NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 309

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF

DECABROMODIPHENYL OXIDE

(CAS NO. 1163-19-5)

IN F344/N RATS AND B6C3F1 MICE

(FEED STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP TECHNICAL REPORT ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF DECABROMODIPHENYL OXIDE

(CAS NO. 1163-19-5)

IN F344/N RATS AND B6C3F1 MICE

(FEED STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

May 1986

NTP TR 309

NIH Publication No. 86-2565

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for testing in the NTP Carcinogenesis Program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

Five categories of interpretative conclusions were adopted for use in June 1983 in the Technical Reports series to specifically emphasize consistency and the concept of actual evidence of carcinogenicity. For each definitive study result (male rats, female rats, male mice, female mice), one of the following quintet will be selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of malignant neoplasms, studies that exhibit a substantially increased incidence of benign neoplasms, or studies that exhibit an increased incidence of a combination of malignant and benign neoplasms where each increases with dose.
- Some Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of benign neoplasms, studies that exhibit marginal increases in neoplasms of several organs/tissues, or studies that exhibit a slight increase in uncommon malignant or benign neoplasms.
- Equivocal Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related marginal increase of neoplasms.
- No Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenicity demonstrates that because of major qualitative or quantitative limitations, the studies cannot be interpreted as valid for showing either the presence or absence of a carcinogenic effect.

Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the earlier induction by chemicals of neoplasms that are commonly observed, or the induction by chemicals of more neoplasms than are generally found. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

This study was initiated by the National Cancer Institute's Carcinogenesis Bioassay Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for peer review.

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

CONTENTS

	PAGE
ABSTRACT	
CONTRIBUTORS	
PEER REVIEW PANEL	
SUMMARY OF PEER REVIEW COMMENTS	
I. INTRODUCTION	
II. MATERIALS AND METHODS	
PROCUREMENT AND CHARACTERIZATION OF DECABROMODIPHENY	L OXIDE
PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS	
FOURTEEN-DAY STUDIES	
THIRTEEN-WEEK STUDIES	
TWO-YEAR STUDIES	
STUDY DESIGN	
SOURCE AND SPECIFICATIONS OF ANIMALS	
ANIMAL MAINTENANCE	
CLINICAL EXAMINATIONS AND PATHOLOGY	
STATISTICAL METHODS	
III. RESULTS	
RATS	
FOURTEEN-DAY STUDIES	
THIRTEEN-WEEK STUDIES	
TWO-YEAR STUDIES	
BODY WEIGHTS AND CLINICAL SIGNS	
SURVIVAL	
PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS	
МІСЕ	40
FOURTEEN-DAY STUDIES	40
THIRTEEN-WEEK STUDIES	40
TWO-YEAR STUDIES	•••••••••••••••••••••••••••••••41
BODY WEIGHTS AND CLINICAL SIGNS	41
SURVIVAL	
PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS	
IV. DISCUSSION AND CONCLUSIONS	
V. REFERENCES	

TABLES

	PAGE
TABLE 1	PROPERTIES OF DECABROMODIPHENYL OXIDE
TABLE 2	IDENTITY AND SOURCE OF LOTS USED IN THE FEED STUDIES OF
	DECABROMODIPHENYL OXIDE22
TABLE 3	PREPARATION AND STORAGE OF FORMULATED DIETS IN THE FEED
	STUDIES OF DECABROMODIPHENYL OXIDE
TABLE 4	SUMMARY OF RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE
	TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE 5	EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED
	STUDIES OF DECABROMODIPHENYL OXIDE
TABLE 6	SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY
	FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE 7	SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN THE
	THIRTEEN-WEEK FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE 8	MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR FEED
	STUDIES OF DECABROMODIPHENYL OXIDE
TABLE 9	SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF
	DECABROMODIPHENYL OXIDE
TABLE 10	NUMBER OF RATS WITH LIVER LESIONS IN THE TWO-YEAR FEED STUDIES
	OF DECABROMODIPHENYL OXIDE
TABLE 11	ANALYSIS OF LIVER LESIONS IN RATS IN THE TWO-YEAR FEED STUDIES OF
	DECABROMODIPHENYL OXIDE
TABLE 12	ANALYSIS OF MONONUCLEAR CELL LEUKEMIA IN RATS IN THE TWO-YEAR
	FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE 13	ANALYSIS OF PANCREATIC ACINAR CELL ADENOMAS IN MALE RATS IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE 14	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY
	FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE 15	SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THE
	THIRTEEN-WEEK FEED STUDIES OF DECABROMODIPHENYL OXIDE41
TABLE 16	MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR FEED
	STUDIES OF DECABROMODIPHENYL OXIDE42

TABLES (Continued)

TABLE 17	SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIES OF
	DECABROMODIPHENYL OXIDE
TABLE 18	ANALYSIS OF LIVER TUMORS IN MALE MICE IN THE TWO-YEAR FEED
	STUDY OF DECABROMODIPHENYL OXIDE

FIGURES

FIGURE 1	GROWTH CURVES FOR RATS FED DIETS CONTAINING DECABROMODIPHENYL
	OXIDE FOR TWO YEARS
FIGURE 2	KAPLAN-MEIER SURVIVAL CURVES FOR RATS FED DIETS CONTAINING
	DECABROMODIPHENYL OXIDE FOR TWO YEARS
FIGURE 3	GROWTH CURVES FOR MICE FED DIETS CONTAINING DECABROMODIPHENYL
	OXIDE FOR TWO YEARS
FIGURE 4	KAPLAN-MEIER SURVIVAL CURVES FOR MICE FED DIETS CONTAINING
	DECABROMODIPHENYL OXIDE FOR TWO YEARS45
FIGURE 5	INFRARED ABSORPTION SPECTRUM OF DECABROMODIPHENYL OXIDE
	(LOT NO. 08287-2)
FIGURE 6	INFRARED ABSORPTION SPECTRUM OF DECABROMODIPHENYL OXIDE
	(LOT NO. D12478)
FIGURE 7	INFRARED ABSORPTION SPECTRUM OF DECABROMODIPHENYL OXIDE
	(LOT NO. MM04080-1)
FIGURE 8	INFRARED ABSORPTION SPECTRUM OF DECABROMODIPHENYL OXIDE
	(LOT NO. MM811102-3-1)
FIGURE 9	HIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC PROFILE OF
	DECABROMODIPHENYL OXIDE (LOT NO. MM811102-3-1)
FIGURE 10	ULTRAVIOLET/VISIBLE SPECTRUM OF DECABROMODIPHENYL OXIDE AND TWO
	MAJOR IMPURITIES
FIGURE 11	MASS SPECTRUM OF DECABROMODIPHENYL OXIDE (PEAK NO. 4)
FIGURE 12	MASS SPECTRUM OF NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 2) 188
FIGURE 13	MASS SPECTRUM OF NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 3) 193
FIGURE 14	EFFECT OF EXPOSURE TO DECABROMODIPHENYL OXIDE ON LIVER WEIGHTS
	OF F344/N RATS

5

PAGE

FIGURES (Continued)

FIGURE 15	ULTRAVIOLET SPECTRA OF REFERENCE DECABROMODIPHENYL OXIDE AND
	OF THE ISOLATE FROM THE LIVERS OF F344/N RATS EXPOSED TO
	DECABROMODIPHENYL OXIDE IN THE DIET
FIGURE 16	BILIARY EXCRETION OF RADIOACTIVITY IN F344/N RATS ADMINISTERED
	DECABROMODIPHENYL OXIDE BY INTRAVENOUS INJECTION

APPENDIXES

APPENDIX A	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR
	FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE A2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE A3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE A4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
APPENDIX B	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR
	FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE ,
TABLE B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE B3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE B4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
APPENDIX C	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN
	THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE C1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE 100

6

PAGE

TABLE C2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE $\dots 107$
APPENDIX D	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN
	THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE D1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE 114
TABLE D2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE 121
APPENDIX E	ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR
	FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE E1	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR
	FEED STUDY OF DECABROMODIPHENYL OXIDE128
TABLE E2	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR
	FEED STUDY OF DECABROMODIPHENYL OXIDE134
TABLE E3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR
	FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE E4	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR
	FEED STUDY OF DECABROMODIPHENYL OXIDE142
APPENDIX F	HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE
	RECEIVING NO TREATMENT
TABLE F1	HISTORICAL INCIDENCE OF LEUKEMIA IN F344/N RATS RECEIVING NO
	TREATMENT
TABLE F2	HISTORICAL INCIDENCE OF SPLENIC TUMORS IN MALE F344/N RATS
	RECEIVING NO TREATMENT
TABLE F3	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE F344/N
	RATS RECEIVING NO TREATMENT
TABLE F4	HISTORICAL INCIDENCE OF PANCREATIC ACINAR CELL TUMORS IN
	MALE F344/N RATS RECEIVING NO TREATMENT149
TABLE F5	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN FEMALE
	F344/N RATS RECEIVING NO TREATMENT
TABLE F6	HISTORICAL INCIDENCE OF MUSCULOSKELETAL SYSTEM TUMORS IN
	MALE F344/N RATS RECEIVING NO TREATMENT

PAGE

	PAGE
TABLE F7	HISTORICAL INCIDENCE OF ZYMBAL GLAND TUMORS IN F344/N RATS
	RECEIVING NO TREATMENT
TABLE F8	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE $B6C3F_1$
	MICE RECEIVING NO TREATMENT
TABLE F9	HISTORICAL INCIDENCE OF THYROID GLAND FOLLICULAR CELL TUMORS
	IN MALE B6C3F ₁ MICE RECEIVING NO TREATMENT152
TABLE F10	HISTORICAL INCIDENCE OF TESTICULAR TUMORS IN MALE B6C3F ₁ MICE
	RECEIVING NO TREATMENT
APPENDIX G	GENETIC TOXICOLOGY OF DECABROMODIPHENYL OXIDE
TABLE G1	MUTAGENICITY OF DECABROMODIPHENYL OXIDE IN SALMONELLA
	<i>TYPHIMURIUM</i>
TABLE G2	MUTAGENICITY OF DECABROMODIPHENYL OXIDE IN L5178Y/TK ^{+/-}
	MOUSE LYMPHOMA CELLS IN THE ABSENCE OF S9
TABLE G3	MUTAGENICITY OF DECABROMODIPHENYL OXIDE IN L5178Y/TK ^{+/-}
	MOUSE LYMPHOMA CELLS IN THE PRESENCE OF S9
TABLE G4	INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER
	OVARY CELLS BY DECABROMODIPHENYL OXIDE
TABLE G5	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER
	OVARY CELLS BY DECABROMODIPHENYL OXIDE
APPENDIX H	CHEMICAL CHARACTERIZATION OF DECABROMODIPHENYL OXIDE
TABLE H1	TABULATED MASS SPECTRUM FOR DECABROMODIPHENYL OXIDE
	(PEAK NO. 4)
TABLE H2	TABULATED MASS SPECTRUM FOR NONABROMODIPHENYL OXIDE
	ISOMER (PEAK NO. 2)
TABLE H3	TABULATED MASS SPECTRUM FOR NONABROMODIPHENYL OXIDE
	ISOMER (PEAK NO. 4)
APPENDIX I	PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS
APPENDIX J	METHODS OF ANALYSIS OF FORMULATED DIETS
APPENDIX K	RESULTS OF ANALYSIS OF FORMULATED DIETS
TABLE K1	RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE THIRTEEN-WEEK
	FEED STUDIES OF DECABROMODIPHENYL OXIDE

PAGE

TABLE K2	RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED
	STUDIES OF DECABROMODIPHENYL OXIDE
TABLE K3	RESULTS OF REFEREE ANALYSIS OF FORMULATED DIETS IN THE
	TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE
APPENDIX L	SENTINEL ANIMAL PROGRAM
TABLE LI	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN
	THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE
APPENDIX M	FEED AND COMPOUND CONSUMPTION BY RATS AND MICE IN THE
	TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE
TABLE M1	FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE TWO-YEAR
	FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE M2	FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE M3	FEED AND COMPOUND CONSUMPTION BY MALE MICE IN THE TWO-YEAR
	FEED STUDY OF DECABROMODIPHENYL OXIDE
TABLE M4	FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE
	TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
APPENDIX N	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN
	NIH 07 RAT AND MOUSE RATION
TABLE N1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION
TABLE N2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION
TABLE N3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION
TABLE N4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION
APPENDIX O	DISPOSITION OF DECABROMODIPHENYL OXIDE IN F344/N RATS
TABLE O1	FEED CONSUMPTION, DECABROMODIPHENYL OXIDE CONCENTRATION IN
	THE DIET, AND DECABROMODIPHENYL OXIDE CONSUMED BY F344/N RATS 231
TABLE O2	DISPOSITION OF RADIOACTIVITY IN F344/N RATS 72 HOURS AFTER
	EXPOSURE TO ¹⁴ C-DECABROMODIPHENYL OXIDE IN THE DIET ON DAY 8 231
TABLE O3	FEED CONSUMPTION, DECABROMODIPHENYL OXIDE CONCENTRATION IN
	THE DIET, AND DECABROMODIPHENYL OXIDE CONSUMED BY F344/N RATS
	24, 48, OR 72 HOURS AFTER EXPOSURE

TABLE O4	DISPOSITION OF RADIOACTIVITY IN RATS 24, 48, OR 72 HOURS AFTER
	EXPOSURE TO ¹⁴ C-DECABROMODIPHENYL OXIDE IN THE DIET ON DAY 8 235
TABLE O5	RECOVERY OF DECABROMODIPHENYL OXIDE AND METABOLITES IN
	EXTRACTS OF FECES OF RATS FED DIETS CONTAINING
	DECABROMODIPHENYL OXIDE
TABLE O6	DISTRIBUTION OF RADIOACTIVITY IN F344/N RATS ADMINISTERED
	¹⁴ C-DECABROMODIPHENYL OXIDE BY INTRAVENOUS INJECTION
TABLE O7	RECOVERY OF DECABROMODIPHENYL OXIDE AND METABOLITES FROM
	FECES OF F344/N RATS ADMINISTERED DECABROMODIPHENYL OXIDE
	BY INTRAVENOUS INJECTION
APPENDIX P	DATA AUDIT SUMMARY

10

`

DECABROMODIPHENYL OXIDE

CAS No. 1163-19-5

C₁₂Br₁₀O Molecular weight 960

Synonyms: Decabromodiphenyl ether; Bis(pentabromophenyl)ether; DBDPO

ABSTRACT

Toxicology and carcinogenesis studies of decabromodiphenyl oxide, a flame retardant for plastics and other materials, were conducted by exposing groups of 50 male and 50 female F344/N rats and B6C3F₁ mice at 0, 25,000, and 50,000 ppm in the diet for 103 weeks. These concentrations were selected because no toxicity was observed at any dose in the 14-day or 13-week studies and 50,000 ppm chemical in the diet is considered to be the highest dose to which rats and mice can be exposed for extended periods of time without reducing the nutritional value of the diet. No compound-related gross or microscopic pathologic effects were observed in the 14-day or 13-week studies.

Body weights of dosed male and female rats and mice in the 2-year studies were comparable to those of the controls. Decreased survival of low dose male rats was not believed to be compound related. No other effects on survival were observed in the 2-year studies. Loss of control male mice (presumably due to fighting) was significant during the first part of the study.

In the 2-year studies, nonneoplastic lesions were observed at increased incidences in rats and mice of each sex. Thrombosis and degeneration of the liver, fibrosis of the spleen, and lymphoid hyperplasia were observed in high dose male rats. Degeneration of the eye was observed in low dose female rats. Nonneoplastic lesions observed in dosed mice were granulomas in the liver of low dose males and hypertrophy in the liver of low dose and high dose males. Follicular cell hyperplasia was observed in thyroid glands of dosed male mice (control, 2/50; low dose, 10/50; high dose, 19/50).

The incidences of neoplastic nodules in the liver of low and high dose male rats (1/50; 7/50; 15/49) and high dose female rats (1/50; 3/49; 9/50) were significantly greater than those in the controls. Mononuclear cell leukemia occurred in dosed male rats with a positive trend (30/50; 33/50; 35/50); this marginal increase was not considered biologically significant. Acinar cell adenomas were observed in the pancreas of four high dose male rats, and a sarcoma was observed in the spleen of one low dose and one high dose male rat. Hepatocellular adenomas or carcinomas (combined) occurred at marginally increased incidences in dosed `male mice (8/50; 22/50; 18/50). The incidences of thyroid gland follicular cell adenomas or carcinomas (combined) were increased in dosed male mice (0/50; 4/50; 3/50).

A study of decabromodiphenyl oxide absorption from the gastrointestinal tract indicated that absorption was minimal, possibly less than 1%, at the doses administered in the 2-year studies. Additional chemical analysis indicated that the decabromodiphenyl oxide used in these studies contained several

less brominated diphenyl oxides. Therefore, since absorption and toxicity of minor impurities are unknown, effects observed in these studies must be attributed to the approximately 95% pure preparation used rather than to pure decabromodiphenyl oxide.

Decabromodiphenyl oxide was not mutagenic in strains TA1535, TA1537, TA98, or TA100 of Salmonella typhimurium in the presence or absence of Aroclor 1254-induced Sprague-Dawley male rat or Syrian male hamster liver S9 when tested according to the preincubation protocol. Decabromodiphenyl oxide was not mutagenic in the mouse lymphoma L5178Y/TK^{+/-} assay in the presence or absence of Aroclor 1254-induced F344 male rat liver S9. Decabromodiphenyl oxide did not induce sister-chromatid exchanges or chromosomal aberrations in Chinese hamster ovary cells in vitro in the presence or absence of S9 prepared from livers of Aroclor 1254-induced male Sprague-Dawley rats.

An audit of experimental data was conducted for these 2-year studies on decabromodiphenyl oxide. No data discrepancies were found that influenced the final interpretations.

Under the conditions of these 2-year feed studies of decabromodiphenyl oxide, there was some evidence of carcinogenicity^{*} for male and female F344/N rats as shown by increased incidences of neoplastic nodules of the liver in low dose (25,000 ppm) males and high dose (50,000 ppm) groups of each sex. There was equivocal evidence of carcinogenicity for male B6C3F₁ mice as shown by increased incidences of hepatocellular adenomas or carcinomas (combined) in the low dose group and of thyroid gland follicular cell adenomas or carcinomas (combined) in both dosed groups. There was no evidence of carcinogenicity for female B6C3F₁ mice receiving 25,000 or 50,000 ppm in the diet. Several nonneoplastic lesions were observed at increased incidences, the most notable being thyroid gland follicular cell hyperplasia in male mice.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2. The discussion and vote regarding the interpretative conclusions are summarized on pages 15-16.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of Decabromodiphenyl Oxide is based on the 13-week studies that began in February 1979 and ended in May 1979 and on the 2-year studies that began in July 1980 and ended in September 1982 at Hazleton Laboratories America, Inc.

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

H.B. Matthews, Ph.D., Chemical Manager

Gary A. Boorman, D.V.M., Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D. C.W. Jameson, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. Raymond W. Tennant, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report on 2/21/84)

Robert Sauer, V.M.D. (Chair) Clement Associates Gary A. Boorman, D.V.M., Ph.D. (NTP) Scot L. Eustis, D.V.M., Ph.D. (NTP) A.W. Macklin, D.V.M., Ph.D. Burroughs Wellcome Laboratories James MacLachlin, Ph.D. North Carolina State University Roger Renne, D.V.M. Battelle Pacific Northwest Laboratories Henk Solleveld, D.V.M., Ph.D. (NTP) Marilyn Wolfe, D.V.M., Ph.D. (NTP)

Principal Contributors at Hazleton Laboratories America, Inc. (Conducted Studies and Evaluated Tissues)

William Rutter, Ph.D. Principal Investigator B. Ulland, D.V.M. Pathologist (for rats) Joyce Rodgers, M.S. Chemist R. Voelker, D.V.M. Pathologist (for mice)

Experimental Pathology Laboratories (Conducted Pathology Quality Assurance)

Melvin Hamlin II, D.V.M.

J. Gauchat, Pathology Coordinator

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

13

William D. Theriault, Ph.D. Project Manager Abigail C. Jacobs, Ph.D. Senior Scientist John Warner, M.S. Chemist/Statistician

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on decabromodiphenyl oxide on August 14, 1985, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Jerry B. Hook, Ph.D. (Chair) Vice President, Preclinical Research and Development Smith Kline & French Laboratories Philadelphia, Pennsylvania

Frederica Perera, Dr. P.H. Division of Environmental Sciences School of Public Health, Columbia University New York, New York James Swenberg, D.V.M., Ph.D. (Principal Reviewer) Head, Department of Biochemical Toxicology and Pathobiology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Ad Hoc Subcommittee Panel of Experts

John J. Crowley, Ph.D. Division of Public Health Science The Fred Hutchinson Cancer Research Center Seattle, Washington

Kim Hooper, Ph.D. (Principal Reviewer) Chief, Hazard Evaluation System and Information Services Department of Health Services State of California Berkeley, California

Thomas C. Jones, D.V.M. Professor, Comparative Pathology New England Regional Primate Research Center Harvard Medical School Southborough, Massachusetts

Richard J. Kociba, D.V.M., Ph.D. Dow Chemical USA Midland, Michigan

David Kotelchuck, Ph.D. Environmental Health Science Program Hunter School of Health Sciences New York, New York Franklin E. Mirer, Ph.D. (Principal Reviewer) Director, Health and Safety Department International Union, United Auto Workers, Detroit, Michigan

I.F.H. Purchase, Ph.D. Central Toxicology Laboratory Imperial Chemical Industries, PLC Alderley Park, England

Robert A. Scala, Ph.D.* Senior Scientific Advisor, Medicine and Environmental Health Department Research and Environmental Health Division, Exxon Corporation East Millstone, New Jersey

Steven R. Tannenbaum, Ph.D. Professor, Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

Bruce W. Turnbull, Ph.D. (Principal Reviewer) Professor and Associate Director, College of Engineering, Cornell University Ithaca, New York

^{*}Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF DECABROMODIPHENYL OXIDE

On August 14, 1985, the draft Technical Report on the toxicology and carcinogenesis studies of decabromodiphenyl oxide received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting began at 9:00 a.m. in the Conference Center, Building 101, South Campus, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

Dr. H. Matthews, NTP, began the discussion with a summary of the study design, results, and conclusions. Dr. Mirer, a principal reviewer, considered the chemical disposition study to be a significant contribution to the Technical Report and suggested the description of the findings should be in the Results section rather than only in an appendix. The results could be important in interpretation of studies involving doses by other routes or biologic monitoring data. Further, Dr. Mirer said that statistical tests would be desirable where there are increased nontumor pathologic effects, whether or not the lesions are correlated with neoplasia.

As a second principal reviewer, Dr. Swenberg agreed with the conclusions. He said that the decreased survival in control male mice was very striking and could be highlighted in the Abstract as well as the text. A summary paragraph should be included that states the implications of the pharmaco-kinetic data with respect to the doses used in the studies. [See page 11.]

As a third principal reviewer, Dr. Turnbull also agreed with the conclusions. He noted that the increased incidence of leukemia in dosed male rats was not considered biologically significant due to a high incidence in the concurrent controls and lack of a significant increase in females. Yet, in the females, the incidence was almost significant. Dr. E. McConnell, NIEHS, stated that the reported incidences of leukemia in Fischer rats have been increasing over the last couple of years, primarily, he thought, because of better diagnosis, particularly in the early stages, rather than because of a true increase in the incidence. Thus, concurrent control rates would be more appropriate for comparisons than would historic rates.

As a fourth principal reviewer, Dr. Hooper agreed with the conclusions in female rats and male and female mice. He said that the conclusions in male rats should be upgraded to clear evidence of carcinogenicity, based on the substantial dose-related increases in benign liver tumors (neoplastic nodules). Dr. Matthews said that the conclusion reflected, in part, that there were no increases in hepatocellular carcinomas. Dr. Kociba contended that the categorization for rats was too strong in that only a small percentage of neoplastic nodules progress to malignant tumors. Rather, a category such as "some evidence of benign tumor induction" would be more appropriate. Dr. Perera said that until the guidelines are changed, the Panel should adhere to the wording as given in the Note to the Reader and on that basis she agreed with Dr. Hooper. Dr. Hooper commented that the design would have been improved if only a single lot of the 99% pure chemical had been used. The use of four lots of varying purity coupled with very low (2%) absorption might have affected the experimental outcome, particularly if the active agents were present as impurities in only one of the less pure batches. Dr. Matthews acknowledged the low absorption but said that it was confirmed that decabromodiphenyl oxide was absorbed. The absorption of impurities is not known. Further, only two lots were used in the long-term studies and they would be identified.

There was considerable discussion about the strength of evidence for carcinogenicity in male mice. Dr. Kociba stated that poor survival in concurrent controls pointed to use of historical rates as appropriate. Since the rates of hepatocellular adenomas or carcinomas (combined) for both low dose and high dose groups were within the historical control range, he felt that the correct conclusion was no evidence of carcinogenicity. Dr. J. Huff, NIEHS, noted that the low dose and high dose rates were greater (36% and 44%) than the mean historical rate (30%); thus, equivocal evidence of carcinogenicity was proper. Dr. Perera commented that the stated genetic nonuniformity of the mice was another reason that concurrent controls should be used. Dr. Purchase said that he could not accept equivocal evidence of carcinogenicity as there was a lack of statistical significance with both liver and thyroid gland neoplasms. Dr. Huff reminded the Panel that there was a statistically significant increase in liver neoplasia for low dose male mice, and Dr. G. Boorman, NIEHS, said the conclusion was influenced by the high incidence of thyroid gland follicular cell hyperplasias. Dr. Swenberg was of the opinion that the conclusion was correct in that the liver and thyroid gland findings were neither clearly positive nor clearly negative. Dr. Tannenbaum asked for more consistency in deciding when to use historical controls. Dr. Swenberg commented that, for a variable tumor, historical control values are appropriate for comparison purposes.

Dr. Hooper moved that the conclusion of some evidence of carcinogenicity for female rats be accepted as written. Dr. Turnbull seconded the motion, and it was approved by 10 affirmative votes with 1 abstention (Dr. Kociba). Dr. Hooper moved that the conclusion of no evidence of carcinogenicity for female mice be accepted as written. Dr. Turnbull seconded the motion, and it was approved by 10 affirmative votes with 1 abstention (Dr. Kociba). Dr. Hooper moved that the conclusion for male mice. equivocal evidence of carcinogenicity, be accepted as written. Dr. Turnbull seconded the motion, and it was approved by six affirmative votes (Dr. Hooper, Dr. Kotelchuck, Dr. Mirer, Dr. Perera, Dr. Swenberg, and Dr. Turnbull) with three negative votes (Dr. Crowley, Dr. Purchase, and Dr. Tannenbaum) and one abstention (Dr. Kociba). Dr. Hooper moved that the conclusion for male rats be changed to clear evidence of carcinogenicity. Dr. Perera seconded the motion, and it was defeated by six negative votes (Dr. Jones, Dr. Kotelchuck, Dr. Purchase, Dr. Swenberg, Dr. Tannenbaum, and Dr. Turnbull) with four affirmative votes (Dr. Crowley, Dr. Hooper, Dr. Mirer, and Dr. Perera) and one abstention (Dr. Kociba). Dr. Hooper then moved that the conclusion for male rats, some evidence of carcinogenicity, be accepted as written. The motion was seconded, and it was approved by eight affirmative votes; there were two negative votes (Dr. Crowley and Dr. Mirer) and one abstention (Dr. Kociba).

I. INTRODUCTION

Use and Production Environmental Occurrence and Human Exposure Absorption, Distribution, and Metabolism Effects on Animals Teratogenicity and Reproductive Effects Mutagenicity Carcinogenicity Study Rationale

DECABROMODIPHENYL OXIDE

CAS No. 1163-19-5

 $C_{12}Br_{10}O$

Molecular weight 960

Synonyms: Decabromodiphenyl ether; Bis(pentabromophenyl)ether; DBDPO

Decabromodiphenyl oxide is a completely brominated aromatic that is a white to off-white powder. This relatively inert chemical has found considerable use as a flame retardant because of its capacity to release bromine on incineration. Bromine suppresses combustion by reacting with free radicals. Some chemical and physical properties of this compound are listed in Table 1.

Use and Production

Decabromodiphenyl oxide is used as a flame retardant primarily in high-impact polystyrene but is also used in adhesives, epoxy resins, synthetic fibers, and plastics such as ABS (acrylonitrile/butadiene/styrene) polymers and polyethylene (AIHA, 1981; Webber, 1983). Production figures for decabromodiphenyl oxide are not current, but production is estimated to exceed 10 million pounds per year (Webber, 1983).

Environmental Occurrence and Human Exposure

No reports of environmental contamination by decabromodiphenyl oxide were found. Laboratory studies indicate that this compound does not accumulate in fish and that it is degraded by ultraviolet light in the wavelength range and intensity of sunlight (Norris et al., 1973). Human exposure to decabromodiphenyl oxide occurs in the course of manufacture and use. Surveys have determined employee timeweighted average exposures of 1-4 mg/m³ in air with excursions up to 42 mg/m³ during short tasks. More than 90% of the particles in air were

smaller than 10 microns in diameter. Based on the nuisance nature of this material, the recommended workplace environmental exposure level in air is 5 mg/m³ (8-hour time-weighted average for a 40-hour week) (AIHA, 1981). A health assessment of workers exposed to decabromodiphenyl oxide in the course of manufacture found a higher than normal prevalence of primary hypothyroidism and a significant reduction of calf sensory and fibula motor velocities but no other significant dermatologic or neurologic effects or other adverse health effects. However, the investigators could not be sure if the observed effects were due to exposure to decabromodiphenyl oxide or prior exposure to polybrominated biphenyls that were previously manufactured in this plant. Polybrominated biphenyls persisted in the serum of exposed employees, whereas decabromodiphenyl oxide was not detected (Bahn et al., 1980). Adverse effects have not been reported as a result of decabromodiphenyl oxide use, but no studies have been conducted to determine the effects of dermal or oral absorption of the chemical from treated cloth (Ulsamer et al., 1980). Repeated application of decabromodiphenyl oxide in petrolatum to human skin three times per week for 3 weeks did not produce any adverse effect (Norris et al., 1973, 1975a).

Absorption, Distribution, and Metabolism

Studies with ¹⁴C-labeled decabromodiphenyl oxide administered orally to Sprague-Dawley rats indicate that more than 99% of the administered label was excreted in feces within 2 days

TABLE 1. PROPERT	IES OF	DECABROMODIPHENYL	OXIDE (a)
------------------	--------	-------------------	------------------

Melting range Decomposition point Specific gravity Vapor pressure Solubility at 25° C	290°-306° C 425° C 3.0 5 mm Hg at 306° C Water: 20-30 ppb Cottonseed oil: 600 ppm Acetone: 500 ppm Chlorobenzene: 6,000 ppm <i>o</i> -Xylene: 8,700 ppm	
Technical product composition:	Decabromodiphenyl oxide, 77.4% Nonabromodiphenyl oxide, 21.8% Octabromodiphenyl oxide, 0.8%	

19

(a) Norris et al., 1973; Kociba et al., 1975; AIHA, 1981

following administration (Norris et al., 1973, 1975a). An analysis of bromine in tissues following long-term exposure in diets that provided 0.1 mg/kg per day to rats indicated a slight increase in bromine content in liver and adipose tissue at 90 days but no significant increase following 12 months of exposure (Norris et al., 1975a). A significant increase in the bromine content of adipose, but no other tissues, was observed following a similar dose of decabromodiphenyl oxide for 2 years but not at lower doses (Kociba et al., 1975). There was no indication as to whether the failure of decabromodiphenyl oxide to accumulate in tissues was due to lack of absorption from the gastrointestinal tract or rapid metabolism and clearance.

