393 D-0.947	509 D-0 575N
Life Table Tests (d)	P = 0.527	P = 0.247	P = 0.575N
Logistic Regression Tests (d)	P = 0.370N	P = 0.375	P = 0.376N
Cochran-Armitage Trend Test (d)	P = 0.401 N	-	
Fisher Exact Test (d)		P = 0.338	P = 0.440N
Lung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	10/50 (20%)	5/50 (10%)	2/49 (4%)
Adjusted Rates (b)	24.4%	12.7%	5.6%
Terminal Rates (c)	10/41 (24%)	4/37 (11%)	2/36 (6%)
Day of First Observation	730	602	730
Life Table Tests (d)	P=0.016N	P = 0.178N	P = 0.026N
Logistic Regression Tests (d)	P = 0.016N	P = 0.161N	P = 0.026N
		r =0.10114	1 = 0.02014
Cochran-Armitage Trend Test (d)	P=0.010N	D-0191N	D-0.015N
Fisher Exact Test (d)		P = 0.131N	P = 0.015N
ung: Alveolar/Bronchiolar Carcinoma			•
Overall Rates (a)	1/50 (2%)	3/50 (6%)	0/49 (0%)
Adjusted Rates (b)	2.4%	7.4%	0.0%
Terminal Rates (c)	1/41 (2%)	2/37 (5%)	0/36 (0%)
Day of First Observation	730	507	
Life Table Tests (d)	P = 0.412N	P = 0.278	P = 0.526N
Logistic Regression Tests (d)	P = 0.361N	P = 0.334	P = 0.526N
Cochran-Armitage Trend Test (d)	P = 0.384N		
Fisher Exact Test (d)		P = 0.309	P = 0.505N
ung: Alveolar/Bronchiolar Adenoma or C	arcinoma		
Overall Rates (a)	11/50 (22%)	7/50 (14%)	2/49 (4%)
Adjusted Rates (b)	26.8%	17.2%	5.6%
Terminal Rates (c)			
	11/41 (27%)	5/37 (14%)	2/36 (6%)
Day of First Observation	730 D = 0.010N	507 D 0 000N	730 D-0.015N
Life Table Tests (d)	P = 0.012N	P = 0.288N	P = 0.015N
Logistic Regression Tests (d)	P = 0.009N	P = 0.236N	P = 0.015N
Cochran-Armitage Trend Test (d)	P = 0.007N		D
Fisher Exact Test (d)		P = 0.218N	P = 0.008N

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OFTRIBROMOMETHANE (Continued)

	Vehicle Control	50 mg/kg	100 mg/kg
Subcutaneous Tissue: Fibroma		<u> </u>	
Overall Rates (a)	3/50 (6%)	5/50 (10%)	2/50 (4%)
Adjusted Rates (b)	7.3%	13.1%	5.6%
Terminal Rates (c)	3/41 (7%)	4/37 (11%)	2/36 (6%)
Day of First Observation	730	688	730
Life Table Tests (d)	P = 0.495N	P = 0.300	P = 0.559N
Logistic Regression Tests (d)	P = 0.499N	P = 0.309	P = 0.559N
Cochran-Armitage Trend Test (d)	P = 0.421N		
Fisher Exact Test (d)		P = 0.357	P = 0.500 N
Subcutaneous Tissue: Fibrosarcoma			
Overall Rates (a)	2/50 (4%)	7/50 (14%)	4/50 (8%)
Adjusted Rates (b)	4.8%	17.4%	9.9%
Terminal Rates (c)	1/41 (2%)	4/37 (11%)	2/36 (6%)
Day of First Observation	721	673	526
Life Table Tests (d)	P=0.233	P = 0.063	P = 0.289
Logistic Regression Tests (d)	P = 0.297	P = 0.071	P = 0.382
Cochran-Armitage Trend Test (d)	P = 0.297		· ·
Fisher Exact Test (d)	•	P = 0.080	P=0.339
Subcutaneous Tissue: Fibroma or Fibrosarco	oma		
Overall Rates (a)	5/50 (10%)	9/50 (18%)	6/50 (12%)
Adjusted Rates (b)	11.9%	22.5%	15.2%
Terminal Rates (c)	4/41 (10%)	6/37 (16%)	4/36 (11%)
Day of First Observation	721	673	5 26
Life Table Tests (d)	P = 0.342	P = 0.146	P = 0.416
Logistic Regression Tests (d)	P=0.406	P = 0.161	P = 0.490
Cochran-Armitage Trend Test (d)	P=0.442		
Fisher Exact Test (d)		P=0.194	P = 0.500
Subcutaneous Tissue: Sarcoma or Fibrosarc	oma		
Overall Rates (a)	2/50 (4%)	8/50 (16%)	4/50 (8%)
Adjusted Rates (b)	4.8%	19.9%	9.9%
Terminal Rates (c)	1/41 (2%)	5/37 (14%)	2/36 (6%)
Day of First Observation	721	673	52 6
Life Table Tests (d)	P = 0.236	P = 0.036	P = 0.289
Logistic Regression Tests (d)	P=0.298	P = 0.040	P = 0.382
Cochran-Armitage Trend Test (d)	P = 0.303		
Fisher Exact Test (d)		P = 0.046	P=0.339
Subcutaneous Tissue: Fibroma, Sarcoma, or	Fibrosarcoma		
Overall Rates (a)	5/50 (10%)	10/50 (20%)	6/50 (12%)
Adjusted Rates (b)	11.9%	25.0%	15.2%
Terminal Rates (c)	4/41 (10%)	7/37 (19%)	4/36 (11%)
Day of First Observation	721	673	526
Life Table Tests (d)	P = 0.341	P = 0.095	P = 0.416
Logistic Regression Tests (d)	P = 0.402	P = 0.104	P = 0.490
Cochran-Armitage Trend Test (d)	P = 0.443		
Fisher Exact Test (d)		P = 0.131	P = 0.500
'orestomach: Squamous Papilloma			
Overall Rates (a)	0/50 (0%)	4/50 (8%)	0/49 (0%)
Adjusted Rates (b)	0.0%	10.8%	0.0%
Terminal Rates (c)	0/41 (0%)	4/37 (11%)	0/36 (0%)
Day of First Observation		730	
Life Table Tests (d)	P = 0.579	P = 0.051	(e)
Logistic Regression Tests (d)	P = 0.579	P = 0.051	(e)
Cochran-Armitage Trend Test (d)	P = 0.616		
Fisher Exact Test (d)		P = 0.059	(e)

	Vehicle Control	50 mg/kg	100 mg/kg
All Sites: Hemangioma			
Overall Rates (a)	3/50 (6%)	(f) 1/50 (2%)	0/50 (0%)
Adjusted Rates (b)	6.8%	2.7%	0.0%
Terminal Rates (c)	1/41 (2%)	1/37 (3%)	0/36 (0%)
Day of First Observation	642	730	
Life Table Tests (d)	P = 0.079N	P = 0.344N	P = 0.152N
Logistic Regression Tests (d)	P = 0.062N	P = 0.306N	P = 0.111N
Cochran-Armitage Trend Test (d)	P = 0.060 N		
Fisher Exact Test (d)		P = 0.309N	P = 0.121N
All Sites: Hemangioma or Hemangiosard	coma		
Overall Rates (a)	4/50 (8%)	(f) 2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	9.1%	5.4%	5.3%
Terminal Rates (c)	2/41 (5%)	2/37 (5%)	1/36(3%)
Day of First Observation	642	730	663
Life Table Tests (d)	P = 0.311N	P=0.386N	P = 0.406N
Logistic Regression Tests (d)	P = 0.269N	P = 0.352N	P = 0.337 N
Cochran-Armitage Trend Test (d)	P = 0.252N		
Fisher Exact Test (d)		P=0.339N	P = 0.339N
Hematopoietic System: Lymphoma, All N	Malignant		
Overall Rates (a)	6/50 (12%)	(f) 0/50 (0%)	4/50 (8%)
Adjusted Rates (b)	13.4%	0.0%	9.8%
Terminal Rates (c)	4/41 (10%)	0/37 (0%)	2/36 (6%)
Day of First Observation	544		565
Life Table Tests (d)	P = 0.331N	P = 0.025 N	P = 0.444N
Logistic Regression Tests (d)	P = 0.235N	P = 0.012N	P = 0.271N
Cochran-Armitage Trend Test (d)	P = 0.274N		
Fisher Exact Test (d)		P = 0.013N	P = 0.370N

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF **TRIBROMOMETHANE** (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 100 mg/kg and vehicle control groups.

(f) Eighteen spleens were examined microscopically.

	Incidence in Vehicle Controls									
Study	Adenoma	Carcinoma	Adenoma or Carcinoma							
listorical Incidence at EG&G M	ason Research Institut	9								
Diglycidyl resorcinol ether	6/50	0/50	6/50							
Dichloropropane9/50orodibromomethane5/50utyl chloride12/50modichloromethane8/49(2-chloro-1-methylethyl)ether5/50utyl chloride3/50	3/50	11/50								
Chlorodibromomethane	5/50	6/50	11/50							
2-Butyl chloride		2/50	14/50							
Bromodichloromethane		4/49	12/49							
Bis(2-chloro-1-methylethyl)ether	5/50	1/50	6/50							
a-Butyl chloride	3/50	3/50	6/50							
TOTAL	48/349 (13.8%)	19/349 (5.4%)	66/349 (18.9%)							
SD (b)	6.07%	3.97%	6.78%							
lange (c)										
High	12/50	6/50	14/50							
Low	3/50	0/50	6/50							
Overall Historical Incidence										
TOTAL	223/1,985(11.2%)	112/1,985 (5.6%)	325/1,985 (16.4%)							
SD(b)	5.73%	3.83%	6.44%							
lange (c)										
High	13/47	6/50	15/47							
Low	1/50	0/50	2/50							

TABLE C4. HISTORICAL INCIDENCE OF ALVEOLAR/BRONCHIOLAR TUMORS IN MALE $\mathsf{B6C3F}_1$ MICE ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

	Vehicle	Control	Low	Dose	High	Dose
nimals initially in study	50		50		50	
nimals removed	50		50		50	
nimals examined histopathologically	50		50		50	
LIMENTARY SYSTEM						
Gallbladder	(46)		(6)		(30)	
Inflammation, chronic active	2	(4%)			1	(3%)
Intestine large	(50)		(7)		(48)	
Circumanal gland, inflammation, acute			1	(14%)		
Lymphoid nodule, hyperplasia	_	(4%)		(14%)		(10%)
Intestine small	(50)		(6)		(46)	
Hyperplasia, lymphoid	1	(2%)				
Duodenum, fibrosis				(17%)		
Duodenum, hyperplasia				(17%)		
Duodenum, inflammation, chronic active Duodenum, necrosis				(17%)		
Duodenum, necrosis Ileum, epithelium, hyperplasia		(90)	1	(17%)		
Lymphoid nodule, hyperplasia		(2%) (52%)			01	(ACO)
Lymphoid nodule, nyperplasia Lymphoid nodule, necrosis	20	(3270)				(46%)
Liver	(50)		(50)		(49)	(2%)
Basophilic focus		(4%)		(4%)	(49)	
Cyst	2			(2%)		
Fatty change, diffuse				(2%)		
Fatty change, focal	7	(14%)		(10%)	7	(14%)
Fibrosis		(24%)	Ŭ		•	(2%)
Hematopoietic cell proliferation	20	(40%)	5	(10%)		(29%)
Hemorrhage		,		(2%)		(2%)
Infarct	1	(2%)	_	,	-	(
Mineralization	3	(6%)	3	(6%)	3	(6%)
Necrosis	10	(20%)	8	(16%)	12	(24%)
Pigmentation	1	(2%)				
Regeneration			1	(2%)		
Thrombus			1	(2%)		
Bile duct, hyperplasia					1	(2%)
Mesentery	(2)		(1)			
Abscess			1	(100%)		
Fat, necrosis	1	(50%)				
Pancreas	(49)		(9)		(48)	
Acinus, atrophy		(2%)				(2%)
Acinus, hyperplasia		(4%)			1	(2%)
Stomach	(50)		(50)		(49)	
Hyperplasia, glandular		(2%)	1	(2%)		
Inflammation, chronic active		(2%)	•			
Forestomach, acanthosis	4	(8%)	3	(6%)	6	(12%)
Forestomach, cyst epithelial inclusion,						(00)
multiple Forestomach, fibrosis		(90)	•	(90)	1	(2%)
Forestomach, hyperkeratosis		(2%) (10%)		(2%) (10%)	~	(140)
Forestomach, inflammation, chronic active		(10%)		(10%) (4%)		(14%) (4%)
Forestomach, mineralization	1	(470)		(4.76) (2%)	Z	(4170)
Forestomach, ulcer	9	(4%)		(4%)	9	(4%)
Glandular, cyst	2		2	(20)		(2%)
Glandular, dysplasia						(2%)
Glandular, hyperplasia			4	(8%)		(12%)
Glandular, inflammation, chronic active	4	(8%)		(12%)		(16%)
Glandular, mineralization		(2%)	5	_ _ ,_,	5	
Tooth					(1)	
Developmental malformation						(100%)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