Effects on Animals

Decabromodiphenyl oxide has low acute toxicity (Norris et al., 1973, 1975a,b; Kociba et al., 1975). Oral administration of doses up to 2,000 mg/kg as a 10% suspension in corn oil failed to produce any signs of toxicity in rats either directly after dosing or during a 14-day observation period. This chemical is not a dermal irritant to rats or rabbits and is only mildly irritating when placed in the eyes of rabbits. Repeated oral doses of up to 800 mg/kg per day produced no overt indication of toxicity during a 30-day study. Gross pathologic changes observed following repeated dosing were limited to dose-related liver enlargement. Histopathologic examination of organs and tissues from animals in the repeateddose studies revealed lesions in the liver, kidney,

and thyroid gland. Lesions observed were centrilobular cytoplasmic enlargement and vacuolation in liver, hyaline degenerative changes in the kidney, and hyperplasia of the thyroid gland. It was speculated that thyroid gland hyperplasia could have resulted from competition between bromine and iodine in the thyroid gland, but no evidence of this effect was presented. A dose of 8 mg/kg per day was established as a no-effect level and 80 mg/kg per day as a marginal-effect level (Norris et al., 1973). Carlson (1980) studied a series of diphenyl oxides for their capacity to induce hepatic enzymes and reported that decabromodiphenyl oxide increased liver weight but had no significant effect on hepatic enzymes. The same study reported penta- and octabromodiphenyl oxides to be potent inducers of hepatic enzymes. In a separate study of the porphyrinogenic action of fire retardants, decabromodiphenyl oxide was found to be nonporphyrinogenic in Japanese quail or chick embryo liver cells (Koster et al., 1980).

Teratogenicity and Reproductive Effects

Daily intubation of pregnant female rats on gestation days 6-15 with 0, 10, 100, or 1,000 mg decabromodiphenyl oxide/kg, suspended in corn oil, caused no teratogenic response (Norris et al., 1973, 1975a). Some fetal toxicity was observed in these studies in the form of subcutaneous edema and delayed ossification of normally developed bones of the fetal skull. These effects were observed at the high dose only.

Mutagenicity

Published information regarding decabromodiphenyl oxide mutagenicity is limited to a report that it does not cause cytogenetic aberrations in rat bone marrow cells (Norris et al., 1975a) and an unconfirmed report that it is not mutagenic in Salmonella (Ulsamer et al., 1980). NTP studies of decabromodiphenyl oxide mutagenicity indicate that it was not mutagenic in Salmonella typhimurium strains TA1535, TA1537, TA98, or TA100 in the presence or absence of Aroclor 1254-induced male Sprague-Dawley rat or male Syrian hamster liver S9 when tested according to the preincubation protocol (Appendix G). It was also not mutagenic in the mouse lymphoma $L5178Y/TK^{+/-}$ assay in the presence or absence of Aroclor 1254-induced male F344 rat liver S9. Tests for cytogenetic effects in Chinese hamster ovary cells indicated that this chemical does not cause chromosomal aberrations or sister-chromatid exchanges either in the presence or asence of S9 prepared from livers of Aroclor 1254-induced male Sprague-Dawley rats.

Carcinogenicity

A 2-year study of decabromodiphenyl oxide for chronic toxicity and carcinogenicity to male and female Sprague-Dawley rats (25 males and 25 females per dose) maintained on diets providing 0, 0.01, 0.1, or 1.0 mg/kg per day indicated no discernible alteration in appearance, behavior, body weight, feed consumption, hematologic analyses, urinalysis, clinical chemistry, organ weights, survival, or tumor incidence (Kociba et al., 1975). However, the doses and number of animals used in this study have been questioned as to their adequacy to determine carcinogenic potential (Ulsamer et al., 1980).

Study Rationale

Decabromodiphenyl oxide was chosen for study by the NTP as part of a class study of flame retardants. Since the low volatility and solubility of decabromodiphenyl oxide precluded inhalation, gavage, or drinking water exposure, the chemical was given in feed for systemic exposure.

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF DECABROMODIPHENYL OXIDE PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS FOURTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Study Design Source and Specifications of Animals Animal Maintenance Clinical Examinations and Pathology Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF DECABROMODIPHENYL OXIDE

Decabromodiphenyl oxide was obtained in four lots from Dow Chemical USA (Table 2). Purity and identity determinations were conducted on all lots (Appendix H). All four lots of the study material were identified as decabromodiphenyl oxide by infrared and ultraviolet/visible spectroscopy. All spectra were consistent with the structure of decabromodiphenyl oxide. The purity of all lots of study material was determined by elemental analysis, thin-layer chromatography, and high-performance liquid chromatography.

Results of elemental analyses of lot no. 08287-2 for carbon and bromine agreed with the theoretical values. This lot contained 0.04% water. Only a single spot was detected by thin-layer chromatography. Two incompletely resolved impurities with a combined area of 1.3% that of the major peak were detected by high-performance liquid chromatography. Cumulative data indicated that this lot was 99% pure.

Results of elemental analyses of lot no. D12478 for bromine agreed with the theoretical value; that for carbon was slightly low. This lot contained less than 0.05% water. Only a single spot was detected by thin-layer chromatography. Two impurities with a combined area of 2.8% that of the major peak were detected by high-performance liquid chromatography. Cumulative data indicated that this lot was approximately 97% pure.

Results of elemental analyses of lot no. MM04080-1 were low for both carbon and bromine. A trace impurity spot was detected by thin-layer chromatography. Four impurities with a combined area of 4.5% that of the major peak were detected by high-performance liquid chromatography. Cumulative data indicated that this lot was approximately 96% pure.

Results of elemental analyses of lot no. MM811102-3-1 for carbon and bromine agreed with the theoretical values. This lot contained 0.01% water. A minor impurity spot was detected by thin-layer chromatography. The initial high-performance liquid chromatographic analysis indicated three impurities with a combined area of 2.7% that of the major peak. A subsequent analysis performed by the analytical chemistry laboratory indicated the presence of three impurities with relative areas of 0.3%, 3.7%, and 1.7% that of the major peak. The two larger impurities were identified as unspecified isomers of nonabromodiphenyl oxide by mass spectroscopy. Cumulative data indicated that this lot was 94%-97% pure.

Decabromodiphenyl oxide was stable for 2 weeks at 60° C (Appendix H). Decabromodiphenyl oxide was stored frozen. Periodic characterization of decabromodiphenyl oxide by infrared spectroscopy and thin-layer or high-performance liquid chromatography detected no appreciable deterioration over the course of the studies.

TABLE 2. IDENTITY AND SOURCE OF LOTS USED IN THE FEED STUDIES OF DECABROMODIPHENYL OXIDE

	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Lot Numbers	08287-2	08287-2, D12478	MM04080-1, MM81102-3-1
Date of Initial Use of Each Lot	10/17/78	2/27/79, 3/13/79	7/24/80, 3/25/82
Supplier	Dow Chemical USA (Midland, MI)	Same as 14-d studies	Same as 14-d studies

PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS

Formulated diet mixtures were shown to be homogeneous (Appendix I). Decabromodiphenyl oxide was stable in feed when stored for 2 weeks at 25° C. Formulated diets were prepared by adding a dry premix (approximately equal amounts of feed and decabromodiphenyl oxide) to the feed (Table 3). The mixture then was blended for 15 minutes. In the 13-week studies, the formulated diets were stored frozen for no more than 1.5 weeks. In the 2-year studies, the formulated diets were stored at 14° C for no longer than 7 days.

Mixtures of decabromodiphenyl oxide in feed were analyzed to confirm that correct concentrations were prepared for administration to the animals (Appendix J). The study laboratory's periodic analysis during the 2-year studies indicated that 27/28 samples (96%) were within \pm 10% of the target concentration (Table 4; Appendix K).

TABLE 3. PREPARATION AND STORAGE OF FORMULATED DIETS IN THE FEED STUDIES OF DECABROMODIPHENYL OXIDE

	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Preparation	Decabromodiphenyl oxide mixed directly into feed and blended in a 5-kg Hobart mixer for approximately 15 min	Appropiate amount of decabromodiphenyl oxide and half of the feed premixed in Hobart mixing bowl for 5 min. The premix and 5 kg feed mixed for 12 min in a Patterson-Kelly® V-blender.	Decabromodiphenyl oxide was weighed and mixed with a small amount of feed for 2 min. Premix was transferred to a Hobart mixer with 5 kg of NIH 07 Rat and Mouse Ration and mixed for 1 min/kg of feed. This mixture was transferred to a Patterson- Kelly® twin-shell blender with the required amount of feed and mixed for 1 min/kg feed.
Maximum Storage Time	1.5 wk	1.5 wk	1 wk
Storage Conditions	Room temperature	Room temperature; 6 kg frozen, then thawed before use	14° C

TABLE 4. SUMMARY OF RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

	Target Conc	entration	
	25,000 ppm	50,000 ppm	
Experimental mean	24,148	49.207	
Standard deviation	1,403	2,206	
Coefficent of variation (percent)	5.8	4.5	
Range	22,270-26,450	46,050-53,600	
Number of samples	14	14	

FOURTEEN-DAY STUDIES

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories and held for approximately 3 weeks before the studies began. Groups of five males and five females were fed diets containing 0, 5,000, 10,000, 20,000, 50,000, or 100,000 ppm decabromodiphenyl oxide for 14 days. Rats and mice were observed daily and were weighed on days 1, 7, and 14. A necropsy was performed on all animals. Details of animal maintenance are presented in Table 5.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated administration of decabromodiphenyl oxide and to determine the concentrations to be used in the 2-year studies.

Four-week-old male and female F344/N rats and 5-week-old $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories, observed for 4 weeks, and then assigned to cages according to a table of random numbers. The cages were then assigned to dosed and control groups according to another set of random numbers. Diets containing 0, 3,100, 6,200, 12,500, 25,000, or 50,000 ppm decabromodiphenyl oxide were fed to groups of 10 rats and 10 mice of each sex. Animals were housed five per cage. Formulated or control diets and water were available ad libitum.

Animals were checked twice daily; moribund animals were killed. Feed consumption was measured weekly by cage. Animal weights were recorded weekly. At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined are listed in Table 5.

TWO-YEAR STUDIES

Study Design

Diets containing 0, 25,000, or 50,000 ppm

decabromodiphenyl oxide were fed to groups of 50 male and 50 female rats and 50 male and 50 female mice for 103 weeks.

Source and Specifications of Animals

The male and female F344/N rats and B6C3F1 $(C57BL/6N, female, \times C3H/HeN, MTV^{-}, male)$ mice used in this study were produced under strict barrier conditions at Charles River Breeding Laboratories under a contract to the Carcinogenesis Program. Breeding stock for the foundation colonies at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barriermaintained rooms. Animals were shipped to the study laboratory at 5-6 weeks of age. The animals were quarantined at the study laboratory for 14 days (rats) or 16 days (mice). Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rats were 7-8 weeks old and the mice were 9 weeks old when placed on study. The health of the animals was monitored during the course of the study according to the protocols of the NTP Sentinel Animal Program (Appendix L).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid $B6C3F_1$ study animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electrophoresis profiles that demonstrate phenotype expressions of known genetic loci.

The C57BL/6 mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL DES	IGN		
Size of Study Groups	5 males and 5 females of each species	10 males and 10 females of each species	50 males and 50 females of each species
Doses	0, 5,000, 10,000, 20,000, 50,000, or 100,000 ppm decabromodiphenyl oxide in the diet	0, 3,100, 6,200, 12,500, 25,000, or 50,000 ppm decabromodiphenyl oxide in the diet	0, 25,000, or 50,000 ppm decabromodiphenyl oxide in the diet
Date of First Dose	Rats10/17/78; mice10/18/78	2/27/79	Rats9/23/80; mice7/25/80
Date of Last Dose	Rats10/31/78; mice11/1/78	5/29/79	Not available
Duration of Dosing	14 consecutive days	13 wk	103 wk
Type and Frequency of Observation	Weighed on d 1, 7, and 14; observed daily	Observed $2 \times d$; body weights, feed consumption, clinical signs, and behavior recorded $1 \times wk$	Observed $2 \times d$; weighed initially, $1 \times wk$ for $12 wk$, monthly thereafter until wk 100 or 101, then every 2 wk
Necropsy and Histologic Examination	Necropsy performed on all animals; tissues examined: gross lesions, skin, mandibular lymph nodes, mammary glands, salivary glands, thigh muscle, sciatic nerve, sternebrae, femur, or verte- brae including marrow, costochondral junction (rib), thymus, larynx, trachea, lungs and bronchi, heart, thyroid gland, parathyroids, esophagus, stomach, duo- denum, jejunum, tissue masses, ileum, colon, cecum, rectum, mesenteric lymph nodes, liver, gallbladder (mice), pancreas, spleen, kidneys, adrenal glands, urinary bladder, seminal vesicles/prostate/testes or ovaries/uterus, nasal cavity, brain, pituitary gland, spinal cord, and eyes	Necropsy performed on all animals; the following tissues examined histologically for control and high dose groups: gross lesions and tissue masses, mandibular or mesenteric lymph nodes, salivary gland, sternebrae, femur, or vertebrae including marrow, thyroid gland, parathyroids, small intestine, colon, liver, gallbladder (mice), prostate/testes or ovaries/ uterus, lung and mainstem bronchi, heart, esophagus, stomach, brain, thymus, trachea, pancreas, spleen, kidneys, adrenal glands, urinary bladder, pituitary gland, spinal cord (if neurologic signs present), eyes (if grossly abnormal), and mammary gland	Necropsy and histologic examination performed on all animals; the following tissues were examined: gross lesions, skin, mandibular lymph nodes, mammary glands, salivary glands, sternum (including bone marrow), thymus, trachea, lungs and bronchi, heart, thyroid gland, parathyroids, esophagus, stomach, pancreas, gallbladder (mice), small intestine, colon, mesenteric lymph nodes, liver, spleen, kidneys, adrenal glands, urinary bladder, prostate/testes or ovaries/uterus, brain, pituitary gland, tissue masses, and regional lymph nodes
ANIMALS AND ANIM	AL MAINTENANCE		
Strain and Species	F344/N rats; B6C3F ₁ mice	Same as 14-d studies	Same as 14-d studies
Animal Source	Charles River Breeding Laboratories (Portage, MI)	Same as 14-d studies	RatsCharles River Breeding Laboratories (Stone Ridge, NY); miceCharles River Breeding Laboratories (Portage, MI)

TABLE 5. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED STUDIES OF DECABROMODIPHENYL OXIDE

	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIM	IAL MAINTENANCE		
Study Laboratory	Hazleton Laboratories America	Hazleton Laboratories America	Hazleton Laboratories America
Method of Animal Identification	Ear clipping	Ear tags	Eartags
Time Held Before Study	3 wk	4 wk	Rats14 d; mice16 d
Age When Placed on Study	Rats7 wk; mice6 wk	Rats8 wk; mice9 wk	Rats7-8 wk; mice9 wk
Age When Killed	Rats9 wk; mice8 wk	Rats22 wk; mice23 wk	Rats111-112 wk; mice112-113 wk
Necropsy Dates	Rats10/31/78; mice11/1/78	Rats5/31/79-6/1/79; mice5/29/79-5/30/79	Rats9/22/82-9/24/82; mice7/26/82-8/2/82
Method of Animal Distribution	Assigned to groups such <u>th</u> at cage weights were approximately equal	According to tables of random numbers	Randomized to groups by weight class and then to dose groups
Feed	Purina Rodent Laboratory Chow-5001 (Ralston Purina Co., St. Louis, MO)	Same as 14-d studies	NIH 07 Rat and Mouse Ration (Zeigler Bros., Gardners, PA); available ad libitum
Bedding	Heat-treated hardwood chips (Sani-chips, P.J. Murphy Forest Products, Monachie, NJ)	Same as 14-d studies	Same as 14-d studies
Water	Automatic watering system (Hazleton Systems, Aberdeen, MD); available ad libitum	Same as 14-d studies	Same as 14-d studies
Cages	Polycarbonate (Hazleton Systems, Inc., Aberdeen, MD)	Polycarbonate (Hazleton Systems, Inc., Aberdeen, MD)	Same as 13-wk studies
Cage Filters	Remay filter sheets (Dupont Co., Wilmington, DE)	Same as 14-d studies	Nonwoven fiber filters (National Paper Co., Baltimore, MD)
Animals per Cage	5	5	Rats and female mice5; male mice5 until month 8; then 1 for intermittent periods; 1 after 15 months
Other Chemicals on Study in the Same Room	None	None	None
Animal Room Environment	Temp72° ± 2°F; humidity45% ± 5%; 10-15 room air changes/h; light 12 h/d	Temp70° ± 1° F; humidity45% ± 5%; light 12 h/d	Temp68°-80° F; humidity15%-90%; fluorescent light 12 h/d; 10-12 room air changes/h

TABLE 5. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED STUDIES OF DECABROMODIPHENYL OXIDE (Continued)

Male mice from the C3H colony and female mice from the C57BL/6 colony were used as parents for the hybrid $B6C3F_1$ mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but results of the studies are not affected because concurrent controls were included.

Animal Maintenance

All animals were initially housed five per cage; after the 7th month of the study, male mice were housed individually for varying periods. After 15 months, all male mice were housed individually. Feed and water were available ad libitum. Further details of animal maintenance are given in Table 5.

Clinical Examinations and Pathology

All animals were observed twice daily, and clinical signs were recorded once per week. Body weights by cage were recorded once per week for the first 12 weeks of the study and once per month thereafter. Mean body weights were calculated for each group. Moribund animals were killed, as were animals that survived to the end of the study. A necropsy was performed on all animals, including those found dead unless they were excessively autolyzed or cannibalized. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study in each group.

Examinations for grossly visible lesions were performed on major tissues or organs. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues examined microscopically are listed in Table 5.

When the pathology examination was completed, the slides, individual animal data records, and summary tables were sent to an independent quality assurance laboratory. Individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all

tissues from a randomly selected 10% of the animals were evaluated by a quality assurance pathologist. Slides of all target tissues and those about which the original and quality assurance pathologists disagreed were submitted to the Chairperson of the Pathology Working Group (PWG) for evaluation. Representative coded slides selected by the Chairperson were reviewed by PWG pathologists, who reached a consensus and compared their findings with the original and quality assurance diagnoses. When diagnostic differences were found, the PWG sent the appropriate slides and comments to the original pathologist for review. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent evaluations, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Nonneoplastic lesions are not examined routinely by the quality assurance pathologist or PWG. Certain nonneoplastic findings are reviewed by the quality assurance pathologist and PWG if they are considered part of the toxic response to a chemical or if they are deemed of special interest.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data. The two that adjust for intercurrent mortality employ the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high dose and low dose groups with controls and tests for overall doseresponse trends.

For studies in which compound administration has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. All reported P values for tumor analyses are one-sided.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumorbearing animals in the dosed and control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely aproximates time to tumor onset. In this case, the life table test also provides a comparison of the time-specific tumor incidences.

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals actually examined for tumors during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Unadjusted Analyses--Primarily, survival-adjusted methods are used to evaluate tumor incidence. In addition, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendix containing the analyses of primary tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984) are included for those tumors appearing to show compound-related effects.

III. RESULTS

RATS

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

FOURTEEN-DAY STUDIES

All rats lived to the end of the studies (Table 6). Final mean body weights were not adversely affected by decabromodiphenyl oxide. No compound-related clinical signs or gross pathologic effects were observed.

THIRTEEN-WEEK STUDIES

All the rats survived to the end of the studies (Table 7). The final mean body weights were not

adversely affected by decabromodiphenyl oxide. Feed consumption by dosed rats was generally comparable to that by the controls. No compound-related gross or microscopic pathologic effects were observed.

Dose Selection Rationale: Doses selected for rats for the 2-year studies were 25,000 and 50,000 ppm decabromodiphenyl oxide in feed. These concentrations are the highest recommended for use in NTP feed studies.

TABLE 6. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY FEED STUDIES OF DECABROMODIPHENYLOXIDE

		Mean	Body Weights	Final Weight Relative	
Concentration Survival (a) (ppm)	Initial (b)	Final	Change (c)	to Controls (percent)	
MALE	<u>, , , , , , , , , , , , , , , , , , , </u>				
0	5/5	162	225	+ 63	
5,000	5/5	157	224	+ 67	99.6
10,000	5/5	161	227	+ 66	100.9
20,000	5/5	163	227	+ 64	100.9
50,000	5/5	164	230	+ 66	102.2
100,000	5/5	162	224	+ 62	99.6
FEMALE					
0	5/5	111	141	+ 30	
5.000	5/5	114	146	+ 32	103.5
10.000	5/5	115	149	+ 34	105.7
20.000	5/5	117	145	+28	102.8
50,000	5/5	114	149	+ 35	105.7
100.000	5/5	116	142	+26	100.7

(a) Number surviving/number initially in group

(b) Initial group mean body weight

(c) Mean body weight change of the group

		Mea	n Body Weights ((grams)	Final Weight	Fe	ed
Concentration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	Relative to Controls (percent)	Consum Week 4	ption (d) Week 13
MALE	<u> </u>			<u></u>			
0 3,100	10/10 10/10	215 ± 8 216 ± 4	$369 \pm 6 \\ 367 \pm 10$	$+154 \pm 8$ +151 ± 12	 99	23 23	24 25
6,300 12,500 25,000 50,000	10/10 10/10 10/10 10/10	$229 \pm 5214 \pm 7212 \pm 6224 \pm 5$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$+152 \pm 7$ +148 ± 7 +162 ± 7 +139 ± 16	103 98 101 98	23 22 22 24	24 23 25 30
FEMALE							
$\begin{array}{r} 0\\ 3,100\\ 6,300\\ 12,500\\ 25,000\\ 50,000\end{array}$	10/10 10/10 10/10 10/10 10/10 10/10	$149 \pm 3151 \pm 3147 \pm 2150 \pm 3150 \pm 2151 \pm 3$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} + 62 \pm & 2 \\ + 62 \pm & 3 \\ + 56 \pm & 3 \\ + 62 \pm & 3 \\ + 58 \pm & 1 \\ + 53 \pm & 3 \end{array}$	101 96 100 99 97	22 19 21 22 20 20	16 15 17 15 18 14

TABLE 7. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN THE THIRTEEN-WEEK FEED STUDIES OF DECABROMODIPHENYL OXIDE

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean

(c) Mean body weight change \pm standard error of the mean

(d) Grams of feed consumed per day per animal. Not corrected for scatter.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of dosed and control rats were comparable throughout most of the studies (Table 8 and Figure 1). The average daily feed consumption per rat by low dose and high dose rats was estimated to be 109% and 108% that of the controls for males and 104% and 109% for females (Appendix M, Tables M1 and M2). The average amount of decabromodiphenyl oxide consumed per day was estimated to be 1,120 mg/kg and 2,240 mg/kg for low dose and high dose male rats and 1,200 mg/kg and 2,550 mg/kg for low dose and high dose female rats.

Weeks	Con	itrol	25,000 ppm		50,000 ppm				
on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors	
MALE				<u></u>					<u>na 2</u>
0 1 2 3 4 5 6 7 8 9 0 111 12 2 5 9 3 3 7 4 5 5 7 1 8 5 9 3 7 4 5 5 7 8 9 0 11 2 12 2 9 3 3 7 4 5 6 7 8 9 0 11 2 12 2 9 3 3 7 4 5 6 7 8 9 0 11 1 2 5 6 7 8 9 0 11 1 2 5 9 3 7 7 1 2 5 9 3 7 7 1 2 5 9 3 7 7 1 2 5 9 3 7 7 1 1 2 5 9 3 7 7 1 1 2 5 9 3 7 7 1 1 2 5 9 3 7 7 1 1 2 5 9 3 7 7 1 1 2 5 7 1 1 2 5 9 3 7 7 1 1 2 5 7 1 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 7 1 8 5 7 7 1 8 5 9 3 7 7 1 8 5 9 3 7 7 1 8 5 9 3 7 7 1 1 8 5 7 1 1 8 5 7 1 1 8 5 7 7 1 8 5 7 7 1 8 5 7 7 1 8 5 7 7 1 8 5 7 7 1 8 5 7 7 1 8 5 7 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	$\begin{array}{c} 171\\ 208\\ 236\\ 259\\ 276\\ 305\\ 317\\ 329\\ 337\\ 354\\ 361\\ 389\\ 412\\ 424\\ 431\\ 438\\ 447\\ 445\\ 447\\ 445\\ 447\\ 445\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 452\\ 458\\ 449\\ 445\\ 438\\ 445\\ 449\\ 445\\ 448\\ 445\\ 449\\ 445\\ 448\\ 445\\ 448\\ 448\\ 448\\ 448\\ 448$	50 50 50 49 49 49 49 49 49 49 49 49 49 49 49 49	$173 \\ 209 \\ 260 \\ 261 \\ 295 \\ 308 \\ 320 \\ 331 \\ 344 \\ 352 \\ 359 \\ 372 \\ 400 \\ 416 \\ 431 \\ 440 \\ 440 \\ 443 \\ 443 \\ 443 \\ 443 \\ 443 \\ 443 \\ 444 \\ 449 \\ 449 \\ 449 \\ 449 \\ 449 \\ 449 \\ 449 \\ 440 \\ 436 \\ 430 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 412 \\ 400 \\ 830 \\ 410 \\ 830 \\ 410 \\ 830 \\ 410 \\ 830 \\ 410 \\ 830 \\ 410 \\ 830 \\ 410 \\ 830 \\ 410 \\ 830 \\ 410 \\ 830 \\ 410 \\ 830 \\ 410 \\ 830 $	101 100 100 102 101 101 101 101 101 101	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$172 \\ 207 \\ 238 \\ 259 \\ 279 \\ 294 \\ 307 \\ 317 \\ 318 \\ 328 \\ 339 \\ 348 \\ 353 \\ 361 \\ 392 \\ 413 \\ 422 \\ 429 \\ 441 \\ 448 \\ 444 \\ 445 \\ 452 \\ 443 \\ 444 \\ 445 \\ 452 \\ 443 \\ 444 \\ 445 \\ 451 \\ 441 \\ 444 \\ 445 \\ 452 \\ 443 \\ 445 \\ 451 \\ 441 \\ 449 \\ 429 \\ 419 \\ 408 \\ 395 $	101 100 101 101 101 101 100 100 100 100	50 50 50 50 50 50 50 50 50 50 50 50 50 5	
103 104	404 402	36 35	396 397	98 99	24 23	395 389	98 97	26 25	
FEMALE									
0 12 3 4 5 6 7 8 9 10 11 12 17 25 9 3 3 7 11 25 9 3 3 7 4 5 6 5 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 9 10 11 12 17 1 8 5 7 1 8 9 10 11 12 17 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 1 8 5 7 1 1 8 5 7 1 1 8 5 7 1 1 10 11 2 10 11 2 17 1 10 11 2 17 1 8 5 7 1 1 8 5 7 1 10 11 2 1 7 7 1 1 8 5 9 11 10 10 10 10 10 11 2 10 10 11 1 2 10 10 11 1 2 1 10 11 10 11 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11	127 139 150 159 168 173 191 195 199 202 204 217 223 228 204 217 223 228 204 217 223 228 228 228 228 228 228 228 228 228	$\begin{array}{c} 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\$	$127\\139\\151\\159\\169\\174\\182\\186\\199\\205\\214\\229\\227\\229\\234\\240\\240\\240\\240\\251\\255\\268\\276\\286\\297\\303\\315\\324\\335\\335\\334\\336\\328\\334\\336$	$\begin{array}{c} 100\\ 100\\ 100\\ 101\\ 101\\ 102\\ 101\\ 102\\ 101\\ 100\\ 101\\ 100\\ 101\\ 99\\ 99\\ 99\\ 99\\ 98\\ 98\\ 98\\ 98\\ 98\\ 98$	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$126\\138\\150\\157\\167\\173\\177\\184\\188\\192\\198\\198\\198\\209\\217\\223\\227\\234\\239\\240\\247\\254\\268\\272\\234\\247\\254\\268\\272\\283\\294\\309\\314\\324\\327\\329\\319\\318\\322\\319\\318\\322\\320$	99 99 99 99 99 99 98 98 98 98 98 98 98 9	50 50 50 50 50 50 50 50 50 50 50 50 50 5	

TABLE 8. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

FIGURE 1. GROWTH CURVES FOR RATS FED DIETS CONTAINING DECABROMODIPHENYL OXIDE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female rats fed diets containing decabromodiphenyl oxide at the concentrations used in these studies and for the controls are shown in the Kaplan and Meier curves in Figure 2. The survival of the low dose group of male rats was significantly lower than that of the controls after week 102 (Table 9). No other significant differences in survival were observed between any groups of either sex.

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions of the liver, hematopoietic system, spleen, mandibular lymph node, pancreas, eye, stomach, Zymbal gland, musculoskeletal system, and thyroid gland. Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables A1 and A2); Appendix A (Tables A3 and A4) also gives the survival and tumor status for individual male and female rats. Findings on nonneoplastic lesions are summarized in Appendix C (Tables C1 and C2). Appendix E (Tables E1 and E2) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in control animals are listed in Appendix F.

TABLE 9. SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

	Control	25,000 ppm	50,000 ppm
MALE (a)	**** <u>*********************************</u>	· · · · · · · · · · · · · · · · · · ·	<u></u>
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	15	26	24
Killed at termination	35	23	24
Died during termination period	0	1	2
Survival P values (c)	0.095	0.033	0.093
FEMALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	10	17	16
Killed at termination	40	33	34
Survival P values (c)	0.196	0.163	0.217

(a) Terminal kill period: week 104

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the control column, and the results of the life table pairwise comparisons with the controls are in the dosed columns.

FIGURE 2. KAPLAN-MEIER SURVIVAL CURVES FOR RATS FED DIETS CONTAINING DECABROMODIPHENYL OXIDE FOR TWO YEARS

Liver: Thrombosis and degeneration were observed at increased incidences in high dose male rats (Table 10). The thrombosis was characterized by a near total occlusion of a major hepatic blood vessel by a dense fibrin coagulum. Peripheral infiltration of fibroblastic cells into the thrombus was evidence of antemortem occurrence. Neoplastic nodules in males and females occurred with significant positive trends (Table 11). The incidences of neoplastic nodules in dosed males and high dose females were

significantly greater than those in the controls. Microscopically, the neoplastic nodules were generally spherical and occupied an area greater than one liver lobule. Demarcation from surrounding hepatic parenchyma was due either to compression of peripheral normal liver or by a discontinuity between the plates of the nodule and those of adjacent unaffected liver. Hepatocytes within the neoplastic nodules had variations in size, tinctorial characteristics, cytoplasmic vacuolization, and nuclear atypia.