	Vehicle	Control	Low	Dose	High	Dose
CARDIOVASCULAR SYSTEM		<u></u>	<u>.</u>			·····
Heart	(50)		(6)		(48)	
Cardiomyopathy	2	(4%)				
Mineralization	1	(2%)				
Artery, inflammation, chronic active					1	(2%)
Pericardium, inflammation, acute			1	(17%)		
ENDOCRINE SYSTEM						
Adrenal gland	(49)		(9)		(49)	
Capsule, hyperplasia	,	(63%)		(67%)		(61%)
Cortex, hyperplasia		(2%)	-	,		(4%)
Cortex, hypertrophy			1	(11%)		(4%)
Cortex, hypertrophy, diffuse						(2%)
Cortex, hypertrophy, focal	1	(2%)				(=,
Medulla, hyperplasia		(16%)	1	(11%)	4	(8%)
Islets, pancreatic	(49)		(9)		(48)	,
Hyperplasia		(2%)	(0)		(13)	
Pituitary gland	(45)		(6)		(40)	
Pars distalis, cyst		(4%)		(17%)		(3%)
Pars distalis, hyperplasia	_	(7%)			1	(0.0)
Pars intermedia. cyst		(2%)				
Thyroid gland	(48)	(470)	(6)		(AC)	
	· · · /	(90)	(0)		(46)	
Follicle, cyst Follicular cell, hyperplasia, focal		(2%) (2%)				
	•	,				
GENITAL SYSTEM						
Epididymis	(47)		(7)		(47)	
Epididymis Abscess	(47)		(7)	(14%)	(47)	
Abscess	. ,		1	(14%)		
Abscess Preputial gland	(4 7) (7)		1 (9)		(47) (10)	
Abscess Preputial gland Cyst	(7)	(14%)	1 (9)	(14%) (33%)		
Abscess Preputial gland Cyst Dilatation	(7)	(14%)	1 (9) 3	(33%)	(10)	(50%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active	(7) 1 5	(71%)	1 (9) 3 2	(33%) (22%)	(10)	(50%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis	(7) 1 5 1	• •	1 (9) 3 2 3	(33%)	(10) 5 5	(50%) (50%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate	(7) 1 5	(71%)	1 (9) 3 2 3 (6)	(33%) (22%) (33%)	(10)	
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage	(7) 1 5 1 (46)	(71%) (14%)	1 (9) 3 2 3 (6) 1	(33%) (22%) (33%) (17%)	(10) 5 5 (45)	(50%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active	(7) 1 5 1 (46)	(71%)	1 (9) 3 2 3 (6) 1 1	(33%) (22%) (33%) (17%) (17%)	(10) 5 5 (45)	
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis	(7) 1 5 1 (46) 1	(71%) (14%)	1 (9) 3 2 3 (6) 1 1 1	(33%) (22%) (33%) (17%)	(10) 5 5 (45) 2	(50%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle	(7) 1 5 1 (46) 1 (49)	(71%) (14%) (2%)	1 (9) 3 (6) 1 1 1 (10)	(33%) (22%) (33%) (17%) (17%) (17%)	(10) 5 5 (45)	(50%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active	(7) 1 5 1 (46) 1 (49) 1 (49)	(71%) (14%)	1 (9) 3 (6) 1 1 1 (10) 1	(33%) (22%) (33%) (17%) (17%)	(10) 5 5 (45) 2 (48)	(50%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes	(7) 1 5 1 (46) 1 (49)	(71%) (14%) (2%)	1 (9) 3 2 3 (6) 1 1 1 (10) 1 (10) 1 (9)	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) 	(10) 5 5 (45) 2	(50%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele	(7) 1 5 1 (46) 1 (49) 1 (50)	(71%) (14%) (2%) (2%)	1 (9) 3 2 3 (6) 1 1 1 (10) 1 (9) 1	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) 	(10) 5 5 (45) 2 (48) (48)	(50%) (4%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy	(7) 1 5 1 (46) 1 (49) 1 (50) 7	(71%) (14%) (2%) (2%) (14%)	1 (9) 3 2 3 (6) 1 1 1 (10) 1 (9) 1 1	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) 	(10) 5 5 (45) 2 (48) (48) (48) 6	(50%) (4%) (13%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele	(7) 1 5 1 (46) 1 (49) 1 (50) 7	(71%) (14%) (2%) (2%)	1 (9) 3 2 3 (6) 1 1 1 (10) 1 (9) 1 1	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) 	(10) 5 5 (45) 2 (48) (48) (48) 6	(50%) (4%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, mineralization	(7) 1 5 1 (46) 1 (49) 1 (50) 7	(71%) (14%) (2%) (2%) (14%)	1 (9) 3 2 3 (6) 1 1 1 (10) 1 (9) 1 1	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) 	(10) 5 5 (45) 2 (48) (48) (48) 6	(50%) (4%) (13%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, mineralization HEMATOPOIETIC SYSTEM	(7) 1 5 1 (46) 1 (49) 1 (50) 7 1	(71%) (14%) (2%) (2%) (14%)	1 (9) 3 (6) 1 1 1 (10) 1 (9) 1 1 1	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) 	(10) 5 5 (45) 2 (48) (48) 6 3	(50%) (4%) (13%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, mineralization HEMATOPOIETIC SYSTEM Lymph node	(7) 1 5 1 (46) 1 (49) 1 (50) 7	(71%) (14%) (2%) (2%) (14%)	1 (9) 3 2 3 (6) 1 1 1 (10) 1 (9) 1 1	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) 	(10) 5 5 (45) 2 (48) (48) 6 3 (43)	(50%) (4%) (13%) (6%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, mineralization HEMATOPOIETIC SYSTEM Lymph node Lumbar, angiectasis	(7) 1 5 1 (46) 1 (49) 1 (50) 7 1	(71%) (14%) (2%) (2%) (14%)	1 (9) 3 (6) 1 1 1 (10) 1 (9) 1 1 1	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) 	(10) 5 5 (45) 2 (48) (48) 6 3 (48) 6 3 (43) 1	(50%) (4%) (13%) (6%) (2%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, mineralization HEMATOPOIETIC SYSTEM Lymph node Lumbar, angiectasis Lumbar, hematopoietic cell proliferation	(7) 1 5 1 (46) 1 (49) 1 (50) 7 1 (47)	(71%) (14%) (2%) (2%) (14%) (2%)	1 (9) 3 (6) 1 1 1 (10) 1 (10) 1 1 (15)	 (33%) (22%) (33%) (17%) (17%) (10%) (11%) (11%) (11%) 	(10) 5 5 (45) 2 (48) (48) 6 3 (48) 6 3 (43) 1	(50%) (4%) (13%) (6%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, mineralization HEMATOPOIETIC SYSTEM Lymph node Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, plasma cell	(7) 1 5 1 (46) 1 (49) 1 (50) 7 1 (47) 1	(71%) (14%) (2%) (2%) (14%)	1 (9) 3 (6) 1 1 1 (10) 1 (10) 1 1 (15)	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) 	(10) 5 5 (45) 2 (48) (48) 6 3 (43) 1 1	(50%) (4%) (13%) (6%) (2%) (2%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, atrophy Seminiferous tubule, mineralization HEMATOPOIETIC SYSTEM Lymph node Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, plasma cell Mandibular, infiltration cellular, plasma cell	(7) 1 5 1 (46) 1 (49) 1 (50) 7 1 (47) 1	(71%) (14%) (2%) (2%) (14%) (2%)	1 (9) 3 (6) 1 1 1 (10) 1 (10) 1 (11) 1 (15)	<pre>(33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) (11%)</pre>	(10) 5 5 (45) 2 (48) (48) 6 3 (43) 1 1 1 1	(50%) (4%) (13%) (6%) (2%) (2%) (2%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, mineralization HEMATOPOIETIC SYSTEM Lymph node Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, plasma cell Mandibular, infiltration cellular, plasma cell Mesenteric, angiectasis	(7) 1 5 1 (46) 1 (49) 1 (50) 7 1 (47) 1 22	(71%) (14%) (2%) (2%) (14%) (2%) (2%) (2%) (47%)	1 (9) 3 (6) 1 1 (10) 1 (10) 1 (10) 1 1 (15) 1 10	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) (11%) (7%) (67%) 	(10) 5 5 (45) 2 (48) (48) 6 3 (43) 1 1 1 1 14	(50%) (4%) (13%) (6%) (2%) (2%) (2%) (33%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, mineralization HEMATOPOIETIC SYSTEM Lymph node Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, plasma cell Mandibular, infiltration cellular, plasma cell Mesenteric, angiectasis Mesenteric, hematopoietic cell proliferation	(7) 1 5 1 (46) 1 (49) 1 (50) 7 1 (47) 1 22 15	(71%) (14%) (2%) (2%) (14%) (2%) (14%) (2%)	1 (9) 3 (6) 1 1 (10) 1 (10) 1 (10) 1 1 (15) 1 10	<pre>(33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) (11%)</pre>	(10) 5 5 (45) 2 (48) (48) 6 3 (43) 1 1 1 1 14	(50%) (4%) (13%) (6%) (2%) (2%) (2%)
Abscess Preputial gland Cyst Dilatation Inflammation, chronic active Necrosis Prostate Hemorrhage Inflammation, chronic active Necrosis Seminal vesicle Inflammation, chronic active Testes Spermatocele Seminiferous tubule, atrophy Seminiferous tubule, mineralization HEMATOPOIETIC SYSTEM Lymph node Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, plasma cell Mandibular, infiltration cellular, plasma cell Mesenteric, angiectasis	(7) 1 5 1 (46) 1 (49) 1 (50) 7 1 (47) 1 22 15	(71%) (14%) (2%) (2%) (14%) (2%) (2%) (2%) (47%)	1 (9) 3 (6) 1 1 (10) 1 (10) 1 1 1 1 (15) 1 (15)	 (33%) (22%) (33%) (17%) (17%) (17%) (10%) (11%) (11%) (11%) (7%) (67%) 	(10) 5 5 (45) 2 (48) (48) 6 3 (43) 1 1 1 1 14	(50%) (4%) (13%) (6%) (2%) (2%) (2%) (33%)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle	Control	Low	Dose	High	Dose
HEMATOPOIETIC SYSTEM		· · · · · · · · · · · · · · · · · · ·		· · ·		
Lymph node (Continued)	(47)		(15)		(43)	
Renal, necrosis	1	(2%)				
Thoracic, angiectasis	1	(2%)				
Thoracic, necrosis	1	(2%)				
Spleen	(50)		(18)		(49)	
Angiectasis	2	(4%)	1	(6%)		
Atrophy	1	(2%)			1	(2%)
Hematopoietic cell proliferation		(80%)	15	(83%)	38	(78%)
Hyperplasia, lymphoid	3	(6%)			1	(2%)
Hyperplasia, mast cell			1	(6%)		
Thymus	(35)		(6)		(30)	
Atrophy	3	(9%)	2	(33%)		
Hyperplasia, lymphoid					1	(3%)
NTEGUMENTARY SYSTEM						
Skin	(48)		(23)		(49)	
Bacterium		(2%)	(4)	(13%)	• •	(4%)
Hemorrhage	-		-	(4%)		(2%)
Hyperplasia, basal cell				(4%)	-	
Inflammation, acute				(4%)		
Inflammation, chronic active			-	(9%)		
Necrosis	4	(8%)		(35%)	8	(16%)
Prepuce, acanthosis	-	(0,0)	Ŭ	(00%)		(2%)
Prepuce, inflammation, chronic active			1	(4%)		(2%)
Prepuce, necrosis			-	(1,0)		(4%)
Sebaceous gland, hyperplasia			1	(4%)	-	
Subcutaneous tissue, fibrosis				(13%)	2	(4%)
Subcutaneous tissue, inflammation, chronic				(10,0)	-	(
active			1	(4%)		
Subcutaneous tissue, metaplasia, osseous	1	(2%)	-	(4,0)		
Subcutaneous tissue, necrosis		(2%)	1	(4%)		
AUSCULOSKELETAL SYSTEM						
Bone	(50)		(49)		(49)	
Joint, tarsal, hyperostosis		(70%)		(82%)		(55%)
IERVOUS SYSTEM Brain	(50)				(40)	
Inflammation, acute	(50)		(6)		(48)	(2%)
Inflammation, chronic						(2%)
Mineralization						(2%)
Thalamus, mineralization	1	(2%)				(2%)
RESPIRATORY SYSTEM						·
Lung	(50)		(50)		(49)	
Abscess	(00)					(2%)
Embolus tumor	1	(2%)			•	
Fungus	1	~~~~~			1	(2%)
Hemorrhage	7	(14%)	А	(8%)		(14%)
Infiltration cellular, histiocytic		(4%)		(4%)	1	
Inflammation, chronic active	4	(=10)		(4%)	1	(2%)
Alveolar epithelium, hyperplasia	9	(6%)		(4%)		(2%)
Bronchiole, inflammation, acute	3	(070)		(2%)	1	(470)
Bronemore, minamination, acute			1	(470)		

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle	Control	Low	Dose	High	Dose	
SPECIAL SENSES SYSTEM				<u></u>			
Harderian gland	(2)		(2)		(3)		
Abscess					1	(33%)	
Fibrosis					1	(33%)	
Fungus					1	(33%)	
Inflammation, chronic active					1	(33%)	
URINARY SYSTEM	<u> </u>	······					
Kidney	(50)		(20)		(49)		
Abscess					1	(2%)	
Cyst	4	(8%)	1	(5%)			
Embolus tumor	1	(2%)					
Inflammation, chronic active	3	(6%)	4	(20%)	2	(4%)	
Cortex, mineralization	19		2	(10%)	10	(20%)	
Papilla, mineralization	1	(2%)		,	1	(2%)	
Papilla, necrosis		(,			1	(2%)	
Renal tubule, casts	5	(10%)	1	(5%)	4	(8%)	
Renal tubule, degeneration	i	(2%)	-			(2%)	
Renal tubule, regeneration	18	(36%)	4	(20%)	8	(16%)	
Urinary bladder	(48)		(7)	. ,	(47)		
Angiectasis			1	(14%)			
Calculus micro observation only	2	(4%)					
Inflammation, acute			1	(14%)			
Inflammation, chronic			1	(14%)			
Inflammation, chronic active	1	(2%)	1	(14%)			
Transitional epithelium, hyperplasia	1	(2%)		-			

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

Tribromomethane, NTP TR 350

APPENDIX D

SUMMARY OF LESIONS IN FEMALE MICE IN

THE TWO-YEAR GAVAGE STUDY OF

TRIBROMOMETHANE

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-	
YEAR GAVAGE STUDY OF TRIBROMOMETHANE	148

PAGE

	YEAR GAVAGE STUDY OF TRIBROMOMETHANE	148
TABLE D2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	152
TABLE D3	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	162
TABLE D4	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE	164

TABLE D1

Ve	ehicle	Control	Low	Dose	High	Dose
Animals initially in study	50		50		50	
Animals removed	50		50		50	
nimals examined histopathologically	49		50		50	
LIMENTARY SYSTEM		<u>-</u>				
Gallbladder	(38)		*(50)		(37)	
Lymphoma malignant lymphocytic	1	(3%)				
Intestine large	(48)		* (50)		(49)	
Lymphoma malignant lymphocytic		(2%)				
Intestine small	(47)		*(50)		(48)	
Lymphoma malignant lymphocytic	1	(2%)				
Lymphoma malignant mixed			1	(2%)		
Lymphoid nodule, lymphoma malignant mixed	1	(2%)				
Lymphoid nodule, lymphoma malignant						
undifferentiated cell type		(2%)				
Liver	(49)		(50)		(50)	
Hemangiosarcoma Hepatocellular carcinoma	•	(90)			-	(4%)
		(2%)	-	(100)		(4%)
Hepatocellular adenoma		(2%)		(10%)	-	(6%)
Hepatocellular adenoma, multiple Hepatocholangiocarcinoma, multiple		(4%)	1	(2%)	1	(2%)
Histiocytic sarcoma	1	(2%)		(00)		
Lymphoma malignant histiocytic		(90)	1	(2%)		(00)
Lymphoma malignant lymphocytic		(2%) (8%)	1	(90)	1	(2%)
Lymphoma malignant mixed		(2%)	1	(2%)	0	(10)
Lymphoma malignant undifferentiated cell type		(470)	9	(4%)	2	(4%)
Mesentery	•(49)		* (50)	(4970)	*(50)	
Lymphoma malignant lymphocytic		(2%)	(00)		(50)	
Pancreas	(46)		* (50)		(47)	
Lymphoma malignant lymphocytic	• •	(7%)		(2%)	(47)	
Lymphoma malignant mixed		(2%)	-	(=,*)		
Lymphoma malignant undifferentiated cell type		17	1	(2%)		
Salivary glands	(46)		*(50)		(45)	
Lymphoma malignant undifferentiated cell type			1	(2%)		
Stomach	(47)		(48)		(50)	
Lymphoma malignant lymphocytic		(4%)				
Lymphoma malignant undifferentiated cell type			1	(2%)		
Forestomach, papilloma squamous					2	(4%)
ARDIOVASCULAR SYSTEM		·····				
Heart	(48)		*(50)		(50)	
Lymphoma malignant undifferentiated cell type			1	(2%)		
NDOCRINE SYSTEM						
Adrenal gland	(49)		*(50)		(46)	
Lymphoma malignant lymphocytic		(4%)				
Lymphoma malignant undifferentiated cell type			1	(2%)		
Islets, pancreatic	(46)		*(50)		(47)	
Adenoma			1	(2%)		
Pituitary gland	(44)		* (50)		(46)	
Lymphoma malignant lymphocytic	2	(5%)				
Pars distalis, adenoma	7	(16%)	6	(12%)	5	(11%)
Pars distalis, adenoma, multiple					1	(2%)
Pars intermedia, adenoma		(2%)				
Thyroid gland	(49)		(49)		(47)	
Lymphoma malignant lymphocytic		(4%)				
Follicular cell, adenoma	1	(2%)				

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

v	ehicle	Control	Low	Dose	High	Dose
GENERAL BODY SYSTEM None	<u></u>		- <u></u>			,
GENITAL SYSTEM						
Ovary	(45)		*(50)		(49)	
Lymphoma malignant lymphocytic		(7%)	*(50)		(10)	
Uterus Histioartis concerns	(49)		*(50)		(49)	
Histiocytic sarcoma Leiomyosarcoma	1	(2%)	1	(2%)		
Lymphoma malignant histiocytic		(2%)				
Lymphoma malignant lymphocytic		(2%)				
Polyp stromal		(2%)	1	(2%)	3	(6%)
IEMATOPOIETIC SYSTEM					····= <u></u> ····	
Bone marrow	(49)		*(50)		(50)	
Lymphoma malignant lymphocytic	2	(4%)				
Lymphoma malignant mixed		(07)			1	(2%)
Lymphoma malignant undifferentiated cell typ		(2%)	*/201		(45)	
Lymph node Axillary, lymphoma malignant lymphocytic	(44)	(5%)	*(50)		(45)	
Iliac, lymphoma malignant mixed		(2%)				
Inguinal, lymphoma malignant lymphocytic		(2%)				
Inguinal, lymphoma malignant mixed		(2%)				
Lumbar, lymphoma malignant histiocytic					1	(2%)
Lumbar, lymphoma malignant lymphocytic	2	(5%)				
Lumbar, lymphoma malignant mixed		(2%)	1	(2%)	1	(2%)
Lumbar, lymphoma malignant undifferentiated		(
cell type		(2%)				
Mandibular, lymphoma malignant lymphocytic Mandibular, lymphoma malignant mixed		(7%) (2%)				
Mandibular, lymphoma malignant mixed Mandibular, lymphoma malignant	I	(470)				
undifferentiated cell type	t	(2%)				
Mediastinal, lymphoma malignant histiocytic		(2%)			1	(2%)
Mediastinal, lymphoma malignant lymphocytic		(9%)	1	(2%)	-	
Mediastinal, lymphoma malignant mixed		(2%)			2	(4%)
Mediastinal, lymphoma malignant						
undifferentiated cell type	1	(2%)				(D
Mesenteric, lymphoma malignant histiocytic	•	(70)		(90)	1	(2%)
Mesenteric, lymphoma malignant lymphocytic Mesenteric, lymphoma malignant mixed		(7%) (9%)	1	(2%)	0	(4%)
Mesenteric, lymphoma malignant mixed Mesenteric, lymphoma malignant	I	(2%)			2	(1270)
undifferentiated cell type	1	(2%)	2	(4%)		
Pancreatic, lymphoma malignant lymphocytic		·	ī			
Pancreatic, lymphoma malignant mixed		(2%)	-			
Renal, lymphoma malignant histiocytic					1	(2%)
Renal, lymphoma malignant lymphocytic		(5%)				
Renal, lymphoma malignant mixed	1	(2%)				
Renal, lymphoma malignant undifferentiated	-	(0.77)		(07)		
cell type		(2%)		(2%)		
Spleen	(48)		*(50)		(50)	(90)
Hemangiosarcoma Lymphoma malignant histiocytic						(2%) (2%)
Lymphoma malignant lymphocytic	3	(6%)			I	14 701
Lymphoma malignant nixed		(4%)	1	(2%)	2	(4%)
Lymphoma malignant undifferentiated cell typ		(6%)		(4%)	-	
Thymus	(37)	-	*(50)		(35)	
Lymphoma malignant histiocytic					1	(3%)
Lymphoma malignant lymphocytic		(8%)	1	(2%)		
Lymphoma malignant mixed		(=)		(90)	1	(3%)
Lymphoma malignant undifferentiated cell type	e 2	(5%)	1	(2%)		

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEARGAVAGE STUDY OF TRIBROMOMETHANE (Continued)

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

Vehicle	e Control	Low	Dose	High	Dose
INTEGUMENTARY SYSTEM	<u></u>	······································			
Skin (40)	1	*(50)		(44)	
Lymphoma malignant undifferentiated cell type		1	(2%)		
MUSCULOSKELETAL SYSTEM None					
NERVOUS SYSTEM		<u> </u>			
Brain (49)		*(50)		(50)	
Lymphoma malignant lymphocytic 1	(2%)				
RESPIRATORY SYSTEM					
Lung (49)		*(50)		(50)	
	(4%)	1	(2%)	2	(4%)
	(2%)				
• •	(2%) (6%)	1	(2%)		
	(2%)		(2%)		
Osteosarcoma, metastatic	()			1	(2%)
SPECIAL SENSES SYSTEM					
Harderian gland *(49)	1	*(50)		*(50)	
Adenoma		1	(2%)		
URINARY SYSTEM			· · · · ·		
Kidney (49)		*(50)		(50)	
	(6%)				(00)
Lymphoma malignant mixed 1 Lymphoma malignant undifferentiated cell type	(2%)	9	(4%)	1	(2%)
Osteosarcoma, metastatic		2	(470)	1	(2%)
Urinary bladder (47)		*(50)		(48)	(2,0)
	(9%)	(***/		x 7	
Lymphoma malignant undifferentiated cell type		1	(2%)		
SYSTEMIC LESIONS					
Multiple organs *(49)		*(50)		*(50)	
	(8%)		(2%)		
Lymphoma malignant undifferentiated cell 3 Lymphoma malignant histocryptic		2	(4%)		(90)
Lymphoma malignant histiocytic 1 Lymphoma malignant mixed 3	(2%) (6%)	9	(4%)		(2%) (4%)
Hemangiosarcoma	(0,0)	2	(=,0)		(6%)
ANIMAL DISPOSITION SUMMARY					
Animals initially in study 50		50		50	
Moribund sacrifice 10		12		11	
Terminal sacrifice 25		13		20	
Culled 1 Natural death 14		25		19	
Travaral adam 14		20		19	

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle Control	Low Dose	High Dos			
ГUMOR SUMMARY			·····			
Total animals with primary neoplasms **	24	18	18			
Total primary neoplasms	30	23	25			
Total animals with benign neoplasms	11	13	15			
Total benign neoplasms	15	16	17			
Total animals with malignant neoplasms	15	6	8			
Total malignant neoplasms	15	7	8			
Total animals with secondary neoplasms ***			1			
Total secondary neoplasms			2			

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 *** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEARGAVAGE STUDY OF TRIBROMOMETHANE: VEHICLE CONTROL

WEEKS ON STUDY	0 1 3	0 7 2	0 8 1	0 8 4	0 8 4	0 8 6	0 8 6	0 8 6	0 8 7	0 8 8	0 8 9	0 9 0	0 9 2	0 9 2	0 9 3	0 9 8	0 9 8	0 9 9	1 0 0	1 0 0	1 0 0	1 0 1	1 0 3	1 0 4	1 0 4
CARCASS ID	3 1 3	3 3 1	3 2 3	3 6 1	3 7 4	3 2 5	3 8 2	3 9 3	3 5 1	3 5 2	3 9 5	3 9 1	3 4 1	4 0 2	3 7 5	3 4 2	3 6 5	3 8 1	3 2 1	3 3 3	4 0 5	3 1 1	3 6 3	3 5 5	3 7 2
ALIMENTARY SYSTEM	-																								
Esophagus Gallbladder		M A	Å	, M	+	+	м +	+	Å	++	+++	++	++	Å	++	, M	, м	+	++	++	+++	++	++	+++	, M
Lymphoma malignant lymphocytic Intestine large		+	м	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant lymphocytic Intestine small		X	м	-	-	ъ	+	-	L.	+	Ŧ	+	+	-	+	т	-	<u>ـ</u>	-	-	-	+	_	-	А
Lymphoma malignant lymphocytic Lymphoid nodule, lymphoma malignant mixed		*	141	т	т	т	т	т	т	T	т	T		-	+	т	т	T	Ŧ	T	т	Ŧ	Ŧ	Ŧ	n
Lymphoid nodule, lymphoma malignant undifferentiated cell type Liver			L L			Ŧ			т	Ŧ		L.	-	L	L		-	Ŧ	L.		Ŧ		+	L	
Hepatocellular carcinoma Hepatocellular adenoma Hepatocellular adenoma, multiple Hepatocholangiocarcinoma, multiple		т	т	т	Ŧ	Ŧ	T	Ŧ	т	Ŧ	Ŧ	т	Ŧ	Ŧ	T	T	Ŧ	x	Ŧ	T	Ŧ	Ŧ	т	Ŧ	Ŧ
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed		X						X						x											
Mesentery Lymphoma malignant lymphocytic				+	+	+			+	+	+	+			+	+	+			+		+		+	+
Pancreas Lymphoma malignant lymphocytic		* x	A	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+
Lymphoma malignant mixed Salivary glands		-	+	<u>ـ</u>	-	-	-		-	ъ	м	<u>ь</u>	Ŧ	X +	+	м	м	Т	-	+	Ŧ	+		+	
Stomach		÷ x	Å	÷	+	+	÷	+	÷	+	+	+	+	÷	+	+	+	+	+	÷	+	+	÷	÷	Ă
Lymphoma malignant lymphocytic	_	X																							
CARDIOVASCULAR SYSTEM Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM	-	+																							·····
Adrenal gland Lymphoma malignant lymphocytic		X	+	+	+	+	+	x	Ŧ	Ŧ	Ŧ	+	+	+	+	÷	+	+	÷	+	+	+	+	+	+
Islets, pancreatic Parathyroid gland		+ м	M M	+++	+++	+ M	+ м	+ м	+++	+++	+ м	+++	+++	+++	+++	+++	+++++++++++++++++++++++++++++++++++++++	+++	+++	++	M M	++++	+++	+ M	+++
Pituitary gland		+ x	+	M	÷	+	+	+	÷	+	+	+	÷	÷	÷	÷	+	+	÷	M	+	+	+	+	÷
Lymphoma malignant lymphocytic Pars distalis, adenoma		•					X														х			х	
Pars intermedia, adenoma Thyroid gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	+	÷	+
Lymphoma malignant lymphocytic Follicular cell, adenoma		x	·	•	·	•	·	x	•			•	,			·		•	•			•	·	•	•
GENERAL BODY SYSTEM None	-									<u> </u>															
GENITAL SYSTEM Clitoral gland	-		м	+	м	м				м															
Ovary		<u>+</u>	+	÷	+	+	+	<u>+</u>	+	+	+	+	М	+	+	+	+	М	+	+	+	+	+	+	+
Lymphoma malignant lymphocytic Oviduct		X						x															+		
Uterus		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leiomyosarcoma Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Polyp stromal																		x							
	ł																	•							

+: Tissue examined microscopically : Not examined -: Present but not examined microscopically I: Insufficient tissue

M: Missing A: Autolysis precludes examination X: Incidence of listed morphology

								•-																		
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 6																		
CARCASS ID	3 1 2	3 1 5	324	3 3 4	3 4 4	3 4 5	362	3 6 4	3 7 1	3 7 3	3 8 3	3 8 4	3 9 2	4 0 1	3 1 4	322	3 3 2	3 3 5	3 4 3	3 5 3	3 5 4	3 8 5	3 9 4	4 0 3	4 0 4	TISSUES TUMORS
ALIMENTARY SYSTEM	<u> </u>																									.
Esophagus Fallbladder	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Fallbladder Lymphoma malignant lymphocytic	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	. +	+	M	+	38
ntestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymphoma malignant lymphocytic ntestine small	1 +	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Lymphoma malignant lymphocytic Lymphoid nodule, lymphoma malignant mixed		·	•	•	•	•		•	·	•				·	•	•	•	•		x	•	•	•	•	·	1
Lymphoid nodule, lymphoma malignant undifferentiated cell type																		x								1
viver Hepatocellular carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Hepatocellular adenoma Hepatocellular adenoma, multiple Hepatocholangiocarcinoma, multiple																			X				X X		X	1 2 1
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed					X						X						x									1 4 1
fesentery Lymphoma malignant lymphocytic											*														+	16
Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	+	+	M	+	+	+	+	+	+	÷	+	+	+	+	+	*	+	+	+	+	+	+	+	+	46 3 1
alivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
tomach Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
ARDIOVASCULAR SYSTEM	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
NDOCRINE SYSTEM													-		••••											
idrenal gland Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
slets, pancreatic	±	+	+	M	+	+	+	+	+	±	+	+	+	<u>+</u>	+	+	+	+	+	+	+	+	+	+	+	46
arathyroid gland 'ituitary gland	M +	M +	+++	M +	+ м	++++	+	+	+++	M +	M +	+++++	+++	м +	+	++++	++++	M +	+++	+++	M M	+++	+ M	м +	+++	32
Lymphoma malignant lymphocytic			·	·		•	-		·	·			•	·	•		x	·			••••			·		2
Pars distalis, adenoma Pars intermedia, adenoma	x						X									X									X	7
'hyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	49
Lymphoma malignant lymphocytic Follicular cell, adenoma	x																									2
ENERAL BODY SYSTEM																										
ENITAL SYSTEM																										1
Ivary	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	45
Lymphoma malignant lymphocytic Widuct																	л									1
Iterus	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	49
Leiomyosarcoma Lymphoma malignant histiocytic	l				x							X														1
Lymphoma malignant lymphocytic Polyp stromal																	X									1

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

					(0	.011	VIII.	uçu	.,																
WEEKS ON STUDY	0 1 3	0 7 2	0 8 1	0 8 4	0 8 4	0 8 6	0 8 6	0 8 6	0 8 7	0 8 8	0 8 9	0 9 0	0 9 2	0 9 2	0 9 3	0 9 8	0 9 8	0 9 9	1 0 0	1 0 0	1 0 0	1 0 1	1 0 3	1 0 4	1 0 4
CARCASS ID	3 1 3	3 3 1	3 2 3	3 6 1	3 7 4	3 2 5	3 8 2	3 9 3	3 5 1	3 5 2	3 9 5	3 9 1	3 4 1	4 0 2	3 7 5	3 4 2	3 6 5	3 8 1	3 2 1	3 3 3	4 0 5	3 1 1	3 6 3	3 5 5	3 7 2
HEMATOPOIETIC SYSTEM																		-							
Blood Bone marrow		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++	+	+	+
Lymphoma malignant lymphocytic		х																							
Lymphoma malignant undifferentiated cell type													X												
Lymph node Axillary, lymphoma malignant		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+
lymphocytic Iliac, lymphoma malignant mixed								Х						х											
Inguinal, lymphoma malignant								x																	
lymphocytic Inguinal, lymphoma malignant mixed														х											
Lumbar, lymphoma malignant lymphocytic Lumbar, lymphoma malignant mixed								x						х											
Lumbar, lymphoma malignant undifferentiated cell type													х												
Mandibular, lymphoma malignant lymphocytic		x						х																	
Mandibular, lymphoma malignant mixed		~						л						X											
Mandibular, lymphoma malignant undifferentiated cell type													х												
Mediastinal, lymphoma malignant histiocytic																									
Mediastinal, lymphoma malignant lymphocytic		x						x																	
Mediastinal, lymphoma malignant mixed Mediastinal, lymphoma malignant		•						A						Х											
undifferentiated cell type													X												
Mesenteric, lymphoma malignant lymphocytic		х						x																	
Mesenteric, lymphoma malignant mixed Mesenteric, lymphoma malignant undifferentiated cell type														X											
Pancreatic, lymphoma malignant lymphocytic								x																	
Pancreatic, lymphoma malignant mixed								x						X											
Renal, lymphoma malignant lymphocytic Renal, lymphoma malignant mixed								•						х											
Renal, lymphoma malignant undifferentiated cell type													x												
Spieen Lymphoma malignant lymphocytic		x +	A	+	+	+	+	+ X	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+
Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type													x	X											
Thymus Lymphoma malignant lymphocytic		x +	М	+	+	М	+	* x	+	М	М	М	+	+	+	+	+	+	+	+	М	+	М	+	+
Lymphoma malignant mixed Lymphoma malignant undifferentiated														X											
cell type													х												
INTEGUMENTARY SYSTEM	-																								
Mammary gland Skin		++	M M	++	м +	М +	+++	+ +	M +	м +	+++	+ +	+ +	м +	м +	M +	÷	+	÷	Ŧ	M +	++	м +	м +	+
MUSI STETETAL SYSTEM	-							···																	
Bone		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant lymphocytic		х																							
RESPIRATORY SYSTEM		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma			•		•	•	•	•	·	•			,	•			,			•			,		
Lymphoma malignant histiocytic																									
Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated		X						X																	
cell type Nose		+	+	+	+	+	+	+	+	+	+	+	+	+	м	м	+	+	+	+	+	+	+	+	+
Trachea		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSES SYSTEM None		<u> </u>																	·						
URINARY SYSTEM Kidney		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant lymphocytic		x			'			x	,					v	,		,	·	,	•	•				'
Lymphoma malignant mixed Urinary bladder		+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant lymphocytic		x						X																	
						_		_	-		_														_

									00		ucu	.,														
WEEKS ON STUDY	1 0 5	1 0 6																								
CARCASS ID	3 1 2	3 1 5	3 2 4	3 3 4	3 4 4	3 4 5	3 6 2	3 6 4	3 7 1	3 7 3	3 8 3	3 8 4	3 9 2	4 0 1	3 1 4	3 2 2	3 3 2	3 3 5	3 4 3	3 5 3	3 5 4	3 8 5	3 9 4	4 0 3	4 0 4	TOTAL: TISSUES TUMORS
HEMATOPOIETIC SYSTEM																										
Blood Bone marrow Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 2
Lymphoma malignant undifferentiated cell type																	~									1
Lymph node Axillary, lymphoma malignant	+	+	+	+	+	+	+	М	M	+	+	+	+	М	+	+	+	+	+	М	+	+	+	+	+	44
lymphocytic Iliac, lymphoma malignant mixed Inguinal, lymphoma malignant																	x									21
lymphocytic Inguinal, lymphoma malignant mixed Lumbar, lymphoma malig. lymphocytic Lumbar, lymphoma malignant mixed																	x									1 1 2 1
Lumbar, lymphoma malignant undifferentiated cell type Mandibular, lymphoma malignant																										1
lymphocytic Mandibular, lymphoma malig mixed Mandibular, lymphoma malignant undifferentiated cell type																	х									
Mediastinal, lymphoma malignant histiocytic Mediastinal, lymphoma malignant					x																					1
lymphocytic Mediastinal, lymphoma maligi mixed Mediastinal, lymphoma malignant undifferentiated cell type											X						x									
Mesenteric, lymphoma malignant lymphocytic Mesenteric, lymphoma malig-mixed																	X									3
Mesenteric, lymphoma malignant undifferentiated cell type Pancreatic, lymphoma malignant lymphocytic																		x								1
Pancreatic, lymphoma malignant mixed Renal, lymphoma malig, lymphocytic Renal, lymphoma malignant mixed Renal, lymphoma malignant																	x									1 2 1
undifferentiated cell type Spleen Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	*	+	+	+	+	+	+	+	÷	1 48 3 2
Lymphoma malignant undifferentiated cell type Thymus	+	м	+	+	+	X +	+	м	+	+	м	+	+	м	+	м	+	X +	+	+	+	+	+	+	+	3 37
Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type				-		x			•	•		-			•		x			·	·	·		·		3 1 2
INTEGUMENTARY SYSTEM																										
Mammary gland Skin	M M	+ +	M +	M M	M M	M +	M +	M M	M +	M M	+ +	M +	M M	+ +	M +	M +	+ +	M +	M M	+ +	M +	M M	М +	М +	M +	17 40
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
NERVOUS SYSTEM Brain Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	t	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	49 1
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	* x	+	+	+	+	+	+	+	+	+	49 2
Alveolar/bronchiolar carcinoma Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated					x	v									x		x									1 1 3
cell type Nose Trachea	++	+ +	+ +	+ +	М +	X + +	+ +	1 46 49																		
SPECIAL SENSES SYSTEM None						<u>_</u> _																			<u> </u>	
URINARY SYSTEM Kidney Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	49 3 1
Lymphoma malignant mixed Urinary bladder Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	М	+	+	*	+	+	+	+	+	*	+	+	М	+	+	+	+	+	47 4
	·																									

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE: LOW DOSE

WEEKS ON STUDY	0 7 0	0 7 1	0 7 1	0 7 1	0 7 5	0 7 5	0 7 7	0 7 8	0 7 8	0 7 8	0 7 9	0 8 0	0 8 1	0 8 1	0 8 1	0 8 2	0 8 3	0 8 4	0 8 5	0 8 5	0 8 6	0 8 6	0 8 8	0 9 0	0 9 1
CARCASS ID	4 9 2	4 1 3	4 1	5 0 5	4 8 1	4 1 2	4 8 3	4 9 4	5 0 2	4 8 1	4 7 2	4 9 1	4 7 5	4 1 5	4 7 3	4 2 3	4 2 4	4 5 3	4 3 4	4 9 5	4 5 4	4 7 4	4 7 1	4 3 3	4 3 5
ALIMENTARY SYSTEM Esophagus Gallbiadder	M	+ +	M	M +	++	+++	M	+ M	MA	+	+ M	 + +	 + +	+ A	++++	+ A	+++	+++	++++	 + +	 + +	 + +	M	++++	+ A
Intestine large Intestine small Lymphoma malignant mixed	, the second sec	+ +	A A	+ +	+ A	+ +	+ +	+ +	+ A	+ +	+ +	+ +	+ A	+ +	+ A										
Liver Hepatocellular adenoma Histocytic sarcoma Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type	+	+	+	+	+	+	*	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	*	+	+
real type Mesentery Pancreas Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated	+	+ +	+ +	+	+ A	+ +	+ М	+ +	+	+	+ +	+ +	+ +	+ +	+ +	+ +	+ м	+ +	+ +	+ +	+ +	X +	+ +	+	÷
cell type Salıvary glands Lymphoma malıgnant undifferentiated	+	+	+	+	+	+	+	м	+	+	м	+	÷	+	+	+	+	+	÷	+	+	X +	+	+	+
cell type Stomach Lymphoma malignant undifferentiated cell type	м	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x + x	+	+	+
CARDIOVASCULAR SYSTEM Heart Lymphoma malignant undifferentiated cell type	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+
ENDOCRINE SYSTEM Adrenai gland Lymphoma maiignant undifferentiated	+	+	+	м	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
cell type Islets, pancreatic Adenoma	+	+	+	+	A	+	M	+	+	+	+	+	+	+	+	+	м	+	+	+	+	X +	+	+	+ x
Parathyroid gland Pituitary gland Pars distahs, adenoma	M	+ +	м +	++	+ +	M M	, M	+ +	M +	+ +	ф М	M +	+ +	М +	+ +	М +	M + X	+ M							
Thyroid gland GENERAL BODY SYSTEM	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
GENITAL SYSTEM	.																					+			
Clitoral gland Ovary Uterus Histiocytic sarcoma Polyp stromal	+++	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ + +	+ +	+ +	+ +	+ +	+ +										

WEEKS ON STUDY	0 9 3	0 9 4	0 9 5	0 9 6	0 9 7	0 9 7	0 9 7	0 9 9	1 0 1	1 0 3	1 0 6	TOTAL.														
CARCASS ID	4 1 1	4 2 1	4 4 2	4 6 5	4 3 1	5 0 1	4 6 3	5 0 4	4 5 5	5 0 3	4 5 1	4 1 4	4 2 2	4 2 5	4 3 2	4 4 3	4 4 4	4 4 5	4 5 2	4 6 2	4 6 4	4 8 2	4 8 4	4 8 5	4 9 3	TISSUES TUMORS
ALIMENTARY SYSTEM																					<u></u>					
Esophagus Gallbladder		+		+	+	+		+		+	+	+	+	+	+	+	+	++	+			+	+			36 16
Intestine large Intestine small			+	+	+																					24 22
Lymphoma malignant mixed Liver	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
Hepatocellular adenoma Hepatocellular adenoma, multiple Histiocytic sarcoma			X		x		x	x																		5
Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated				X			A																			i
cell type Mesentery		+							x																	2 19
Pancreas Lymphoma malignant lymphocytic		÷		*		+				+																26
Lymphoma malignant undifferentiated cell type																										1
Salivary glands Lymphoma malignant undifferentiated								+																		24
cell type Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 48
Lymphoma malignant undifferentiated cell type																										1
CARDIOVASCULAR SYSTEM				+			<u> </u>																			26
Lymphoma malignant undifferentiated cell type																										1
ENDOCRINE SYSTEM Adrenal gland			+			+				+																26
Lymphoma malignant undifferentiated cell type			т			Ŧ				Ŧ																1
Isiets, pancreatic Adenoma		+		+		+				M																25
Parathyroid gland Pituitary gland	+			+		+		+ +		+			+	+	+	+		+		+	+	+	+	+	+	32 27
Pars distalis, adenoma Thyroid gland	+	+	+	+	+	+	+	x +	+	x +	+	÷	+	+	+	+	X +	+	+	+	× +	+	× +	+	+	6 49
GENERAL BODY SYSTEM Tissue, NOS																									. <u> </u>	1
GENITAL SYSTEM																									<u> </u>	
Clitoral gland Ovary	+	+	+			+		+		+	+	+	+	+				+				+				2 36
Uterus Histiocytic sarcoma Polyp stromal	+		+	+		+	*						+		+	+		+	+	+	+	+	+ X			39 1 1