TABLE 10.	NUMBER	OF RA	ATS W	TTH	LIVER	LESIONS	IN	THE	TWO-YEAR	FEED	STUDIES	OF
				DI	ECABR	OMODIPH	EN	YL O	XIDE			

		Male		Female				
Lesion	Control	25,000 ppm	50,000 ppm	Control	25,000 ppm	50,000 ppm		
Number of								
animals examined	50	50	49	50	49	50		
Degeneration	13	19	22	0	0	0		
Pigmentation	4	4	10	16	8	5		
Fatty metamorphosis	8	13	11	9	5	4		
Thrombosis	1	Ó	9	0	0	0		
Neoplastic nodule	1	7	15	1	3	9		
Hepatocellular carcinoma	1	1	1	0	2	0		

	Control	25,000 ppm (b)	50,000 ppm (b)
MALE			·····
Neoplastic Nodule			
Overall Rates	1/50 (2%)	7/50 (14%)	15/49 (31%)
Adjusted Rates	2.9%	27.1%	52.7%
Terminal Rates	1/35 (3%)	6/24 (25%)	13/26 (50%)
Week of First Observation	104	89	87
Life Table Tests	P<0.001	P = 0.008	P<0.001
Incidental Tumor Tests	P<0.001	P=0.014	P<0.001
Hepatocellular Carcinoma			
Overall Rates	1/50 (2%)	1/50 (2%)	1/49 (2%)
Neoplastic Nodule or Hepatocellular	Carcinoma (c)		
Overall Rates	2/50 (4%)	8/50 (16%)	15/49 (31%)
Adjusted Rates	5.2%	31.1%	52.7%
Terminal Rates	1/35 (3%)	7/24 (29%)	13/26 (50%)
Week of First Observation	97	89	87
Life Table Tests	P<0.001	P = 0.012	P<0.001
Incidental Tumor Tests	P<0.001	P = 0.022	P<0.001
FEMALE			
Neoplastic Nodule			
Overall Rates	1/50 (2%)	3/49 (6%)	9/50 (18%)
Adjusted Rates	2.5%	9.1%	24.4%
Terminal Rates	1/40 (3%)	3/33 (9%)	7/34 (21%)
Week of First Observation	104	104	87
Life Table Tests	P = 0.002	P = 0.239	P = 0.005
Incidental Tumor Tests	P = 0.002	P = 0.239	P = 0.006
Hepatocellular Carcinoma			
Overall Rates	0/50 (0%)	2/49 (4%)	0/50 (0%)
Neoplastic Nodule or Hepatocellular	Carcinoma (d)		
Overall Rates	1/50 (2%)	5/49 (10%)	9/50 (18%)
Adjusted Rates	2.5%	15.2%	24.4%
Terminal Rates	1/40 (3%)	5/33 (15%)	7/34 (21%)
Week of First Observation	104	104	87
Life Table Tests	P = 0.003	P = 0.064	P=0.005
Incidental Tumor Tests	P=0.003	P = 0.064	P=0.006

TABLE 11. ANALYSIS OF LIVER LESIONS IN RATS IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE (a)

(a) The statistical analyses used are discussed in Chapter II (statistical methods) and Appendix E (footnotes).
(b) The estimated dose in milligrams per kilogram body weight is given in Chapter III (body weights and clinical signs) and in Appendix M.

(c) Historical incidence in NTP studies (mean \pm SD): 73/1,719 (4% \pm 3%); range: 0/50-7/49 (d) Historical incidence in NTP studies (mean \pm SD): 48/1,766 (3% \pm 3%); range: 0/50-5/50

Hematopoietic System: Mononuclear cell leukemia in male rats occurred with a significant positive trend by the life table test, and the incidences in the dosed groups were significantly greater than that in the controls by the life table test (Table 12).

Spleen: Fibrosis was observed at an increased incidence in high dose male rats (control, 5/49; low dose, 8/50; high dose, 13/49). Hematopoiesis was observed at increased incidences in dosed female rats (control, 12/49; low dose, 24/48; high dose, 17/50). A sarcoma was observed in one low dose and one high dose male rat. The historical incidence of sarcomas of the spleen in NTP studies is 5/1,705 (0.3%).

Mandibular Lymph Node: Lymphoid hyperplasia was observed at an increased incidence in high dose male rats (control, 4/50; low dose, 6/50; high dose, 13/49).

Pancreas: Acinar cell adenomas in male rats occurred with a significant positive trend, and the incidence in the high dose group was significantly greater than that of the controls by the life table test (Table 13). Acinar cell hyperplasia was not diagnosed in any of the male rats. Acinar cell adenomas were observed in one low dose and one high dose female rat.

The Pathology Working Group (PWG) examined in a blind fashion the four acinar cell adenomas in the high dose male rats as well as other selected pancreatic lesions. Using current criteria on proliferative exocrine lesions (Boorman and Eustis, 1984), the PWG members agreed that the four lesions should be classified as one acinar cell adenoma, two acinar cell hyperplasias, and one mixed cell lesion. The latter lesion is uncommon in F344/N rats and consists of an admixture of islet and acinar cells. The PWG also diagnosed one acinar cell hyperplasia in a low dose male rat. The original pathologist reviewed the pancreatic lesions with the PWG comments and elected to retain his original diagnosis.

Eye: Retinal degeneration was observed at an increased incidence in low dose female rats (male: control, 5/50, 10%; low dose, 1/50, 2%; high dose, 2/50, 4%; female: control, 5/50, 10%; low dose, 15/50, 30%; high dose, 1/50, 2%).

Stomach: Acanthosis of the forestomach was observed at increased incidence in dosed male rats (male: control, 0/49; low dose, 2/50, 4%; high dose, 5/49, 10%; female: control, 2/49, 4%; low dose, 1/48, 2%; high dose, 1/50, 2%).

Zymbal Gland: Carcinomas were observed in 3/50 low dose female rats, 1/50 low dose male rats, and 1/50 high dose male rats. The historical incidence of Zymbal gland neoplasms in female rats is 6/1,772 (0.3% \pm 1%) and in male rats is 11/1,772 (0.6% \pm 1%). The greatest observed incidence in a female control group is 3/50 (6%).

Musculoskeletal System: Osteosarcomas were observed in three low dose males and one control female. The historical incidence of osteosarcomas in male rat controls in NTP studies is $8/1,727 (0.5\% \pm 1\%)$, with the greatest incidence in any control group being 2/50 (4%).

Thyroid Gland: C-cell hyperplasia of the thyroid gland was observed at decreasing incidence in dosed male and female rats (male: control, 12/50, 24%; low dose, 6/49, 12%; high dose, 2/49%, 4%; female: control, 14/50, 28%; low dose, 7/49, 14%; high dose, 2/50, 4%).

	Control	25,000 ppm	50,000 ppm	
MALE (a)	<u> </u>			
Overall Rates Adjusted Rates Terminal Rates Week of First Observation Life Table Tests Incidental Tumor Tests	30/50 (60%) 67.9% 21/35 (60%) 81 P=0.028 P=0.215	33/50 (66%) 81.9% 17/24 (71%) 72 P=0.029 P=0.292	35/50 (70%) 82.8% 19/26 (73%) 76 P=0.031 P=0.285	
FEMALE				
Overall Rates Adjusted Rates Terminal Rates Week of First Observation Life Table Tests Incidental Tumor Tests	14/50 (28%) 30.6% 9/40 (23%) 74 P=0.124 P=0.295	21/50 (42%) 53.5% 15/33 (45%) 95 P = 0.043 P = 0.102	18/50 (36%) 42.8% 11/34 (32%) 75 P = 0.157 P = 0.362	

TABLE 12. ANALYSIS OF MONONUCLEAR CELL LEUKEMIA IN RATS IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

(a) Historical incidence of leukemia in NTP studies (mean ± SD): 458/1,727 (27% ± 9%); range: 5/50-23/50

TABLE 13. ANALYSIS OF PANCREATIC ACINAR CELL ADENOMAS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (a)

	Control	25,000 ppm	50,000 ppm
Overall Rates	0/49 (0%)	0/50 (0%)	4/49 (8%)
Adjusted Rates	0.0%	0.0%	13.7%
Terminal Rates	0/35 (0%)	0/24 (0%)	2/25 (8%)
Week of First Observation			97
Life Table Tests	P = 0.010	(b)	P = 0.037
Incidental Tumor Tests	P = 0.017	(b)	P = 0.067

(a) Historical incidence of a cinar cell adenomas or carcinomas in NTP studies (mean \pm SD): 3/1,677 (0.2% \pm 0.6%); range: 0/88-1/47

(b) No P value is reported because no tumors were observed in the 25,000-ppm and control groups.

FOURTEEN-DAY STUDIES

All animals survived to the end of the studies (Table 14). Final mean body weights were not adversely affected by exposure to decabromodiphenyl oxide. No compound-related clinical signs or gross pathologic effects were observed.

THIRTEEN-WEEK STUDIES

No compound-related clinical signs; effects on

survival, body weight, feed consumption; or gross or microscopic pathologic effects were observed (Table 15).

Dose Selection Rationale: Doses selected for mice for the 2-year studies were 25,000 and 50,000 ppm decabromodiphenyl oxide in feed. These concentrations are the highest recommended for use in NTP feed studies.

TABLE 14. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY FEEDSTUDIES OF DECABROMODIPHENYL OXIDE

		Mean	Body Weights	(grams)	Final Weight Relative
Concentration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent)
MALE					
0	5/5	25.7	27.4	+1.7	
5,000	5/5	26.4	29.1	+2.7	106.2
10,000	5/5	25.2	28.0	+2.8	102.2
20,000	5/5	26.2	27.5	+1.3	100.4
50,000	5/5	25.4	28.7	+ 3.3	104.7
100,000	5/5	25.9	28.4	+ 2.5	103.6
FEMALE					
0	5/5	19.9	22.0	+ 2.1	
5.000	5/5	19.4	22.5	+ 3.1	102.3
10,000	5/5	19.5	22.5	+ 3.0	102.3
20,000	5/5	19.6	21.9	+2.3	99.5
50,000	5/5	19.8	22.5	+ 2.7	102.3
100,000	5/5	19.5	22.1	+2.6	100.5

(a) Number surviving/number initially in group

(b) Initial group mean body weight

(c) Mean body weight change

		Mean	Body Weights (g)	rams)	Final Weight	Fe	ed
Concentration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	Relative to Controls (percent	Consum t) Week 4	nption (d) Week 13
MALE				<u>· · · · · · · · · · · · · · · · · · · </u>	<u></u>		
0	10/10	26.2 ± 0.4	34.5 ± 0.6	$+ 8.3 \pm 0.4$		9	9
3,100	10/10	24.0 ± 0.8	32.5 ± 0.7	$+ 8.5 \pm 1.0$	94.2	8	8
6,300	10/10	25.0 ± 0.6	34.6 ± 0.6	$+ 9.6 \pm 0.7$	100.3	8	6
12,500	9/10	26.1 ± 0.8	35.0 ± 0.8	$+ 8.9 \pm 0.3$	101.4	8	7
25,000	10/10	25.3 ± 0.5	33.9 ± 0.5	$+ 8.6 \pm 0.3$	98.3	8	9
50,000	10/10	27.3 ± 0.5	34.5 ± 1.3	+ 7.2 ± 1.1	100.0	8	9
FEMALE							
0	10/10	19.4 ± 0.3	27.4 ± 0.7	$+ 8.0 \pm 0.6$		10	9
3,100	10/10	19.9 ± 0.5	27.4 ± 0.7	$+ 7.5 \pm 0.6$	100.0	9	9
6,300	10/10	19.6 ± 0.4	28.5 ± 1.1	$+ 8.9 \pm 0.8$	104.0	9	10
12,500	9/10	19.5 ± 0.3	25.7 ± 0.8	$+ 6.2 \pm 0.8$	93.8	9	9
25,000	10/10	19.7 ± 0.3	27.8 ± 0.7	$+ 8.1 \pm 0.6$	101.5	9	8
50,000	10/10	19.4 ± 0.3	26.7 ± 0.4	$+7.3\pm0.3$	97.4	10	8

TABLE 15. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THETHIRTEEN-WEEK FEED STUDIES OF DECABROMODIPHENYL OXIDE

(a) Number surviving/number initially in group. All deaths were judged accidental.

(b) Initial group body weight \pm standard error of the mean. Subsequent calculations are based on those animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Grams of feed consumed per animal per day. Not corrected for scatter.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

The mean body weights of dosed and control mice were comparable throughout most of the studies (Table 16 and Figure 3). The average daily feed consumption by low dose and high dose male mice was estimated to be 96% and 100% that of the controls and by low dose and high dose female mice, 94% and 96% that of the controls (Appendix M, Tables M3 and M4). The average amount of decabromodiphenyl oxide consumed per day was estimated to be 3,200 mg/kg and 6,650 mg/kg for low dose and high dose male mice and 3,760 mg/kg and 7,780 mg/kg for low dose and high dose female mice.

Weeks <u>Control</u>				25,000 ppm			50,000 ppm		_	
on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors		
MALE									····	
0 1 2 3 4 5 6 7 8 9 10 11 12 16 24 8 32 360 44 48 52 56 80 64 66 870 774 780 84 89 900 101 11 12 16 60 87 78 89 101 11 12 16 60 87 78 89 101 11 12 16 60 87 78 89 101 11 12 16 60 87 78 89 101 11 12 16 60 87 87 80 44 85 55 86 66 87 77 77 78 80 84 85 80 84 85 85 86 87 77 77 78 80 84 85 85 86 87 77 77 78 80 84 85 85 85 86 87 77 77 78 88 88 99 101 11 12 16 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} 28.3\\ 29.4\\ 30.6\\ 30.9\\ 32.0\\ 31.8\\ 33.2\\ 34.0\\ 34.8\\ 34.7\\ 35.4\\ 35.5\\ 36.5\\ 36.5\\ 36.5\\ 36.9\\ 37.0\\ 38.5\\ 40.4\\ 40.2\\ 41.0\\ 40.2\\ 41.0\\ 40.2\\ 41.0\\ 39.6\\ 41.2\\ 40.0\\ 40.1\\ 40.7\\ 40.1\\ 40.7\\ 40.1\\ 40.7\\ 40.0\\ 39.6\\ 39.8\\ 39.8\\ 39.3\\ 38.3\\ 38.3\\ 39.0\\ 39.0\\ 39.1\\ 40.0\\ 39.0\\ 39.1\\ 40.0\\ 39.0\\ 39.1\\ 40.0\\ 39.0\\ 39.1\\ 40.0\\ 38.0\\ 37.0\\$	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 28.2\\ 27.9\\ 29.7\\ 30.2\\ 31.6\\ 31.5\\ 32.3\\ 33.3\\ 33.6\\ 35.1\\ 34.1\\ 34.5\\ 35.2\\ 36.5\\ 36.4\\ 38.4\\ 40.1\\ 41.0\\ 41.1\\ 41.0\\ 41.1\\ 41.0\\ 41.1\\ 41.3\\ 41.4\\ 41.3\\ 41.4\\ 41.3\\ 41.4\\ 41.3\\ 41.4\\ 41.3\\ 41.4\\ 41.3\\ 41.4\\ 41.3\\ 41.4\\ 41.3\\ 41.4\\ 41.3\\ 42.1\\ 39.0\\ 39.7\\ 39.0\\ 39.9\\ 39.7\\ 39.0\\ 39.9\\ 39.7\\ 39.0\\ 39.0\\ 38.8\\ 40.0\\ 38.0\\$	100 95 97 98 99 97 98 97 98 97 101 101 96 98 99 99 99 100 101 105 102 104 105 104 105 104 105 104 105 103 103 103 103 103 98 99 99 99 99 99 99 99 99 99	50 50 49 49 49 48 48 48 47 46 46 46 46 45 45 45 45 45 45 45 45 45 43 43 43 43 43 43 43 43 43 43 43 43 43	$\begin{array}{c} 28.4\\ 29.3\\ 29.7\\ 30.6\\ 32.1\\ 31.5\\ 31.6\\ 33.4\\ 34.1\\ 34.0\\ 34.2\\ 34.7\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 37.3\\ 39.0\\ 40.0\\ 39.6\\ 40.8\\ 40.4\\ 41.1\\ 41.1\\ 41.1\\ 41.1\\ 41.1\\ 41.1\\ 41.1\\ 41.1\\ 41.1\\ 41.5\\ 39.8\\ 39.8\\ 39.8\\ 39.0\\ 38.0\\ 39.0\\ 38.0\\ 39.0\\ 38.0\\ 39.0\\ 38.0\\ 39.0\\ 38.0\\ 39.0\\ 38.0\\ 39.0\\ 38.0\\ 39.0\\ 38.0\\ 39.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 39.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 38.0\\ 37.0\\ 37.0\\ 37.0\\ 38.0\\ 39.0\\ 37.0\\ 37.0\\ 37.0\\ 38.0\\ 39.0\\ 37.0\\ 37.0\\ 37.0\\ 38.0\\ 39.0\\ 37.0\\$	100 100 97 99 95 98 98 98 98 97 97 98 97 98 97 98 97 98 97 98 97 98 103 102 104 102 104 101 102 100 100 100 100 100 100 100 99 99 97 101 102 103	50 50 49 49 49 49 49 48 46 46 46 46 46 46 46 46 46 45 45 45 44 44 44 44 44 43 43 43 41 40 39 39 39 39 39 38 36 35 32 29 27 26 24		
FEMALE	01.0		00.0	200		00.0				
0 1 2 3 4 5 6 7 8 9 10 11 2 16 24 8 36 44 8 2 36 44 8 2 5 5 8 0 2 4 6 8 9 10 11 2 16 24 8 36 44 8 2 5 6 8 9 10 11 2 16 0 24 8 36 6 7 8 9 10 11 2 16 0 24 8 36 6 7 8 9 10 11 2 6 6 7 8 9 10 11 2 6 6 7 8 9 10 11 2 6 6 7 8 9 10 11 2 6 6 7 8 9 10 11 2 6 6 7 8 9 10 11 2 6 6 8 9 10 11 2 6 6 8 9 10 11 2 6 6 8 9 10 11 2 6 6 8 9 10 11 2 6 6 8 9 10 11 2 6 6 8 9 10 11 2 6 6 8 9 10 11 2 6 6 8 9 10 11 2 6 6 8 9 10 11 2 6 8 9 10 11 2 6 8 9 10 11 2 6 8 9 8 9 10 11 2 6 8 9 8 9 10 11 2 6 8 9 8 9 8 9 8 9 8 9 8 8 9 8 8 9 8 8 9 8 9 8 9 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 8 9 8 8 8 8 9 8	$\begin{array}{c} 21.6\\ 21.7\\ 22.7\\ 23.4\\ 23.8\\ 24.2\\ 25.1\\ 25.9\\ 25.7\\ 26.5\\ 27.7\\ 27.3\\ 28.1\\ 28.9\\ 30.3\\ 32.7\\ 34.6\\ 35.7\\ 37.5\\ 38.0\\ 38.9\\ 39.7\\ 40.4\\ 41.5\\ 40.7\\ 40.1\\ 39.0\\ 40.9\\ 40.9\\ 40.9\\ 40.9\\ 39.3\\ 39.3\\ 41.0\\ 41.0\\ 41.0\\ 42.6\\ 41.0\\ 42.0\\ 41.0\\ 42.0\\ 41.0\\ 42.0\\ 41.0\\ 42.0\\ 41.0\\ 42.0\\ 41.0\\ 42.0\\ 41.0\\ 42.0\\ 41.0\\ 42.0\\ 41.0\\ 41.0\\ 41.0\\ 42.0\\ 41.0\\$	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 21.1\\ 21.7\\ 22.5\\ 23.1\\ 24.4\\ 24.9\\ 25.8\\ 25.9\\ 26.6\\ 27.0\\ 27.4\\ 28.4\\ 30.7\\ 32.5\\ 34.8\\ 37.0\\ 37.6\\ 38.0\\ 37.6\\ 38.0\\ 39.0\\ 39.9\\ 39.9\\ 40.2\\ 40.7\\ 41.0\\ 41.4\\ 41.0\\ 40.7\\ 41.0\\ 40.7\\ 41.0\\ 40.7\\ 41.0\\ 41.4\\ 41.0\\ 40.7\\ 43.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 43.0\\ 43.0\\ 43.0\\ \end{array}$	98 100 99 99 101 101 101 101 100 97 100 98 98 101 101 103 105 101 103 105 101 103 105 101 103 105 101 105 105 105 105 105 105 105 105	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 20.9\\ 21.6\\ 22.6\\ 22.7\\ 22.7\\ 23.7\\ 24.0\\ 24.5\\ 24.7\\ 25.2\\ 26.0\\ 26.7\\ 27.0\\ 28.6\\ 30.9\\ 30.9\\ 32.8\\ 34.9\\ 37.0\\ 37.7\\ 39.9\\ 40.0\\ 37.9\\ 40.0\\ 37.9\\ 40.0\\ 39.6\\ 40.0\\ 39.0\\ 38.3\\ 38.7\\ 38.5\\ 39.0\\ 40.0\\ 40.0\\ 40.0\\ 39.0\\ 38.3\\ 38.7\\ 38.5\\ 39.0\\ 40.0\\ 40.0\\ 40.0\\ 39.0\\ 38.0\\ 40.0\\ 40.0\\ 39.0\\ 38.0\\ 40.0\\ 40.0\\ 39.0\\ 38.0\\ 40.0\\ 39.0\\ 38.0\\ 40.0\\ 39.0\\ 38.0\\ 40.0\\ 39.0\\ 38.0\\ 40.0\\ 39.0\\ 38.0\\ 40.0\\ 39.0\\ 38.0\\ 40.0\\ 39.0\\ 39.0\\ 38.0\\ 40.0\\ 39.0\\ 39.0\\ 38.0\\ 40.0\\ 39.0\\ 39.0\\ 39.0\\ 30.0\\ 39.0\\ 30.0\\ 39.0\\ 30.0\\ 39.0\\ 30.0\\$	97 100 100 97 98 95 98 98 98 96 99 99 101 102 100 101 101 103 106 105 97 101 105 99 99 99 99 99 99 99 99 99 99 99 99 99	$\begin{array}{c} 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49$		

TABLE 16. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

FIGURE 3. GROWTH CURVES FOR MICE FED DIETS CONTAINING DECABROMODIPHENYL OXIDE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female mice fed diets containing decabromodiphenyl oxide at the concentrations used in these studies and for the controls are shown in the Kaplan and Meier curves in Figure 4. Loss of control male mice (presumably due to fighting) was significant during the first part of the study. All male mice were caged individually after 15 months. Thereafter, the survival of control and dosed male mice was comparable. No significant differences in survival were observed between any groups of either sex (Table 17).

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of mice with neoplastic or nonneoplastic lesions of the liver, thyroid gland, testis, stomach, and multiple organs. Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables B1 and B2); Appendix B (Tables B3 and B4) also gives the survival and tumor status for individual male and female mice. Findings on nonneoplastic lesions are summarized in Appendix D (Tables D1 and D2). Appendix E (Tables E3 and E4) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in control animals are listed in Appendix F.

	Control	25,000 ppm	50,000 ppm
MALE (a)	·, · · · · · · · · · · · · · · · · · ·	······	
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	31	25	26
Killed at termination	18	25	24
Died during termination period	1	Ó	0
Survival P values (c)	0.139	0.111	0.161
FEMALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	23	19	18
Killed at termination	26	31	32
Died during termination period	1	0	0
Survival P values (c)	0.276	0.504	0.305

TABLE 17. SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

(a) Terminal kill period: weeks 103-104

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the control column, and the results of the life table pairwise comparisons with the controls are in the dosed columns.

FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR MICE FED DIETS CONTAINING DECABROMODIPHENYL OXIDE FOR TWO YEARS

45

Liver: Granulomas were observed at an increased incidence in low dose male mice (male: control, 8/50, 16%; low dose, 22/50, 44%; high dose, 12/50, 24%; female: control, 23/50, 46%; low dose, 27/50, 54%; high dose, 24/50, 48%). Centrilobular hypertrophy was observed at increased incidence in dosed male mice (control, 0/50; low dose, 34/50, 68%; high dose, 32/50, 64%). This lesion consisted of enlarged hepatocytes with frothy vacuolated cytoplasm. The incidence of hepatocellular adenomas or carcinomas (combined) in low dose male mice was greater than that in the controls, and the incidence in the high dose male mice was marginally elevated relative to controls (Table 18). However, the significance of this effect may be decreased by the larger number of early deaths in control male mice. There was no significant compound-related effect on the incidences of hepatocellular adenomas or carcinomas (combined) in female mice (control, 8/50, 16%; low dose, 13/50, 26%; high dose, 13/50, 26%).

 TABLE 18. ANALYSIS OF LIVER TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (a)

	Control		50,000 ppm (b)	
Hepatocellular Adenoma	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································	
Overall Rates	4/50 (8%)	12/50 (24%)	12/50 (24%)	
Adjusted Rates	19.0%	46.2%	39.0%	
Terminal Rates	3/19 (16%)	11/25 (44%)	7/24 (29%)	
Week of First Observation	81	100	60	
Life Table Tests	P = 0.078	P = 0.081	P = 0.095	
Incidental Tumor Tests	P = 0.084	P = 0.088	P = 0.099	
Hepatocellular Carcinoma				
Overall Rates	5/50 (10%)	14/50 (28%)	8/50 (16%)	
Adjusted Rates	20.7%	42.9%	26.8%	
Terminal Rates	1/19 (5%)	8/25 (32%)	4/24 (17%)	
Week of First Observation	81	72	76	
Life Table Tests	P = 0.494	P = 0.118	P = 0.486	
Incidental Tumor Tests	P = 0.523	P=0.139	P = 0.542	
Hepatocellular Adenoma or Carcinon	na (c)			
Overall Rates	8/50 (16%)	22/50 (44%)	18/50 (36%)	
Adjusted Rates	33.9%	67.7%	56.5%	
Terminal Rates	4/19 (21%)	15/25 (60%)	11/24 (46%)	
Week of First Observation	81	72	60	
Life Table Tests	P = 0.124	P = 0.036	P = 0.115	
Incidental Tumor Tests	P = 0.116	P = 0.036	P = 0.116	

(a) The statistical analyses used are discussed in Chapter II (statistical methods) and Appendix E (footnotes).

(b) The estimated dose in milligrams per kilogram body weight is given in Chapter III (body weights and clinical signs) and in Appendix M.

(c) Historical incidence in NTP studies (mean \pm SD): 540/1,784 (30% \pm 8%); range: 7/50-29/50

Thyroid Gland: Follicular cell hyperplasia was observed at increased incidence in dosed mice (male: control, 2/50, 4%; low dose, 10/50, 20%; high dose, 19/50, 38%; female: control, 4/50, 8%; low dose, 9/50, 18%; high dose, 7/49, 14%). Microscopically, all these lesions were focal or multifocal and most were small, involving one to four follicles. The involved epithelium was cuboidal to tall, columnar, hyperchromatic, and, in some animals, multilayered. In some animals, the hyperplastic epithelium produced papillary projections into the lumen of the follicle.

The incidences of follicular cell adenomas or carcinomas (combined) in dosed male mice were greater (but not statistically greater) than that in the controls (male: control, 0/50; low dose, 4/50, 8%; high dose, 3/50, 6%; female: control, 1/50, 2%; low dose, 3/50, 6%; high dose, 3/50, 6%). The historical incidence of follicular cell neoplasms in untreated male mice in NTP studies is 28/1,680 (2% \pm 2%). The highest incidence observed in a control group is 3/42 (Appendix F, Table F9).

Testis: Interstitial cell tumors were observed in 2/48 high dose male mice but in 0/50 controls and 0/50 low dose mice. The historical incidence in NTP studies is 5/1,768 ($0.3\% \pm 0.7\%$). The highest incidence observed in a control group is 1/48.

Stomach: Ulcers were observed at an increased incidence in high dose female mice (male: control, 5/49, 10%; low dose, 3/50, 6%; high dose, 5/50, 10%; female: control, 1/50, 2%; low dose, 1/50, 2%; high dose, 8/50, 16%).

Multiple Organs: Suppurative inflammation or abscesses of the ovary, uterus, or peritoneum were observed in 12 control, 8 low dose, and 16 high female mice.

Decabromodiphenyl Oxide, NTP TR 309

IV. DISCUSSION AND CONCLUSIONS

49

Fourteen-day and 13-week studies of decabromodiphenyl oxide were conducted in F344/N rats and B6C3F1 mice to determine toxicity and affected organs and to aid in the selection of doses for the 2-year toxicity and carcinogenicity studies. In 14-day studies, groups of five animals of each sex and species were exposed to decabromodiphenyl oxide at 0, 5,000, 20,000, 50,000, or 100,000 ppm in their diet. No effects on health, survival, or body weights were observed, and no compound-related clinical signs or gross pathologic effects were reported. In the 13-week studies, groups of 10 animals of each sex and species were exposed to decabromodiphenvl oxide at 0. 3,100, 6,300, 12,500, 25,000, or 50,000 ppm in their diet. No compound-related clinical signs or effects on survival, body weight, or feed consumption were observed. No gross or microscopic pathologic effects were reported.

Based on results of 14-day and 13-week studies, the 2-year studies were designed to expose groups of 50 animals of each sex and species to decabromodiphenyl oxide at 25,000 or 50,000 ppm in the diet. Feed consumption was slightly, but not significantly, elevated for both male and female rats in the dosed groups. The average daily consumption of decabromodiphenyl oxide was estimated to be 1,120 and 2,240 mg/kg for low dose and high dose male rats and 1,200 and 2,550 mg/kg for low dose and high dose female rats. No clinical signs of toxicity were reported for either sex of rats. No significant differences in survival were observed between any groups of either sex except low dose male rats. Survival of low dose male rats was significantly lower than that of the controls after week 102 (see Table 9). However, the late point in the study at which survival was decreased, lack of a dose effect, and lack of a similar effect in female rats or mice of either sex suggest that decreased survival in low dose male rats may not have been compound related.

In mice, mean body weights and feed consumption of dosed and control animals were comparable throughout most of the 2-year studies. The average amount of decabromodiphenyl oxide consumed per day was estimated to be 3,200 and 6,650 mg/kg for low dose and high dose male mice and 3,760 and 7,780 mg/kg for low dose and high dose female mice. No compound-related clinical signs of toxicity were reported. No significant differences in survival were observed between any groups of either sex (see Table 17). Overall survival of both sexes of both species was considered adequate for evaluation of tumor incidences.

At the end of the 2-year studies, neoplastic nodules in livers of male and female rats were observed with significant positive trends, and the incidences of neoplastic nodules in dosed male and high dose female rats were significantly greater than those in the controls (see Table 11). The incidences of neoplastic nodules in rats increased with dose in both males and females and appeared to be compound related. The incidence of hepatocellular carcinomas was low in all groups and was apparently not compound related. Therefore, the increased incidences of neoplastic nodules were considered as some evidence of decabromodiphenyl oxide carcinogenicity in rats.

Mononuclear cell leukemia was observed in dosed male rats with a significant positive trend by the life table test (see Table 12) but not by the incidental tumor test. Although leukemia is generally regarded as a life-threatening neoplasm, the incidence of this lesion in dosed male rats killed at the end of the study exceeded that observed in animals dying during the study, suggesting that the tumor may have been incidental rather than lethal in these particular groups. Moreover, control male rats in this study had the highest incidence of leukemia ever reported in untreated controls in NTP feed studies (30/50. 60%): the overall historical incidence is 458/1,727 (26.5%) (see Table 12; Appendix F. Table F1). The incidence of mononuclear cell leukemia in male rats increased slightly with dose, but because of the exceptionally high incidence in control rats, the marginal nature of the increase, and the lack of a significant increase in female rats, the increase over controls in male rats was not considered biologically significant. A sarcoma was observed in the spleen of one low dose and one high dose male rat. The historical incidence of splenic sarcomas in control NTP studies is 5/1,705 (0.3%).

Acinar cell adenomas of the pancreas occurred in high dose male rats with a significant positive

trend, and the incidence was marginally greater than that of the controls (see Table 13). Although the incidence in high dose males (4/50) appears quite high compared with that in historical controls (3/1,677), a review by the Pathology Working Group revealed that the criteria for acinar cell adenoma in this study included both acinar cell adenoma and acinar cell hyperplasia as diagnosed for other NTP studies. Thus, the historical controls are not an appropriate comparison. The incidence of proliferative exocrine pancreatic lesions depends both on the criteria used as well as on the amount of pancreatic tissue examined. When the entire pancreas in untreated male rats is embedded and a single section is made, the incidence of proliferative exocrine lesions approaches 25% (Boorman et al., 1985). Thus, the occurrence of exocrine pancreatic lesions in high dose male rats is not considered a compound-related effect. Acinar cell adenomas were also observed in one low dose and one high dose female rat. However, they were not significantly increased in either sex. Other tumors observed in dosed rats but at a less than significant incidence were Zymbal gland carcinomas in low dose female rats and osteosarcomas in low dose males.

Several nonneoplastic lesions were observed in dosed rats. Thrombosis and degeneration were observed at increased incidences in the liver of high dose male rats (see Table 10). Fibrosis of the spleen and lymphoid hyperplasia of the mandibular lymph nodes were observed at increased incidences in high dose male rats. The incidences of hematopoiesis in spleens of dosed female rats and acanthosis of the forestomach in dosed male rats were slightly increased. The incidence of degeneration of the eyes was increased in low dose female rats, but this lesion could have resulted from greater exposure to fluorescent light. This study was conducted before the NTP instituted cage rotation as part of the experimental protocol. One nonneoplastic lesion, C-cell hyperplasia of the thyroid gland, decreased in a dose-dependent fashion in male rats (control, 12/50; low dose, 6/49; high dose, 2/49) and female rats (control, 14/50; low dose, 7/49; high dose, 2/50) (Appendix C).

Neoplasia that occurred at significantly increased incidences in mice was limited to the

livers of male mice. Hepatocellular adenomas or carcinomas (combined) were observed in low dose male mice at a significantly greater incidence than in the controls (control, 8/50; low dose, 22/50; high dose, 18/50) (see Table 18). Thyroid gland follicular cell adenomas or carcinomas (combined) in male mice were observed at marginally increased incidences (control, 0/50; low dose, 4/50; high dose, 3/50). The significance of this lesion was supported by an increased incidence of follicular cell hyperplasia in male mice. The evidence of carcinogenicity in male mice is weakened by the early loss of control animals and the lack of a statistically significant effect at the high dose. Therefore, the increased incidence of hepatocellular neoplasms in low dose animals and the less than significant increase in thyroid gland tumors are considered equivocal evidence of carcinogenicity of decabromodiphenyl oxide in male mice.

Nonneoplastic lesions were observed at increased incidences in several tissues of dosed mice. Granulomas were increased in the liver of low dose male mice, and centrilobular hypertrophy occurred at increased incidences in the liver of both low and high dose male mice. Follicular cell hyperplasia of the thyroid gland was increased in male mice (control, 4/50; low dose, 10/50; high dose, 19/50). This observation is consistent with the observation of thyroid gland hyperplasia in a repeated-dose study of decabromodiphenyl oxide in rats (Norris et al., 1973). These investigators speculated that thyroid gland hyperplasia could have resulted from competition between bromine and iodine in the thyroid gland. However, in the present study, a dose-dependent decrease in thyroid gland C-cell hyperplasia was observed in rats of each sex (Appendix C). An increased incidence of ulcers of the stomach was observed in high dose female mice.

Decabromodiphenyl oxide was not mutagenic in strains TA1535, TA1537, TA98, or TA100 of Salmonella typhimurium in the presence or absence of Aroclor 1254-induced male Sprague-Dawley rat or male Syrian hamster liver S9 when tested according to the preincubation protocol (Appendix G). Decabromodiphenyl oxide was not mutagenic in the mouse lymphoma L5178Y/TK^{+/-} assay in the presence or absence of Aroclor 1254-induced male F344 rat liver S9. Decabromodiphenyl oxide did not induce sisterchromatid exchanges or chromosomal aberrations in Chinese hamster ovary cells in vitro in the presence or absence of S9 prepared from livers of Aroclor 1254-induced male Sprague-Dawley rats.

Aromatic molecules such as diphenyl oxide become decreasingly soluble in both water and organic solvents as the degree of halogenation increases (see Table 1). Chemicals that are not in solution are absorbed from the gastrointestinal tract very sparingly. As a supplement to the carcinogenesis studies, additional experiments were conducted to quantitate decabromodiphenyl oxide absorption from the gastrointestinal tract of male rats and to determine the effect of dose on absorption (Appendix O). These studies were limited to male rats because gastrointestinal absorption is thought to be similar in each sex of both species. In these experiments, radiolabeled ¹⁴C-decabromodiphenyl oxide (97.9%-99.2% pure) was diluted with unlabeled decabromodiphenyl oxide to yield the desired concentrations. Decabromodiphenyl oxide was mixed in the diet at approximate concentrations of 250, 500, 2,500, 5,000, 25,000 or 50,000 ppm or was administered by intravenous injection (1 mg/kg). Animals were preconditioned by being fed diets containing the respective dose of unlabeled decabromodiphenyl oxide for 7 days before being fed diets containing radiolabeled decabromodiphenyl oxide for 1 day and then being returned to diets containing unlabeled material for the remainder of the holding period.

Results of these studies indicate that, after exposure at all doses in the diet, greater than 99% of the radioactivity recovered was excreted in the feces within 72 hours. Excretion in urine accounted for approximately 0.01% or less of the dose. After a dose was administered intravenously, 61% of the recovered radioactivity was excreted in feces in 72 hours and approximately 0.1% was excreted in urine. Analysis of all major organs and tissues following oral dosing indicated trace levels of radioactivity in most tissues. The highest concentrations were found in gastrointestinal tissues, liver, kidney, lung, skin, and adipose tissue. The high ¹⁴C- decabromodiphenyl oxide content of gastrointestinal tissues was attributed to intimate contact with the formulated diet; therefore, these tissues were not used to estimate absorption. Concentrations of decabromodiphenyl oxide in other tissues were near the limits of accurate detection and thereby contributed to the variability of estimates of absorption.

Estimates of decabromodiphenyl oxide absorption from the gastrointestinal tract were calculated by comparing tissue levels after oral exposure versus intravenous administration (Appendix O). For data obtained at similar time points,

percent absorption = $\frac{\text{oral sample}}{\text{intravenous sample}} \times 100$

Estimates of absorption obtained from a comparison of average tissue concentrations after intravenous dosing (Appendix O, Table O6) versus oral dosing (Table O4, Group III) indicate that $0.33\% \pm 0.19\%$ of the 50,000-ppm dose was absorbed. In the 2-year studies, animals consuming 50,000 ppm decabromodiphenyl oxide in the diet were estimated to have consumed 2.240 mg/kg per day. However, based on estimated absorption, the animals absorbed only 7.4 \pm 4.2 mg/kg per day. Data for the 25,000-ppm dose group (Table O2) indicate that the percent of dose absorbed was not significantly different from the high dose; therefore, these animals absorbed approximately $3.7 \pm 2.1 \text{ mg/kg}$ per day. It is not known if this represents a significant difference in dose for animals exposed at the high or low dose in these studies and may explain the lack of dose response in some instances.

Radioactivity present in the liver following exposure in the diet was confirmed as decabromodiphenyl oxide by extraction, purification, and reanalysis (Appendix O). However, the minimal absorption of decabromodiphenyl oxide from the gastrointestinal tract, and presumably from other potential routes of exposure as well, offers a partial explanation of the low short-term and long-term toxicity of the compound.

Additional significance of the absorption data is seen when one considers that the material used

in these studies is not 100% pure. Four lots of decabromodiphenyl oxide were used in the present studies. Analysis indicated purities of 94%-99% (Appendix H). Since decabromodiphenyl oxide is very poorly absorbed from the gastrointestinal tract and absorption of other components of the batches used is unknown, it is possible that another component might be absorbed in greater quantity and account for more of the observed toxicity than decabromodiphenyl oxide. Therefore, toxicity observed in this study could be attributed to the technical grade used rather than pure decabromodiphenyl oxide.

A dose-dependent increase in liver weight (approximately 40% greater than the controls) was observed in rats exposed to decabromodiphenyl oxide at 25,000 and 50,000 ppm in the diet for 11 days (Appendix O; Figure 14). Liver weights of animals exposed at the two lowest doses were unaffected; liver weights of animals exposed at 2,500 or 5,000 ppm were increased by 30%-40%. This observation confirms and quantitates earlier reports (Norris et al., 1973, 1975a,b; Kociba et al., 1975; Carlson, 1980). Liver weights were not recorded in the 14-day and 13-week portions of these studies. No other effects were observed in these repeated-dose studies.

Previous studies of highly halogenated aromatics such as decabromodiphenyl oxide indicate that these compounds are poorly metabolized, if at all (Matthews et al., 1977; Matthews and Tuey, 1980). However, results of the supplementary study presented in Appendix O indicate that much of the absorbed decabromodiphenyl oxide is metabolized and excreted in bile. From this cursory study of decabromodiphenyl oxide tissue distribution and clearance, this compound does not appear to have the same potential for bioaccumulation as polychlorinated or polybrominated biphenyls with which it shares structural and chemical similarities. This observation offers additional explanation of the low long-term toxicity of this compound.

The experimental and tabulated data for the NTP Technical Report on decabromodiphenyl oxide were examined for accuracy, consistency, and compliance with Good Laboratory Practice requirements. As summarized in Appendix P, the audit revealed no major problems with the conduct of the studies or with collection and documentation of the experimental data. No discrepancies were found that influenced the final interpretation of the results of these studies.

Conclusions: Under the conditions of these 2year feed studies of decabromodiphenyl oxide. there was some evidence of carcinogenicity* for male and female F344/N rats as shown by increased incidences of neoplastic nodules of the liver in low dose (25,000 ppm) males and high dose (50,000 ppm) groups of each sex. There was equivocal evidence of carcinogenicity for male $B6C3F_1$ mice as shown by increased incidences of hepatocellular adenomas or carcinomas (combined) in the low dose group and of thyroid gland follicular cell adenomas or carcinomas (combined) in both dosed groups. There was no evidence of carcinogenicity for female B6C3F₁ mice receiving 25,000 or 50,000 ppm in the diet. Several nonneoplastic lesions were observed at increased incidences, the most notable being thyroid gland follicular cell hyperplasia in male mice.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2. The discussion and vote regarding the interpretative conclusions are summarized on pages 15-16.

Decabromodiphenyl Oxide, NTP TR 309

54

.

V. REFERENCES

55

1. American Industrial Hygiene Association (AIHA) (1981) Workplace Environmental Exposure Guide: Decabromodiphenyl Oxide. Am. Ind. Hyg. Assoc. J. 42:A-76-A-77.

2. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

3. Bahn, A.; Bialik, O.; Oler, J.; Houten, L.; Landau, E. (1980) Health Assessment of Occupational Exposure to Polybrominated Biphenyl (PBB) and Polybrominate Biphenyloxide (PBBO). Report; ISS EPA 560/6-80-001; NTIS No. PB81 -159675. 72 p.

4. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

5. Boorman, G.; Eustis, S. (1984) Proliferative lesions of the exocrine pancreas in male F344/N rats. Environ. Health Perspect. 56:213-217.

6. Boorman, G.; Montgomery, C., Jr.; Hardisty, J.; Eustis, S.; Wolfe, M.; McConnell, E. (1985) Quality assurance in pathology for rodent toxicology and carcinogenicity tests. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.

7. Carlson, G. (1980) Induction of xenobiotic metabolism in rats by short-term administration of brominated diphenyl ethers. Toxicol. Lett. 5:19-25.

8. Clive, D.; Johnson, K.; Spector, J.; Batson, A.; Brown, M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.

9. Cox, D. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

10. EPA/NIH Mass Spectral Data Base, Supplement 1, 1980, p. 5265.

11. Gart, J.; Chu, K.; Tarone, R. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974. 12. Goto, K.; Maeda, S.; Kano, Y.; Sugimura, T. (1978) Factors involved in differential Giemsastaining of sister chromatids. Chromosoma 66:351-359.

13. Haseman, J. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

14. Haseman, J.; Huff, J.; Boorman, G. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.

15. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test for 250 chemicals. Environ. Mutagen. (Suppl. 1) 5:3-142.

16. Kaplan, E.; Meier, P. (1958) Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53:457-481.

17. Kociba, R.; Frauson, L.; Humiston, C.; Norris, J.; Wade, C.; Lisowe, R.; Quast, J.; Jersey, G.; Jewett, G. (1975) Results of a two-year dietary feeding study with decabromodiphenyl oxide (DBDPO) in rats. JFF/Combustion Toxicol. 2:267-285.

18. Koster, P.; Debets, F.; Strik, J. (1980) Porphyrinogenic action of fire retardants. Bull. Environ. Contam. Toxicol. 25:313-315.

19. Linhart, M.; Cooper, J.; Martin, R.; Page, N.; Peters, J. (1974) Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248.

20. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

21. Maronpot, R.; Boorman, G. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

22. Matthews, H.; Tuey, D. (1980) The effect of chlorine position on the distribution and excretion of four hexachlorobiphenyl isomers. Toxicol. Appl. Pharmacol. 53:377-388.

23. Matthews, H.; Kato, S.; Morales, N.; Tuey, D. (1977) Distribution and excretion of 2,4,5,2',4',5'-hexabromobiphenyl, the major component of Firemaster BP-6. J. Toxicol. Environ. Health 3:599-605.

24. McConnell, E.; Solleveld, H.; Swenberg, J.; Boorman, G. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. (in press).

25. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Carcinogenesis Technical Report Series No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health.

26. National Institutes of Health (NIH) (1978) NIH Specification, NIH-11-133f, November 1.

27. Norris, J.; Ehrmantraut, J.; Gibbons, C.; Kociba, R.; Schwetz, B.; Rose, J.; Humiston, C.; Jewett, G.; Crummett, W.; Gehring, P.; Tirsell, J.; Brosier, J. (1973) Toxicological and environmental factors involved in the selection of decabromodiphenyl oxide as a fire retardant chemical. Appl. Polymer Symp. No. 22, 195-219. 28. Norris, J.; Kociba, R.; Schwetz, B.; Rose, J.; Humiston, C.; Jewett, G.; Gehring, P.; Mailhes, J. (1975a) Toxicology of octabromobiphenyl and decabromobiphenyl oxide. Environ. Health Perspect. 11:153-161.

29. Norris, J.; Kociba, R.; Humiston, C.; Gehring, P. (1975b) Toxicity of decabromodiphenyl oxide and octabromobiphenyl as determined by subacute and chronic dietary feeding studies in rats. Toxicol. Appl. Pharmacol. 33:170.

30. Perry, P.; Wolff, S. (1974) New Giemsa method for the differential staining of sister chromatids. Nature (London) 251:156-158.

31. Tarone, R. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

32. Ulsamer, A.; Osterberg, R.; McLaughlin, J. (1980) Flame-retardant chemicals in textiles. Clin. Toxicol. 17:101-131.

33. Webber, D. (1983) Flame retardants in plastics: Growth depends on regulation. Chem. Eng. News, March 7, 1983:15-18.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEARFEED STUDY OF DECABROMODIPHENYL OXIDE

	CONTI	ROL (UNTR)	LOW	DOSE	HIG	h dose
ANIMALS INITIALLY IN STUDY	50		50	········	50	
ANIMALS NECROPSIED	50)	50		50	
ANIMALS EXAMINED HISTOPATHOLOGICA	LLY 50)	50		50	
INTEGUMENTARY SYSTEM						
*Skin	(50)	1	(50)		(50)	
Squamous cell papilloma	1	(2%)				
Squamous cell carcinoma	1	(2%)			1	(2%)
Basal cell carcinoma	1	(2%)	0	(00)	1	(2%)
Neurofibrosarcoma	2	(4,70) (90%)	3	(6%)	1	(2%)
*Subcutaneous tissue	(50)	(270)	(50)		(50)	
Fibroma	3	(6%)	4	(8%)	3	(6%)
Fibrosarcoma	4	(8%)	-	(0.0)	ĩ	(2%)
Neurofibroma	2	(4%)	2	(4%)	1	(2%)
Neurofibrosarcoma	2	(4%)	2	(4%)		
RESPIRATORY SYSTEM						· · · · · · · · · · · · · · · · · · ·
#Lung	(50)		(50)		(49)	
Alveolar/bronchiolar adenoma	1	(2%)	1	(2%)	3	(6%)
Paraganglioma, metastatic			1	(2%)	-	
Sarcoma, NOS, metastatic					1	(2%)
Osteosarcoma, metastatic			2	(4%)		
HEMATOPOIETIC SYSTEM						
*Multiple organs	(50)		(50)		(50)	
Leukemia, mononuclear cell	30	(60%)	33	(66%)	35	(70%)
#Spleen	(49)		(50)		(49)	
Sarcoma, NOS			1	(2%)	1	(2%)
# Mandibular lymph hode Squamous cell carcinoma, metastatic	(50)	(2%)	(50)		(49)	
CIRCUI ATORY SYSTEM						
#Heart	(50)		(50)		(49)	
Osteosarcoma, metastatic	(00)		1	(2%)	(10)	
DIGESTIVE SYSTEM						
#Salivary gland	(49)		(50)		(48)	
Sarcoma, NOS	1	(2%)			2	(4%)
Fibrosarcoma					1	(2%)
#Liver	(50)	(0.4)	(50)	(4.4~~)	(49)	
Neoplastic nodule	1	(2%)	7	(14%)	15	(31%)
Depatocellular carcinoma	1	(2%)	1	(2%) (4%)	1	(2%)
#Paperees	(49)		(50)	(4170)	(49)	
Acinar cell adenoma	(49)				(<i>43)</i>	(8%)
#Jejunum	(49)		(50)		(48)	
Carcinoma, NOS	1	(2%)	(()	
Leiomyoma					1	(2%)
URINARY SYSTEM		<u>,</u>				
#Perirenal tissue	(48)		(50)		(49)	
Pheochromocytoma, metastatic					1	(2%)
#Kidney/tubule	(48)		(50)		(49)	
(Instadou and N/)P					1	(1)07.)

.

	CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
ENDOCRINE SYSTEM					········	
#Anterior pituitary	(50)		(50)		(50)	
Carcinoma, NOS	()		1	(2%)	(00)	
Adenoma, NOS	10	(20%)	10	(20%)	9	(18%)
#Adrenal	(49)	((50)	((49)	(-0/0/
Cortical adenoma	4	(8%)	1	(2%)	1	(2%)
#Adrenal medulla	(49)	(0,0)	(50)	(2,0)	(49)	(2,0)
Pheochromocytoma	31	(63%)	18	(36%)	18	(37%)
Pheochromocytoma, malignant	4	(8%)	1	(296)	5	(10%)
#Thyroid	(50)	(0,0)	(49)	(2,0)	(49)	(10 , 0)
C-cell adenoma	600)	(19%)	5	(10%)	(40)	(2%)
C-cell carcinoma	0 9	(12.0)	0 9	(10%)	9	(1,0)
#Parathyroid	(49)	(4,0)	(48)	(4/0)	(17)	(470)
Adenomy NOS	(40)		(40)		(4(7)	(90)
#Pancreatic jelets	(49)		(50)		(49)	(270)
Islet cell adenoma	(40)	(8%)	(00)	(9%)	(43)	(90%)
		(0,2)	ـ ــــــ	(2.70)		(270)
REPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Adenocarcinoma, NOS	1	(2%)	/		(20)	
Fibroadenoma	•	, <i>→</i> ,	3	(6%)		
*Preputial gland	(50)		(50)		(50)	
Carcinoma, NOS	(JU) A	(8%)	(UU) A	(8%)	(UU) 9	(4%)
Adenoma, NOS	-	(0,0)	1	(2%)	2 9	(4%)
#Prostate	(47)		(49)		(40)	
Adenoma, NOS	3	(6%)	(40)		(40)	(6%)
#Testis	(47)	(0.0)	(50)		(49)	(0,0)
Interstitial cell tumor	44	(94%)	47	(94%)	47	(96%)
*Epidídymis	(50)	(01/0)	(50)		(50)	(00%)
Mesothelioma, invasive			(00)		1	(2%)
						<u></u>
NERVOUS SYSTEM						
#Cerebrum	(50)		(50)		(50)	
Astrocytoma	2	(4%)	1	(2%)		
#Brain	(50)		(50)		(50)	
Osteosarcoma, invasive			1	(2%)		
#Cerebellum	(50)		(50)		(50)	
Granular cell tumor, NOS			1	(2%)		
PECIAL SENSE ORGANS						
*Zymbal gland	(50)		(50)		(50)	
Carcinoma, NOS	(00)		1	(2.%)	1	(2%)
		-	·			
IUSCULOSKELETAL SYSTEM						
*Skull	(50)		(50)		(50)	
Osteosarcoma			1	(2%)		
*Vertebra	(50)		(50)		(50)	
Osteosarcoma			1	(2%)	(23)	
*Skeletal muscle	(50)		(50)	/	(50)	
Osteosarcoma	(00)		1	(2%)	(00)	
			<u></u>			<u>-</u>
*Modiantinum	(20)		(50)		(50)	
Sanoma NOS investivo	(60)		(50)		(50)	(00)
*Abdominal constru	(20)		(= ~)		(50)	(270)
Dongonglisme meligeret	(00)		(00)	(90)	(00)	
raragangnoma, mangnant			1	(2%)		

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	CONTR	OL (UNTR)	LOW	DOSE	HIGI	H DOSE
BODY CAVITIES (Continued) *Mesentery	(50)		(50)		(50)	(2.7.)
Sarcoma, NOS, invasive				(07)	1	(2%)
Usteosarcoma, metastatic	(50)		(50)	(2%)	(50)	
Mesotheliome NOS	(50)		(00)	(2%)	(00)	(296)
Mesothelioma, malignant	1	(2%)	1	(270)	1	(2%)
ALL OTHER SYSTEMS						
*Multiple organs	(50)		(50)		(50)	
Mesothelioma, invasive	1	(2%)	, .,			
Adipose tissue						
Pheochromocytoma, invasive					1	
ANIMAL DISPOSITION SUMMARY				<u> </u>		
Animals initially in study	50		50		50	
Natural death	12		18		19	
Moribund sacrifice	3		9		7	
Terminal sacrifice	35		23		24	
TUMOR SUMMARY						
Total animals with primary tumors**	49		50		49	
Total primary tumors	168		156		167	
Total animals with benign tumors	48		49		48	
Total benign tumors	111		96		97	
Total animals with malignant tumors	41		37		43	
Total malignant tumors	56		51		54	
Total animals with secondary tumors##	2		4		4	
Total secondary tumors Total animals with tumors uncertain	2		8		6	
benign or malignant	1		9		16	
Total uncertain tumors	1		9		16	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically. ** Primary tumors: all tumors except secondary tumors # Number of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY			50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICAL	LLY 50		50		50	
INTEGUMENTARY SYSTEM						
*Skin	(50)		(50)		(50)	
Squamous cell papilloma					2	(4%)
Basal cell tumor				()	1	(2%)
Basal cell carcinoma	(50)		1	(2%)	(50)	
Subcutaneous tissue	(50)		(50)	(00)	(50)	
Carcinoma, NOS, invasive		(90)	I	(2%)		
Sarcoma, NOS	1	(2%)		(00)		(00)
Fibrosarcoma Fibrosarcoma	Z	(4%)	1	(2%)	1	(2%)
Muyosarcoma					1	(4%)
Lipoma	1	(2.96)			1	(470)
	1	(2)70)				
RESPIRATORY SYSTEM						
#Lung	(50)		(49)		(50)	
Alveolar/bronchiolar adenoma		(07)			1	(2%)
Liposarcoma, metastatic	1	(2%)	2	(4%)	1	(2%)
	<u> </u>					
*Multiple arrang	(50)		(50)		(50)	
I oukamia mananualaan cell	(50)	(990)	(00)	(490)	(50)	(200)
		(20%)		(4270)	10	(30%)
CIRCULATORY SYSTEM						
#Myocardium	(50)		(49)		(50)	
Fibrosarcoma, metastatic	1	(2%)				
Neurofibrosarcoma					1	(2%)
Neurilemoma					1	(2%)
DIGESTIVE SYSTEM						
#Liver	(50)		(49)		(50)	
Neoplastic nodule	1	(2%)	3	(6%)	9	(18%)
Hepatocellular carcinoma			2	(4%)		
#Pancreas	(49)		(48)	(a x)	(49)	(0~)
Acınar ceil adenoma	(10)		1	(2%)	1	(2%)
#Gastric serosa	(49)	(90)	(48)		(50)	
Sarcoma, NOS, metastatic	1 (40)	(2%)	(47)		(50)	
Leiomyosarcoma	(49)	(2%)	(47)		(00)	
JRINARY SYSTEM None		<u></u>				
	<u>,</u>					
NDOCRINE SYSTEM						
NDOCRINE SYSTEM #Anterior nituitary	(50)		(50)		(50)	
ENDOCRINE SYSTEM #Anterior pituitary Carcinoma, NOS	(50) 1	(2%)	(50) 2	(4%)	(50) 1	(2%)

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARFEED STUDY OF DECABROMODIPHENYL OXIDE

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ENDOCRINE SYSTEM (Continued)						<u> </u>
#Adrenal	(50)		(48)		(50)	
Cortical adenoma	4	(8%)	()		2	(4%)
#Adrenal medulla	(50)		(48)		(50)	
Pheochromocytoma	3	(6%)	4	(8%)	2	(4%)
Pheochromocytoma, malignant	1	(2%)				
#Thyroid	(50)		(49)		(50)	
Follicular cell adenoma	1	(2%)				
Follicular cell carcinoma					1	(2%)
C-cell adenoma	9	(18%)	6	(12%)	5	(10%)
C-cell carcinoma	2	(4%)	4	(8%)	3	(6%)
REPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Adenoma NOS	(00)		(00)	(296)	(00)	(4%)
Adenocarcinoma NOS	1	(296)	+		2 9	(196)
Panillary cystadenocarcinoma NOS	1	(2%)			4	(1 // /
Fibroadenoma	94	(48%)	19	(36%)	91	(4904)
*Clitorel aland	24 (50)		10	(00%)	21 (EO)	(4270)
Carcinoma NOS	(00)	(90)	(00)	(60)	(00)	(60)
Adorama NOS	4	(0.70)	3	(170)	3 1	(070) (904)
*Vogina	(50)		(50)	(270)	(50)	(270)
Panillama NOS	(50)		(00)		(50)	$(9\mathbf{a})$
Fibrosarcoma					1	(270) (906)
#Iltorus	(40)		(10)		(50)	(270)
Endometrial stromet nolyn	(487)	(18%)	(197) 10	(20%)	(00)	(790L)
Endometrial stromal earcome	9 1	(296)	10	(2070)	1	(2270) (294)
#Corviv utori	1 (AQ)	(470)	(10)		(50)	(470)
Sallamous cell caroinomo	(43)	(296)	(487)	(994)	(00)	
#Ovory	1 (49)	(470)	1 (49)	(470)	(60)	
Granulosa cell tumor	1	(2%)	(40)		(00)	
NERVOUS SYSTEM			<u></u>			
#Carebrum	(40)		(50)		(40)	
Carcinoma NOS invesivo	(49)		(00)	(996)	(49)	
Astroautoma	1	(996)	1	(270)		
#Brain	1 (40)	(470)	(50)	(470)	(40)	
Carcinoma NOS invesive	(48)	(2%)	(00)		(489) 1	(296)
		(<i>4 /V)</i>				(<i>2</i> / <i>v</i>)
SPECIAL SENSE ORGANS						
-Lymbai gland	(50)		(50)	(09)	(50)	
Carcinoma, NUS			3	(0%)		
MUSCULOSKELETAL SYSTEM						
*Vertebra	(50)		(50)		(50)	
Osteosarcoma	1	(2%)				
BODY CAVITIES						
*Mesentery	(50)		(50)		(50)	
Endometrial stromal sarcoma, invasive	(00)		(00)		1	(2%)
ALL OTHER SYSTEMS						
*Multiple organs	(50)		(50)		(50)	
			/			

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARFEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
ANIMAL DISPOSITION SUMMARY	·····		·····
Animals initially in study	50	50	50
Natural death	7	12	9
Moribund sacrifice	3	5	7
Terminal sacrifice	40	33	34
TUMOR SUMMARY			
Total animals with primary tumors**	49	49	50
Total primary tumors	109	105	118
Total animals with benign tumors	41	35	41
Total benign tumors	75	63	75
Total animals with malignant tumors	28	34	26
Total malignant tumors	32	39	33
Total animals with secondary tumors##	3	4	3
Total secondary tumors	4	4	4
Total animals with tumors uncertain			
benign or malignant	2	3	10
Total uncertain tumors	2	3	10

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARFEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
 Primary tumors: all tumors except secondary tumors
 Number of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