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

WEEKS ON STUDY	0 7 0	0 7 1	0 7 1	0 7 1	0 7 5	0 7 5	0 7 7	0 7 8	0 7 8	0 7 8	0 7 9	0 8 0	0 8 1	0 8 1	0 8 1	0 8 2	0 8 3	0 8 4	0 8 5	0 8 5	0 8 6	0 8 6	0 8 8	0 9 0	0 9 1
CARCASS ID	4 9 2	4 1 3	4 4 1	5 0 5	4 6 1	4 1 2	4 8 3	4 9 4	5 0 2	4 8 1	4 7 2	4 9 1	4 7 5	4 1 5	4 7 3	4 2 3	4 2 4	4 5 3	4 3 4	4 9 5	4 5 4	4 7 4	4 7 1	4 3 3	4 3 5
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant lymphocytic Messenteric, lymphoma malignant iymphocytic Messenteric, lymphoma malignant undifferentiated cell type	+++	+++	+++	, М	++++	++++	+++	+ М	++++	+++	+++	+++	+++	+++	+++	+++	+++	++++	+++	+++	++++	+ + X	+++	+++	++++
Pancreatic, lymphoma malignant lymphocytic Renal, lymphoma malignant undifferentiated cell type Spleen Lymphoma malignant mixed	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	х +	+	+	+
Lymphoma malignant undifferentiated cell type Thymus Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type	+	м	м	м	+	м	м	+	м	+	м	+	м	м	м	+	+	+	+	+	+	x + x	м	+	М
INTEGUMENTARY SYSTEM Mammary gland Skin Lymphoma malignant undifferentiated cell type		м +	M +	+ +	+ +	+ +	м +	м +	+ +	м +	м +	+ +	м +	м +	м +	м +	+ +	M +	+ +	+ +	+ +	+ + x	M +	+++	M +
MUSCULOSKELETAL SYSTEM Bone	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*
cell type Nose Trachea	M +	м +	М +	м +	м +	+ +	+ +	+ +	+ +	м +	+ +	+ +	+ +	+ +	+ +	+ +	M +	+ +	+ +	м +	+ +	X + +	+ +	+ +	M +
SPECIAL SENSES SYSTEM Harderian gland Adenoma	-																								
URINARY SYSTEM Kidney Lymphoma malignant undifferentiated	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
cell type Urinary bladder Lymphoma malignant undifferentiated cell type	м	м	+	+	A	м	м	М	м	+	A	+	+	+	+	+	+	+	+	+	+	x + x	+	+	+

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

WEEKS ON	0	0	0	0	0	0	0	0	1		1	-1-	1	1	-1-	- 1	1	1	1	1	1	1	1	1	1	·
STUDY	9 3	9 4	9 5	9 6	9 7	9 7	9 7	9 9	0 1	0 3	0 6	0 6	0 6	0 6	0 6	0 6	0 6	0 6	0 6	Õ 6	0 6	0 6	0 6	0 6	0 6	TOTAL:
CARCASS ID	4 1 1	4 2 1	4 4 2	4 6 5	4 3 1	5 0 1	4 6 3	5 0 4	4 5 5	5 0 3	4 5 1	4 1 4	4 2 2	4 2 5	4 3 2	4 4 3	4 4	4 4 5	4 5 2	4 6 2	4 6 4	4 8 2	4 8 4	4 8 5	4 9 3	TISSUES TUMORS
HEMATOPOIETIC SYSTEM																					-					
Bone marrow Lymph node		+	+	+	*	+		+	+	+										+						$ \begin{array}{c} 25 \\ 32 \\ 1 \end{array} $
Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant					х																					
lymphocytic Mesenteric, lymphoma malignant				х																						1
lymphocytic Mesenteric, lymphoma malignant				X																						1
undifferentiated cell type Pancreatic, lymphoma malignant									х																	2
lymphocytic				X																						1
Renal, lymphoma malignant undifferentiated cell type	1											L.	м					-	ـ						+	1 35
Spleen Lymphoma malignant mixed		+	+			+			Ŧ	+		+	TAT	Ŧ				Ŧ	Ŧ						x	1
Lymphoma malignant undifferentiated cell type									х																	2
Thymus Lymphoma malignant lymphocytic				*																						14 1
Lymphoma malignant undifferentiated cell type																										1
INTEGUMENTARY SYSTEM Mammary gland												-														11
Skin Lymphoma malignant undifferentiated																										25
cell type																										1
MUSCULOSKELETAL SYSTEM Bone																										25
NERVOUS SYSTEM Brain											_															25
RESPIRATORY SYSTEM				+	+																					27
Alveolar/bronchiolar adenoma				x																						
Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated				'n																						
cell type Nose	1.																	Ŀ		Ł	L.	.ر	4	+	ىد	16 49
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+				-	-	-				40
SPECIAL SENSES SYSTEM Harderian gland Adenoma															*	+										2 1
URINARY SYSTEM		+		+		+	+		+	+			<u> </u>											+		32
Kidney Lymphoma malignant undifferentiated		+		+		+	÷			+														۲		2
ceil type Urinary bladder									X																	17
Lymphoma malignant undifferentiated cell type																										1

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE: HIGH DOSE

WEEKS ON STUDY	0 4 4	0 5 2	0 5 4	0 6 3	0 6 4	0 6 8	0 7 7	0 7 7	0 7 8	0 8 0	0 8 0	0 8 1	0 8 1	0 8 1	0 8 1	0 8 3	0 8 4	0 8 7	0 8 7	0 8 8	0 8 9	0 9 1	0 9 2	0 9 3	0 9 4
CARCASS ID	5 8 1	5 5 3	5 6 2	5 7 2	5 5 1	5 1 2	5 2 2	5 7 1	5 2 3	5 1 1	5 9 3	5 3 4	5 7 5	5 1 4	6 0 3	5 6 1	6 0 4	5 3 1	5 1 5	5 8 2	5 6 4	5 8 4	5 2 5	5 1 3	5 9 5
ALIMENTARY SYSTEM Esophagus Galibiadder Intestine large Intestine small Liver Hemangiosarcoma Hepatocellular carcinoma Hepatocellular adenoma, multiple	+++++++++++++++++++++++++++++++++++++++	+++++	+ A + + + + X	+ A +++	+++++	+ A + +	+ M + A +	++++	+ M + + +	+++++	+++++	++++	+ M + + +	+++++ ++	+ A + + + +	+ A + + + +	+ M + + +	+++++	+++++	+ A + + + +	+++++++++++++++++++++++++++++++++++++++	+++++ *	+++++	+ M + + + + X	M++++
Lymphoma malignant histiocytie Lymphoma malignant mixed Mesentery Pancreas Salivary glands Stomach Forestomach, papilloma squamous Tooth	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ A + +	+ + +	++++	+ + +	++++	+ + + + +	+ + + +	++++ +	+ + + +	+ + +	++++	M + +	++++	+++++	+ + + +	+ + + X	++++	++++	+ + + + +	++++	++++	+ + M +
CARDIOVASCULAR SYSTEM Heart	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Adrenal gland Islets, pancreatic Parathyroid gland Pituitary gland Para distalis, adenoma Pars distalis, adenoma, multiple Thyroid gland	+++++++++++++++++++++++++++++++++++++++	+++M++	+ + M + +	+ A + M	++X+	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	++M++	M + M + +	+++++++++++++++++++++++++++++++++++++++	+ + M +	+++++++++++++++++++++++++++++++++++++++	+ M + +	++++++++	+++M +	++ M + +	+ + + M + +	+ + M + M + +	+ + + M + M	+++++++++++++++++++++++++++++++++++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	++ + M + M
GENERAL BODY SYSTEM	-											•								-		•		<u>,</u>	
GENITAL SYSTEM Clitoral gland Ovary Uterus Polyp stromal	- ‡	+++	+++	+ +	++++	++++	++	+ + x	+ +	+ +	+++	++++	++	++++	M + +	` + +	+++	++++	++++	+++	+++	+++	+++	++++	M + +
HEMATOPOIETIC SYSTEM Bone marrow Lymphoma malignant mixed Lymph node Lumbar, lymphoma malignant histiocytic Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant mixed Mesenteric, lymphoma malignant	+++	+ +	+ +	+ +	+ +	+ +	+	++	+ +	+	+ +	+ +	+ +	+ +	+ M	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	++	++
histiceytic Mesenteric, lymphoma malignant mixed Renal, lymphoma malignant histiceytic Spleen Hemangiosarcoma Lymphoma malignant histiceytic Lymphoma malignant histiceytic Lymphoma malignant histiceytic Lymphoma malignant mixed	+ M	+ +	+	+ +	+	+ M	+	+	+ M	+ M	+	+	+ M	+	+	+ M	+	+	+	+	+ M	+ M	+	+ M	+
INTEGUMENTARY SYSTEM Mammary gland Skin	M_+	M +	++++	M +	M +	M +	M +	M +	++++	M M	M +	м +	M +	M +	M +	M +	M +	+	+++	M +	M +	M +	M +	M +	M +
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Osteosarcoma, metastatic Nose Trachea	- + X M +	+ -+	+ M +	+ M +	+	+ M	++++	++++	++++	++++	+ x +	+ + +	++++	+ + + +	+ + + +	+ + + +	++++	+	++++	+	+ + +	+	+ + +	++++	+ + + + + + + + + + + + + + + + + + + +
SPECIAL SENSES SYSTEM	-									******															
URINARY SYSTEM Kidney Lymphoma malignant mixed Osteosarcoma, metastatic Urinary bladder		+	+	+	++	++	+	+	+	+	+	+	++	++	+	+	++	++	++	+	+	+	++	+	++

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

								_				_														
WEEKS ON STUDY	0 9 6	0 9 6	0 9 6	0 9 8	1 0 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	TOTAL:
CARCASS ID	5 8 3	5 9 4	5 6 3	5 3 2	5 7 4	5 2 1	5 2 4	5 3 3	5 3 5	5 4 1	5 4 2	5 4 3	5 8 5	5 9 2	6 0 1	5 4 4	5 4 5	5 5 2	5 5 4	5 5 5	5 6 5	5 7 3	5 9 1	6 0 2	6 0 5	TISSUES
ALIMENTARY SYSTEM Esophagus Galibiadder Intestine large Intestine small Liver Hemangiosarcoma Hepatocellular carcinoma Hepatocellular adenoma Hepatocellular adenoma, multiple Lymphoma malignant histocytic Lymphoma malignant mixed	+ A + A + +	+++++	++++ ++	++++++	+M + + +	++++	++++	++++X	++++ ++ x	+++++	++++++	+++++ + +	++++	++++	++++++	+++++	+++++	+++++	++++	+++++ *	M + + + +	+++++ + X X	+++++	+++++	++++	48 37 49 48 50 2 2 3 1 1 2 2 3
Mesentery Pancreas Salivary glands Stomach Forestomach, papilloma squamous Tooth	+ + M +	* M +	+ M +	++++	+ + + +	+ + +	+ + +	+ + + +	M + +	+ + +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + + X	+ + +	+ + +	+ + + +	++++	+ # +	+ + +	+ + +	+ + +	19 47 45 50 2 1
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ENDOCRINE SYSTEM Adrenal gland Islets, pancreatic Parathyroid gland Pituitary gland Pars distalis, adenoma Pars distalis, adenoma, multiple Thyroid gland GENERAL BODY SYSTEM	+ + + M +	+++++++++	+ + M + X M	M + M + +	+ + + +	++++X +	M + M + X +	++M+X +	M + +	+++++++++++++++++++++++++++++++++++++++	+ + + +	+++++++++	+++++++++	+ + + +	+ + + M + +	+++++++++++++++++++++++++++++++++++++++	+ + + M + +	+ + M +	+ + + +	+ + M + M + +	+ + M +	+ + M + X + X +	++++++++++	+ + M + + + +	++++ ++ * *	48 47 27 48 5 1 47
None GENITAL SYSTEM Clitoral gland Ovary Uterus Polyp stromal	+++	+ +	+ +	 + +	M + + X	+ +	+++	+++	+ + * X	+ м	+++	M + +	+++	+ +	M + +	M + +	+++	+ + +	M + +	M + +	+ +	+++	++++	M + +	M M +	1 49 49 3
HEMATOPOIETIC SYSTEM Bone marrow Lymphoma malignant mixed Lymph node Lumbar, lymphoma malig, histiocytic Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant histiocytic Mediastinal, lymphoma malig, mixed	+ M	+ M	+ * X X	++	+ +	+ +	+ +	+ M	+ +	+ M	++	++	+ +	+ +	+ +	+ +	+ +	++	+ +	+ + x x	+ +	* *	+ +	++	++	50 1 45 1 1 1 2
Mesenteric, lymphoma malignant histiocytic Mesenteric, lymphoma malignant mixed Renal, lymphoma malignant histiocytic Spisen Hemangiosarcoma Lymphoma malignant histiocytic Lymphoma malignant mixed Thymus Lymphoma malignant histiocytic	+ M	+ M	x + x + x + x	+ M	+ M	+	+ x +	+++	+ M	+	+	+	+	+	+	+ M	+	+	+	x + x+	+	x + x +	+	+ +	+	1 2 50 1 1 2 35 1
Lymphoma malignant mixed INTEGUMENTARY SYSTEM Mammary gland	M	м	м	M	+	+		M		м	M	м	 +	+	 +	м			+	M	M	Х 	+	м	+	1
Skin MUSCULOSKELETAL SYSTEM	+	+	+	+	+	+	+	+	+	M	+	<u>M</u>	+	+	+	+	+	+	M	+	<u>M</u>	M	+	+	+	
Bone NERVOUS SYSTEM Brain	+	+	+	+	+	+	+ د	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma	+ + +	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50 2 1
Osteosarcoma, metastatic Nose Trachea SPECIAL SENSES SYSTEM	++	++	+ +	++++	+	++	++	+	+	++	+	++	++	++	++	+	++	++	++	M +	+	+ +	++	+	+	43 50
VRINARY SYSTEM													_													
Kidney Lymphoma malignant mixed Osteosarcoma, metastatic Urinary bladder	+ A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	* +	+	+	+	50 1 1 48

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

	Vehicle Control	100 mg/kg	200 mg/kg
Liver: Hepatocellular Adenoma			
Overall Rates (a)	3/49 (6%)	6/50 (12%)	4/50 (8%)
Adjusted Rates (b)	12.0%	21.1%	15.7%
Terminal Rates (c)	3/25 (12%)	0/15(0%)	2/20 (10%)
Day of First Observation	735	538	566
Life Table Tests (d)	P = 0.278	P = 0.092	P = 0.376
Logistic Regression Tests (d)	P = 0.398	P = 0.248	P = 0.391
Cochran-Armitage Trend Test (d)	P = 0.442	1 - 0.240	1 -0.001
Fisher Exact Test (d)	1 - 0.342	P = 0.254	P = 0.511
Liver: Hepatocellular Adenoma or Carcino	oma		
Overall Rates (a)	4/49 (8%)	6/50 (12%)	6/50 (12%)
Adjusted Rates (b)	14.7%	21.1%	23.1%
Terminal Rates (c)	3/25 (12%)	0/15 (0%)	3/20 (15%)
Day of First Observation	692	538	566
Life Table Tests (d)	P = 0.175	P = 0.149	P = 0.226
Logistic Regression Tests (d)	P = 0.265	P = 0.369	P = 0.258
Cochran-Armitage Trend Test (d)	P = 0.326		
Fisher Exact Test (d)	1 - 0,020	P = 0.383	P=0.383
Lung: Alveolar/Bronchiolar Adenoma or C	arcinoma		
Overall Rates (a)	3/49 (6%)	(e) 1/27 (4%)	2/50 (4%)
Adjusted Rates (b)	12.0%		7.4%
Terminal Rates (c)	3/25 (12%)		1/20 (5%)
Day of First Observation	735		560
Life Table Test (d)			P = 0.598N
Logistic Regression Test (d)			P = 0.595N
Fisher Exact Test (d)			P = 0.490N
Pituitary Gland/Pars Distalis: Adenoma			
Overall Rates (a)	7/44 (16%)	(e) 6/27 (22%)	6/46 (13%)
Adjusted Rates (b)	25.5%	(•, •. • · · · · · · · · · · · · · · · · ·	28.3%
Terminal Rates (c)	4/22 (18%)		5/20 (25%)
Day of First Observation	600		672
Life Table Test (d)	000		P = 0.605
Logistic Regression Test (d)			P = 0.579
Fisher Exact Test (d)			P = 0.465N
			1 -0.40014
Jterus: Stromal Polyp Overall Rates (a)	1/49 (2%)	(e,f) 1/50 (2%)	3/49 (6%)
Adjusted Rates (b)	3.0%	6.7%	11.8%
Terminal Rates (c)	0/25 (0%)	1/15 (7%)	1/19 (5%)
Day of First Observation	692	735	537
Life Table Tests (d)	P = 0.146	P = 0.625	P = 0.220
Logistic Regression Tests (d)	P = 0.153	P = 0.670	P = 0.275
Cochran-Armitage Trend Test (d)	P = 0.201		
Fisher Exact Test (d)		P = 0.747N	P=0.309
Circulatory System: Hemangiosarcoma			
Overall Rates (a)	0/49 (0%)	(g) 0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	0.0%	0.0%	11.9%
Terminal Rates (c)	0/25 (0%)	0/15(0%)	2/20 (10%)
Day of First Observation			372
	P=0.033	(h)	P = 0.096
Life Table Tests (d)	r=0.033		1 - 0.030
Life Table Tests (d) Logistic Regression Tests (d) Cochran-Armitage Trend Test (d)	P = 0.033 P = 0.043 P = 0.038	(h)	P = 0.163

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
Hematopoietic System: Lymphoma, Al	l Malignant		
Overall Rates (a)	11/49 (22%)	(g) 5/50 (10%)	3/50 (6%)
Adjusted Rates (b)	34.7%	22.9%	13.9%
Terminal Rates (c)	7/25 (28%)	1/15(7%)	2/20 (10%)
Day of First Observation	502	601	672
Life Table Tests (d)	P = 0.056N	P = 0.349 N	P = 0.066N
Logistic Regression Tests (d)	P = 0.028N	P = 0.137 N	P = 0.039N
Cochran-Armitage Trend Test (d)	P = 0.011N		
Fisher Exact Test (d)		P = 0.079 N	P = 0.018N

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) Incomplete sampling of tissues

(f) Thirty-nine uteruses were examined microscopically.