NUMBER	0	27	0 2 9	0 3 8	0 3 0	0 4 4	0 4 7	0 2 0	0 5 0	0 0 4	0 8	0 2 3	0 1 4	0 4 3	0 4 2	0 0 2	0 0 3	0 0 5	006	0 0 7	009	0 1 0	0 1 1	0 1 2	0 1 3
WEEKS ON STUDY	0 0 4	0 7 5	0 7 7	0 8 1	0 8 5	0 9 3	0 9 5	0 9 6	0 9 6	0 9 7	0 9 7	0 9 9	1 0 0	1 0 1	1 0 3	1 0 4									
INTEGUMENTARY SYSTEM	—	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+		+	
Squamous cell papilloma Squamous cell carcinoma Basal cell carcinoma Keratoacanthoma Neurofibrosarcoma		т	Ţ	•	·	•	·	r	x	•	.,	T	•	•	r	x	•	F	x	•	x	•	•		
Subcutaneous tissue Fibroma Fibrosarcoma Neurofibroma Neurofibrosarcoma	+	+ X	+	+	+	+	+	+ X	+	+	N	+	+	+	+	+	+	*	+	+	Ŧ	+	+ X	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+++	++	++	++	++	++	++	++	++	+ +	++	++	++	++	++	++	++	++	++	* *	++	++	+ +	++	+++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes	+++++	+++	++++	++++	++++	++++	+++++	++++	++++	+++++	++++	+ -+	++++	+++	++++	++++	++++	+++	++++	++++	+++	++++	+++++	+++	+++
Squamous cell carcinoma, metastatic Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Х +	-	+	+	+	+	-
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland	+	+	+	+	+	+	+	~	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Sarcoma, NOS Liver Neoplastic nodule	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	X + N	+ N	+ z													
Pancreas Esophagus	+++	++	+++	++	++	++	+++	++	++	++	++	Ŧ	+ +	+++	+++	+ +	++++	+++	+++	+++	++	+++	+ +	+++	++++
Stomach Small intestine Carcinoma, NOS	++	++	++	++	++	++	++	++	++	+++	++	-	++	+++	++	++	++	++	++	++	++	++	++	++	++
URINARY SYSTEM Kidney	+	+	+	+	+	-	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+ +
ENDOCRINE SYSTEM		-	-	-	-	_	-		- -			_	-	_		-		_	+			-			-
Pituitary Adenoma, NOS	+	+	+	+	*	+	*	+	+	+	+	*	+	+	*	+	+	+	+	+	+	+	+	+	+
Adrena: Cortical adenoma Pheochromorytoma	-	+	+	Ŧ	Ŧ	Ŧ	+ x	+	x	Ŧ	Ŧ	-	+ x	≁ x	≁ x	Ť X	≁ x	+ x	Ť X	7	≁ x	≁ x	≁ x	T X	x
Pheochromocytoma, malignant Thyroid	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 .:	±	+	<u>+</u>	+
C-cell adenoma C-cell carcinoma Parathymid	_	1	_	Ŧ	+	+	+	+	+	+	+	+	+	+	X +	÷	+	+	+	+	x +	х +	+	X +	X
Pancreatic islets Islet cell adenoma	ļ÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	-	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷ x	÷	÷	÷
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+	+	+	+	+	+	N	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Testis Interstitial cell tumor Prostate	+++++++++++++++++++++++++++++++++++++++	* ×	* *	* *	+	_	* *	* *	+ x +	* *	+ X +	-	* *	-	* *	* *	* *	* *	* *	* *	+ x +	+ X +	+ x +	* *	* *
Adenoma, NOS Preputial/clitoral gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	X N X	N	N	N	N	N	N	N	N
NERVOUS SYSTEM Brain Astrocytoma	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
BODY CAVITIES Tunica vaginalis Mesothefioma, malignant	+	+	+	+	+	N	+	+	+	*	+	N	+	N	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, invasive Leukemia, mononuclear cell	N	N	N	N X	N X	N X	N X	N	N X	N X	N X	N	N X	N X	N X	N	N	N X							

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: UNTREATED CONTROL

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missexed

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A utolysis
 M : Animal Missing
 B : No Necropsy Performed

TABLE A3.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE RAT	TS:	UNTREATED
			CONTR	OL (Continued))			

ANTMAT		- 01		- 01		O.			Δ	<u>A</u>	71	TAT		0	Δ	· 71	01	ΔT		- 71	- 71			- 71	~	
NUMBER	1 5	1 6	1 7	18	1 9	2 1	22	24	25	26	28	3 1	32	3 3	3 4	3 5	3 6	3 7	3 9	4	4	4 5	4	4 8	4 9	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Squamous cell critinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1
Basal cell carcinoma Keratoacanthoma Neurofibrosarcoma Subcutaneous tissue	+	+	+	+	+	+	+	+	+	x +	+	+	+	+	+	+	+	+	+	х +	+	+	+	+	+	1 2 1 *50
Fibroma Fibrosarcoma Neurofibroma Neurofibrosarcoma			x						x		x	x	X						X			x				3 4 2 2
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+ +	+ +	+++	+++	++	+ +	+ +	+ +	++	+ +	++	++	++	++	++	++	+ +	+++	++	+++	++	++	++	++	 + +	50 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes	+++++	++++	++++	+++++	+ + + +	+++	+ + +	++++	++++	++++	++++	++++	++++	++++	++++	+++	++++	++++	++++	++++	++++	+++++	+++	++++	+++	50 49 50
Squamous cell carcinoma, metastatic Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	47
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DICESTIVE SYSTEM Salivary gland Sarcoma, NOS Liver	+ +	+ +	++	+ +	+ +	+	++	+ +	+ +	+ +	++	++	+ +	+ +	++	+	++	++	+ +	+ +	++	+ +	+	++	+	49 1 50
Neoplastic nodule Hepatocellular carcinoma Bile duct Gallbladder & common bile duct	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	X + N	+ N	+ N	+ N	+ N	1 50 *50
Pancreas Esophagus Stomach Small intestine	++++++	++++	++++	++++	++++	++++	++++	++++	++++	+++++	++++	++++	++++	++++	++++	++++	++++	+++++	++++	++++	++++	++++	++++	++++	++++	49 50 49 49
Carcinoma, NOS Large intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	1 47
URINARY SYSTEM Kidney Urinary bladder	+ +	+++	+++	+++	+++	++++	+ +	++++	+ +	++++	+++	+++	+++	+++	++	+++	+++	+++	+++	+++	+ +	++	+ +	++++	- + +	48 47
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal	* *	++	+++	+++	++	++	+++	+++	+	+++	++	+++	+ x +	* *	+++	+++	* *	+++	+ x +	* *	+++	+	+++	+++	- + +	50 10 49
Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant Thyroid	X X +	x +	X X +	X +	x +	+	x +	x +	x +	x +	x +	+	x +	+	X X +	+	x +	+	X X +	x +	x +	+	X X X X +	x +	X +	4 31 4 50
C-cell adenoma C-cell carcinoma Parathyroid Pancreatic isleta Islet cell adenoma	+ + X	+ +	÷	+ +	+ +	+ +	X + + X + + X	+ +	+ +	+ +	+ +	++	* +	+ +	+ +	+ +	++	+ +	+ +	+ + x	+ +	X + +	+ +	+ +	+ +	6 2 49 49 4
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	*50 1
Instance Interstitial cell tumor Prostate Adenoma NOS	* *	* *	* +	* +	* +	* +	* +	* +	* +	* +	* +	+ X +	+	+ x + x	+ X +	* *	* *	+ X + X + X	* *	* +	* +	* +	* +	* +	+ + +	47 44 47 3
Preputial/clitoral gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	Ñ	N	N	N	Ñ X	N	N X	N	N	N	N	N	*50 4
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2
BODY CAVITIES Tunica vaginalis Mesothelioma, malignant	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, invasive Leukemia, mononuclear cell	N X	N X	N X	N X	N	N X	N	N	N X	N	N	N	N	N	N	N X	N	N X	N X	N X	N	N	N X	N X	N X	*50 1 30

• Animals Necropsied

ANIMAL NUMBER	1 4 4	1 2 7	1 0 7	1 0 1	1 1 9	1 4 5	1 4 7	1 5 0	1 1 8	1 2 9	1 3 3	1 3 9	1 1 5	1 2 2	1 4 0	1 0 5	1 2 4	1 1 1	1 2 0	1 1 7	1 2 8	1 4 2	1 0 8	1 2 5	1 3 6
WEEKS ON STUDY	0 6 8	0 6 9	0 7 1	0 7 2	0 7 7	0 7 7	0 7 7	0 7 9	0 8 2	0 8 2	084	0 8 5	0 8 7	0 8 8	0 8 9	0 9 3	0 9 6	0 9 8	0 9 8	0 9 9	100	1 0 0	1 0 1	1 0 1	1 0 3
INTEGUMENTARY SYSTEM Skin Keratoacanthoma Subcutaneous tiasue Fibroma Neurofibroma Neurofibroma Neurofibrosarcoma	+	+	+	+ +	++	+ + X	++	+ +	+ +	+ + X	++	+ +	+ +	+ +	+ +	+ +	++	+ +	+ + x	++	+ +	+ +	+++	++	+ +
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/foronchiolar adenoma Paraganglioma, metastatic Osteosarcoma, metastatic Trachea	+ x +	++	+ x+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	++	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spieen Sarcoma, NOS Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	++++-	++ + + +	++ ++	++ ++	++ ++	+++++	++ ++	+++++	++ + +	++ ++	++++-	++++-	++++-	+++++	++++	+++++	++ ++	++++++	++ + -	+++++	++ +1	+++++	+++++++
CIRCULATORY SYSTEM Heart Osteosarcoma, metastatic	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Hepatocellular carcinoma	++	++	++	+++	+++	+++	+	+++	+++	++	++	++	+++	++	+ * x	++	+++	+++	++	++	++	+++	+++	+	+
Oséosarcoma, metastatic Bile duct Gallbladder & common bile duct Pancress Esophagus Stomach Small intestine Large intestine	+X++++	+2+++++	X+N+++++	+2+++++	+z++++	+2+++++	+2+++++	+2+++++	+2+++++	+z++++	+2+++++	+z++++	+2+++++	+z++++	+z++++	+ 2 + + + + + + +	+2++++	X+N+++++	+z++++	+z++++	+ z + + + + +	+z++++	+ - + + + + + + + + + + + + + + + + + +	+z++++	+z++++
URINARY SYSTEM Kidney Urinary bladder	+	++	+++	+++	+++	++	++++	+	++	+++	+++	++	++	++	++	+	+++	+++	+++	+++	++	++	+++	+++	 +
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma, malignant Thyroid C-cell adenoma C-cell acerinoma Parathyroid Pancreatic islets Islet cell adenoma	+ + + + +	+ x+ + ++	+ ++	+ + +	++++	+ + + + + + + + + + + + + + + + + + + +	+ + +	+ + + ++x	+ x + + + + + + + + + + + + + + + + + +	+ + +	+ + + + + + + + + + + + + + + + + + + +	+ + x + +	+ + X + + + + + + + + + + + + + + + + +	+ + +	+ + * * + + - +	+ + + + + + + + + + + + + + + + + + + +	+ + x + + + + + + + + + + + + + + + + +	+ + + * * * + + +	+ + x + + + + + + + + + + + + + + + + +	+ + + +	+ x+ + + +	+ x + + + + + + + + + + + + + + + + + +	+ + X + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	++++++++++++++++++++++++++++++++++++
REPRODUCTIVE SYSTEM Mammary gland Fibroadanoma	N	+	+	N	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	N	+	+	+
Testis Interstitial cell tumor Prostate Preputia/clitoral gland Carcinoma, NOS Adenoma, NOS	+x + N	+ + N	+ X + N	+ X + N X	+ x + N	+ X + N	+ + N	+ x - N	+ + N	+ x + n	+ X + N	+ X + N	+ X + N	+ X + N X	+ X + N	+ X + N	+X + N	+ X + N	+X+N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N	+ x + N
NERVOUS SYSTEM Brain Osteosarcoms, invasive Granular cell tumor, NOS Astrocytoma	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*	N	N
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma Muscle Osteosarcoma	N N	N N	N N X	N N	N N	N N	N N	N N	N X N	N N	N N	N N	N N	N N	N N	N N	N N	N X N	N N	N N	N N	N N	N N	N N	N N
BODY CAVITIES Peritoneum Paraganglioma, malignant Tunica vaginalis Monstheimen NOS	N X +	N + N	N + N	N + N	N +XN	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	л + N
Mesontery Osteosarcoma, metastatic	N	••	X																						.

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: LOW DOSE

		_	_																			_		_		
ANIMAL NUMBER	1 3 7	1 0 2	1 0 3	1 0 4	1 0 6	1 0 9	1 1 0	1 1 2	1 1 3	1 1 4	1 1 6	1 2 1	1 2 3	1 2 6	1 3 0	1 3 1	1 3 2	1 3 4	1 3 5	1 3 8	1 4 1	1 4 3	1 4 6	1 4 8	1 4 9	
WEEKS ON STUDY	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TUMORS
INTEGUMENTARY SYSTEM Skin Keratoacanthoma Subcutaneous tissue Fibroma Neurofibroma Neurofibroma Neurofibrosarcoma	+	+ + x	• +	++	+	+++	+ *	++	+	+ +	++	++	+ + x	+++	++	++	* * +	* * +	+ + x	+ + X	+ +	+ +	+ +	* *	 + +	*50 3 *50 4 2 2
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Paraganglioma, metastatic Osteosasrcoma, metastatic Trachea	+	+	+	+	+	++	+	+	+	+	++	+	++	+	* *	+	+	+	++	++	+	+	+	+	+	50 1 1 2 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Sarcoma, NOS Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	++++++	++ + -	+++++	++ ++	++ ++	++ ++	+++++	++ ++	++ ++	++ ++	++ ++	+++++	++ ++	++ + + + +	++++-	++ ++	++ ++	++ ++	++X++	++ ++	++ ++	++ ++	++ ++	50 50 1 50 40
CIRCULATORY SYSTEM Heart Osteosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	, +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Hepatocellular carcinoma Osteosarcoma, metastatic	+	+ +	++	+++	+++	+ + x	+ + x	++++	++ * X	+ + X	+ + + X	+	++++	+ + x	++	++++	+++	+++	+ + X	++	+ +	+++	++++	+++	+++	50 50 7 1 2
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+Z++++	+2+++++	+z++++	+z++++	+z++++	+z++++	+z++++	+z++++	+x++++	+ 2 + + + + + +	+z++++	+2+++++	+ 2 + + + + + +	+N+++++	+++++++	+z++++	+2+++++	+ 2 + + + + + +	+ X + + + + +	+z++++	+z++++	+2+++++	+2+++++	+2+++++	+ 2 + + + + + +	50 *50 50 50 50 50 49
URINARY SYSTEM Kidney Urinary bladder	+	++	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	++++	+++	++	++	+++	+++	+++	+++	+++	++++	+	50 48
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adrenal Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant Thyroid C-cell adenoma C-cell adenoma C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	+ + X +	+ + x + + + + +	+ + X + + + + + +	+ x + x + + + +	+ + x + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + X + ++	+ + x + ++	+ + + + + + + + + + + + + + + + + + + +	+ + + + x x + +	+ x + + + + + + + + + + + + + + + + + +	+x + + x++	+ + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + * * * + +	+ x + x + + + +	+ x + x + + + + + + + + + + + + + + + +	+ + X + + + + + + + + + + + + + + + + +	+ x+ x + ++	+ + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + X + ++	+ x+ +x ++	_ + + x + x + + _	50 1 10 50 1 18 1 1 49 5 2 48 50 1
REPRODUCTIVE SYSTEM Manmary gland Fibroadenoma Testis Interstitial cell tumor Prostate Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	+ +x+z	+ +x+n	+ +x+n x	+ +x+n	N +X+N	+ +x+n	+ +x+n	+x+x+N	+ +x+n	+ +x+N	+ +x+n	+ +x+N	+ +x+xx	+ +x+nx	+x + x + N	+ +x+n	+ +x+x	+x + x + N	+ +x+n	+ +x+n	+ +x+N	+ +x+n	+ +x+n	+ +x+n	+ +x+x	*50 3 50 47 49 *50 4 1
NERVOUS SYSTEM Brain Osteosarcoma, invasive Granular cell tumor, NOS Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	50 1 1 1
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma Muscle Osteosarcoma	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	*50 2 *50 1
BODY CAVITIES Peritoneum Paraganglioma, malignant Tunica vaginalis Mesothelioma, NOS Mesontery Osteosarcoma, metastatic	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	N + N	א + א	*50 1 *50 1 *50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N X	N X	N	N X	N X	N X	N X	N X	N	N X	N	N X	N X	N X	N	N	N	N X	N X	N	N X	N X	N X	N X	N X	*50 33

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

• Animals Necropsied

ANIMAL NUMBER	2 5 0	2 4 3	2 4 9	2 0 6	2 3 1	2 0 2	2 4 8	2 0 3	2 4 4	2 3 0	2 1 6	2 3 5	2 0 1	2 1 3	2 3 6	2 4 6	2 1 4	2 2 2	2 2 8	2 0 4	2 3 3	2 4 7	2 1 7	2 3 2	2 0 5
WEEKS ON STUDY	0 5 6	0 5 7	0 7 6	0 8 2	0 8 6	0 8 7	0 8 7	0 8 8	0 8 9	0 9 1	0 9 3	0 9 3	0 9 5	0 9 5	0 9 5	0 9 5	0 9 7	0 9 7	0 9 7	0 9 8	1 0 2	1 0 2	1 0 3	1 0 3	1 0 4
INTEGUMENTARY SYSTEM Skin Squamous cell carcinoma	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Basal cell carcinoma Keratoacanthoma Subcutaneous tissue Fibroma Fibrosarcoma Neurofibroma	+	+	+	+	* x	+	+ x	+	+	*	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	-	+	+	+	+	+	*	+	+
Sarcoma, NOS, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	X +	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Sarcoma, NOS	++	++	++	++	++	++	++ .	++	++	++	++	++	++	++ .	++*X	++	++	++	++	++	++	++	++	++	+++
	+	+	-	÷	+	+	+	÷		-	÷	+	-	+	-	÷	-	÷	÷	+	+	+	Ŧ	+	+
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+
Salivary gland Sarcoma, NOS Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	-	+	*	+	+	+	+	+	+
Liver Neoplastic nodule Hepatocellular carcinoma	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	-	+	+	+	+ X X	+	+	+	+
Bile duct Gallbladder & common bile duct Pancreas	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	Ň +	+ N +	+ N + 3	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +
Achar cell adenoma Esophagus Stomach		+++	++++	++++	;+ + +	++++	+ +	++++	++++	++++	++++	++++	+++++	++++	++++	+++	Ξ	+++	× + + + + + + + + + + + + + + + + + + +	+++++	× + + + +	++++	++++	++++	++
Leiomyoma Large intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ ,+	_	+	+	+	+	+	+	+	+
URINARY SYSTEM Kidney Custadenome NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma, metastatic Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	÷	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	*	*	+	+	*	+	+	+
Adrenal Cortical adenoma Pheochromocytoma	+	+	+	+	+	+ x	+	+ x	+ x	+ X	+	+ x	+	+	+	+	+	+ X	+	+	+	+ x	+	+	+
Pheochromocytoma, malignant Thyroid C-call adenoma	+	+	+	+	+	+	Х +	+	+	+	+	+	¥ +	+	+	+	-	+	+	+	+	+	+	+	x + x
C-cell carcinoma Parathyroid Adenoma, NOS	+	+	X +	+	+	+	+	+	+	+	+	+	+	-	+	+	-	+	+	+	+	+	+	+	+
Pancreatic islets Islet cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Mammary gland Testis	‡	N +	+++	++;	+++	++;	+++	+ +	++;	+ + *	N +	+++	+++	++;	+++	+ + +	+++	+++	N +	+++	+ + +	++;	N t	++	+ +
Prostate Adenoma, NOS	+	* *	*	* +	* +	A +	A +	* +	A +	A +	A +	х +	A +	A +	A +	* +	A +	* +	А +	А +	* *	* +	х + Х	А +	^ +
Carcinoma, NOS Adenoma, NOS Enddiwnia	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Mesothelioma, invasive																	•				••				-
Brain SPECIAL SENSE ORGANS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+
Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Mediastinum Sarcoma, NOS, invasive	N	N	N	N	N	N	N	N	N	Ń	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N
Tunica vaginalis Mesothelioma, NOS Mesothelioma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+
Mesentery Sarcoma, NOS, invasive	N	N	N	N 	N 	.N	N	IN .	N 	N	N	N	N	N	X	N	N	N	N	N	N	N	n		-
	1	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ņ	Ņ	Ņ	Ņ	Ŋ	Ñ
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell Adipose tissue Pheochromocytoma, invasive	N		X		x	X	x	X	x	x		X	x	x		X	X			^	•	л	•	x	^

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: HIGH DOSE
TABLE A3.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	RATS:	HIGH	DOSE
			(C	ontinued)					

ANIMAL NUMBER	2 0 7	2 0 8	2 0 9	2 1 0	2 1 1	2 1 2	2 1 5	2 1 8	2 1 9	2 2 0	2 2 1	223	224	2 2 5	226	2 2 7	2 2 9	2 3 4	2 3 7	2 3 8	2 3 9	2 4 0	2 4 1	2 4 2	2 4 5	TOTAL
WEEKSON STUDY	1 0 4	1 0 4	TISSUES TUMORS																							
INTEGUMENTARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
Squamous cell carcinoma Basai cell carcinoma Keratoacanthoma Subcutaneous tissue Fibroma	+	+	+	+	х +	+	+	+	+	+	+	+	+	+	+	x +	+	+	+	+	+	+	+	+	+	1 1 *50 3
Fibrosarcoma Neurofibroma															x											1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Sarcoma, NOS, metastatic Trachaa	+	+	+	+	+	+	+	++	+	+	++	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	49 3 1 49
HEMATOPOIETIC SYSTEM Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+	50
Spieen Sarcoma, NOS Lymph nodes	+++++++++++++++++++++++++++++++++++++++	- +	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	49 1 49
CIRCULATORY SYSTEM		-	+		+			-		+		+	+		+	+	+	+	+	+		+	+	+	-	44
DIGESTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	T	+	+	+	+	+	+	-	+	+	+	_	4.9
Salivary gland Sarcoma, NOS Fibrosarcoma	+	+	+	x,	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	4.8
Liver Neoplastic nodule Hepatocellular carcinoma	x	+	+	+	+	x	x	x	x	+	•	x	+	x	x	ž	x	ž	+	+	+	ž	-	x	+	15
Bile duct Gallbladder & common bile duct Pancreas	+ N +	ň N	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N + ;	+N + 1	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+N +	+ N +	+ N +	* *	+ X +	49 *50 49
Acinar cell adenoma Esophagus Stomach	+ +	+ +	+++	++	+++	+++	+++	++	+++	+++	+++	X + +	X + +	++	++	++	+++	+++	+++	+++	+++	+++	+++	+++	++	4 49 49
Small intestine Leiomyoma Large intestine	+	-	++	++	++	++	+	++	+	++	+	++	+	+	++	++	++	++	+ +	++	++	* *	++	++	++	48 1 48
URINARY SYSTEM Kidney	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Cystadenoma, NOS Pheochromocytoma, metastatic Urinary bladder	+	-	+	+	+	+	+	х +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 1 49
ENDOCRINE SYSTEM Pituitary Adaptors NOS	+	+	+	+	+ *	+ *	+	+	+	+ *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ *	50
Adrenal Cortical adenoma	+	-	+ v	+	+	÷ v	+	+	+ v	÷ *	+	+	+ v	÷ *	+	+	+	+	*	+ v	+ v	+	+	+	÷	49
Pheochromocytoma Pheochromocytoma, malignant Thyroid	л +	+	*	X +	л +	л +	+	+	+	*	+	X +	*	+	+	+	+	+	+	л +	•	+	+	+	^ +	49
C-cell carcinoma Parathyroid	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	X +	2 47
Adenoma, NOS Pancreatic islets Islet cell adenoma	+	~	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
REPRODUCTIVE SYSTEM Mammary gland	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	<u>+</u>	+	++	+	++++	+	++++	*50
Interstitial cell tumor Prostate	X +	-	× +	× +	+	× +	× +	× +	Х +	× +	, +	× +	47													
Preputial/clitoral gland Carcinoma, NOS	Ñ X	N	N	N	N	N X	N	N	N	N	N	N	N	Ñ	N	N	N	N	N	N v	N	N	N	N	N V	*50
Epididymis Mesothelioma, invasive	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	Ñ	N	N	N	N	Ñ	*50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	*50 1
BODY CAVITIES Mediastinum Sercoma, NOS, invesive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
Tunica vaginalis Mesothelioma, NOS Mesothelioma melignant	+	N	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 1
Mesentery Sarcoma, NOS, invasive	N	N	N	N	N	N	N	N	N	N	Ñ	N	N	N	N	N	N	N	N	N	N	N ·	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N X	N X	N X	N X	N	N	N	N X	N X	N X	N	N X	N	N X	N X	N X	N X	N	N X	N X	N X	N X	N X	N	N X	*50 35
Adipose tissue Pheochromocytoma, invasive	42								_																_	1

*Animals Necropsied

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF	FEMALE RATS IN THE
TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE:	UNTREATED CONTROL

ANIMAL NUMBER	0 5 5	9 4	6 4	0 9 3	0 6 1	0 8 2	0 9 5	0 5 3	0 9 7	0 7 1	0 5 1	0 5 2	0 5 4	0 5 6	0 5 7	0 5 8	0 5 9	0 6 0	0 6 2	0 6 3	0 6 5	0 6 6	0 6 7	0 6 8	0 6 9
WEEKS ON STUDY	0 7 4	0 8 1	0 8 4	0 9 2	0 9 6	0 9 7	0 9 7	0 9 9	0 9 9	1 0 3	1 0 4														
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibroarcoma Lipoma	+	, x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Fibrosarcoma, metastatic Trachea	++++	++	++	++	++	++	+ +	++	++	+	+	++	++	++	++	+	++	+	++	++	++	++	++	++	+++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++	+++++	+++++	++++	+++-	+ - + +	+++-	+++-	++++	+++++	++++	++++	++++	+++++	++++	++++	+++++	+++++	++++	++++	++++	+++++	++++++	+++++	- ++++ +
CIRCULATORY SYSTEM Heart Fibrosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplestic nodule	+	+++	+++	+++	+++	+++	+++	+++	+++	++++	++	+++	++	+++	++	+++	+++	+++	+++	+++	+++	+	++++	++	++
Callbladder & common bile duct Pancreas Esophagus Stomach	+N + + +	+ z + + +	+ z + + +	+2+++	+ 2 + + + +	+N +	+ z + + +	+ N + + +	+ 2 + + + +	+ 2 + + +	+2+++	+2+++	+z+++	+ z + + +	+ z + + +	+ N + + +	+ 2 + + +	+z+++	+ Z + + +	+2+++	+ N + + +	+ z + + +	+ 2 + + +	+ z + + +	+ z + + +
Sarcoma, NOS, metastatic Small intestine Leiomyosarcoma Large intestine	+++	++	++	++	++	- +	+ +	++	+ -	+ +	++	++	++	++	++	++	++	+ +	+ +	+ +	++	++	++	++	+ +
URINARY SYSTEM Kidney Urinary bladder	+	++	+++	+++	+++	+	++	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++	++	+++	++++	+++	 +
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS	+	+	*	+	+	+ X	+	+	+	+	+	+ X	+ x	+ x	+	+	+ x	+ X	+	+ x	+ x	+	+ x	+ x	+
Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant	x	+	-	•	•	•	•	•	•	•	•	-	x	•	•	•	x	•	•	•	x	•	•	•	x
Folicular cell adenoma C-cell adenoma C-cell carcinoma Parathyroid	+	+	++	++	++	++	++	++	++	++	++	++	* *	++	++	+ X +	++	+ X +	+ X +	++	+ x +	++	+ X +	+ X +	++
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+
Papillary cystadenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland Carcinoma, NOS	X N	N	X N	N	N	N	X N	X N	N	N	N	X N X	N	X N	N	X N	N	X N	X N X	X N	N	N X	N	N	N
Oterus Squamous cell carcinoma Endometrial stromal polyp Endometrial stromal sarcoma	+	+	+	+	+	-	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+ X	+ X
Granulosa cell tumor	1	+	+	+	+	-	+	Ŧ	+	Ŧ	+	Ŧ	+	+	+	+	Ŧ	+	Ť	Ŧ	+	Ŧ	x	+	Ŧ
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	n
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N X	N	N	N X	N X	N	N X	N	N	N X	N	N X	N	N	N X	N	N	N	N X	N X	N	N	N	N	N

+ : Tissue Examined Microscopically
 - : Required Tissue Not Examined Microscopically
 X : Tumor Incidence
 N : Necropsy, No Autolysis, No Microscopic Examination
 S : Animal Missexed

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

TABLE A4.	INDIVIDUAL ANIMAL	TUMOR	PATHOLOGY	OF	FEMALE	RATS:	UNTREATED
		CONTR	OL (Continued)			

ANIMAL NUMBER	0 7 0	0 7 2	0 7 3	0 7 4	0 7 5	0 7 6	0 7 7	0 7 8	0 7 9	0 8 0	0 8 1	0 8 3	0 8 4	0 8 5	0 8 6	0 8 7	0 8 8	0 8 9	0 9 0	0 9 1	0 9 2	0 9 6	0 9 8	0 9 9	1 0 0	
WEEKS ON STUDY	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma Lipoma	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+ x	N	+	+	+ X	+	+	+	*50 1 2 1
RESPIRATORY SYSTEM Lungs and bronchi Fibrosarcoma, metastatic Trachea	+++	+	+	++	++	++	++	+	+	++	+ +	++	++	+	++	+	+	++	+	++	++	+ x +	+ +	+	+++	50 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	++++	++++++++	+++ -	+++++	++++	+++++	++++	+++++	++++	++++	+++ -	+++ -	+++++	++++	+++++	+++-	++++	++++	++++	+++++	+++ -	+++++	++++	+++++	50 49 50 42
CIRCULATORY SYSTEM Heart Fibrosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	50 1
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct	+++	+++	+++	++ +2	++ +>	++ +>	++ +2	++X+X	++ +>	++ +>	+++	++ +2	++ +2	++ +>	++++	+++	++ +2	+++	++ +2	++++	+++	++ +2	+++	+++	++ +2	50 50 1 50
Sancreas Esophagus Stomach Sarcoma, NOS, metastatic Small intestine		2+++ + +	x+++x+	(++++ +++	x + + + + +	· + + + + + + + + + + + + + + + + + + +	x+++ +	:+++ +	X + + + + +	· + + + + +	(+++ + +	· + + + +	r + + + + +	x+++ +	2+++ + +	x+++ +	· + + + +	2+++ + +	x +++ + +	(+++ +++++++++++++++++++++++++++++++++	(+++ + +	2+++ + +	(+++ + +	<u>1</u> +++ +	2+++ +	49 50 49 1 49
URINARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Urinary bladder	ļ.	+	+	+	÷	+	+	÷	+	÷	+	+	+	+	÷	+	+	+	÷	+	+	÷	+	+	+	49
Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Phonebramoutoma	+ X +	+ X +	+	+ X +	+ + v	+ X +	+ X +	+	+	+	+	+ X +	+ X +	+ X +	+ + x	+ X +	+ X +	+	+ X +	+ X +	+	+	+ X +	+	+ X +	50 1 24 50 4
Pheochromocytoma, malignant Pheochromocytoma, malignant Thyroid Follicular cell adenoma C-cell adenoma C-cell carcinoma Beasthemaid	+	+	+	+	+ X	+	+	+	+	+	X + X	+ x	+	+	+	+ X	+ X	+	+	+	+	+	+	+	+	1 50 1 9 2
REPRODUCTIVE SYSTEM		+	+	+	+		+	+		+	+	+	+	+		+	- +	+	+	+	+		+	+	 +	*50
Adenocarcinoma, NOS Papillary cystadenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland Carcinoma, NOS	N	X N	X N	X N	N	X N	N	N	X N	N	N	X N	X N	N	N	X N	X N	X N	X N	X N	N	N	X N X	X N	X N	1 24 *50 4
Uterus Squamous cell carcinoma Endometrial stromal polyp Endometrial stromal sarcoma Ovary Grapulosa cell tumor	+	++	+ +	++	+	++	++	+ x +	++	+ X +	++	+ X +	+	++	+ X +	+	+	++	+ x +	+	+ x +	++	+	+	+ +	49 1 9 1 48
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	-	+	+	+	+	+	+	+	+	49 1 1
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N X	N X	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N X	N	N	N	N	N	*50 14