(g) Thirty-five spleens were examined microscopically.

(h) No P values are reported because no tumors were observed in the 100 mg/kg and vehicle control groups.

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study	50	<u></u>	50		50	
Animals removed	50		50		50	
Animals examined histopathologically	49		50		50	
ALIMENTARY SYSTEM	<u> </u>					
Intestine large	(48)		(24)		(49)	
Lymphoid nodule, hyperplasia	1	(2%)			2	(4%)
Intestine small	(47)		(22)		(48)	
Fibrosis		(2%)				
Inflammation, acute	1	(2%)				
Mineralization			1	(5%)		
Necrosis	1	(2%)	1	(5%)		
Epithelium, hyperplasia			1	(5%)		
Lymphoid nodule, hyperplasia	16	(34%)	5	(23%)	15	(31%)
Liver	(49)		(50)		(50)	
Abscess	1	(2%)				
Basophilic focus	1	(2%)	1	(2%)		
Clear cell focus					1	(2%)
Fatty change, diffuse			2	(4%)	4	(8%)
Fatty change, focal	1	(2%)	7	(14%)	20	(40%)
Hematopoietic cell proliferation	32	(65%)		(68%)		(72%)
Infarct	1	(2%)				(2%)
Inflammation, chronic active			1	(2%)	1	(2%)
Mineralization	1	(2%)		• •		• • • •
Necrosis	5	(10%)	4	(8%)	8	(16%)
Pigmentation			3	(6%)	2	(4%)
Mesentery	(16)		(19)		(19)	
Inflammation, acute	14	(88%)	19	(100%)	19	(100%)
Fat. necrosis	1	(6%)		•		
Pancreas	(46)		(26)		(47)	
Necrosis, coagulative		(2%)	, ,			
Acinus, hyperplasia, focal		()			1	(2%)
Stomach	(47)		(48)		(50)	,
Forestomach, acanthosis		(4%)		(6%)		(4%)
Forestomach, angiectasis		(2%)	-		-	
Forestomach, hyperkeratosis		(13%)	13	(27%)	6	(12%)
Forestomach, inflammation, chronic active		(9%)		(4%)	-	(2%)
Glandular, ectopic tissue	-		-	. · · · ·		(2%)
Glandular, hyperplasia	1	(2%)	4	(8%)		(8%)
Glandular, inflammation, chronic active		(11%)		(10%)		(6%)
Glandular, mineralization			•			(2%)
Glandular, necrosis	1	(2%)	3	(6%)		(2%)
Glandular, pigmentation	-			(2%)	•	
Tooth			-		(1)	
Inflammation, chronic active						(100%)
CARDIOVASCULAR SYSTEM						
Heart	(48)		(26)		(20)	
		(90)		(904)	(50)	(10)
Cardiomyopathy	ł	(2%)		(8%)		(4%)
Mineralization			1	(4%)		(2%)
Artery, inflammation, chronic active					1	(2%)

TABLE D4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE

	Vehicle	Control	Low	Dose	High	Dose
ENDOCRINE SYSTEM					<u></u>	
Adrenal gland	(49)		(26)		(46)	
Accessory adrenal cortical nodule		(2%)	(==)		(
Hematopoietic cell proliferation		(18%)	8	(31%)	8	(17%)
Capsule, hyperplasia		(78%)		(65%)		(83%)
Medulla, hyperplasia		(2%)	- •			(2%)
Pituitary gland	(44)	(= ,,,	(27)		(46)	(1,0)
Pars distalis, angiectasis		(9%)	•	(19%)	• • • •	(4%)
Pars distalis, cyst	-	(0,0)	•	(,-)		(2%)
Pars distalis, hyperplasia	16	(36%)	7	(26%)		(28%)
Pars distalis, pigmentation		,		(4%)		(=0.07
Pars intermedia, hyperplasia				(4%)	1	(2%)
Thyroid gland	(49)		(49)	(1))	(47)	(= /• /
Follicular cell, cyst		(2%)	(()	
Follicular cell, hyperplasia, focal	_	(8%)	3	(6%)	17	(36%)
Follicular cell, hyperplasia, multifocal		(2%)		(2%)		(4%)
GENERAL BODY SYSTEM None					<u></u>	
GENITAL SYSTEM					<u> </u>	
Ovary	(45)		(36)		(49)	
Abscess	13	(29%)	16	(44%)	19	(39%)
Angiectasis					1	(2%)
Cyst	11	(24%)	5	(14%)	4	(8%)
Degeneration, cystic			1	(3%)		
Hemorrhage	1	(2%)				
Mineralization	1		2	(6%)		
Pigmentation	•	,		(3%)	1	(2%)
Bilateral, abscess	10	(22%)		(42%)		(14%)
Oviduct	(1)	,	20	/ /		(
Inflammation, acute		(100%)				
Uterus	(49)	((39)		(49)	
Abscess		(4%)		(3%)		(4%)
Angiectasis		· · · ·			Z	(4970)
· · · · · · · · · · · · · · · · · · ·	1	(2%)	1	(3%)	•	(90)
Hemorrhage		(900)		(010)		(2%)
Inflammation, acute		(29%)	12	(31%)	12	(24%)
Necrosis		(2%)		(40%)		
Endometrium, hyperplasia	20	(41%)	19	(49%)	22	(45%)
IEMATOPOIETIC SYSTEM						
Bone marrow	(49)		(25)		(50)	
Myelofibrosis		(6%)				
Lymph node	(44)		(32)		(45)	
Axillary, hyperplasia, plasma cell			1	(3%)		
Inguinal, hematopoietic cell proliferation		(2%)				
Inguinal, hyperplasia, plasma cell	1	(2%)				
						(2%)
Lumbar, angiectasis			2	(6%)	1	(2%)
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation						
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, lymphoid	1	(2%)				
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation	1	(2%)	4	(13%)	3	(7%)
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, lymphoid		(2%) (2%)	4	(13%)	3	(796)
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, lymphoid Lumbar, hyperplasia, plasma cell	1			(13%) (3%)	3	(796)
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, lymphoid Lumbar, hyperplasia, plasma cell Lumbar, infiltration cellular, plasma cell Lumbar, necrosis	1	(2%)				
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, lymphoid Lumbar, hyperplasia, plasma cell Lumbar, infiltration cellular, plasma cell Lumbar, necrosis Mandibular, angiectasis	1 1	(2%) (2%)	1	(3%)	1	(2%)
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, lymphoid Lumbar, hyperplasia, plasma cell Lumbar, infiltration cellular, plasma cell Lumbar, necrosis Mandibular, angiectasis Mandibular, hematopoietic cell proliferation	1 1 1	(2%) (2%) (2%)	1		1	
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, lymphoid Lumbar, hyperplasia, plasma cell Lumbar, infiltration cellular, plasma cell Lumbar, necrosis Mandibular, angiectasis Mandibular, hematopoietic cell proliferation Mandibular, inflammation, acute	1 1 1 1	(2%) (2%) (2%) (2%)	1	(3%)	1	(2%)
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, lymphoid Lumbar, hyperplasia, plasma cell Lumbar, infiltration cellular, plasma cell Lumbar, necrosis Mandibular, angiectasis Mandibular, hematopoietic cell proliferation Mandibular, inflammation, acute Mediastinal, angiectasis	1 1 1 1 1	(2%) (2%) (2%) (2%) (2%)	1	(3%)	1	(2%)
Lumbar, angiectasis Lumbar, hematopoietic cell proliferation Lumbar, hyperplasia, lymphoid Lumbar, hyperplasia, plasma cell Lumbar, infiltration cellular, plasma cell Lumbar, necrosis Mandibular, angiectasis Mandibular, hematopoietic cell proliferation Mandibular, inflammation, acute	1 1 1 1 1 1	(2%) (2%) (2%) (2%)	1 7	(3%)	1 5	(2%)

TABLE D4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

TABLE D4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

	Vehicle	Control	Low	Dose	High	Dose
HEMATOPOIETIC SYSTEM				<u> </u>		
Lymph node (Continued)	(44)		(32)		(45)	
Mediastinal, hyperplasia, plasma cell		(7%)		(13%)	• • • • •	(22%)
Mediastinal, infiltration cellular, plasma cell	4	(9%)	•	(10,0)	10	$(\sim 2 n)$
Mediastinal, inflammation, acute		(7%)				
Mediastinal, necrosis		(9%)	3	(9%)	5	(11%)
Mesenteric, angiectasis		(16%)		(9%)		(11%)
Mesenteric, hematopoietic cell proliferation		(36%)	-	(28%)		(24%)
Mesenteric, hemorrhage		(2%)	-	(3%)	11	(4470)
			1	(370)		
Mesenteric, hyperplasia, lymphoid	-	(2%)	•	(67)	•	(
Mesenteric, hyperplasia, plasma cell	-	(5%)	2	(6%)	2	(4%)
Mesenteric, infiltration cellular, plasma cell	I	(2%)	-			
Pancreatic, hematopoietic cell proliferation			2	(6%)		
Renal, angiectasis	_	(2%)				
Renal, hematopoietic cell proliferation		(7%)	4	(13%)	3	(7%)
Renal, hyperplasia, lymphoid	1	(2%)				
Renal, hyperplasia, plasma cell	2	(5%)	6	(19%)	3	(7%)
Renal, infiltration cellular, plasma cell	2	(5%)				
Renal, necrosis			1	(3%)	1	(2%)
Spleen	(48)		(35)	(,	(50)	,
Angiectasis		(2%)	(,		(00)	
Hematopoietic cell proliferation		(90%)	39	(91%)	48	(96%)
Hemorrhage	40	(30 %)		(3%)		(30%)
Hyperplasia, lymphoid		(90)	1	(370)	F	(100)
		(8%)			σ	(10%)
Necrosis		(4%)				
Pigmentation	1	(2%)				
Capsule, fibrosis						(2%)
Thymus	(37)		(14)		(35)	
Atrophy	1	(3%)	1	(7%)	2	(6%)
Cyst			1	(7%)		
Hyperplasia, lymphoid					1	(3%)
NTEGUMENTARY SYSTEM						
Mammary gland	(17)		(11)		(13)	
Galactocele		(12%)			()	
Skin	(40)	((25)		(44)	
Hyperkeratosis		(3%)	((/	
Necrosis	•				1	(2%)
Subcutaneous tissue, inflammation, chronic					1	(470)
active		(90)			•	(0.00)
		(3%)			1	(2%)
Subcutaneous tissue, metaplasia, osseous	1	(3%)		(10)		
Subcutaneous tissue, necrosis			1	(4%)		
IUSCULOSKELETAL SYSTEM						
Bone	(49)		(25)		(50)	
Joint, hyperostosis		(2%)				
VERVOUS SYSTEM						
Brain	(49)		(25)		(50)	
Inflammation, acute	(40)			(4%)	(00)	
Thalamus, mineralization	0	(4%)	1	(-170)		
Malanius, nineranzallon		(=70)				

	Vehicle	Control	Low	Dose	High	Dose
RESPIRATORY SYSTEM				<u> </u>		
Lung	(49)		(27)		(50)	
Abscess					1	(2%)
Bacterium	2	(4%)	4	(15%)	5	(10%)
Edema			1	(4%)	1	(2%)
Hemorrhage					6	(12%)
Inflammation, acute	4	(8%)				
Inflammation, chronic active	4	(8%)	4	(15%)	4	(8%)
Alveolar epithelium, hyperplasia	1	(2%)			3	(6%)
Pleura, inflammation, acute	4	(8%)	11	(41%)	9	(18%)
SPECIAL SENSES SYSTEM						
Harderian gland			(2)			
Hyperplasia			·/	(50%)		
URINARY SYSTEM	(10)		(00)		(50)	
Kidney	(49)		(32)		(50)	(0 M)
Cyst Glomerulosclerosis					-	(2%) (2%)
		(90)	•	(00)	1	
Inflammation, acute Inflammation, chronic	-	(2%) (2%)		(9%) (3%)	1	(2%)
Inflammation, chronic active		(14%)		(3%)	11	(22%)
Metaplasia, osseous		(14%) (2%)	4	(1370)	11	(2270)
Necrosis	1	(270)	1	(3%)		
			1	(3%)	1	(2%)
		(2%)	,	(3%)		(4%)
Pigmentation	1		-	v = · = <i>y</i>		(4%) (10%)
Cortex, mineralization	-	· · · · ·	6			
Cortex, mineralization Glomerulus, inflammation, acute	5	(10%)	6	(19%)		,
Cortex, mineralization Glomerulus, inflammation, acute Papilla, mineralization	5	(10%) (10%)			3	(6%)
Cortex, mineralization Glomerulus, inflammation, acute	5	(10%)		(19%) (6%)	3 1	

TABLE D4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF TRIBROMOMETHANE (Continued)

Tribromomethane, NTP TR 350

APPENDIX E

GENETIC TOXICOLOGY OF

TRIBROMOMETHANE

		PAGE
TABLE E1	MUTAGENICITY OF TRIBROMOMETHANE IN SALMONELLA TYPHIMURIUM	170
TABLE E2	MUTAGENICITY OF TRIBROMOMETHANE IN MOUSE L5178Y LYMPHOMA CELLS	175
TABLE E3	INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY TRIBROMOMETHANE	177
TABLE E4	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY TRIBROMOMETHANE	178
TABLE E5	INDUCTION OF SEX-LINKED RECESSIVE LETHAL MUTATIONS IN DROSOPHILA BY TRIBROMOMETHANE	179
TABLE E6	INDUCTION OF RECIPROCAL TRANSLOCATIONS IN DROSOPHILA BY TRIBROMOMETHANE	179
TABLE E7	INDUCTION OF SISTER CHROMATID EXCHANGES IN MOUSE BONE MARROW CELLS BY TRIBROMOMETHANE	180
TABLE E8	INDUCTION OF CHROMOSOMAL ABERRATIONS IN MOUSE BONE MARROW CELLS BY TRIBROMOMETHANE	181
TABLE E9	INCIDENCE OF MICRONUCLEI IN BONE MARROW POLYCHROMATIC ERYTHROCYTES OF $B6C3F_1$ MICE EXPOSED TO TRIBROMOMETHANE	182

				~~			00 /r				. ~		
		Tri	 al 1	<u>S9</u>	al 2	Trial		amster)	al 2	Tria		<u>) (rat)</u> Trial	0
		111	ai 1	1 1 1	al 2	1 1180	L	1 [1	81 4	111		1 1 1 81	
TA100	0	$103 \pm$	4.3	111 ±	4.9	122 ±	3.2	122 ±	7.8	140 ±	11.5	126 ±	7.6
	10				14.7			137 ±	6.9			133 ±	11.3
	33		15.6		14.7	145 ±	16.6	150 ±	10.7	157 ±	9.5	135 ±	7.4
	100		12.1	96 ±	21.9	162 ±	6.7	148 ±	13.7	182 ±	4.5	170 ±	12.9
	333		13.0	99 ±	13.3	148 ±	4.4	139 ±	5.9	162 ±	10.9	155 ±	10.
	,000	99 ±		89 ±	9.7	95 ±	2.4	56 ±	28.7	139 ±	12.9	113 ±	7.3
3	,333	110 ±	11.1			0 ±	0.0			0 ±	0.0		
Trial Positi	summary .ve	Nega	tive	Negat	cive	Nega	tive	Negat	tive	Negat	ive	Negat	tive
	col (c)	324 ±	35.4	265 ±	15.2	3,187 ±	74.2	2,762 ±	72.8	2,153 ±	184.9	$2,079 \pm$	73.7
TA1535	0	5 ±	1.5	4 ±	0.6	6 ±	1.2	3 ±	1.5	5 ±	1.7	4 ±	1.(
	10		-	2 ±	0.7			3 ±	0.9			4 ±	1.
	33	3 ±	0.7	2 ±	0.3	5 ±	1.5	$\frac{1}{2} \pm$	0.3	4 ±	0.6	3 ±	0.
	100	2 ±	0.7	$\overline{2} \pm$	0.0	5±	0.9	$\overline{3\pm}$	0.3	8 ±	1.8	5±	Ŏ.
	333	2 ±	1.2	2 ±	0.3	6 ±	1.0	$2 \pm$	1.0	$\tilde{7} \pm$	1.2	$\tilde{7\pm}$	1.
1	,000	6 ±	0.9	$\overline{4} \pm$	1.0	ě±	1.5	$\frac{1}{2}$ ±	0.7	9 ±	2.0	$\frac{1}{7}$ ±	1.
	,333	$\frac{1}{7}$ ±	0.9			3±	0.3		••••	0±	0.0		
Trial su Positiv	ummary e	Nega	tive	Negat	ive	Nega	tive	Negat	tive	Negat	ive	Nega	tive
contro		150 ±	21.1	51 ±	4.4	127 ±	7.8	30 ±	9.4	97 ±	17.1	29 ±	8.
ГА1537	0	3 ±	0.9	3 ±	0.6	5 ±	0.7	5 ±	1.5	6 ±	0.7	5 ±	0.
	10			2 ±	0.9			4 ±	1.2			6 ±	
	33	3 ±	0.6	3 ±	0.3	4 ±	0.3	5 ±	1.2	10 ±	2.2	8 ±	
	100	5 ±	0.6	$\tilde{3\pm}$	1.2	6 ±	0.7	5 ±	1.2	7 ±	0.6	5 ±	
	333	$2 \pm$	0.3	$3 \pm$	1.0	$\tilde{7} \pm$	1.0	5 ±	0.9	$3\pm$	0.7	4 ±	
1	,000	$\overline{1} \pm$	0.0	1±	0.3	5±	1.8	$\tilde{5\pm}$	0.3	6 ±	0.6	$\frac{1}{2} \pm$	1.
	,333	ō±	0.0		0.0	ŏ ±	0.0		0.0	0±	0.0		
Trial su Positiv	ummary e	Nega	tive	Negat	ive	Nega	tive	Negat	tive	Negat	ive	Nega	tive
contro		981 ±	130. 9	129 ±	2 9 .1	103 ±	40.1	156 ±	20.8	174 ±	17.1	220 ±	9.0
TA98	0	13 ±	2.0	11 ±	1.0	20 ±	1.7	19 ±	0.7	19 ±	1.5	19 ±	0.
	10	••		10 ±	2.9			20 ±	0.9			20 ±	
	33	12 ±	2.0	11 ±	2.1	34 ±	2.3	24 ±	4.6	24 ±	1.2	21 ±	
	100	9 ±	1.0	10 ±	2.5	18 ±	3.4	28 ±	5.6	26 ±	3.2	20 ±	
	333	12 ±	0. 9	9 ±	1.3	23 ±	1.5	16 ±	3.5	26 ±	1.7	23 ±	
	,000	14 ±	1.7	12 ±	2.0	$17 \pm$	2.5	19 ±	2.7	23 ±	1.5	21 ±	3.
3	,333	0 ±	0.0			0 ±	0.0	, -		0 ±	0.0		
Trial su Positiv	ımmary e	Nega	tive	Negat	tive	Nega	tive	Nega	tive	Negat	ive	Nega	tive
contro		201 ±	14.0	120 ±	11.0	2,530 ±	1	$2.006 \pm$		1,346 ±	101 0	$1.258 \pm$	107