* Animals Necropsied

ANIMAL NUMBER	1 8 4	1 6 6	1 6 4	1 8 9	1 5 1	1 7 3	1 9 8	1 6 3	1 6 5	1 6 0	1 7 6	1 7 2	1 8 6	1 8 8	1 9 9	1 8 7	1 5 6	1 5 2	1 5 3	1 5 4	1 5 5	1 5 7	1 5 8	1 5 9	1 6 1
WEEKSON STUDY	0 4 9	0 6 6	0 7 2	0 8 0	0 8 6	0 8 6	0 9 1	0 9 2	0 9 4	0 9 5	0 9 7	0 9 9	0 9 9	1 0 0	1 0 0	1 0 2	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Basal cell carcinoma Subcutaneous tissue Carcinoma, NOS, invasive Fibrosarcoma	++++	+ + X	+ +	++	+ +	+ +	++	++	+ +	+ +	+ + X	+ +	+ +	++	+ +	+ +	+ +	+ +	++	+ +	++	++	+ +	+ +	 + +
RESPIRATORY SYSTEM Lungs and bronchi Liposarcoma, metastatic Trachea	+++	++	++	++	++	++	++	++	+ +	-	++	++	++	++	+ +	++	++	++	++	* *	++	++	++	++	- + +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++-	++++	++++	+ - + + +	+++-	++++	+++-	++++	++	+++-	++++	++++	++++	++++	++++	+ - + -	++++	+++++	++++	++++	+++++	++++	++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Hepatocellular carcinoma	+++	++	+++	+++	+++	+++	+++	+++	+++	Ŧ	+++	+++	+++	+++	+++	+++	+	++	+ +	+++	++++	+++	++++	++++	++
Bile duct Gallbladder & common bile duct Pancreas Acinar cell adenoma	+ N +	+ N +	+ N +	+ N +	+ N -	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	N -	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +
Esophagus Stomach Small intestine Large intestine	+++++++	++++	++++	++++	++	++++	++++	++++	++++	+	++++	++++	++++	++++	++++	++++	- - +	+ + + +	++++	++++	++++	++++	++++	++++	++++
URINARY SYSTEM Kidney Urinary bladder	+	++	+++	++	-	+++	++	++++	+++	++	+++	+++	+++	+++	+++	++	+	+++	+++	+++	++++	+++	+++	+++	- + +
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS	+	+	+	+	+ x	+ x	+ X	+	+ x	+	+	+	+	+ X	*	+	+ x	+ x	+	+ x	+ X	+	*	+ x	+
Adrenal Pheochromocytoma Thyroid C-cell adenoma C coll convinceme	+	+	++	+	- +	+	+ X +	+	+	+	+	+	+	+	+	+	- + v	++	+ + X	+ X +	+	+	+	+	+ + v
Parathyroid	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷
Mammary gland Adenoma, NOS Fibroadenoma	+	+	+	+	+	+ X	+ X	+ x	+ X	+	+	+ X	+	+	+	+	+	+ x	+	+ X	+ X X	+ X	+	+ X	+
Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	X	N	N	N	N	N	Ń	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Squamous cell carcinoma Endometrial stromal polyp Ovary	+	+	+	+	-	т Х +	+	т Х +	+	+	+	т Х +	+	+	+	+	-	+	+	+	+	+	+	т Х +	+
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	*	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N X	N X	N X	N X	N X	N	N X	N	N X	N	N X	N	N X	N	N X	N X

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: LOW DOSE

ANIMAL NUMBER	1 6 2	1 6 7	1 6 8	1 6 9	1 7 0	1 7 1	1 7 4	1 7 5	1 7 7	1 7 8	1 7 9	1 8 0	1 8 1	1 8 2	1 8 3	1 8 5	1 9 0	1 9 1	1 9 2	1 9 3	1 9 4	1 9 5	1 9 6	1 9 7	2 0 0	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Basal cell carcinoma Subcutaneous tissue Carcinoma, NOS, invasive Fibrosarcoma	+	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ X +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	*50 1 *50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Liposarcoma, metastatic Trachea	+	+ +	+ +	++	+ +	+ +	+	+	+ +	++	+	+ +	+	+	++	+ +	+ +	+ x +	+	++	+ +	++	+	+ +	+	49 2 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++	++++	++++	++++	+++++	+++	++++	+++++	++++	++++	++++	+++++	+++++	+ + + +	+++++	++++	+++++	++++	+ + + + + +	+++-	+++++	+++++	+++++	+++++	+++++	50 48 49 42
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Hepatocellular carcinoma Bile duct Callbledder & common bile duct	++ +2	++ +2	++++>	+++	++ +2	++X+N	+++	++ +2	+ + + ×	++ +2	++ +2	++ +2	+++	++x + N	+++	++x+	++ X+N	+++	+++	++ + + N	++ ++	++++2	++ +2	++ X+N	++ ++ +2	49 49 3 2 49 *50
Acinar cell adenoma Esophagus Stomach Small intestine	++++	1+ ++++	2+ ++++	1+ ++++	<u>+</u> ++++	5+ ++++	1 + + + + + + + + + + + + + + + + + + +	1 + +++	+ +++	0+ ++++	S+ ++++	++++	x+ ++++	x+x+++	2+ ++++	(+ ++++	<u>+</u> ++++	2+ ++++	5+ ++++	S + +++	:+ ++++	<u>+</u> ++++	++++	1+ ++++	(+ ++++	48 1 48 48 48 47
Large Intestine URINARY SYSTEM Kidney Urinary bladder	+ + +	+++	+++	+++	+++	+++	++++	+++	+++	++++	+++	+++	+++	+ + +	+++	+++	+++	+++	+++	++++	+ ++	++++	++++	+++	+ - + +	49 49 48
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	+	+	+ v	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ *	+	+	50 2 22
Adrenal Pheochromocytoma Thyroid C-cell adenoma	+ +	+ *	+ +	+ +	4 +	+ +	+ + X	++	+ +	+ + X	+ +	4 + +	+ +	+ +	+ * X	+ +	+ +	+ +	+ +	+ +	A + X + X	+ +	+ +	+ x + x	+ +	48 4 49 6
Parathyroid	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	49
Mammary gland Adenoma, NOS Fibroadenoma Preputial/clitoral gland Carcinoma, NOS	+ N	+ X N	+ N	+ X N	+ N	+ N	+ N	+ X N	+ N	+ N	+ N	+ X N	+ N	+ N	+ X N	+ N	+ N	+ X N	+ N	+ X N	+ N	+ N	+ X N	+ N	+ N	*50 1 18 *50 3
Adenoma, NOS Uterus Squamous cell carcinoma Endometrial stromal polyp Ovary	+ X +	+	++	+	+	+	+	+ x +	+	+	+ x +	+ x +	+	+ x +	+	+	++	+	X + +	* * +	+	+ X +	+	+	++	1 49 1 10 48
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	* x	N	N	N	N	*50 3
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N X	N	N	N X	N X	N	N	N	N X	N X	N	N X	N	N X	N X	N	N	N X	N	N	N	N X	N	N	*50 21

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

* Animals Necropsied

	1 5	Å	- 61	- 01	- 21		- 21	- 201	- 61				-		- 21	~~~~				- 81					
ANIMAL NUMBER	2 5 3	2 9 1	2 9 7	2 8 2	2 5 4	2 6 8	2 9 0	2 6 6	2 7 5	2 8 9	2 8 4	2 7 3	2 5 1	2 7 8	2 7 9	2 6 0	2 5 2	2 5 5	2 5 6	2 5 7	2 5 8	2 5 9	2 6 1	2 6 2	2 6 3
WEEKS ON STUDY	0 7 2	0 7 5	0 7 5	0 7 6	0 7 8	0 8 6	0 8 7	0 9 3	0 9 4	0 9 4	0 9 6	0 9 7	0 9 8	099	0 9 9	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	104	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Basal cell tumor	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+
Subcutaneous tissue Fibrosarcoma Fibrosarcoma, invasive Myxosarcoma	+ X	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Fibrosarcoma, metastatic Trachea	+ X +	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	++	+	++	+++	++	+	++	++	++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++	++++	+++-	+++-	++++	++++	+++-	+++-	+++-	+++-	++++	++++	++++	++++	++++	++++	+++++	++++	+++-	++++	++++++	+++++	+++++	++++++	++++
CIRCULATORY SYSTEM Heart Neurofibrosarcoma Neurilemoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct	++++	+++	++++>	+++	++ +>	++ +>	++x+x	++++>	++++>	++++	++++N	++ +2	+ + X + N	+++	++++2	++++	++++>	++ +>	++ +>	++++>	++X+N	++ +2	++X+X	++ +2	++ +>
Pancreas Acinar cell adenoma Esophagus Stomach Small intertina	-+++	R+ +++	1++++	S+ +++	1+ +++	X+ +++	1 + +++	2+ +++	2+ +++	x+ +++	2+ +++	5+ +++	1+ +++	1++++	1 + + + + +	1++++	<u>z</u> + + + + + + + + + + + + + + + + + + +	2+ +++	X+X+++	<u>x</u> + + + + + + + + + + + + + + + + + + +	2+ +++	5+ +++	5+ +++	5+ +++	I + + + +
URINARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +
Urinary bladder ENDOCRINE SYSTEM		÷	÷	+	+	÷	+	÷	+	÷	+	÷	÷	÷	<u>-</u>	+	÷	+	÷	÷	+	+	+	+	÷ _
Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma	+ +	+	+	+ X +	* +	+	+	+	+	++	++	+ X +	+	++	++	+ X +	+ X +	++	+ + x	+ X +	+	+	+ X +	+	+ X +
Pheochromocytoma Thyroid Follicular cell carcinoma C-cell adenoma	+	+	+	+	+	+	+	+	+	+	Х +	+	+ X	+ x	+	+	+	+	+	+	+	+	+	+	+
Parathyroid	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+	+	+	+
Mammary gland Adenocarcinoma, NOS Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+
Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	N	N	N	N	N	Ň	N	N	Ň	N	Ň	N	N	N	Ň	Ň	N	Ň	N	N X	N	N	N	N	Ň
Vagina Papilloma, NOS Fibrosarcoma Uterus	N X +	N +	N +	N +	N +	N +	N +	м +	N +	N +	N +	N +	N +	м +	N +	N +									
Endometrial stromal polyp Endometrial stromal sarcoma Ovary	X +	+	+	х +	+	+	+	+	+	+	X +	+	+	+	X +	+	+	+	+	+	+	+	+	X +	+
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+
BODY CAVITIES Mesentery Endometrial stromal sarcoma, invasive	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS Leukemia, mononuclear cell	N	N X	N X	N X	N	N	N X	N	N X	N X	N	N X	N	N X	N	N	N	N	N X	N X	N	N	N	N X	N
									_								_	-					_		_

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THETWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: HIGH DOSE

ANIMAL NUMBER	2 6 4	2 6 5	2 6 7	2 6 9	2 7 0	2 7 1	2 7 2	2 7 4	2 7 6	2 7 7	2 8 0	2 8 1	2 8 3	2 8 5	2 8 6	2 8 7	2 8 8	2 9 2	2 9 3	2 9 4	2 9 5	2 9 6	2 9 8	2 9 9	3 0 0	TOTAL
WEEKSON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Basal cell tumor Subcutaneous tissue Fibrosarcoma Fibrosarcoma, invasive Myxosarcoma	+	+	+	+	+	* * +	+	+	+	+	+	+	+	+	+	+	+ *	+	+	+	+	+	+	+	 * +	*50 2 1 *50 1 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Fibrosarcoma, metastatic Trachea	+	+	* *	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	50 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++	++++	++++++	++++	++++	+++++	+++++	++++	+++++	++++	++++	++++	++++	++++	++++	++++	++++	+++ -	+++-	+++-	+++++	++++	+++++	++++	++++	50 50 50 38
CIRCULATORY SYSTEM Heart Neurofibrosarcoma Neurilemoma	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	* x	+	+	+	+	+	+	+	+	+	+	50 1 1
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Acinar cell adenoma Esophagus Stomach Small intestine Large intestine	++X+N+ ++++	++ +z+ +++1	++ +z+ ++++	++ +Z+ ++++	++X+X+ ++++	++ +Z+ ++++	++ +Z+ ++++	++X+X+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +z+ ++++	++X+X+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +X+ ++++	++ +Z+ ++++	++x+x+ ++++	50 50 9 50 *50 *50 1 50 50 50 49				
URINARY SYSTEM Kidney Urinary bladder	++++	+++	++	+++	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++	+++	+++	+++	++++	++	+++	+++	 + +	50 49
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular cell carcinoma C-cell adenoma C-cell acerinoma Parathyroid	+ X + +	++++	+ X + + +	+ X + + +	+ x + + +	++++	+ x+ + +	+++++	+ x + x + +	+ + + + x +	+ + + x	+ + + +	+++++	+ x + + -	+ X+ + +	+ + +	+ + + +	+ + + +	+++++	+ x + + x +	+ X + +	+ x+x+ + +	+ X + + +	+ + + + +	+ + + * * * *	50 1 24 50 2 2 50 1 5 3 47
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS Fibroadenoma Preputial/citoral gland Carcinoma, NOS Adenoma, NOS	+ X N	+ N X	+ X N	* x N	+ X N	+ N	+ N	+ X N	+ X N	+ N	+ X N	+ N	+ X N	+ N	+ X N	+ N	+ X N X	+ XXN XNX	+ N	+ N	+ N	+ X N	+ X N	+ N	+ X N	*50 2 2 21 *50 3 1
Vagina Papilloma, NOS Fibrosarcoma Uterus Endometrial stromal polyp Endometrial stromal sarcoma	N +	N +	N + X	N +	N X + X	N +	N +	N +	N +	N +	N +	N +	N + X	N +	N +	N +	N + X	N +	N + X	N + X	N +	N +	N + X	N +	N +	+50 1 1 50 11 1
Ovary NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	++	+++	+	+	+ +	50 49 1
BODY CAVITIES Mesentery Endometrial stromal sarcoma, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS Leukemia, mononuclear cell	N	N	N X	N	N	N	N X	N X	N	N	N X	N	N	N	N X	N	N	N	N	N X	N X	N	N X	N	N	*50 1 18

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

*Animals Necropsied

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
INTEGUMENTARY SYSTEM						<u> </u>
*Skin	(50)		(50)		(50)	
Sarcoma, NOS			1	(2%)	(11)	
Fibrosarcoma	1	(2%)				
*Subcutaneous tissue	(50)		(50)		(50)	
Fibroma	(1		3	(6%)	(,	
Fibrosarcoma	6	(12%)	8	(16%)	10	(20%)
RESPIRATORY SYSTEM						<u>, , , , , , , , , , , , , , , , , , , </u>
#Lung	(50)		(50)		(50)	
Hepatocellular carcinoma, metastatic	2	(4%)	1	(2.96)	1	(2%)
Alveolar/bronchiolar adenoma		(8%)	1	(20)	1	(20)
Alveolar/bronchiolar carcinoma	2	(496)	4	(896)		(39%)
Fibrosarcoma metastatio	1	(9%)		(10)	1	(270)
Rhabdomyosarcoma, metastatic	1	(270)	4	(***70)	1	(2%) (2%)
HEMATOPOIETIC SYSTEM					·····	
*Multiple organs	(50)		(50)		(50)	
Malignant lymphoma undiffer type	(00)		1	(296)	(00)	
Malignant lymphoma, lymphocytic type	1	(296)	2	(196)	1	(296)
Malignant lymphoma, histiocytic type	-	(270)	4	(4,10)	1	(196)
Malignant lymphoma, mixed type	1	(906)	1	(90%)	2	(90)
Granuloartia laukamia	1	(270)	1	(270)	1	(270)
#Salaan	(40)		(50)		(FO)	(4%)
# Spieen	(49)		(00)	(00)	(60)	,
Malignant lymphoma, undiffer type			1	(2%)		
Malignant lympnoma, mixed type	(20)		1	(2%)	(10)	
#Axillary lymph node	(50)		(49)	(00)	(49)	
riorosarcoma, metastatic	(50)		1	(2%)	(10)	
# Brachal lymph node	(50)	(90)	(49)		(49)	
#Time	(50)	(2%)	(50)		(50)	
	(50)		(50)		(50)	(00)
Kupiter cell sarcoma	(47)		(50)		1	(2%)
#Jejunum Malignant lymphoma, mixed type	(47)		(50)	(2%)	(49)	
*Subautaneous tissue	(50)		(50)		(50)	
Homonoismo	(00)		(00)	(90)	(00)	
nemangioma #S-loop	(40)		1	(2%)	/**	
#opteen	(49)	(07)	(50)	(0~)	(50)	
nemangiosarcoma		(2%)	1	(2%)		
# Mesenteric I. node	(50)		(49)	(0~)	(49)	
riemangioma #Linner			1	(2%)		
#Liver	(50)		(50)	((50)	
Hemangloma			2	(4%)		

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEARFEED STUDY OF DECABROMODIPHENYL OXIDE

Hemangioma Hemangiosarcoma

#Glandular stomach

Hepatocellular adenoma Hepatocellular carcinoma

Adenomatous polyp, NOS

DIGESTIVE SYSTEM #Liver

1 (2%)

4 (8%) 5 (10%)

(50)

(49)

1 (2%)

12 (24%) 14 (28%)

(50)

(50)

2 (4%)

12 (24%) 8 (16%)

1 (2%)

(50)

(50)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM (Continued)			
#Forestomach	(49)	(50)	(50)
Squamous cell papilloma	(1 m)	(20)	1 (2%)
#Duodenum	(47)	(50)	(49)
Adenomatous polyp, NOS		1 (2%)	
URINARY SYSTEM None			
ENDOCRINE SYSTEM			
#Adrenal	(49)	(50)	(50)
Cortical adenoma	1 (2%)	2 (4%)	1 (2%)
#Adrenal/capsule	(49)	(50)	(50)
Adenoma, NOS			2 (4%)
#Adrenal medulla	(49)	(50)	(50)
Pheochromocytoma	1 (2%)	2 (4%)	1 (2%)
Pheochromocytoma, malignant			1 (2%)
#Thyroid	(50)	(50)	(50)
Follicular cell adenoma		3 (6%)	3 (6%)
Follicular cell carcinoma		1 (2%)	i k
#Pancreatic islets	(48)	(48)	(47)
Islet cell carcinoma		1 (2%)	• •
REPRODUCTIVE SYSTEM			
*Proputial gland	(50)	(50)	(50)
Carcinoma NOS	(30)	(30)	(30)
#Testic	(50)	(50)	(19)
Interstitiel cell tumor	(50)	(30)	9 (49)
			2 (**70)
NERVOUS SYSTEM None			
SPECIAL SENSE ORGANS			
*Harderian gland	(50)	(50)	(50)
Adenocarcinoma, NOS	1 (2%)		(,
Papillary adenocarcinoma	_ (3.47)	3 (6%)	
USCULOSKELETAL SYSTEM			
*Muscle of back	(50)	(50)	(50)
Rhabdomvosarcoma	(/	·/	1 (2%)
*Muscle of leg	(50)	(50)	(50)
Rhabdomyosarcoma		()	1 (2%)
BODY CAVITIES			
*Mediastinum	(50)	(50)	(50)
Fibrosarcoma, metastatic	(00)		1 (2%)
ALL OTHER SYSTEMS			
*Multiple organs	(50)	(50)	(50)
Hepatocellular carcinoma, metastatic			1 (296)
	1 (29)		1 (2%)
Fibrosarcoma, metastatic	1 (2.70)		
Fibrosarcoma, metastatic Base of tail	1 (2%)		1 (1)
Fibrosarcoma, metastatic Base of tail Fibroma	1		

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

Decabromodiphenyl Oxide, NTP TR 309

.

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
ANIMAL DISPOSITION SUMMARY			
Animals initially in study	50	50	50
Natural death	29	14	19
Moribund sacrifice	3	11	7
Terminal sacrifice	18	25	24
TUMOR SUMMARY	- <u>·····</u>		
Total animals with primary tumors**	21	37	36
Total primary tumors	30	70	59
Total animals with benign tumors	8	20	18
Total benign tumors	11	28	27
Total animals with malignant tumors	17	31	28
Total malignant tumors	19	42	32
Total animals with secondary tumors##	4	3	5
Total secondary tumors	5	4	6

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site
 ## Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE B2.	SUMMARY	OF	THE I	NCIDEN	ICE	OF	NEOP	LASMS	3 IN	FEMA	LE	MICE	IN	THE	TWO	-YEAR
			FEED	STUDY	OF	DE	CABRO	DMODI	PH	ENYL C)XI	DE				

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
INTEGUMENTARY SYSTEM						
*Subcutaneous tissue	(50)		(50)		(50)	
Fibrosarcoma			2	(4%)	1	(2%)
Rhabdomyosarcoma	1	(2%)	_			
Neurofibrosarcoma	1	(2%)	1	(2%)		
RESPIRATORY SYSTEM						
#Lung	(50)		(50)		(50)	
Adenocarcinoma, NOS, metastatic	1	(2%)			2	(4%)
Hepatocellular carcinoma, metastatic	1	(2%)				
Alveolar/bronchiolar adenoma	4	(8%)	2	(4%)	2	(4%)
Alveolar/bronchiolar carcinoma	2	(4%)	2	(4%)	2	(4%)
Papillary adenocarcinoma, metastatic	1	(2%)				
Granulosa cell carcinoma, metastatic	1	(2%)				
Pheochromocytoma, metastatic	1	(2%)				
Osteosarcoma, metastatic					1	(2%)
HEMATOPOIETIC SYSTEM					- <u>-</u>	
*Multiple organs	(50)		(50)		(50)	
Malignant lymphoma, NOS	(+ - /		1	(2%)	(
Malignant lymphoma, undiffer type	3	(6%)	1	(2%)		
Malignant lymphoma, lymphocytic type	5	(10%)	. 4	(8%)	1	(2%)
Malignant lymphoma, histiocytic type	2	(4%)	2	(4%)	5	(10%)
Malignant lymphoma, mixed type	6	(12%)	5	(10%)	11	(22%)
Granulocytic leukemia			1	(2%)		
#Spleen	(50)		(50)		(50)	
Malignant lymphoma, undiffer type	1	(2%)				
#Kidney	(50)		(50)		(50)	
Malignant lymphoma, undiffer type			1	(2%)		
CIRCULATORY SYSTEM						
#Liver	(50)		(50)		(50)	
Hemangioma	, ,		1	(2%)		
#Uterus	(50)		(50)		(50)	
Hemangioma	1	(2%)	*			
DIGESTIVE SYSTEM						
#Liver	(50)		(50)		(50)	
Hepatocellular adenoma	5	(10%)	10	(20%)	7	(14%)
Hepatocellular carcinoma	3	(6%)	4	(8%)	7	(14%)
Osteosarcoma, metastatic					1	(2%)
#Pancreas	(50)		(48)		(49)	
Acinar cell carcinoma					1	(2%)
#Esophagus	(50)	(0.4)	(50)		(50)	
Squamous cell papilloma	1	(2%)	120		(=0)	
#Forestomach Squamous cell papilloma	(50)		(50)	(2%)	(50)	(2%)
					····	· · · ·
JRINARY SYSTEM	·= ~ .					
#Kidney	(50)		(50)		(50)	(0~)
Osteosarcoma					1	(2%)