TABLE E1. MUTAGENICITY OF TRIBROMOMETHANE IN SALMONELLA TYPHIMURIUM (a)

Revertants/Plate (b)

Strain

Dose

(µg/plate)

Strain	Dose (µg/plate)			Revertar	nts/Plate (b)		
Study p	performed a	at EG&G Maso	n Research Inst	itute			
			-	- 89			
		Trial 1	Trial 2	Trial 3	Trial 4		
TA100	0 10 33 100	$\begin{array}{rrrrr} 115 \pm & 5.9 \\ 108 \pm & 6.4 \\ 115 \pm & 10.5 \\ 117 \pm & 10.7 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	115 ± 3.8 110 ± 5.0	147 ± 8.4 		
	300 333 400 450	126 ± 13.2	113 ± 5.5	129 ± 8.7 	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	430 500 550 600	 	 	$(d) 136 \pm 2.0$	$\begin{array}{rrrr} 171 \pm & 3.3 \\ 160 \pm & 3.8 \\ (d) 167 \pm & 7.2 \end{array}$		
	650 666 700 750	157 ± 3.0 	158 ± 10.5 	 Toxic	(d) 171 ± 6.3 (d) 99 ± 44.9 		
m	900 1,000	 Fi unita	Toxic	Toxic 	 No		
Trial su Positive control	,	Equivocal 1,460 ± 28.2	Weakly positive $1,613 \pm 98.1$	ve Negative 1,526 ± 7.7	Negative 2,812 ±107.6		
		+ <u>59</u> Trial 1	(hamster) Trial 2	+ <u>+ 5</u> Trial 1	9 (rat) Trial 2		
TA100	0 10 33 100 333 666 1,000	$93 \pm 6.797 \pm 4.998 \pm 11.6109 \pm 4.3105 \pm 7.094 \pm 6.1$	$110 \pm 12.3 \\ 122 \pm 2.6 \\ 100 \pm 7.0 \\ 82 \pm 4.6 \\ 120 \pm 7.1 \\ 128 \pm 3.5 \\ (d) 79 \pm 6.4$	$109 \pm 6.8 \\ 116 \pm 4.7 \\ 107 \pm 8.2 \\ 103 \pm 2.6 \\ 105 \pm 9.2 \\ 107 \pm 4.9 \\ \cdots$	$110 \pm 6.8 \\ 78 \pm 4.4 \\ 79 \pm 6.4 \\ 79 \pm 5.5 \\ 82 \pm 2.6 \\ 81 \pm 4.3 \\ (d) 62 \pm 11.4$		
Trial su Positive control	÷	Negative 1,332 ± 33.3	Negative 1,880 ± 127.3	Negative 1,087 ± 25.1	Negative 1,061 ±162.9		
			- 59	+ S 9 (1	amster)	+ \$9	(rat)
		Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2
TA153	5 0 10 33 100 333 666	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrr} 17 \pm & 4.2 \\ 15 \pm & 3.3 \\ 14 \pm & 2.2 \\ 16 \pm & 2.9 \\ 17 \pm & 0.7 \\ 22 \pm & 1.5 \end{array}$	$\begin{array}{rrrrr} 12 \pm & 3.4 \\ 11 \pm & 3.0 \\ 6 \pm & 0.3 \\ 12 \pm & 0.7 \\ 11 \pm & 1.2 \\ 11 \pm & 1.0 \end{array}$	$\begin{array}{rrrrr} 11 \pm & 2.2 \\ 11 \pm & 0.0 \\ 8 \pm & 1.5 \\ 12 \pm & 0.6 \\ 10 \pm & 3.2 \\ 15 \pm & 3.5 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Posi		Negative	Negative	Negative	Negative	Negative 62 ± 4.7	Negative 54 ± 4.1
con	trol (c)	$1,101 \pm 37.5$	$1,087 \pm 22.0$	122 ± 7.1	165 ± 9.4	62 ± 4.7	04 £ 4.1

TABLE E1. MUTAGENICITY OF TRIBROMOMETHANE IN SALMONELLA TYPHIMURIUM (Continued)

study pe	erformed a	at EG&G	Maso	n Researc	h Insti	itute (Con	tinued	1)					
			_	- 59			+ S9 ()	hamster)				(rat)	
		Tri	al 1	Tri	al 2	Trial	1	Tri	al 2	Tria	d 1	Tri	al 2
FA1537	0	7 ±	3.2	8 ±	2.1	9 ±	1.5	7 ±	0.7	10 ±	1.9	10 ±	2.2
	10	8 ±	1.7	4 ±	0. 9	9 ±	0.9	11 ±	2.6	9 ±	1.9	9 ±	1.7
	33	7 ±	1.8	9 ±	3.5	9 ±	3.4	6 ±	3.0	10 ±	3.0	6 ±	0.9
	100	5 ±	1.2	7 ±	0.7	10 ±	1.5	8 ±	1.9	8 ±	1.3	9 ±	
	333	7 ±	1.2	7 ±	1.7	10 ±	1.5	$10 \pm$	3.2	$12 \pm$	0.7	8 ±	1.7
	666	8 ±	2.7	7 ±	1.0	10 ±	0.0	11 ±	1.5	12 ±	3.2	10 ±	1.9
Trial s Positiv	summary ve	Negat	tive	Negat	tive	Nega	tive	Negat	tive	Negat	ive	Nega	tive
contr		460 ±	23.3	385 ±	93.8	149 ±	15.2	250 ±	23.7	78 ±	4.0	174 ±	10.4
					_	- 89							
		Tri	al 1	Tri	al 2	Trial	3	Tri	al 4				
ГА98	0	20 ±	1.2	15 ±	1.0	31 ±	2.7	23 ±	2.9				
	10	$21 \pm$	2.3	$17 \pm$	1.8								
	33	20 ±		20 ±	1.2								
	100	20 ±	2.3	17 ±	2.6	29 ±	2.6						
	300					33 ±	4.3	24 ±	2.0				
	333	23 ±	3.2	24 ±	5.0								
	400	••				••		$25 \pm$	2.8				
	450							23 ±	2.1				
	500							32 ±	1.3				
	550							$27 \pm$	3.4				
	600					38 ±	6.9	$25 \pm$	4.4				
	650 666	 96 +	1.0	(1) 90				(d) 21 \pm	1.0				
	666 700	26 ±	1.9	$(d) 20 \pm$	2.3			(d) 11 ±	4.8				
	750					(d) 8 ±	0. 9	(0)11 ±	4.0				
	900					$(d) 7 \pm (d) $	0.5						
	summary	Negat	tive	Nega	tive	Nega	tive	Nega	tive				
Positi contr	-	1.925 ±	37.3	1,610 ±	25.0	1,926 ±	41.2	1,986 ±	52.0				
		-,				-,		-	0110				
		Tri	<u>+ 59 (</u> al 1	<u>hamster)</u> Tri	al 2	Tri	+ <u>+ S</u> al 1	<u>9 (rat)</u> Tri	al 2				
ГА98	0	32 ±	1.5	28 ±	0. 9	34 ±	2.9		3.3				
1 1 30	10	$32 \pm 29 \pm$	1.3	$\frac{28 \pm}{24 \pm}$	1.9	$34 \pm 36 \pm$		$\frac{25 \pm}{30 \pm}$					
	33	$\frac{25 \pm}{34 \pm}$	1.3	$24 \pm 29 \pm$	1. 5 4.4	$36 \pm 36 \pm$		$30 \pm 25 \pm$					
	100	$34 \pm 32 \pm$		$\frac{29}{33} \pm$	4.4 1.5	$30 \pm 34 \pm$		$\frac{23 \pm}{27 \pm}$					
	333	36 ±	2.6	$33 \pm 32 \pm$	1.3	$34 \pm 31 \pm$	1.8	$19 \pm$					
	666		2.6	$27 \pm 27 \pm$		$29 \pm$			5.2				
Frial sum	imary	Neg	ative	Neg	ative	Neg	ative	Neg	ative				
Positive control (c)	1,878 ±	18.9	2,291 ±	63.1	1,256 ±	16.3	1,555 ±	34.7				

TABLE E1. MUTAGENICITY OF TRIBROMOMETHANE IN SALMONELLA TYPHIMURIUM (Continued)

Revertants/Plate (b)

Strain

Dose

(µg/plate)

Strain	Dose (µg/plate)					Re	vertar	nts/Plate (1)				
Study p	erformed a	t SRI In	ternat	ional									· <u>·····</u> ··
			-	- 89		+	S9 (h	amster)			+ 5	9 (rat)	
		Tri	al 1	Tria	al 2	10%	2	30%	6	10%		30%	6
TA100	0	114 ±	7.3	100 ±	4.9	128 ±	9.7	121 ±	9.0	104 ±	10.7	130 ±	6.0
IAIUU	10	114 1	7.0	$100 \pm 122 \pm$		120	9.1	121	9.0	104	10.7	130 ±	0.0
	33	89 ±	12.7		10.0	$125 \pm$	4.0			107 ±	3.2		
	100	$87 \pm$	3.3	90 ±	5.5		14.5	$128 \pm$	15.9	$112 \pm$		135 ±	4.6
	333	99 ±	2.2		14.4		13.0	$120 \pm 127 \pm$	5.2	$116 \pm$	3.2	$145 \pm$	11.4
	1,000	66 ±	2.6	76 ±	1.8	$139 \pm$	8.1	$121 \pm 122 \pm$	9.7	$130 \pm$		$114 \pm$	12.3
	1,666	(d) 0 ±	0.0	/0 ±	1.0	109 1	0.1	144	3.1		11.0		12.0
			0.0			$122 \pm$	5.0	$112 \pm$	8.4	92 ±	4.3	90 ±	9.6
	3,333						5.0			92 ±	4.0	$(d) 66 \pm$	1.7
	6,666							(d) 110 ±	10.0			(a) 00 ±	1.7
	al summary itive	Negat	tive	Negat	ive	Negat	tive	Negat	tive	Negat	tive	Nega	tive
	ntrol (c)	530 ±	25.2	497 ±	38.9	458 ±	84.4	238 ±	17.8	339 ±	69 .0	413 ±	11.3
TA1535	0	13 ±	3.2	21 ±	2.0	12 ±	2.0	11 ±	2.0	10 ±	1.5	12 ±	2.3
	10			20 ±	2.3								
	33	17 ±	2.3	$23 \pm$	3.5	9 ±	0.6			8 ±	0.3		
	100	$24 \pm$	2.6	$\frac{10}{22} \pm$	2.5	10 ± 10	0.3	10 ±	1.9	8±	2.5	17 ±	1.0
	333	11 ±	4.7	$18 \pm$	1.5	$13 \pm$	1.5	$12 \pm$	0.9	$11 \pm$	1.5	$12 \pm$	2.6
	1,000	10 ±	2.7	$10 \pm 14 \pm$	1.5	$13 \pm 13 \pm$	1.0	$12 \pm 13 \pm$	3.7	6±	0.6	$15 \pm 15 \pm$	0.7
	1,666	$(d) 2 \pm$	1.5		1.0	10 -	1.0	10 1	0.7	0 -	0.0		0.1
	3,333	(u) Z I	1.0			9 ±	0.6	13 ±	1.5	8 ±	1.2	13 ±	2.3
	6,666					91	0.0	8±	0.6		1.4	$(d) 12 \pm$	1.9
	0,000							• -	0.0			(=) == =	
	al summary itive	Nega	tive	Negat	ive	Nega	tive	Nega	tive	Nega	tive	Nega	tive
cor	ntrol (c)	267 ±	4.7	332 ±	14.2	168 ±	20.4	310 ±	24.2	198 ±	10.7	100 ±	0.9
TA 1 507	0	7 +		1 M -L		o +	1.0	10 -	05	o +		9 ±	3.1
TA1537	0	7 ±	3.2	$15 \pm 7 \pm 7$	2.6	9 ±	1.2	13 ±	2.5	9 ±	2.3		3.1
	10		~ ~	7 ±	2.8		• •			 			
	33	10 ±	2.9	8 ±	1.0	9 ±	2.8		~ ~	8 ±	0.9		
	100	7 ±	2.0	9 ±	0.9	10 ±	0.9	13 ±	0.6	9 ±	1.2	7 ±	1.2
	333	5 ±	1.2	8 ±	0.9	$10 \pm$	1.2	10 ±	1.9	<u>7</u> ±	1.5	5 ±	
	1,000	7 ±	1.2	4 ±	1.5	8 ±	2.0	8 ±	0.7	7 ±	1.2	6 ±	1.5
	1,666	$(d) 1 \pm$	1.3			••							
	3,333					7 ±	0.9	7 ±	0.6	7 ±	1.3	6 ±	0.9
	6,666					••		(d)11 ±	1.0			(d)5±	2.7
	al summary itive	Nega	tive	Nega	tive	Nega	tive	Nega	tive	Nega	tive	Nega	tive
	ntrol (c)	301 ±	29.2	376 ±	62.4	50 ±	2.9	49 ±	2.8	43 ±	2.8	56 ±	4.2
TA97	0 10	132 ±	10.7	157 ± 155 ±		152 ±	4.1	166 ±		140 ±	1.8	194 ±	
	33	147 ±	45	$164 \pm$		$202 \pm$	3.7			168 ±	13.8		
	100	$132 \pm$		$104 \pm 180 \pm$		$191 \pm$		175 ±		$175 \pm$		205 ±	
	333	$132 \pm 149 \pm$		$130 \pm 175 \pm$		$191 \pm 199 \pm$		$212 \pm$		191 ±			8.3
	1,000	$143 \pm 107 \pm$		$165 \pm$	5.9 5.0	$209 \pm$		$196 \pm$		$131 \pm 182 \pm$			16.2
	1,666	$(d)7 \pm$		105 1	0.0	200 L	0.0	150		104 -	****		~ ~ 0.4
	3,333	(u) / L				177 ±	141	195 ±		191 +	11.2	(d) 184 ±	110
	<i>5,555</i> 6,666							$(d) 192 \pm$		151		$(d) 104 \pm$ $(d) 103 \pm$	
	0,000							(u) 1 02 1	* • • •	-			
	al summary itive	Nega	tive	Nega	tive	Equiv	ocal	Equiv	ocal	Equiv	ocal	Nega	ative
	ntrol (c)	499 ±	49.7	986 ±	88.5	613 ±	20.5	396 ±	6.8	498 ±	3. 9	440 ±	: 6 .9

TABLE E1. MUTAGENICITY OF TRIBROMOMETHANE IN SALMONELLA TYPHIMURIUM (Continued)

Strain	Dose (µg/plate)	1			Reverta	nts/Plate (b)			
Study p	performed	at SRI Intern	national (Co	ontinued)	-				
		- 5	39			+ S9 (h	amster)		
		Trial 1	Trial 2	5%	10%	10%	30%	30%	30%
TA98	0	26 ± 0.7	23 ± 2.0	33 ± 4.5	29 ± 0.3	32 ± 0.9	26 ± 1.5	22 ± 3.3	33 ± 4.6
	10		17 ± 0.3						29 ± 4.3
	33	22 ± 1.7	19 ± 0.9		32 ± 2.6	••			25 ± 2.8
	100	23 ± 3.6	19 ± 2.9	38 ± 5.2	34 ± 7.5	29 ± 2.1	32 ± 4.1	39 ± 0.3	25 ± 4.0
	333	19 ± 2.0	20 ± 3.4	35 ± 1.2	30 ± 6.7	38 ± 1.0	33 ± 1.5	40 ± 1.9	29 ± 3.5
	1,000	12 ± 2.4	11 ± 1.3	32 ± 3.5	37 ± 2.8	34 ± 3.3	39 ± 6.1	41 ± 4.2	30 ± 1.7
	1,666	Toxic							34 ± 2.2
	3,333			44 ± 3.0	31 ± 5.2	40 ± 2.0	50 ± 3.1	40 ± 4.0	33 ± 1.5
	6,666		(d) 29 ± 1.3		(d) 27 ± 4.5 ((d) 51 \pm 7.3	(d) 49 ± 2.2	(d) 29 \pm 2.5
Trial su Positive		Negative	Negative	Negative	Negative	Negative	Equivocal	Equivocal	Negative
control	(c)	449 ± 16.4	675 ± 40.9	729 ± 26.5	384 ± 45.2	381 ± 24.7	69 ± 3.9	284 ± 5.2	233 ± 30.5
		+ 59	(rat)						
		10%	30%						
TA98	0	29 ± 2.3	38 ± 3.5						
	33	32 ± 1.0							
	100	31 ± 2.9	30 ± 4.5						
	333	27 ± 1.5	33 ± 3.3						
	1,000	34 ± 1.0	33 ± 6.4						
	3,333	(d) 18 ± 4.2	33 ± 3.5						
	6,666	(d) 20 \pm 0.0						
Trial su Positive		Negative	Negative						
control	l (c)	318 ± 33.8	64 ± 2.0						

(a) The detailed protocol is presented by Haworth et al. (1983). Cells and study compound or solvent (dimethyl sulfoxide) were incubated in the absence of exogenous metabolic activation (-S9) or with Arcolor 1254-induced S9 from male Syrian hamster liver or male Sprague Dawley rat liver. High dose was limited by toxicity or solubility but did not exceed 10 mg/plate; 0 μ g/plate dose is the solvent control.