ENDOCRINE SYSTEM #Anterior pituitary (40) (45) (45) (49) Adenoma, NOS (449) (50) #Adrenal medulia (48) (49) (50) #Adrenal medulia (48) (49) (50) Phecohromocytoms, malignant (2%) (2%) (1 (2%) (1 (2%)) #Adrenal medulia (50) (50) (50) (49) #Adrenal medulia (50) (50) (49) #Adrenal medulia (2%) (1 (2%) (1 (2%)) (1 (2%)) #Adrenal medulia (50) (50) (49) #Juryoid (41) (2%) (1 (2%) (1 (2%)) (1 (2%)) #Parathyroid (41) (2%) (1 (2%) (1 (2%)) (1 (2%)) #Parathyroid (41) (2%) (1 (2%)) (1 (2%)) (1 (2%)) #Parathyroid (41) (2%) (1 (2%)) (1 (2%)) (1 (2%)) #Parathyroid (41) (2%) (50) (50) (50) (50) (50) #Parathyroid (41) (2%) (1 (2%)) (1 (2%)) (1 (2%)) Hist cell adenoma (2%) (1 (2%)) (1 (2%)) (1 (2%)) #REPRODUCTIVE SYSTEM (50) (50) (50) (50) (50) (1 (2%)) #Mammary gland (50) (50) (50) (50) (50) (1 (2%)) #Winner y gland (50) (50) (50) (1 (2%)) (1 (2%)) #Winner y gland (50) (50) (50) (1 (2%)) (1 (2%)) #Winner y gland (50) (50) (50) (1 (2%)) #Winner y gland (50) (50) (50) (1 (2%)) (1 (2%)) #Winner y gland (50) (50) (50) (50) (2%) #Winner y gland (50) (50) (50) (1 (2%)) #Winner y gland (50) (50) (50) (50) (50) (50) (50) #Teratoma, NOS 1 (2%) (50) (50) (50) (50) (50) #Teratoma, NOS 1 (2%) (50) (50) (50) (50) #Teratoma, NOS 1 (2%		CONTROL (UNTR)	LOW DOSE	HIGH DOSE
# Anterior pituitary (40) (45) (45) (46) (46) Aderonal/capsule (45) (49) (50) (50) # Adrenal/capsule (48) (49) (50) (70) Phecohromocytoma, molignant 1 (2%) 1 (2%) 1 (2%) Phecohromocytoma, NOS, metastatic (50) (49) (50) (49) (50) Adenocarcinoma, NOS, metastatic (50) (40) (2%) 1 (2%) #Olificular cell adenoma 1 (2%) 3 (6%) 2 (48) Folificular cell carcinoma 1 (2%) 3 (6%) (49) (40) #Pancresticiasta (50) (48) (49) (49) (40) (40) Islet cell aderonna 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) <th>ENDOCRINE SYSTEM</th> <th></th> <th></th> <th></th>	ENDOCRINE SYSTEM			
Aderonia, NOS 8 (20%) 6 (13%) 6 (12%) AderonicApoule (48) (49) (50) Neoplasm, NOS 1 (2%) 1 (2%) 1 (2%) Phechromocytoma 1 (2%) 1 (2%) 1 (2%) #Perciadrenal tissue (48) (49) (50) #Perciadrenal tissue (48) (49) (50) #Thyroid 1 (2%) 3 (6%) 2 (4%) Follicular cell adenoma 1 (2%) 3 (6%) 2 (4%) Ceell carcinoma 1 (2%) 1 (2%) 1 (2%) #Parathyroid (41) (28) (47) Adenoma, NOS 1 (2%) 1 (2%) 1 (2%) #stereal elactionma 1 (2%) 1 (2%) 1 (2%) #list cell adenoma 1 (2%) 1 (2%) 1 (2%) #list cell carcinoma 1 (2%) 1 (2%) 1 (2%) #list cell carcinoma 1 (2%) 1 (2%) 1 (2%) #list cell carcinoma 1 (2%) 1 (2%) 1 (2%) #list cell adeatona 1	#Anterior pituitary	(40)	(45)	(49)
# Adereal/capsule (48) (49) (50) Neeplasm, NOS 1 (2%) 1 <td>Adenoma, NOS</td> <td>8 (20%)</td> <td>6 (13%)</td> <td>6 (12%)</td>	Adenoma, NOS	8 (20%)	6 (13%)	6 (12%)
Neoplasm, NOS 1 (2%) PAdrenal medula (48) (49) (50) Pheochromocytoma 1 (2%) 1 (2%) 1 (2%) #Percidrenal tissue (48) (49) (50) #Thyroid (50) (50) (49) (50) #Thyroid (2%) 3 (6%) 2 (4%) 1 (2%) #Cecil carcinoma 1 (2%) (41) (28) (47) Adenocarcinoma, NOS 1 (2%) (41) (28) (47) Adenocarcinoma 1 (2%) 1 (2%) 1 (2%) #Parathyroid (41) (28) (47) Adenocarcinoma 1 (2%) 1 (2%) 1 (2%) #Biet cell adenoma 1 (2%) 1 (2%) 1 (2%) #EpRoDUCTIVE SYSTEM (50) (50) (50) (50) #Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) #Difterial stomal polyp 1 (2%) 1 (2%) 1 (2%) #Dometrial stomal polyp 3 (6%) 1 (2%) 1 (2%) <t< td=""><td>#Adrenal/capsule</td><td>(48)</td><td>(49)</td><td>(50)</td></t<>	#Adrenal/capsule	(48)	(49)	(50)
# Adrenal medulia (48) (49) (50) Phecohromocytoma, malignant 1 (2%) 1 (2%) 1 (2%) Phecohromocytoma, NOS, metastatic 1 (2%) 1 (2%) 1 (2%) Adenocarcinoma, NOS, metastatic 1 (2%) 3 (6%) 2 (4%) Follicular cell adenoma 1 (2%) 3 (6%) 2 (4%) Politicular cell adenoma 1 (2%) 1 (2%) 1 (2%) #Partstyroid (41) (28) (47) Adenoma, NOS (41) (28) (47) Adenoma, NOS 1 (2%) 1 (2%) 1 (2%) #Partstyroid (50) (50) (50) (50) Islet cell carcinoma 1 (2%) 1 (2%) 1 (2%) #Uterus (50) (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) 1 (2%) Fibroma 1 (2%) 1 (2%) 1 (2%) Forma marginal 1 (2%) 1 (2%) 1 (2%) Forma marginal 1 (2%) 1 (2%) 1 (2%) <t< td=""><td>Neoplasm, NOS</td><td></td><td></td><td>1 (2%)</td></t<>	Neoplasm, NOS			1 (2%)
Pheechromocytoma 1 (2%) 1 (2%) Pheechromocytoma, malignant 1 (2%) 1 (2%) #Periadrenal tissue (48) (49) (50) Adenocarinoma, NOS, metastatic (50) (50) (49) (2%) #Thyroid (12%) 3 (6%) 2 (4%) 1 (2%) Follicular cell adenoma 1 (2%) (41) (28) (47) Adenocarinoma, NOS (41) (28) (47) Adenocarinoma, NOS (41) (28) (47) Adenocarinoma, NOS (41) (2%) 1 (2%) #Parentsic islets (50) (60) (50) Islet cell adenoma 1 (2%) 1 (2%) 1 (2%) Papillary adenocarcinoma, NOS 1 (2%) 1 (2%) 1 (2%) Papillary adenocarcinoma, NOS 1 (2%) 1 (2%) 1 (2%) <td>#Adrenal medulla</td> <td>(48)</td> <td>(49)</td> <td>(50)</td>	#Adrenal medulla	(48)	(49)	(50)
Phecedremocytoma, malignant 1 (2%) (49) (50) Adenocarcinoma, NOS, metastatic 1 (2%) 1 (2%) Follicular cell adenoma 1 (2%) 3 (6%) 2 (4%) Follicular cell adenoma 1 (2%) 3 (6%) 2 (4%) Pollicular cell adenoma 1 (2%) 3 (6%) 2 (4%) #Paratronic islats (50) (41) (28) (47) Adenoma, NOS 1 (2%) #Paratronic islats (50) (40) (50) (50) (50) (50) (50) (50) (50) (50) (50) (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 <td>Pheochromocytoma</td> <td></td> <td>1 (2%)</td> <td>1 (2%)</td>	Pheochromocytoma		1 (2%)	1 (2%)
#Periadrenal tissue (48) (49) (50) Adenocarinoma, NOS, metastatic (50) (50) (49) #Thyroid (50) (50) (49) (2%) #Ollicular cell adenoma 1 (2%) 3 (6%) 2 (4%) C-Cell carcinoma 1 (2%) 3 (6%) 2 (4%) #Parathyroid (41) (28) (47) Adenoma, NOS 1 (2%) #Adenoma, NOS (41) (28) (47) Adenoma, NOS 1 (2%) Islet cell adenoma 1 (2%) 1 (2%) 1 (2%) Mammary gland (50) (50) (50) (50) (50) (50) (2%) #Perioderatinoma, NOS 2 (4%) 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) 1 (2%) <tr< td=""><td>Pheochromocytoma, malignant</td><td>1 (2%)</td><td></td><td></td></tr<>	Pheochromocytoma, malignant	1 (2%)		
Adenocarcinoma, NOS, metastatic 1 (2%) 1 (2%) #Thyroid (50) (50) (49) Follicular cell adenoma 1 (2%) 2 (4%) C-cell carcinoma 1 (2%) 1 (2%) "Paratyroid (41) (28) (47) Adenoma, NOS (41) (28) (47) #Paratyroid (41) (28) (47) #Paratyroid (50) (48) (49) #laiet cell adenoma 1 (2%) 1 (2%) 1 (2%) #Bencoarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) #denocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) #denocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) #denocarcinoma, NOS 1 (2%) 1 (2%) 1 (2%) #denocarcinoma, NOS 1 (2%) 1 (2%) 1 (2%) Fibroma 1 (2%) 3 (6%) 1 (2%) Fapillary adenocarcinoma 1 (2%) 1 (2%) Teratoma, NOS 1 (2%) 1 (2%) Papillary adenocarcinoma 2 (4%) 1 (2%) Papillary adenocarcinoma 2 (4%)	#Periadrenal tissue	(48)	(49)	(50)
#Thyroid (50) (50) (49) Follicular cell carcinoma 1 (2%) 3 (6%) 2 (4%) Follicular cell carcinoma 1 (2%) 3 (6%) 1 (2%) C-cell carcinoma 1 (2%) 4 (2%) 1 (2%) #Parcersatic islets (50) (43) (49) 1 (2%) 1 (2%) Islet cell carcinoma 1 (2%) 1 (2%) 1 (2%) 1 (2%) #Deroma 500 (50)	Adenocarcinoma, NOS, metastatic			1 (2%)
Follicular cell adenoma 1 (2%) 3 (6%) 2 (4%) Follicular cell arcinoma 1 (2%) 3 (6%) 2 (4%) C-cell carcinoma 1 (2%) (41) (28) (47) #Parathyroid (41) (28) (47) 1 (2%) #Parathyroid (41) (28) (47) 1 (2%) #Parathyroid (50) (48) (49) 1 (2%) Islet cell carcinoma 1 (2%) 1 (2%) 1 (2%) REPRODUCTIVE SYSTEM (50) (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) 1 (2%) Fibroma 1 (2%) 3 (6%) 1 (2%) 1 (2%) Fabroacarcinoma, NOS 1 (2%) 1 (2%) 1 (2%) Granulose cell carcinoma 1 (2%) 1 (2%) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 1 (2%) 1 (2%) *Harderian gland (50) (50) (50) (50) Carcinoma, NOS 1 (2%) 1 (2%) 1 (2%)	#Thyroid	(50)	(50)	(49)
Follicular cell carcinoma 1 (2%) C-cell carcinoma 1 (2%) #Parathyroid (41) (28) (47) Adenoma, NOS (41) (28) (47) Bate cell adenoma 1 (2%) 1 (2%) 1 (2%) Islet cell adenoma 1 (2%) 1 (2%) 1 (2%) Islet cell carcinoma 1 (2%) 1 (2%) 1 (2%) REPRODUCTIVE SYSTEM ** (50) (50) (50) *Mammary gland (50) (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) Fibroma 1 (2%) 1 (2%) 1 (2%) Fibroma 1 (2%) 1 (2%) 1 (2%) Franulosa cell carcinoma 1 (2%) 1 (2%) 1 (2%) Granulosa cell carcinoma 1 (2%) 1 (2%) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 1 (2%) 1 (2%) None 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) 1 (2%)	Follicular cell adenoma	1 (2%)	3 (6%)	2 (4%)
C-cell carcinoma 1 (2%) (47) Adenoma, NOS (41) (28) (47) #Paratypoid (41) (28) (47) #Paratypoid (50) (48) (49) Isite cell adenoma 1 (2%) 1 (2%) Isite cell carcinoma 1 (2%) 1 (2%) REPRODUCTIVE SYSTEM (50) (50) (50) (50) *Mammary gland (50) (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) Papillary adenocarcinoma, NOS 1 (2%) 1 (2%) Papillary adenocarcinoma 1 (2%) 1 (2%) Papillary adenocarcinoma 1 (2%) 1 (2%) Granulosa cell carcinoma 1 (2%) 1 (2%) None 1 (2%) 1 (2%) None 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM 1 (2%) 1 (2%) None 1 (2%)	Follicular cell carcinoma			1 (2%)
# Parathyroid (41) (28) (47) Adenoma, NOS (43) (43) (43) Pencreatic islets (50) (48) (49) Islet cell actinoma 1 (2%) 1 (2%) Mammary gland (50) (50) (50) (50) # Meroma, NOS 2 (4%) 1 (2%) 1 (2%) # Uterus (50) (50) (50) (50) (50) (50) (50) (50) 1 (2%) Fibroma 1 (2%) 3 (6%) 1 (2%) 1	C-cell carcinoma	1 (2%)		
Adenoma, NOS 1 (2%) #Pencreatic islets (50) (48) (49) Isite cell adenoma 1 (2%) 1 (2%) Isite cell adenoma 1 (2%) 1 (2%) REPRODUCTIVE SYSTEM (50) (50) (50) *Mammary gland (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) #Uterus (50) (50) (50) (50) Adenocarcinoma, NOS 1 (2%) 1 (2%) 1 (2%) Papillary adenocarcinoma 1 (2%) 1 (2%) 1 (2%) Fibroma 1 (2%) 1 (2%) 1 (2%) Teratoma, NOS 1 (2%) 1 (2%) 1 (2%) Teratoma, NOS 1 (2%) 1 (2%) 1 (2%) Papillary adenocarcinoma 1 (2%) 1 (2%) 1 (2%) Papillary adenocarcinoma 1 (2%) 1 (2%) 1 (2%) None 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEMS (50) (50) (50) (50) </td <td>#Parathyroid</td> <td>(41)</td> <td>(28)</td> <td>(47)</td>	#Parathyroid	(41)	(28)	(47)
#Pancreatic islets (50) (48) (49) Islet cell adenoma 1 (2%) 1 (2%) REPRODUCTIVE SYSTEM * 1 (2%) 1 (2%) *Mammary gland (50) (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) 1 (2%) Fibroma 1 (2%) 3 (6%) 1 (2%) Fibroma 1 (2%) 3 (6%) 1 (2%) Formulosa cell carcinoma 1 (2%) 1 (2%) 1 (2%) Fapillary adenocarcinoma 1 (2%) 1 (2%) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 1 (2%) 1 (2%) Musculus cell carcinoma 1 (2%) 1 (2%) 1 (2%) SPECIAL SENSE ORGANS 1	Adenoma, NOS	<>	x==;	1 (2%)
Isite cell adenoma 1 (2%) Isite cell adenoma 1 (2%) Isite cell carcinoma 1 (2%) *Mammary gland (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) #Uterus (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) #Uterus (50) (50) Adenocarcinoma, NOS 1 (2%) 1 (2%) Fibroma 1 (2%) 1 (2%) Forma 1 (2%) 3 (6%) 1 (2%) Forma 1 (2%) 3 (6%) 1 (2%) Granulosa cell carcinoma 1 (2%) 1 (2%) Teratoma, NOS 1 (2%) 1 (2%) NERVOUS SYSTEM 1 (2%) 1 (2%) None 1 (2%) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 1 (2%) *Harderian gland (50) (50) (50) Carcinoma, NOS 1 (2%) 1 (2%) Papillary adenocarcinoma 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) Multiple organs (50) (50)	#Pancreatic islets	(50)	(48)	(49)
Iser Cell carcinoma 1 (2%) REPRODUCTIVE SYSTEM (50) (50) *Mammary gland (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) #Uterus (50) (50) (50) (50) Adenocarcinoma, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) Fabricona 1 (2%) 3 (6%) 1 (2%) 1 (2%) Endometrial stromal polyp 3 (6%) 1 (2%) 1 (2%) #Ovary (49) (50) (49) 1 (2%) Granulosa cell carcinoma 1 (2%) 1 (2%) 1 (2%) NERVOUS SYSTEM 1 (2%) 1 (2%) 1 (2%) None 5 1 (2%) 1 (2%) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 1 (2%) 1 (2%) Adenoma, NOS 1 (2%) 1 (2%) 1 (2%) MURCULOSKELETAL SYSTEM 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEMS (50) (50) (50) (50) MUSCULOSKELETAL SYSTEMS (50) (50) (50) 1 (2%)	Islet cell adenoma	(00)	1 (2%)	
REPRODUCTIVE SYSTEM (50) (50) (50) *Mammary gland (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) #Uterus (50) (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) 1 (2%) Fibroma 1 (2%) 3 (6%) 1 (2%) 1 (2%) Fibroma end carcinoma 1 (2%) 1 (2%) 1 (2%) #Ovary (49) (50) (49) 1 (2%) #Ovary (49) (50) (50) (49) #Ovary (49) (50) (50) (50) Granulosa cell carcinoma 1 (2%) 1 (2%) 1 (2%) Nerevous SYSTEM None 1 (2%) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 1 (2%) 1 (2%) Papillary adenocarcinoma, NOS 1 (2%) 1 (2%) 1 (2%) MuscultoSKELETAL SYSTEM (50) (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) 1 (2%) Muscultosketena, metasta	Islet cell carcinoma		- (-,-,	1 (2%)
REPRODUCTIVE SYSTEM (50) (50) (50) *Mammary gland (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) *Uterus (50) (50) (50) (50) Adenocarcinoma, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) Fibroma 1 (2%) 3 (6%) 1 (2%) 1 (2%) #Ovary (49) (50) (49) 1 (2%) #Ovary (49) (50) (49) 1 (2%) #Ovary (49) (50) (49) 1 (2%) Teratoma, NOS 1 (2%) 1 (2%) 1 (2%) None 1 (2%) 1 (2%) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 1 (2%) 1 (2%) *Harderiang gland (50) (50) (50) 1 (2%) None 1 (2%) 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) None 1 (2%) 1 (2%) 1 (2%) 1 (2%) ALL OTHER SYSTEMS (50)				
*Mammary gland (50) (50) (50) (50) Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) (2%) #Uterus (50) (50) (50) (1 (2%) Papillary adenoma (1 (2%)) 1 (2%) Fibroma 1 (2%) (50) (49) Papillary adenocarcinoma (1 (2%)) 1 (2%) Granulosa cell carcinoma (1 (2%)) 1 (2%) NERVOUS SYSTEM None SPECIAL SENSE ORGANS *Harderian gland (50) (50) (50) (50) Carcinoma, NOS 1 (2%) 1 (2%) Adenocarcinoma (1 (2%)) 1 (2%) NERVOUS SYSTEM None SPECIAL SENSE ORGANS *Harderian gland (50) (50) (50) (50) Carcinoma, NOS 1 (2%) 1 (2%) Adenocarcinoma (1 (2%)) 1 (2%) MUSCULOSKELETAL SYSTEM None BODY CA VITIES None ALL OTHER SYSTEMS *Multiple organs (50) (50) (50) (50) (50) Carcinoma, NOS, netastatic 1 (2%) 1 (2%) Adianocarcinoma (2 (4%)) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM None	REPRODUCTIVE SYSTEM			(20)
Adenocarcinoma, NOS 2 (4%) 1 (2%) 1 (2%) #Uterus (50) (50) (50) Adenocarcinoma, NOS 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) Endometrial stromal polyp 3 (6%) 1 (2%) #Ovary (49) (50) (49) Papillary adenocarcinoma 1 (2%) 1 (2%) Granulosa cell carcinoma 1 (2%) 1 (2%) NervOUS SYSTEM 1 (2%) 1 (2%) None 1 (2%) 1 (2%) SPECIAL SENSE ORGANS (50) (50) (50) *Harderian gland (50) (50) 1 (2%) None 1 (2%) 1 (2%) 1 (2%) Papillary adenoma, NOS 1 (2%) 1 (2%) Papillary adenocarcinoma 2 (4%) 1 (2%) MUSCULOSKELETAL SYSTEM 1 (2%) 1 (2%) None 1 (2%) 1 (2%) BODY CAVITIES (50) (50) (50) None 1 (2%) 1 (2%) 1 (2%) #Multiple organs (50) (50) (50) </td <td>*Mammary gland</td> <td>(50)</td> <td>(50)</td> <td>(50)</td>	*Mammary gland	(50)	(50)	(50)
#Uterus (50) (50) (50) Adenocarcinoma, NOS 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) Fibroma 1 (2%) 3 (6%) 1 (2%) #Ovary (49) (50) (49) 1 (2%) #Oranulosa cell carcinoma 1 (2%) 1 (2%) Teratoma, NOS 1 (2%) 1 (2%) NERVOUS SYSTEM None 1 (2%) 1 (2%) SPECIAL SENSE ORGANS (50) (50) (50) 1 (2%) Adenoma, NOS 1 (2%) 1 (2%) 1 (2%) Adenoma, NOS 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM None 500 (50) (50) (50) (50) *Multiple organs (50) (50) (50) (50) (2%) 1 (2%)	Adenocarcinoma, NOS	2 (4%)	1 (2%)	1 (2%)
Adenocarcinoma, NOS 1 (2%) Papillary adenoma 1 (2%) 3 (6%) 1 (2%) #Ovary (49) (50) (49) Papillary adenocarcinoma 1 (2%) 1 (2%) Granulosa cell carcinoma 1 (2%) 1 (2%) NERVOUS SYSTEM None SPECIAL SENSE ORGANS *Harderian gland (50) (50) (50) (50) Carcinoma, NOS 1 (2%) 1 (2%) Adenoma, NOS 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) Papillary adenoma 2 (4%) 1 (2%) MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) (50) (50) (50) (50) *Multiple organs (50) (50) (50) (50) (50) (50) (50) (50)	#Uterus	(50)	(50)	(50)
Papillary adenoma 1 (2%) Fibroma 1 (2%) Endometrial stromal polyp 3 (6%) 1 (2%) #Ovary (49) (50) (49) Papillary adenocarcinoma 1 (2%) 1 (2%) Granulosa cell carcinoma 1 (2%) 1 (2%) Teratoma, NOS 1 (2%) 1 (2%) NERVOUS SYSTEM 1 (2%) 1 (2%) Nerrows 1 (2%) 1 (2%) SPECIAL SENSE ORGANS (50) (50) (50) *Harderian gland (50) (50) (50) Carcinoma, NOS 1 (2%) 1 (2%) Adenocarcinoma 1 (2%) 1 (2%) Papillary adenocarcinoma 2 (4%) 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) MUSCULOSKELETAL SYSTEM 50) (50) (50) None	Adenocarcinoma, NOS			1 (2%)
Fibroma 1 (2%) 3 (6%) 1 (2%) Endometrial stromal polyp (49) (50) (49) Popillary adenocarcinoma 1 (2%) 1 (2%) Granulosa cell carcinoma 1 (2%) 1 (2%) Granulosa cell carcinoma 1 (2%) 1 (2%) Nervous SYSTEM 1 (2%) 1 (2%) None 1 (2%) 1 (2%) SPECIAL SENSE ORGANS (50) (50) *Harderian gland (50) (50) Carcinoma, NOS 1 (2%) 1 (2%) Adenocarcinoma, NOS 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) None (50) (50) (50) (50) MusculoSKELETAL SYSTEMS (50) (50) (50) (2%) *Multiple organs (50) (50) (50) (2%) *Multiple organs, NOS, metastatic 1 (2%) 1 (2%) 1 (2%) Fibrosarooma, metastatic 1 (2%) 1 (2%) 1 (2%)<	Papillary adenoma			1 (2%)
Endometrial stromal polyp 3 (6%) 1 (2%) #Ovary (49) (50) (49) Teratoma, NOS 1 (2%) NERVOUS SYSTEM None SPECIAL SENSE ORGANS *Harderian gland (50) (50) (50) Carcinoma, NOS 1 (2%) Adenocarcinoma, NOS 1 (2%) Adenocarcinoma 1 (2%) Papillary adenoma 1 (2%) Papillary adenoma 2 (4%) 1 (2%) MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) (50) (50) (50) Carcinoma, NOS, metastatic 1 (2%) *Multiple organs (50) (50) (50) (50) (50) *Multiple organs (50) (50) (50) (50) (50) (50) *Multiple organs (50) (50) (50) (50) (50) (50) *Multiple organs (50) (50) (50) (50) (50) (50) (50) (50)	Fibroma	1 (2%)		
#Ovary (49) (50) (49) Papillary adenocarcinoma 1 (2%) 1 (2%) Teratoma, NOS 1 (2%) 1 (2%) NERVOUS SYSTEM 1 (2%) 1 (2%) SPECIAL SENSE ORGANS (50) (50) (50) (50) *Harderian gland (50) (50) (50) (2%) Adenoma, NOS 1 (2%) 1 (2%) Papillary adenoma, NOS 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM Sone 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEMS (50) (50) (50) 1 (2%) Multiple organs (50) (50) (50) 1 (2%) *Multiple organs (50) (50) 1 (2%) 1 (2%) *Multiple organs (50) (50) 1 (2%) 1 <	Endometrial stromal polyp		3 (6%)	1 (2%)
Papillary adenocarcinoma Granulosa cell carcinoma Teratoma, NOS 1 (2%) NERVOUS SYSTEM None 1 (2%) SPECIAL SENSE ORGANS *Harderian gland (50) (50) SPECIAL SENSE ORGANS *Harderian gland (50) (50) SPECIAL SENSE ORGANS *Harderian gland (50) (50) Adenoma, NOS 1 (2%) 1 (2%) Adenoma, NOS 1 (2%) 1 (2%) Papillary adenocarcinoma 2 (4%) 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) 1 (2%) ALL OTHER SYSTEMS *Multiple organs (50) (50) (50) ALL OTHER SYSTEMS (50) (50) 1 (2%) Phylocharmeterstatic 1 (2%) 1 (2%)	#Ovary	(49)	(50)	(49)
Granulosa cell carcinoma 1 (2%) Teratoma, NOS 1 (2%) NERVOUS SYSTEM None SPECIAL SENSE ORGANS (50) *Harderian gland (50) Carcinoma, NOS 1 (2%) Adenoma, NOS 1 (2%) Adenocarcinoma, NOS 1 (2%) Papillary adenoma 1 (2%) Papillary adenocarcinoma 2 (4%) MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) (50) Carcinoma, NOS, metastatic Fibrosarcoma, metastatic 1 (2%) Fibrosarcoma, metastatic 1 (2%) Phylohamucorenome motortatin 1 (2%)	Panillary adenocarcinoma	(/	()	1 (2%)
Teratoma, NOS 1 (2%) NERVOUS SYSTEM None 1 (2%) SPECIAL SENSE ORGANS (50) *Harderian gland (50) Carcinoma, NOS 1 (2%) Adenocarcinoma, NOS 1 (2%) Papillary adenoma 1 (2%) Papillary adenocarcinoma 2 (4%) MUSCULOSKELETAL SYSTEM None 1 (2%) BODY CA VITIES None (50) ALL OTHER SYSTEMS (50) *Multiple organs (50) Carcinoma, NOS, metastatic 1 (2%) Fibrosarcoma, metastatic 1 (2%) Fibrosarcoma, metastatic 1 (2%) Phylichrownerome metastatic 1 (2%)	Granulosa cell carcinoma	1 (2%)		
NERVOUS SYSTEM None SPECIAL SENSE ORGANS *Harderian gland (50) (50) (50) Carcinoma, NOS Adenoma, NOS 1 (2%) Adenocarcinoma, NOS Papillary adenoma 1 (2%) Papillary adenocarcinoma 2 (4%) 1 (2%) MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) (50) (50) Carcinoma, NOS, metastatic Acinar cell carcinoma, metastatic Fibrosarcoma, metastatic Fibrosarcoma, metastatic Fibrosarcoma, metastatic Substance (1 (2%))	Teratoma, NOS		1 (2%)	
SPECIAL SENSE ORGANS *Harderian gland (50) (50) (50) (50) Carcinoma, NOS 1 (2%) Adenocarcinoma, NOS 1 (2%) Papillary adenocarcinoma 1 (2%) Papillary adenocarcinoma 2 (4%) 1 (2%) MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) (50) (50) (50) Carcinoma, NOS, metastatic 1 (2%) *Multiple organs (50) (50) (50) (50) Carcinoma, NOS, metastatic 1 (2%) Physical carcinoma, metastatic 1 (2%)	NERVOUS SYSTEM None			
*Harderian gland (50) (50) (50) Carcinoma, NOS 1 (2%) 1 (2%) Adenocarcinoma, NOS 1 (2%) 1 (2%) Papillary adenoma 1 (2%) 1 (2%) Papillary adenoma 2 (4%) 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) ALL OTHER SYSTEMS (50) (50) (50) Carcinoma, NOS, metastatic 1 (2%) Fibrosarcoma, metastatic 1 (2%) Phylochromenerosome metastatic 1 (2%) Phylochromenerosome metastatic 1 (2%)	SPECIAL SENSE ORGANS			
Carcinoma, NOS 1 (2%) Adenoma, NOS 1 (2%) Adenocarcinoma, NOS 1 (2%) Papillary adenoma 1 (2%) Papillary adenocarcinoma 2 (4%) MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) Carcinoma, NOS, metastatic Acinar cell carcinoma, metastatic Fibrosarcoma, metastatic Fibrosarcoma, metastatic 1 (2%)	*Harderian gland	(50)	(50)	(50)
Adenoma, NOS 1 (2%) Adenocarcinoma, NOS 1 (2%) Papillary adenoma 1 (2%) Papillary adenocarcinoma 2 (4%) MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) Carcinoma, NOS, metastatic Acinar cell carcinoma, metastatic Fibrosarcoma, metastatic Pibrosarcoma, metastatic 1 (2%)	Carcinoma, NOS			1 (2%)
Adenocarcinoma, NOS 1 (2%) Papillary adenoma 1 (2%) Papillary adenocarcinoma 2 (4%) MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) Carcinoma, NOS, metastatic 1 (2%) Acinar cell carcinoma, metastatic 1 (2%) Fibrosarcoma, metastatic 1 (2%) Bobdemucarcememer, metastatic 1 (2%)	Adenoma, NOS	1 (2%)		
Papillary adenoma 1 (2%) Papillary adenocarcinoma 2 (4%) MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs Carcinoma, NOS, metastatic Acinar cell carcinoma, metastatic Fibrosarcoma, metastatic Pabelademicarcine metastatic 1 (2%)	Adenocarcinoma, NOS			1 (2%)
Papillary adenocarcinoma 2 (4%) 1 (2%) MUSCULOSKELETAL SYSTEM None 1 (2%) BODY CAVITIES None 1 (50) (50) ALL OTHER SYSTEMS *Multiple organs Carcinoma, NOS, metastatic Acinar cell carcinoma, metastatic Fibrosarcoma, metastatic 1 (2%) 1 (2%) 1 (2%)	Papillary adenoma	1 (2%)		
MUSCULOSKELETAL SYSTEM None BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) (50) (50) Carcinoma, NOS, metastatic 1 (2%) Acinar cell carcinoma, metastatic 1 (2%) Fibrosarcoma, metastatic 1 (2%)	Papillary adenocarcinoma	2 (4%)		1 (2%)
BODY CAVITIES None ALL OTHER SYSTEMS *Multiple organs (50) (50) (50) Carcinoma, NOS, metastatic 1 (2%) Acinar cell carcinoma, metastatic 1 (2%) Fibrosarcoma, metastatic 1 (2%)	MUSCULOSKELETAL SYSTEM None			
ALL OTHER SYSTEMS (50) (50) *Multiple organs (50) (50) Carcinoma, NOS, metastatic 1 (2%) Acinar cell carcinoma, metastatic 1 (2%) Fibrosarcoma, metastatic 1 (2%) Phothemycorroma metastatic 1 (2%)	BODY CAVITIES None			
*Multiple organs (50) (50) (50) Carcinoma, NOS, metastatic 1 (2%) Acinar cell carcinoma, metastatic 1 (2%) Fibrosarcoma, metastatic 1 (2%) Bhabdomuscarcoma, metastatic 1 (2%)	ALL OTHER SYSTEMS			
Carcinoma, NOS, metastatic1 (2%)Acinar cell carcinoma, metastatic1 (2%)Fibrosarcoma, metastatic1 (2%)Bhabdomuosancoma, metastatic1 (2%)	*Multiple organs	(50)	(50)	(50)
Acinar cell carcinoma, metastatic Fibrosarcoma, metastatic Bhademusarcoma, metastatic 1 (2%)	Carcinoma, NOS, metastatic	/		1 (2%)
Fibrosarcoma, metastatic 1 (2%)	Acinar cell carcinoma metastatic			1 (2%)
Phylogeneous method $1/9\%$	Fibrosarcoma, metastatic		1 (2%)	
	Rhabdomyosarcoma metastatic	1 (2%)		

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEARFEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
ANIMAL DISPOSITION SUMMARY			
Animals initially in study	50	50	50
Natural death	19	16	16
Moribund sacrifice	5	3	2
Terminal sacrifice	26	31	32
TUMOR SUMMARY			· ·
Total animals with primary tumors**	35	37	35
Total primary tumors	54	54	60
Total animals with benign tumors	20	24	17
Total benign tumors	23	28	22
Total animals with malignant tumors	25	22	28
Total malignant tumors	31	25	37
Total animals with secondary tumors##	6	1	6
Total secondary tumors	6	1	7
Total animals with tumors uncertain	-	-	
benign or malignant		1	1
Total uncertain tumors		1	1

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

ANIMAL	0	0	0	0	O	0	0	0	01	0	0	01	OT	0	0	ਗ	0	0	0	0	-51	0	0	OF	0
NUMBER	1 9	36	3 1	3 9	0 9	3 5	4	3 7	32	3	50	0 6	1 0	4 9	45	43	47	0 8	24	0 4	2 1	2 7	48	2 3	2 0
WEEKS ON STUDY	0 0 9	0 1 2	0 1 5	0 2 0	0 2 3	0 2 4	0 2 5	0 2 6	0 2 7	0 2 7	0 3 2	0 3 3	0 3 3	0 3 5	0 3 7	0 4 0	0 4 2	0 5 2	0 5 8	0 6 1	0 6 2	0 6 3	0 6 5	0 6 6	0 8 1
INTEGUMENTARY SYSTEM										 	4							.			 +			 +	_
Fibrosarcoma Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic Trachea	+	+	+	++	++	+	+	+	+	++	+	+	++	+ +	++	++	++	+	++	+	++	++	+	++	- * * +
HEMATOPOIETIC SYSTEM	—						<u> </u>										<u> </u>								-
Sone marrow Spleen Hemangiosarcoma	++	+	++	+	+	+	+	+	+	++	+	++	+	+	+	+	+	+	+	++	+	+	+	+	Ŧ
Lymph nodes Fibrosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
CIPCULATORY SYSTEM	+		+	-	+	+	+	-		+	-	_	+	_	-	+	-	+	+	+	_		+	+	
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DICESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+++	++	+ +	++++	+ +	++++	++++	++++	++++	+++	++++	+ +	++	++++	++++	+++	++++	+++	+++	+++	++++	++	++++	+++	+ + + X X
riemanglosarcoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+++++	++++++	++++++	++++	+++ +++	+++++++	++++++	+z+++1+	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	++++++	++++++	+++++++	+++++++	++++++	+++++++	++++++	+++++++	++++++	++++++	++++++	++++++	++++++	++++++
URINARY SYSTEM Kidney Urinary bladder	+ +	+++	-+	++	÷ +	+++	+++	++	+++	+++	+++	+++	+++	+++	+++	++	++	+++	++	+++	++++	+++	+++	+++	
ENDOCRINE SYSTEM Pituitary Adrenal Cortical adenoma Pheochromocytoma Thyrnid	+++++	++++	+++++	++++	++++	+++++	+++++	+++++	+++++	++++	++++	+++++	+++++	+++++	+++++	+++++	++++	+++++	++ +	++++	+++++	++++	+++++	+++++	
Parathyroid	÷	÷	÷	-	÷	+	+	-	+	-	÷	÷	+	-	÷	÷	-	+	+	÷	-	+	+	-	÷
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	+++	N + +	N + +	N + + +	N + +	N + + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
SPECIAL SENSE ORGANS Harderian gland Adenocarcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N
ALL OTHER SYSTEMS Multiple organs, NOS Fibrosarcoma, metastatic Malig, lymphoma, lymphocytic type Malignant lymphoma, mixed type Base of tail Fibroma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: UNTREATED CONTROL

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missezed

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

ANIMAL NUMBER	046	0 2 2	0 2 5	029	0 4 0	0 3 8	0 1 8	0 0 1	0 0 2	003	0 0 5	007	0 1 1	012	0 1 3	0 1 4	0 1 5	0 1 6	0	026	0 2 8	0 3 0	0 3 4	0 4 2	0 4 4	TOTAL
WEEKSON STUDY	0 8 1	0 8 2	0 8 3	0 9 4	0 9 4	0 9 6	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Skin Fibrosarcoma Subcutaneous tissue Fibrosarcoma	++	+ + X	+ + x	+ +	+	++	+ + x	++	++	+ +	++	++	++	+ x +	+ +	+ + X	+ + x	++	+ *	+ +	+ +	++	++	+ +	++	*50 1 *50 6
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic Trachea	+	+ x +	+	+ x +	++	+	+	+	++	++	+ x +	+	+	+	+	+	+	+ x +	+	+ X X +	+	+	+ x +	+ x +	++	50 2 4 2 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangiosarcoma Lymph nodes Fibrosarcoma, metastatic Thymus	++++	+ + + + X +	+++	-++-	++ + + +	++++	++++	+ - + -	++++++	++ + -	+++++	++ + -	++++	++X+ ++	++++	++++++	++++-	++++++	++ + -	+++++	++ + + +	++ + + +	+++++++	++ + -	++ + +	49 49 1 50 1 25
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DICESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatogloarcoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	++ X +++++++	++ ++++++++++++++++++++++++++++++++++++	++ +++++++	++ X +++++++	++ X++++++	++ X +++++++	++ ++++++	++X +++++++	++ ++++++	++ ++++++	++ ++ +++++	++ X +++++++	++ ++ +++++	++ ++++++	++ ++++++	++ ++++++	++ ++++++	++ +++++++	++ ++++++	++ ++++++	++ ++++++++	++ +++++++	++ +++++++	++X +++++++	++X ++++++++	50 50 4 5 1 50 *50 48 49 49 49 47 49
URINARY SYSTEM Kidney Urinary bladder	+ +	++	+ +	++	+++	+ +	++	+ +	+++	+++	+++	++	+++	++	++++	+++	+ +	+++	+++	++	++	+++	+++	++	+	49 50
ENDOCRINE SYSTEM Pituitary Adrenal Cortical adenoma Pheochromocytoma Thyroid Parathyroid	+++++	++ ++	+ - ++	+++-	+++++	++++-	+++++	++++	++++++	++++++	++++++	++++-	+++++	++ + x++	+++	+++++	++++	++ ++	+++++	+++++-	++++++	+++ ++	+ + + X + + +	+++++	_ ++ ++ ++	50 49 1 1 50 38
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + + +	N + +	N + + +	N + +	N + +	N + +	N + +	N ++ +	N + +	+++++	N + +	N + +	N + +	N + +	N + + +	N + +	N + +	++++	N + +	++++	N + +	+++++	N + +	*50 50 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenocarcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Fibrosarcoma, metastatic Malig. lymphoma, lymphocytic type Malignant lymphoma, mixed type Base of tail Fibroma	N	N	N X	N	N	N	N	N X	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N X	N	N	*50 1 1 1