(b) Revertants are presented as mean \pm standard error from three plates.

(c) Positive control; 2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation, 4-nitro-o-phenylenediamine was used with TA98, sodium azide was used with TA100 and TA1535, and 9-aminoacridine was used with TA1537 and TA97.

(d) Slight toxicity

Compound	Concentration (nl/ml)	Cloning Efficiency (percent)	Relative Total Growth (percent)	Tft- Resistant Cells	Mutant Fraction (c)
- S 9	<u></u>	<u> </u>	<u></u>	· · · · · · · · · · · · · · · · · · ·	<u></u>
Trial 1					
Ethanol (d)		63.5 ± 1.8	100.3 ± 6.2	101.5 ± 5.0	53.5 ± 3.4
Tribromomethane	50 75 100 150 200	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 133.3 \pm 17.6 \\ 128.0 \pm 10.4 \\ 108.3 \pm 2.9 \\ 99.3 \pm 11.2 \\ 78.3 \pm 3.3 \end{array}$	$72.0 \pm 15.7 75.3 \pm 10.1 105.3 \pm 4.3 108.3 \pm 6.5 112.0 \pm 6.4$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	250 300	67.0 ± 7.4 Lethal	47.3 ± 23.1	157.3 ± 35.8	(e) 84.7 ± 28.1
Methyl methanesulfona	te 5 µg/ml	84.0 ± 6.0	94.3 ± 6.2	685.0 ± 18.5	(e) 274.7 ± 14.9
Trial 2					
Ethanol (d)		70.3 ± 4.1	100.0 ± 9.8	86.0 ± 7.9	40.5 ± 1.4
Tribromomethane	25 50 100 175 (f) 200 (g) 250 300	$71.7 \pm 3.0 \\ 68.0 \pm 0.6 \\ 77.0 \pm 4.6 \\ 66.7 \pm 5.0 \\ 78.0 \pm 10.0 \\ 60 \\ Lethal$	$112.0 \pm 6.7 \\ 122.7 \pm 14.9 \\ 99.0 \pm 1.0 \\ 35.3 \pm 6.7 \\ 42.0 \pm 10.0 \\ 21 \\$	$\begin{array}{r} 86.3 \pm 17.7 \\ 88.3 \pm 6.9 \\ 108.7 \pm 3.4 \\ 201.0 \pm 19.1 \\ 183.5 \pm 5.5 \\ 174 \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Methyl methanesulfona		62.7 ± 3.9	66.7 ± 15.4	428.7 ± 9.4	(e) $228.7 \pm 10.$
Trial 3					
Ethanol (d)		86.0 ± 5.6	100.3 ± 4.3	67.5 ± 3.2	26.5 ± 1.
Tribromomethane	100 150 (h) 175 200 225 (f) 250 300	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 49.0 \pm & 5.5 \\ 41.3 \pm & 3.9 \\ 23.0 \pm & 6.0 \\ 17.3 \pm & 1.5 \\ 12.3 \pm & 2.2 \\ 7.0 \pm & 2.0 \\ \end{array}$	$\begin{array}{c} 83.3 \pm 10.4 \\ 61.7 \pm 15.6 \\ 64.5 \pm 7.5 \\ 133.7 \pm 5.7 \\ 105.3 \pm 28.7 \\ 74.0 \pm 52.0 \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Methyl methanesulfona	te (h) 5 μg/ml	48.5 ± 2.5	43.0 ± 5.0	287.5 ± 37.5	(e) 196.0 ± 15 .
S9 (i)					
Trial 1					
Ethanol (d)		59.0 ± 4.9	100.3 ± 13.3	171.0 ± 8.9	97.8 ± 4.
Tribromomethane	6.25 12.5 25 50	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$54.0 \pm 3.1 \\ 27.7 \pm 1.3 \\ 10.0 \pm 0.6 \\ -$	$213.3 \pm 17.9 \\ 242.3 \pm 19.1 \\ 231.7 \pm 20.4 \\$	$133.0 \pm 10.$
Methylcholanthrene (h)	2.5 μg/ml	27.5 ± 9.5	4.0 ± 2.0	526.5 ± 90.5	(e)688.0 ±135.

TABLE E2. MUTAGENICITY OF TRIBROMOMETHANE IN MOUSE L5178Y LYMPHOMA CELLS (a,b)

Compound	Concentration (nl/ml)	Cloning Efficiency (percent)		Relative Total Growth (percent)		Tft- Resistant Cells	Mutant Fraction (c)	
- S9 (Continued)								
Trial 2								
Ethanol (d)		85.3 ±	2.8	100.0 ±	5.1	203.3 ± 13.0	79.5 ±	4.0
Tribromomethane	2.5 5 10 (f) 20 25 (f) 30	$68.3 \pm 72.3 \pm 56.7 \pm 58.0 \pm 59.0 \pm 66.0 \pm$	4.2 4.9 3.8 3.0 6.0 5.0	$70.0 \pm 47.7 \pm 26.7 \pm 13.0 \pm 6.7 \pm 7.5 \pm$	7.5 2.7 2.0 1.0 1.7 2.5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	60.3 ± 68.3 ± 108.0 ± 122.5 ± (e) 121.7 ± 113.0 ±	11.1 13.0 27.5 22.6
Methylcholanthrene	2.5 μg/ml	38.7 ±	4.8	16.0 ±	4.0	850.0 ± 121.4	(e) 736.0 ±	64.9

TABLE E2. MUTAGENICITY OF TRIBROMOMETHANE IN MOUSE L5178Y LYMPHOMA CELLS (a,b)
(Continued)

(a) Study performed at Litton Bionetics, Inc. The experimental protocol is presented in detail by Myhr et al. (1985) and follows the basic format of Clive et al. (1979). The highest dose of study compound is determined by solubility or toxicity and may not exceed 5 mg/ml. All doses are tested in triplicate; the average for the three tests is presented in the table. Cells (6×10^{5} /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^{6} cells were plated in medium and soft agar supplemented with trifluorothymidine (Tft) for selection of Tft-resistant cells, and 600 cells were plated in nonselective medium and soft agar to determine the cloning efficiency.

(b) Mean \pm standard error from replicate trials of approximately 1×10^6 cells each. All data are evaluated statistically for both trend and peak response (P<0.05 for at least one of the three highest dose sets). Both responses must be significantly (P<0.05) positive for a chemical to be considered capable of inducing Tft resistance. If only one of these responses is significant, the call is "equivocal"; the absence of both trend and peak response results in a "negative" call.

(c) Mutant fraction (frequency) is a ratio of the Tft-resistant cells to the cloning efficiency, divided by 3 (to arrive at MF per 1×10^6 cells treated); MF = mutant fraction.

(d) Data presented are the average of four tests.

(e) Significant positive response; occurs when the relative mutant fraction (average MF of treated culture/average MF of solvent control) is greater than or equal to 1.6.

(f) Data presented are the average of two tests. The dose in one test was lethal.

(g) Data presented are for one test. The dose in two tests was lethal.

(h) Data presented are the average of two tests.

(i) Tests conducted with metabolic activation were performed as described in (a) except that S9, prepared from the liver of Aroclor 1254-induced F344 rats, was added at the same time as the study chemical and/or solvent.

Compound	Dose (µg/ml)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hours in BrdU	Relative SCEs/Celi (percent) (b)
Study performed at Colum	bia University	7						
- S9 (c) Summary: Negative	9							
Dimethyl sulfoxide		50	1,045	459	0.44	9.2	26	
Tribromomethane	16 50 160	50 50 50	1,048 1,049 1,051	496 500 514	0.47 0.48 0.49	9.9 10.0 10.3	26.0 26.0 26.0	107.6 108.7 112.0
Triethylenemelamine	0.015	50	1,044	1,781	1.71	35.6	26.0	387.0
+ S9 (d) Summary: Negative	e							
Dimethyl sulfoxide		50	1,048	431	0.41	8.6	26.0	
Tribromomethane	50 160 500	50 50 50	1,049 1,049 1,049	461 498 493	0.44 0.47 0.47	9.2 10.0 9.9	26.0 26.0 26.0	107.0 116.3 115.1
Cyclophosphamide	1	50	1,049	1,165	1.11	23.3	26.0	270.9
Study performed at Litton	Bionetics , Inc							
- S9 (c) Summary: Weakly	positive							
Dimethyl sulfoxide		50	1,039	427	0.41	8.5	25.5	
Tribromomethane	29 96.8 290	50 50 50	1,034 1,035 1,030	470 499 528	0.45 0.48 0.51	9.4 10.0 10.6	25.5 25.5 25.5	110.6 117.6 124.7
Triethylenemelamine	0.015	50	1,021	3,071	3.01	61.4	25.5	722.4
+ S9 (d) Summary: Negative	e							
Dimethyl sulfoxide		50	1,004	441	0.44	8.8	25.5	
Tribromomethane	96.8 290 968	50 50 50	1,025 1,020 1,027	497 454 531	0.48 0.45 0.52	9.9 9.1 10.6	25.5 (e) 30.5 (e) 30.5	112.5 103.4 120.5
Cyclophosphamide	1.5	50	1,035	1,629	1.57	32.6	25.5	370.5

TABLE E3. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS
BY TRIBROMOMETHANE (a)

(a) SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol is presented by Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) as described in (c) or (d) below and cultured for sufficient time to reach second metaphase division. Cells were then collected by mitotic shake-off, fixed, air-dried, and stained.

(b) SCEs/cell in treated culture expressed as a percent of the SCEs/cell in the control culture

(c) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) for 2 hours at 37° C. Then BrdU was added, and incubation was continued for 24 hours. Cells were washed, fresh medium containing BrdU and colcemid was added, and incubation was continued for 2-3 hours.

(d) In the presence of S9, cells were incubated with study compound or solvent (dimethyl sulfoxide) for 2 hours at 37° C. Then cells were washed, and medium containing BrdU was added. Cells were incubated for a further 26 hours, with colcemid present for the final 2-3 hours. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

(e) Because some chemicals induce a delay in the cell division cycle, harvest times are occasionally extended to maximize the proportion of second division cells available for analysis.

		- S9 (b)					+ S9 (c)		
Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs
Study perfor	med at C	olumbia Un	iversity (d	.)		<u></u>			
Dimethyl sulf	oxide				Dimethyl	sulfoxide			
	100	3	0.03	3.0	•	100	3	0.03	3.0
Tribromometl	nane				Tribromor	nethane			
50	100	2	0.02	2.0	160	100	4	0.04	3.0
160	100	1	0.01	1.0	500	100	3	0.03	3.0
500	100	ō	0.00	0.0	1,600	100	0	0.00	0.0
1,600	100	6	0.06	6.0	-,				
Summa	ary: Negati	ive			Summa	ary: Negat	ive		
Triethylenem	elamine				Cyclophos	phamide			
0.15	100	34	0.34	25.0	15	100	57	0.57	32.0
Study perfo	rmed at L	itton Bione	tics, Inc. (e)					
Dimethyl sulf	oxide				Dimethyl	sulfoxide			
	100	0	0.00	0.0	•	100	0	0.00	0.0
	100	2	0.02	2.0		100	0	0.00	0.0
Tribromomet	hane				Tribromo	methane			
266	100	2	0.02	2.0	266	100	1	0.01	1.0
532	100	$\overline{\overline{2}}$	0.02	2.0	532	100	2	0.02	2.0
1,070	100	6	0.06	6.0	1,070	100	1	0.01	1.0
Summa	ary: Weakl	y positive			Summ	ary: Negat	ive		
Triethylenem	elamine				Cyclophos	sphamide			
1	100	37	0.37	28.0	25	100	18	0.18	17.0

TABLE E4. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY TRIBROMOMETHANE (a)

(a) Abs = aberrations. A detailed presentation of the technique for detecting chromosomal aberrations is presented by Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) as indicated in (b) or (c). Cells were arrested in first metaphase by addition of colcemid and harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid was added for an additional 2-3 hours followed by harvest.

(c) In the presence of S9, cells were incubated with study compound or solvent (dimethyl sulfoxide) for 2 hours at 37°C. Cells were then washed, medium was added, and incubation was continued for 8-10 hours. Colcemid was added for the last 2-3 hours of incubation before harvest. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

(d) Harvest time, 14.0 hours

(e) Harvest time, 10.5 hours

TABLE E5. INDUCTION OF SEX-LINKED RECESSIVE LETHAL MUTATIONS IN DROSOPHILA BY TRIBROMOMETHANE (a)

Route of		Incidence of	Incidence of	No. of Lethals/	No. of X Chr	omosomes Tes	ted Overall
Exposure	Dose (ppm)	Deaths (percent)	Sterility (percent)	Mating 1	Mating 2	Mating 3	Total (b)
Injection	1,000 0	11	18	2/2,027 0/1,791	0/2,00 9 2/1,665	0/1,650 4/1,602	2/5,686 (0.04%) 6/5,058 (0.12%)
Feeding	3,000 0	31	4	3/2,212 1/1,972	2/2,139 1/1,843	5/1,809 1/1,788	10/6,160 (0.16%) 3/5,603 (0.05%)

(a) Study performed at University of Wisconsin, Madison. A detailed protocol of the sex-linked recessive lethal assay is presented in Zimmering et al. (1985). (Exposure by feeding was done by allowing 24-hour-old Canton-S males to feed for 3 days on a solution of the study chemical dissolved in 5% sucrose. In the injection experiments, 24-hour-old Canton-S males were treated with a solution of the chemical dissolved in 0.7% saline and allowed 24 hours to recover.) Exposed males were mated to three *Basc* females for 3 days and given fresh females at 2-day intervals to produce three broods of 3, 2, and 2 days; sample sperm from successive matings were treated as spermatozoa (mating 1), spermatids (mating 2), and spermatocytes (mating 3). F_1 heterozygous females were crossed to their siblings and placed in individual vials. F_1 daughters from the same parental male were kept together to identify clusters; no clusters were found. After 17 days, presumptive lethal mutations were identified as vials containing no wild-type males; these were retested. Results were significant at the 5% level (Margolin et al., 1983). (b) Combined total of number of lethal mutations/number of X chromosomes tested for three mating trials

Route of	Dose		<u>Transfers</u> Translocations/Total F ₁ Tested			Total No. of	Total No. of Trans-	Total Trans- locations		
Exposure	(ppm)	1	2	3	4	5	6	Tests	locations	(percent)
Feeding	3,000	0/1,154	0/1,168	0/1,163	0/1,123	0/656	0/116	5,380	0	0
Historic a l control	0	0/27,245	0/31,611	0/22,410	2/23,623	0/10,506	0/768	116,163	2	0.0017

TABLE E6. INDUCTION OF RECIPROCAL TRANSLOCATIONS IN DROSOPHILA BY TRIBROMOMETHANE (a)

(a) Study performed at University of Wisconsin, Madison. A detailed protocol of the reciprocal translocation assay is presented in Zimmering et al. (1985). Exposed males were mated to three bw; efemales for 3 days and discarded. The females were transferred to fresh medium every 3-4 days to produce a total of six cultures, and then they were discarded. In this manner, sample sperm from successive cultures were stored for increasing lengths of time. Individual F_1 males were backcrossed to bw; efemales, and the F_2 were screened for pseudolinkage. This procedure allows the recovery of translocations involving the Y, second, or third chromosomes in any combination. Presumptive translocations were retested. Results were not significant at the 5% level (Kastenbaum and Bowman, 1970).

Compound	Dose (mg/ml)	Mean SCEs/Cell (b)	P Value (c)
Frial 1			
Corn oil		4.4 ± 0.24	
Tribromomethane (d)	200 400 800	4.9 ± 0.48 7.0 ± 1.45 8.2 ± 0.94	0.0120
Dimethylbenzanthracene (e)	2.5	11.7 ± 0.5	0.0001
frial 2			
Corn oil		4.5 ± 0.60	
Tribromomethane	800	6.1 ± 0.62	0.0488
Dimethylbenzanthracene (e)	2.5	8.1 ± 0.61	0.0027

TABLE E7. INDUCTION OF SISTER CHROMATID EXCHANGES IN MOUSE BONE MARROW CELLS BY
TRIBROMOMETHANE (a)

(a) Study performed at Brookhaven National Laboratory. Doses are determined by the solubility of the chemical, its lethality in the animals, and/or cell cycle delay induced by chemical exposure. A range-finding study was performed to determine the appropriate dosing regimen. Based on animal mortality, the maximum dose was set at 800 mg/kg. Male B6C3F₁ mice (five animals per dose group) were given an intraperitoneal injection of tribromomethane in corn oil (injection volume: 0.4 ml). Solvent control mice received an injection of corn oil only. The positive control mice received an injection of 2.5 mg/kg dimethylbenzanthracene. Twenty-four hours prior to tissue sampling, the mice were subcutaneously implanted with a 50-mg bromodeoxyuridine tablet (McFee et al., 1983), and 2 hours prior to being killed, the mice received an intraperitoneal injection of 2 mg/kg colchicine (in saline). Thirty-six (trial 1) or 42 (trial 2) hours after chemical exposure, the animals were killed by cervical dislocation. One or both femurs were removed, and the marrow was flushed out with 5 ml phosphate-buffered saline (PH 7.0). The cells were treated with a hypotonic salt solution, fixed, and dropped onto chilled slides. After a 24-hour drying period, the slides were stained by the fluorescence-plus-Giemsa method and scored. Twenty-five second-division metaphase cells were scored from each of four animals per treatment.

(b) Mean \pm standard error of the mean; SCE = sister chromatid exchange.

(c) Pairwise comparison between dose group and solvent control group conducted with Student's one-tailed t-test.

(d) Trend P value = 0.0018 by a one-tailed trend test used to determine if dose-related increase is present (Margolin et al., 1986) (e) Positive control

TABLE E8. INDUCTION OF CHROMOSOMAL ABERRATIONS IN MOUSE BONE MARROW CELLS BY TRIBROMOMETHANE (a)

Compound	Dose (mg/kg)	Aberrations/Cell (b)	Damaged Cells (b) (percent)
Corn oil		0.01 ± 0.005	1.00 ± 0.535
Tribromomethane	(c) 200 400	0.02 ± 0.008 0.03 ± 0.012	2.29 ± 0.808 3.25 ± 1.250
	800	0.02 ± 0.009	2.00 ± 0.926
Trend P value (d)		0.2846	0.2486
Dimethylbenzanthracene (e)	100	0.48 ± 0.140	18.00 ± 2.976

(a) Study performed at Brookhaven National Laboratory. Doses are determined by the solubility of the chemical, its lethality in animals, and/or cell cycle delay induced by chemical exposure. A range-finding study was performed to determine the appropriate dosing regimen. Based on animal mortality, the maximum dose was set at 800 mg/kg. Male B6C3F, mice (10 animals per dose group) were given an intraperitoneal injection of tribromomethane in corn oil (injection volume: 0.4 ml). Solvent control mice received an injection of corn oil only. The positive control mice received an injection of 100 mg/kg dimethylbenzanthracene. Twenty four hours later, the mice were subcutaneously implanted with a 50-mg bromodeoxyuridine (BrdU) tablet (McFee et al., 1983). BrdU was used to allow selection of the appropriate cell population for scoring. (Chemically induced chromosomal aberrations are present in maximum number at the first metaphase after exposure; they decline in number during subsequent nuclear divisions due to cell death.) Two hours before being killed, the mice received an intraperitoneal injection of 2 mg/kg colchicine (in saline). Thirty-six hours after chemical exposure (12 hours after BrdU dosing), the animals were killed by cervical dislocation. One or both femurs were removed, and the marrow was flushed out with 5 ml phosphatebuffered saline (pH 7.0). Cells were treated with a hypotonic salt solution, fixed, and dropped onto chilled slides. Following a 24-hour drying period, the slides were stained and scored. Fifty first-division metaphase cells were scored from each of eight animals per treatment (unless otherwise specified). Responses were evaluated as the percentage of aberrant metaphase cells. excluding gaps. The number of aberrations per cell (excluding gaps) was also analyzed to provide information on the extent of individual cell damage.

(b) Mean \pm standard error of the mean

(c) Number of animals: 7

(d) One-tailed trend test used to determine if dose-related increase is present (Margolin et al., 1986)

(e) Positive control

TABLE E9. INCIDENCE OF MICRONUCLEI IN BONE MARROW POLYCHROMATIC ERYTHROCYTES OFB6C3F1 MICE EXPOSED TO TRIBROMOMETHANE (a)

Dose (mg/kg)	Micronucleated PCEs/ 1,000 Cells (b)	Number of Animals	P Value
Tribromomethane			<u>,</u>
0	2.60 ± 0.427	10	(c) 0.0095
200	2.90 ± 0.482	10	
400	3.10 ± 0.482	10	
800	4.40 ± 0.748	10	
Dimethylbenzanthracene (d)			
100	31.50 ± 3.291	10	(e) 0.0001

(a) PCE = polychromatic erythrocyte. Doses are determined by solubility of the chemical and animal lethality and/or cell cycle delay induced by chemical exposure. Male mice were injected intraperitoneally with tribromomethane dissolved in corn oil twice at 24-hour intervals. Vehicle control mice received injections of corn oil only. The positive control mice received injections of dimethylbenzanthracene. Twenty-four hours after the second injection, mice were killed by cervical dislocation, and smears were prepared of the bone marrow cells obtained from the femurs. Air-dried smears were fixed and stained; 1,000 poly-chromatic erythrocytes were scored for frequency of micronuclei in each of 10 animals per dose group.

(b) Mean \pm standard error of the mean of the pooled results from all animals scored within a dose group

(c) One-tailed trend test used to determine if treatment-related increase is present (Margolin et al., 1986)

(d) Positive control

(e) Pairwise comparison between dose group and corresponding solvent control group conducted with Student's one-tailed t-test

APPENDIX F

SENTINEL ANIMAL PROGRAM

		PAGE
TABLE F1	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF TRIBROMOMETHANE	185

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen $B6C3F_1$ mice and 15 F344/N rats of each sex were selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group were killed at 6, 12, and 18 months on study. Data from animals surviving 24 months were collected from 5/50 randomly selected vehicle control animals of each sex and species. The blood from each animal was collected and clotted, and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests were performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	ELISA
Mice	 PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai 	M. Ad. (mouse adenovirus) LCM (lymphocytic chorio- meningitis virus)	MHV (mouse hepatitis virus)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai	RCV (rat coronavirus)	
II. Re	sults		

Results are presented in Table F1.

	Interval (months)	Number of Animals	Positive Serologic Reaction for
RATS			
	6	8/10	RCV
	12	9/10 (b) 1/10	RCV Sendai
	18	4/10 8/10	KRV RCV
	24	8/10 3/10	RCV KRV
MICE			
	6		None positive
	12		None positive
	18		None positive
	24		None positive

TABLE F1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF TRIBROMOMETHANE (a)

(a) Blood samples were taken from sentinel animals at 6, 12, and 18 months after the start of dosing and from the vehicle control animals just before they were killed; samples were sent to Microbiological Associates (Bethesda, MD) for determination of antibody titers.

(b) May be considered a false positive

Tribromomethane, NTP TR 350

APPENDIX G

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Meal Diet: December 1980 to January 1983

(Manufactured by Zeigler Bros., Inc., Gardners, PA)

		PAGE
TABLE G1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION	188
TABLE G2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION	188
TABLE G3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION	189
TABLE G4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION	190

TABLE G1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

Ingredients (b)	Percent by Weight	
Ground #2 yellow shelled corn	24.50	
Ground hard winter wheat	23.00	
Soybean meal (49% protein)	12.00	
Fish meal (60% protein)	10.00	
Wheat middlings	10.00	
Dried skim milk	5.00	
Alfalfa meal (dehydrated, 17% protein)	4.00	
Corn gluten meal (60% protein)	3.00	
Soy oil	2.50	
Dried brewer's yeast	2.00	
Dry molasses	1.50	
Dicalcium phosphate	1.25	
Ground limestone	0.50	
Salt	0.50	
Premixes (vitamin and mineral)	0.25	

(a) NCI, 1976b; NIH, 1978

(b) Ingredients ground to pass through a U.S. Standard Screen No. 16 before being mixed

TABLE G2. VITAMINS AND MINERALS IN NIH 07 RATION (a)

	Amount	Source	
Vitamins	· · · · · · · · · · · · · · · · · · ·		
Α	5,500,000 IU	Stabilized vitamin A palmitate or acetate	
D ₃	4,600,000 IU	D-activated animal sterol	
K ₃	2.8 g	Menadione	
d-a-Tocopheryl acetate	20,000 IŬ		
Choline	560.0 g	Choline chloride	
Folic acid	2.2 g		
Niacin	30.0 g		
d-Pantothenic acid	18.0 g	d-Calcium pantothenate	
Riboflavin	3.4 g	•	
Thiamine	10.0 g	Thiamine mononitrate	
B ₁₂	4,000 µg		
Pyridoxine	1.7 g	Pyridoxine hydrochloride	
Biotin	140.0 mg	d-Biotin	
Minerals			
Iron	120.0 g	Iron sulfate	
Manganese	60.0 g	Manganous oxide	
Zinc	16.0 g	Zincoxide	
Copper	4.0 g	Copper sulfate	
Iodine	1.4 g	Calcium iodate	
Cobalt	0.4 g	Cobalt carbonate	

(a) Per ton (2,000 lb) of finished product

TABLE G3.	NUTRIENT	COMPOSITION	OF NIH 07	RAT AND	MOUSE RATION (a)
-----------	----------	-------------	-----------	---------	------------------

Nutrients	Mean ± Standard Deviati	on Range	Number of Samples
Crude protein (percent by weight)	24.25 ± 1.04	22.6-26.3	24
Crude fat (percent by weight)	5.10 ± 0.44	4.4-6.0	24
Crude fiber (percent by weight)	3.38 ± 0.38	2.4-4.2	24
Ash (percent by weight)	6.59 ± 0.34	5.97-7.42	24
Amino Acids (percent of total o	liet)		
Arginine	1.323 ± 0.830	1.21-1.39	4
Cystine	0.310 ± 0.099	0.218-0.400	4
Glycine	1.155 ± 0.069	1.06-1.21	4
Histidine	0.572 ± 0.030	0.530-0.603	4
Isoleucine	0.910 ± 0.033	0.881-0.944	4
Leucine	1.949 ± 0.065	1.85-1.99	4
Lysine	1.275 ± 0.076	1.20-1.37	4
Methionine	0.422 ± 0.187	0.306-0.699	4
Phenylalanine	0.909 ± 0.167	0.665-1.04	4
Threonine	0.844 ± 0.029	0.824-0.886	4
Tryptophan	0.187	0.171-0.211	3
Tyrosine	0.631 ± 0.094	0.566-0.769	4
Valine	1.11 ± 0.050	1.05-1.17	4
Essential Fatty Acids (percent	of total diet)		
Linoleic	2.44	2.37-2.52	3
Linolenic	0.274	0.256-0.308	3
Arachidonic	0.008		1
Vitamins			
Vitamin A (IU/kg)	11,188 ± 1,239	8,900-14,000	24
Vitamin D (IU/kg)	4,650	3,000-6,300	2
a-Tocopherol (ppm)	41.53 ± 7.52	31.1-48.9	4
Thiamine (ppm)	16.2 ± 2.3	12.0-21.0	(b) 23
Riboflavin (ppm)	7.5 ± 0.96	6.1-8.2	4
Niacin (ppm)	85.0 ± 14.2	65.0-97.0	4
Pantothenic acid (ppm)	29.3 ± 4.6	23.0-34.0	4
Pyridoxine (ppm)	7.6 ± 1.5	5.6-8.8	4
Folic acid (ppm)	2.8 ± 0.88	1.8-3.7	4
Biotin (ppm)	0.27 ± 0.05	0.21-0.32	4
Vitamin B ₁₂ (ppb)	21.0 ± 11.9	11.0-38.0	4
Choline (ppm)	$3,302.0 \pm 120.0$	3,200.0-3,430.0	4
Minerals			
Calcium (percent)	1.23 ± 0.12	1.10-1.53	24
Phosphorus (percent)	0.97 ± 0.06	0.84-1.10	24
Potassium (percent)	0.862 ± 0.100	0.772-0.974	3
Chloride (percent)	0.546 ± 0.100	0.442-0.635	4
Sodium (percent)	0.311 ± 0.038	0.258-0.350	4
Magnesium (percent)	0.169 ± 0.133	0.151-0.181	4
Sulfur (percent)	0.316 ± 0.070	0.270-0.420	4
Iron (ppm)	447.0 ± 57.3	409.0-523.0	4
Manganese (ppm)	90.6 ± 8.20	81.7-95.5	4
Zinc (ppm)	53.6 ± 5.27	46.1-58.6	4
Copper (ppm)	10.77 ± 3.19	8.09-15.39	4
Iodine (ppm)	2.95 ± 1.05	1.52-3.82	4
Chromium (ppm)	1.81 ± 0.28	1.44-2.09	4
Cobalt (ppm)	0.68 ± 0.14	0.49-0.80	4

(a) One to four batches of feed analyzed for nutrients reported in this table were manufactured during 1983-85.
(b) One batch (7/22/81) not analyzed for thiamine

TABLE G4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Contaminants	Mean ± Standard Deviation	n Range	Number of Samples
Arsenic (ppm)	0.44 ± 0.14	<0.21-0.93	24
Cadmium (ppm) (a)	<0.1		24
Lead (ppm)	1.03 ± 0.75	0.27-2.93	24
Mercury (ppm) (a)	< 0.05		24
Selenium (ppm)	0.27 ± 0.05	0.16-0.40	24
Aflatoxins (ppb) (a,b)	<10	<5.0-10.0	24
Nitrate nitrogen (ppm) (c)	9.35 ± 4.35	0.6-18.0	24
Nitrite nitrogen (ppm) (c)	1.97 ± 1.28	0.4-5.3	24
BHA (ppm) (d)	5.83 ± 5.12	0.4-20.0	24
3HT (ppm) (d)	3.42 ± 2.57	<1.0-13.0	24
Aerobic plate count (CFU/g) (e)	105,438 ± 75,797	7,000-300,000	24
Coliform (MPN/g) (f)	1,046 ± 973	<3-2,400	24
E. coli (MPN/g) (g)	8.0 ± 7.91	<3-23	23
E. coli (MPN/g) (h)	13.92 ± 30.00	<3-150	24
Total nitrosamines (ppb) (i, j)	5.13 ± 4.47	<1.2-18.8	22
Total nitrosamines (ppb) (i,k)	13.11 ± 27.39	<1.2-101.6	24
N-Nitrosodimethylamine (ppb) (i,l)	3.82 ± 4.29	0.6-16.8	22
N-Nitrosodimethylamine (ppb) (i,m)	11.71 ± 27.03	0.6-99	24
N-Nitrosopyrrolidine (ppb)	1.21 ± 0.66	<0.3-2.4	24
Pesticides (ppm)			
a-BHC (a,n)	<0.01		24
β-BHC (a)	< 0.02		24
γ-BHC-Lindane (a)	<0.01		24
δ-BHC (a)	<0.01		24
Heptachlor (a)	<0.01		24
Aldrin (a)	<0.01		24
Heptachlor epoxide (a)	<0.01		24
DDE (o)	< 0.01	0.05 (7/14/81)	24
DDD (a)	< 0.01		24
DDT (a)	< 0.01		24
HCB (a)	< 0.01		24
Mirex (a)	< 0.01		24
Methoxychlor (p)		0.13 (8/25/81); 0.6 (6/29/82)	24
Dieldrin (a)	<0.01		24
Endrin (a)	< 0.01		24
Telodrin (a)	< 0.01		24
Chlordane (a)	<0.05		24 24
Toxaphene (a) Estimated PCBs (a)	<0.1 <0.2		24 24
Ronnel (a)	<0.2 <0.01		24
Ethion (a)	<0.01		24
Trithion (a)	< 0.02		24
Diazinon (a)	<0.05		24
Methyl parathion (a)	<0.12		24
Ethyl parathion (a)	<0.02		24
Malathion (q)	0.08 ± 0.05	< 0.05-0.25	24
Endosulfan I (a.r)	<0.01	~~~~~~~	14
Endosulfan II (a,r)	< 0.01		14
Endosulfan sulfate (a,r)	<0.03		14

TABLE G4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION (Continued)

- (d) Source of contamination: soy oil and fish meal
- (e) CFU = colony-forming unit
- (f) MPN = most probable number

(g) Mean, standard deviation, and range exclude one value of 150 obtained for the batch produced on 8/26/82.

(i) All values were corrected for percent recovery.

(o) There was one observation above the detection limit; the value and date it was obtained are given under the range.

- (q) Eleven batches contained more than 0.05 ppm.
- (r) Analysis started on 12/23/81

⁽a) All values were less than the detection limit, given in the table as the mean.

⁽b) The detection limit was reduced from 10 ppb to 5 ppb after 7/81.

⁽c) Source of contamination: alfalfa, grains, and fish meal

⁽h) Mean, standard deviation, and range include the high value listed in footnote (g).

⁽j) Mean, standard deviation, and range exclude two very high values of 101.6 and 100.3 ppb obtained for batches produced on 1/26/81 and 4/27/81.

⁽k) Mean, standard deviation, and range include the very high values given in (j).

⁽¹⁾ Mean, standard deviation, and range exclude the very high values of 97.9 and 99 obtained for batches produced on 1/26/81 and 4/27/81.

⁽m) Mean, standard deviation, and range include the very high values given in (l).

⁽n) BHC = hexachlorocyclohexane or benzene hexachloride

⁽p) There were two observations above the detection limit; the values and dates they were obtained are given under the range.

Tribromomethane, NTP TR 350

APPENDIX H

AUDIT SUMMARY

APPENDIX H. AUDIT SUMMARY

The pathology specimens, experimental data, study documents, and preliminary draft (August 1987) of NTP Technical Report No. 350 for the 2-year studies of tribromomethane in rats and mice were audited for the NIEHS at the NTP Archives during August 1987 by Argus Research Laboratories, Inc. The audit included review of:

- (1) All records concerning animal receipt, quarantine, randomization, and disposition prior to study start.
- (2) All inlife records including protocol, correspondence, animal husbandry, environmental conditions, dosing, external masses, mortality, animal identification, and serology.
- (3) Body weight and clinical observation data for a random 10% sample of animals in each study group.
- (4) All chemistry records.
- (5) All postmortem records for individual animals concerning disposition codes, condition codes, tissue accountability, correlation of masses or clinical signs recorded at the last inlife observation with gross observations and microscopic diagnoses, and correlations between gross observations and microscopic diagnoses.
- (6) All wet tissue bags for inventory and wet tissues from a random 20% sample of animals in all study groups, plus other relevant cases to verify animal identity and to examine for untrimmed potential lesions.
- (7) Blocks and slides of tissues from a random 20% sample of animals from each study group to examine for proper match and inventory.
- (8) All red-lined diagnoses on the intermediate pathology table to verify incorporation of changes into the final tables.
- (9) Correlation between the data, results, and procedures for the 2-year studies presented in the preliminary draft of the Technical Report and the records available at the NTP Archives.

The audit showed that inlife procedures and events were documented by archival records with some minor exceptions. The disposition of surplus animals; frequency for changing feeders, cages, and racks; twice daily cage checks; light cycle checks; and airflow exchange measurements were not documented other than in the laboratory's final report. Doses were prepared and administered to animals properly except for two overdosing incidents that were documented properly. Of the masses noted in the inlife records, 61/63 in rats and 89/94 in mice were correlated with necropsy observations.

Audit of the pathology specimens showed that identifiers (punched ears) were present and correct in the tissue bags for 64/65 rats and 67/67 mice examined. The ear of one rat had one marking removed so that a potential lesion could be processed for histopathologic examination. Tissue bags were absent for two mice. The audit identified untrimmed potential lesions in nontarget organs in one rat and one mouse and found that the gastrointestinal tract was not cut open or only partially opened in the majority of animals examined. Consequently, the intestines of all rats and mice in these studies were examined grossly, and sections of untrimmed potential neoplasms were evaluated. These results are included in this Technical Report. Other audit findings were reviewed and judged to have no adverse impact on interpretation of the pathology data.

Full details about these and other audit findings are presented in the audit reports, which are on file at the NIEHS. In conclusion, the data and results presented in the draft Technical Report for the 2-year gavage studies of tribromomethane are supported by the records at the NTP Archives.