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: UNTREATED CONTROL (Continued)

* Animals Necropsied

		··	- 11	-11	T	T	-11	11	. TT			<u>~</u> т	- 11	- îT	- 11	- 11	-11	-11	- 11	- 11	-11	- 11	्य	- 	
NUMBER	1	34	45	28	3	50	4	43	1 2 7	38	4	08	49	10	1 2 9	14	3 1	1 1 7	1 2 6	09	2 1	0	1 3	3 5	2 3
WEEKS ON STUDY	0 0 2	006	0 9	0 1 0	0 1 6	0 3 3	0 3 4	0 6 3	0 6 5	0 6 6	0 7 2	0 7 6	0 8 2	0 8 3	0 8 4	0 8 8	0 8 8	0 9 0	0 9 0	0 9 2	0 9 2	0 9 5	0 9 5	0 9 6	1 0 0
INTEGUMENTARY SYSTEM Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Sarcoma, NOS Subcutaneous tissue Fibroma Fibrosarcoma Hemangioma	+	+	+	+	+	+	+	+	+	+	+ X	+ X	+	+	+ x	+	+	+	+	+	+	+ X	+ X	+ X	+
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+
Fibrosarcoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	X +	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangiosarcoma Malig. lymphoma, undiffer type	+	++	+	+++	+++	+++	++++	+++	++	++	++++	++	+++	+++	++	+++	+++	++++	+++	+++	++	++	++++	+++	++++
Malignant lymphoma, mixed type Lymph nodes Fibrosarcoma, metastatic Hemangioma Thymus	+	+	+	+	+	+	+	+	+	-+	+	+	+	+	+	++	+	+	++	+	+	* -	+	+	+ X +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangioma	+	++++	+++	+++	+++	+++	+++	+++	+++	Ŧ	+ + x	+++	+++	+ + X	+++	+ + X	+ + x	+++	+ + X	+ + x	+++	+++	++	+++	++ **X
Hemangiosarcoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Adenomatous polyp, NOS Malignant lymphoma, mixed type Larce intestine	+++++	+++++ +	+X++++ +	+++++ +	+++++ +	++++++ +	++++++ +	++++++ +	++++++ +	+++++ +	+++++ +	+++++ +	+++++	++++++ +	+++++ +	++++++ +	++++++ +	++++++ +	+++++	+2++++ +	X++++++ +	+2++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +
URINARY SYSTEM Kidney Urinary bladder	+++	++	+ +	+ +	; ;	+++	++++	+	+++	++	+++	+++	++	+	++	++	+++	++	+++	+++	+++	++++	++	+ +	++
ENDOCRINE SYSTEM Pituitary Adrenal Cortical adenoma Phastermocytoma	++	++	+++	- +	+++	++	+++	+++	++	+++	+++	+++	+++	+++	+++	++	+++	++	++	+++	+++	++	++	++++	- ++ +
Thyroid Follicular cell adenoma Follicular cell carcinoma Parathyroid Pancreatic ialeta	+	+ -+	+ -+	+ ++	+ ++	+ ++	+ ++	+ ++	+ -+	+ -+	++++	+ ++	+ -+	++++	+ ++	+ ++	+ ++	+ -+	+x ++	+ -+	+ ++	+ ++	+++	++++	+++++
Islet cell carcinoma REPRODUCTIVE SYSTEM Mammary gland Testis	+++	++	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	- N +						
NERVOUS SYSTEM	+	+ +	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+			-+
SPECIAL SENSE ORGANS Harderian gland Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N X	N	N	N	N	N	- N
ALL OTHER SYSTEMS Multiple organs, NOS Malig. lymphoma, undiffer type Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type Base of tail Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N X	N	N	N	N	N	N	- N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: LOW DOSE

ANIMAL	1 1	L T	L I	E	1	-11	<u>т</u>	11	1	-11	1	1	- 11	11	11	11	-11	<u>π</u>	11		· 11	1	11	Т	-	7
NUMBER		02	03	0 4	0 6	0 7	1	12	1 5	1 6	1 9	2	22	2 4	2 5	32	33	3 6	3 7	3 9	4	4 2	4	47	48	TOTAL
WEEKS ON STUDY	1 0 3	1 0 3	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Sarcoma, NOS Subcutaneous tissue Fibroma Fibrosarcoma Hemangioma	X	- +	• +	• +	+ + x	+ * x x	+ +	+ +	+ +	+ +	+ +	+ +	++	+	+++	+ + X	+ + X	++	+	• +	++	+	+	++	+ + X	*50 1 *50 3 8 1
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic Trachea	+ x +	- +	• +	+ X +	+	+	+	+	+	+	+ X X +	+	+	+	+	+	+	+	+	+ x +	+	+	+	+	++	50 1 1 4 2 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangiosarcoma Malig. lymphoma, undiffer type Malignant lymphoma, mixed type Lymph nodes Fibrosarcoma, metastatic Hemangioma Thymus	+ + x +	· +	++++++	+ + + +	+++-	++++++	++ + x+ -	++++-	+++++	++ + -	+++++	++x + +	+++++	++ + -	++++-	++++	+++++	++++-	+++	+++++	+++	+++	++++	+++++	+++++	50 50 1 1 49 1 1 1 19
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangioma Hemangiosarcoma	+ + x	++ x	+++	++ * X	+++	+ + x	+ + x	+ + X	++ * X	+ + x	+ + X X	+ + x	+++	+++	+ + x	+++	+ + X X	+ + X	++ * X	+ + X	+++	+++	+ + x	++ * X	++	49 50 12 14 2 1
Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Small intestine Adenomatous polyp, NOS Malignant lymphoma, mixed type Large intestine	+++++++++++++++++++++++++++++++++++++++	++-+++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++ ++ ++ ×+	++++++ +	++++++ +	++++++ +	++++++ +	+z++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	+z+++ +	++++++ +	++++++ +	50 +50 48 50 50 50 1 1 47
URINARY SYSTEM Kidney Urinary bladder	+	++	+++	+++	++	+	++++	+++	+++	++	+	++	+++	++	+++	+++	+	+++	+++	++	++	+++	+++	++	 ++	50 50
ENDOCRINE SYSTEM Pituitary Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular cell adenoma Follicular cell carcinoma Parathyroid Pancreatic islets Islet cell carcinoma	++ + * *	++++-	++ ++	++x + ++	++ X+ ++	+++++	+++++++++++++++++++++++++++++++++++++++	++++-	++ + + + + + + + + + + + + + + + +	++ ++	++ ++	++ ++	++ ++x	++ + -+	++ +x ++	++ ++	++x + ++	++ ++	+++++	++ ++	++ ++	++ x+ ++	+++++	++ ++	_ ++ + _+	49 50 2 50 3 1 38 48 1
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	+ + + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	+++++	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	++++	N + +	N + +	N + +	N + +	N++	N + +		*50 50 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	*50 3
ALL OTHER SYSTEMS Multiple organs, NOS Malig. lymphoma, undiffer type Malig. lymphoma, lymphocytic type Maligmant lymphoma, mixed type Base of tail Fibrosarcoma	N	N X	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	*50 1 2 1 1
	_	-			_		_				_		_	_	_				_		_		_		_	· /

 TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

• Animals Necropsied

ANIMAL NUMBER	2 2 8	2 0 7	2 2 9	2 3 0	2 1 5	2 4 4	2 4 5	2 1 4	2 1 7	2 1 1	2 3 4	2 4 9	2 0 9	2 1 6	2 3 9	2 2 1	2 2 2	2 3 5	2 4 6	2 2 0	2 0 4	2 0 2	2 0 3	2 2 6	2 1 9
WEEKS ON STUDY	0 0 1	0 0 9	0 1 0	0 1 0	0 2 3	0 3 5	0 5 4	0 6 0	0 6 0	0 6 1	0 6 4	0 7 1	0 7 2	0 7 3	0 7 6	0 8 3	0 8 3	0 8 3	0 9 0	0 9 1	0 9 2	0 9 5	0 9 6	0 9 7	1 0 1
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	*	+	*	*	*	*	+	+	+	+	+	+	*	*	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic Rhabdomyosarcoma, metastatic Trachea	+	+	+	+	+	+ x +	+	+	+	+	+	+ x +	++	+	+	+ X	+	+	+	+	+	+ x +	+	+	 + +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++	+++++	++	++++	+++-	+++++	++++	++++	++++	++++	+++-	+++-	+++++	++++	+++++	+++++	+++-	++++	++++	++++	++++	++++	++++	++++	- +++ -
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hemangiosarcoma Hemangiosarcoma	++	++	+++++	+++	+++	++++	+++	+ +	+ + x	++	+++	+++	+ + x	++++	+ + X X	+++	+ + X	+ + x	++	+ + X X	+++	+++	+ + + x	+++	+++++
Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma	+++++++++++++++++++++++++++++++++++++++	++++	+++++	++++	++++	++++	++++	+++++	+++++	+++++	+++++	+++++	+++++	+ + + + +	+ + + + +	++++	++++	++-++	++++	+++++	+++++	++-++	++++	+ + + + +	++++++
Adenomatous polyp, NOS Small intestine Large intestine	+++	+	+ +	+ +	+ +	+ +	+ +	+ +	++++																
URINARY SYSTEM Kidney Urinary bladder	++++	+++	+++	+++	+++	++	+++	+++	++	+++	++	++	+++	+++	+++	+++	+++	++	+++	+++	++	+++	+++	++	- + +
ENDOCRINE SYSTEM Pituitary Adrenal Adenoma, NOS Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant Thuroid	+++	+++	++++	++++	+++	++++	+++++	++++	++++	+++++	++++	++++	++++	++++	++++++	++++	+++++	+++++	+ + + X +	+++++	++++			+++++	 + + +
Follicular cell adenoma Parathyroid	+	-	+	+	+	+	+	-	+	-	+	+	+	+	+	+	+	+	-	+	-	+	+	+	_
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor Prostate	+ -	N + +	N + +	N + +;	N + +	++++	N + +	N + +	N + +	N + +	N - +	++++	N + + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	++ +;	++++	N + +	- N + N - N - N - N - N - N - N - N - N
Carcinoma, NOS	N	N	N	N		N	N	N		N	N	N	N		N			N							_
Brain MUSCULOSKELETAL SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Muscle Rhabdomyosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N
BODY CAVITIES Mediastinum Fibrosarcoma, metastatic	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Hepatocellular carcinoma, metastatic Fibrosarcoma, metastatic Malig. lymphoma, lymphocytic type Malig. lymphoma, histiccytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N X	N	N	N	N
Granulocytic leukemia																					x				_

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: HIGH DOSE

										-																
ANIMAL NUMBER	2 2 7	2 0 1	2 0 5	2 0 6	2 0 8	2 1 0	2 1 2	2 1 3	2 1 8	2 2 3	2 2 4	2 2 5	2 3 1	2 3 2	2 3 3	2 3 6	2 3 7	2 3 8	2 4 0	2 4 1	2 4 2	2 4 3	2 4 7	2 4 8	2 5 0	TOTAL
WEEKSON STUDY	1 0 1	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	$\frac{1}{0}{3}$	TISSUES TUMORS									
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	*	+	*	+	+	+	+	+	*50 10
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic Rhabdomyosarcoma, metastatic Trachea	* * +	+	+	+	+ x +	+	+	+	+	+	+	+	+	+	+ x +	+	+	+	+ x +	+	+	+	+	+	++	50 1 4 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++	++++++	+++-	+++-	+++	+++ -	++++++	+++++	+++-	++++	+++-	+++++	+++++	++++++	+++++	+++-	+++-	+++-	+++-	+++++	+++++	++++	++++	+++-	++++	50 50 49 32
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hemangiosarcoma Hemangiosarcoma	+ + x	+++	+ + x	+ + X	+ + X	+ +	++++	+ + X	+ +	+ + x	+++	+ + X	+ + X	+ + X	++++	+ + x	+ +	+ + x	++++	+ +	+ +	+ + x	+ + X	+ +	+++	50 50 12 8 2
Kupner cell sarcoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Adenomatous polyp, NOS	+++++++++++++++++++++++++++++++++++++++	++-++	+z+++ +	+++++	+++++	+++++ +	+++++ +	+++++ +	+++++ +	+++++ +	X+++++ +	+++++ +	+++++ +	++++X +	+++++++++++++++++++++++++++++++++++++++	+++++ +	+++++ +	+++++ +	+++++ +	+++++ +	++++ X+	++++ +	+++++ +	+++++ +	+++++ +	$ \begin{array}{c} 1 \\ 50 \\ +50 \\ 47 \\ 50 \\ 50 \\ 1 \\ 1 \\ 49 \\ \end{array} $
URINARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Urinary bladder	+	+	+	+	÷	÷	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	+	÷	÷	÷	50
Pituitary Adrenal Adenoma, NOS Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant	++	++++	+++	+++	+ +	+ +	+ +	+++	+	+++	+++	+ +	+ + X	+++	+ + x	+	++++	+++	+++	+++	+++	+++	++	++	+ +	47 50 2 1 1 1
Thyroid Follicular cell adenoma Parathyroid	++	++	++	++	* * +	++	++	+ +	++	+ +	+ -	++	* *	++	+ +	* x -	+ +	+ +	+ -	+ +	+ -	+ +	+ +	++	++	50 3 40
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor Prostate Preputial/clitoral gland Carcinome NOS	Z+ +Z	++ +N	N + + N	N + + N	N + + N	++ + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + X + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N X	N + + N	++ + + N	N + X + N	N + + N	*50 48 2 49 *50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+		50
MUSCULOSKELETAL SYSTEM Muscle Rhabdomvosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
BODY CAVITIES Mediastinum Fibrosarcoma, metastatic	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Hepatocellular carcinoma, metastatic	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	IN	*50 1
r iorosarcoma, metastatic Malig, lymphoma, lymphocytic type Malig, lymphoma, histiocytic type Malignant lymphoma, mixed type Granulocytic leukemia		X														x	x		x					x		

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

*Animals Necropsied

TABLE B4.	INDIVIDUAL	ANIMAL TUMOR	PATHOLOGY OF	FEMALE MIC	E IN THE
TWO-YEAR F	EED STUDY O	F DECABROMOD	IPHENYL OXIDE:	UNTREATED	CONTROL

ANIMAL	ា	- OT	0	01	ਗ	Ō	<u>n</u>	0	01	<u> </u>	<u>n</u>	ਗ	01	0	<u>اں</u>	0	0	TO	<u></u>	0	<u>n</u>	<u>o</u> r	<u>_</u> 0	1	~
NUMBER	7	9 7	5 5	9 8	6 2	6 9	9 6	5 2	7	6 5	9 3	7 7	9 1	5	5 9	5 4	6 1	6 3	6 7	7 5	6 0	6 8	7 3	00	5 1
WEEKS ON STUDY	0 5 0	0 5 3	0 6 5	0 7 0	0 7 7	0 7 8	0 7 8	0 8 3	0 8 4	0 8 5	0 8 9	0 9 1	0 9 1	0 9 3	0 9 3	0 9 5	0 9 5	0 9 5	0 9 5	0 9 5	0 9 8	0 9 9	1 0 1	1 0 3	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Rhabdomyosarcoma Neurofibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Papillary adenocarcinoma, metastatic Granulosa cell carcinoma, metastatic Pheochromocytoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+ x +	+ x x +	+	+	+	+	+ x +	+ x +	+	+++++++++++++++++++++++++++++++++++++++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malig. lymphoma, undiffer type Lymph nodes Thymus	+++	++ ++	++++++	+++++	++ ++	++ ++	++++-	++++-	++++-	++ ++	++++++	++ + -	+ + + -	++ ++	++++-	+ + x + -	++++-	++ +-	+++++	++ + -	++++-	+++++	++ ++	++++-	+++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Biladuct	+++++++++++++++++++++++++++++++++++++++	++++	+++++	+++++	+++++	++++	++++	- + X +	+++++	+++++	+++++	++++++	+++++	+++++	+++++	+++++	+++++	++ +	+++++	++++++	+++++	++++	++ + X+	+ + X	+++++++++++++++++++++++++++++++++++++++
Gallbladder & common bile duct Pancreas Esophagus Squamous cell papilloma Stomach Small intestine	+++++++++++++++++++++++++++++++++++++++	+++ ++-	·+++ ++-	+++ +++	+++++++++++++++++++++++++++++++++++++++	+++ ++-	+++ ++-	N++++-	+++ +++	·+++ +++	· + + + + + + + + -	·+++ ++-	· + + + + + + + + + + + + + + + + + + +	·+++ ++-	+++++++++++++++++++++++++++++++++++++++	·+++ ++-	+++++++++++++++++++++++++++++++++++++++	N++ ++-	· + + + + + + + + + + + + + + + + + + +	+++ +++	· + + + + + + + +	+++ +++	· + + + + + + + + + + + + + + + + + + +	· + + + + + + + +	+++ +++
URINARY SYSTEM Kidney Urinary bladder	++++	++	+++	+++	+++	++	+++	+++	+++	+ + +	+++	+++	++++	+++	+++	+++	+++	+++	+++	+++	++	+++	+++	+++	
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma, malignant Thyroid Follicular cell adenoma C-cell carcinoma Parathyroid	+++++++++++++++++++++++++++++++++++++++	+X+ + -	+ + + -	+ + + +	+x+++	+ + + +	+ + + +	+ + + + × +	+++++	+ + + +	+ + + +	- + +	- + +	- - +	- + +	- - +	- + + +	+ + + X +	+x+++	+++++	+ x + + +	- + + +	++++	+++++	- + x + + +
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Fibroma Hemangioma Ovary Granulosa cell carcinoma	+++++	++++	++++	+ + +	+ + +	N + +	+ + +	+x+++	++++	+ + +	+x+ +	++++	N + +	+ + +	+ + +	++++	+ + +	++++	+ +	+ + +	++++	+ + *	++++	+ + +	 + + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS Papillary adenocarcinoma Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Rhabdomyosarcoma, metastatic Malig, lymphoma, undiffer type Malig, lymphoma, lymphocytic type Malig, lymphoma, histiocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N X	N	N	N X	N X	N	N X	N	N	N X	N X	N	N X	N	N	N	N X

+ : Tissue Examined Microscopically
 - : Required Tissue Not Examined Microscopically
 X : Tumor Incidence
 N : Necropsy, No Autolysis, No Microscopic Examination
 S : Animal Missexed

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

ANIMAL NUMBER	0 5 3	0 5 7	0 5 8	0 6 4	0 6 6	0 7 0	0 7 1	0 7 2	0 7 6	0 7 9	0 8 0	0 8 1	0 8 2	0 8 3	0 8 4	0 8 5	0 8 6	0 8 7	0 8 8	0 8 9	0 9 0	0 9 2	9 4	0 9 5	0 9 9	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Rhabdomyosarcoma Neurofibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Papillary adenocarcinoma, metastatic Caronulos call carcinoma metastatic	+	+ x	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+ x	+	+	+	+	+ x	+	+	+	+	50 1 4 2 1
Pheochromocytoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	1 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malig.lymphoma, undiffer type Lymph nodes Thumus	+++++++	++++++	++ ++	++++++	++ ++	++ ++	++ ++	++ ++	++ ++	+++++	++ +	++ ++	++ ++	+++++	++ ++	+++++++++++++++++++++++++++++++++++++++	++. ++	++ ++	++ ++	+ + +	+++++	++ + +	+++++++++++++++++++++++++++++++++++++++	++++	++++	50 50 1 50
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·	+	+	+	+	+	 +	+	+	 +	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	+ +	+++	++++	+++	+ + x	++++	++	+++	+++	++	++++	++	+++	+++	+++	+++	++x	+++	+ + * X	+++	++++	++ + X	+++	++++	+++	49 50 5
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Squamous cell papilloma	+ + + +	++++	++++	++++	++++	++++X	++++	++++	++++	X + + + +	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+2++	++++	++++	3 50 *50 50 50 1
Stomach Small intestine Large intestine	+ + +	+ + +	+++	+ + +	++++	+ + +	+++	++++	++++	++++	+ + +	+++	+ + +	+++	+++	++++	+++	+++	++++	+ + +	++++	++++	+++	+++	+ + +	50 50 50
URINARY SYSTEM Kidney Urinary bladder	+++	++	++	++++	+++	+++	+++	++	++++	+++	+++	+++	+++	++	+++	++	+++	+++	+++	+++	+++	+++	+++	++++	 + +	50 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma, malignant Thyroid Follicular cell adenoma C-cell carcinoma Parathyroid	+ + +	- + +	++++	+x+ + +	+ + + +	- + +	+ + + +	+++++	+++++	++++	+++++	+++++++	+++++	+++++	+++++	+ + + -	+x+ + +	+ + + -	+++++	+x+++	+++++	+ + + + +	++++		+ + + +	40 8 48 1 50 1 1 41
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Fibroma Hemangioma Ovary	+ + +	+++++	+++++	+ + + +	++++	+++++	++++	++++++	+++++	++++	+++++	++++	++++	++++	++++	+++++	++++	+ * *	+++++	++++	++++	+ + x	++++	++++	_ + + + +	*50 2 50 1 1 49
Granulosa cell carcinoma NERVOUS SYSTEM														, 												
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS Papillary adenoma Papillary adenocarcinoma	N	N X	N	N	N	N	N	N	N	N	N	N	N X		N	N	N	N X	N	N	N	N	N	N	- N	*50 1 1 2
ALL OTHER SYSTEMS Multiple organs, NOS Rhabdomyosarcoma, metastatic Malig, lymphoma, undiffer type Malig, lymphoma, lymphocytic type Malig, lymphoma, histiocytic type	N	N	N X	N X	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N X	N X	N	*50 1 3 5 2
mangnant iymphoma, mixeo type		•									•								•			а,				1 0

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: UNTREATED CONTROL (Continued)

• Animals Necropsied

ANIMAL	Π	1	1	1	1	1	1	1	1	1	Т	1	1	1	1	1	1	π	1	1	٦r	1	1	1	Т
NUMBER	8 5	7 3	9 5	9 6	8 2	9 9	7 9	8 3	7	5 5	6 8	9 3	6 4	9 8	8 8	9 4	5 3	8 1	6 7	5 1	5 2	5 4	5 6	5 7	5 8
WEEKS ON STUDY	0 2 0	0 6 5	0 6 6	0 7 2	0 8 0	0 8 4	0 8 6	0 8 8	0 9 0	0 9 1	0 9 1	0 9 1	0 9 3	0 9 4	0 9 7	0 9 7	1 0 0	1 0 0	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma Neurofibrosarcoma	+	+	+	+	+	+	+	+	+ x	+	+	* x	+	+	*	+	+	+	+	+	-+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	++	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+ x +	-+- -+-	+ X +	+	+	++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++++	+++-	++++++	++++	++++	+++-	+++ -	++++	+++-	-++-	-++-	++++	++++	+++ -	+++ -	+++-	++++	+++ -	++++	++++	+++ -	++++	++++	++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemaricana	+ +	+++	++++	+ +	++	+ +	+++	++++	+	+ +	++++	+++	+ + x	+++	+ +	++	++	++	++ *	+ + x	+ + * X	++	++	+++	++
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine	+++++++++++++++++++++++++++++++++++++++	++++ +-	+++++ +-	++++ +.	+++++ +.	+X+++ +-	+++++ +.	+++++ +.	+++++ +-	+++++++++++++++++++++++++++++++++++++++	+++++ +-	+++++ +-	+++++	+++++ +,	+z+++ +-	+++++ +,	+++++ ++	+++++ ++	+++++ ++	+++++ ++	+++++ ++	++++ ++	+++++ ++	+++++ ++	++ ++ ++
Large intestine URINARY SYSTEM Kidney Malig. lymphoma, undiffer type Urinary bladder	+++	+	+++	+++	+++	+ +	+ + X+	+++	+++	+++	+++	+++	+++	+++	+++	++	+ +	+++	+ +	++	+ + +	++	++	+ +	+ + +
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma Thyroid Follicular cell adenoma Parathyroid Pancreatic islets Islet cell adenoma	+ + + -	+ + + ++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + +	- + + -+	+ -+ -+	+x+ + ++	+ + + -+	+ + + + + + + + + + + + + + + + + + + +	+ + + ++	+ + + + + + + + + + + + + + + + + + +	+ + + -+	+x+ + ++	+ + + ++	+ + + -+	+ + + -+	+ + + -+	+x+ + -+	+ + + + + + + +	+X+ + ++	+ + + -+	+x+ + ++	+ + + + -
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Endometrial stromal polyp Ovary Teratoma, NOS	+ + *	+ + +	++++	++++	++++	++++	N + +	+ + +	++++	+ + +	++++	+ + + +	+ + +	+ + +	+ + +	+ + +	+ + +	N + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	 + + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Fibrosarcoma, metastatic Malignant lymphoma, NOS Malig, lymphoma, undiffer type Malig, lymphoma, lymphocytic type Malig, lymphoma, histiocytic type Malignant lymphoma, mixed type	N	N X	N X	N	N X	N	N	N X	N	N X	N X	N X	N	N	N X	N	N X	N	N	N	N	N	N	N	N
Granulocytic leukemia																		х							

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE
TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: LOW DOSE

-	0	1	2	3	5	6	ğ	Ó	2	4	5	6	7	8	õ	4	6	7	9	0	1	2	7	ŏ	TOTAL
1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES TUMORS
+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 +-	*50 2 1
+	+	· +	+	++	+	+	+	+	+	+	* *	++	+	+	++	+	+	+	+	+	* *	++	+	 +- +-	50 2 2 50
+++++	++++	· + + +	++++	++++	+++++	+++ -	++++	++++	+++++	+++-	++++	++++	++++	+++++	++++	++++	++++	+++++	+++-	++++	+++ -	+++++	+++-	++++	48 50 50 34
+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-	. 50
+ + x	++++	+ + x	++	++ * X	+++	++ * *	+++	+ + X	+++++	+++	+++	+ + x	+ + x	+++	+ +	+ + X	+++	+++	+ +	++	+ + x	++	++	+ + +	49 50 10 4
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++ +	+++++ +	+++++ +	+++++ +	x + + + + + + + + + + + + + + + + + + +	+++++ +.	+++++++++++++++++++++++++++++++++++++++	+++++ +.	+++++ +	+++++ +	+++++ +	+++++ +	+++++ +	++++ +	+++++ +	+++++ +	+++++ +	+++++ +	++-++X+	+++++ +	+++++ +	+++++ +	+++++ +	50 *50 48 50 50 1 49
+	+	+ + +	+ + +	+ + +	+ + +	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+	+	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+- 	50 50 1
+++++++++++++++++++++++++++++++++++++++	+ + + X++	+ + + ++	- + + +	- + + -+	- + + ++	+ + + + +	· + + + + + + + + + + + + + + + + + + +	++++++	+++++++++++++++++++++++++++++++++++++++	+x+x+ -+	+ + + ++	+ + + +	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+ + + +	+ + + + + + + + + + + + + + + + + + + +	• + + + + + +	+ + + +	+ + + -	+ + + +	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + + + + + -	45 6 49 1 50 3 28 48 1
+++++	++++	N + X +	+ + +	++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + * +	+ + +	+ + +	+ + +	+ + X +	+ + +	+ + +	*50 1 50 3 50 1
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 +	50
N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N X	N X	N	N	N	N	*50 1 1 4 2 5
	10 04 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +	$\begin{array}{c} 1 & 1 \\ 0 \\ 0 \\ 4 \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	$\begin{array}{c} 1 & 1 & 1 \\ 0 & 4 \\ 4 & 4 \\ 4 & 4 \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + & + \\ + &$	$\begin{array}{c} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ + & + & + & + \\ + & + & + & + \\ + & + &$	$\begin{array}{c} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 4 & 4 & 4 & 4 & 4 \\ + & + & + & + \\ + & + & + & + \\ + & + &$	$\begin{array}{c} 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 4 & 4 & 4 & 4 & 4 \\ + & + & + & + & + \\ + & + & + & + & +$	$\begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 4 & 4 & 4 & 4 & 4 \\ \end{array}$ $\begin{array}{c} + & + & + & + & + & + \\ + & + & + & + &$	$\begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ + & + & + & + & + & + & + \\ + & + & +$	$\begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	$\begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	$\begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 & -$	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	$\begin{array}{c} 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 <td< th=""><th>1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>Image: Sector sector</th><th>1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th></td<>	1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Image: Sector	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

* Animals Necropsied

ANIMAL NUMBER	2 9 8	2 7 7	2 5 3	2 5 4	2 6 5	2 7 6	2 7 8	2 9 6	2 8 3	2 8 6	2 8 1	2 9 7	3 0 0	2 6 1	2 7 5	2 8 8	2 8 2	2 7 3	2 5 1	2 5 2	2 5 5	2 5 6	2 5 7	2 5 8	2 5 9
WEEKS ON STUDY	0 0 7	0 7 4	08	0 8 7	0 8 7	0 8 7	0 8 8	0 8 8	0 8 9	0 8 9	0 9	0 9 7	0 9 7	0 9 9	0 9 9	0 9 9	1 0 1	1 0 2	1 0 3	1 0 3	03	1 0 3	1 0 3	1 0 3	1 0 3
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+ x	+	*	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+
Osteosarcoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	х +	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodea Thymus	++++	++++	++++	+++ -	++++	++++	++++	++++	+++-	+++ -	+++-	++++	+++-	++++	+++ -	+++-	+++	++++	++++	++++	++++	++++	++++++	+++++	 ++ ++++ +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	++	+++	++	++	+++	+++	++++	+++	++	+++	+++	++	+++	+++	+++	+++	+++	+++	++	++++	+++	+++	++	+++	+++
Hepatocellular carcinoma Osteosarcoma, metastatic Bile duct Gallbladder & common bile duct Pancreas	+++++	+++	+ N +	+++	+++	+++	+ N +	+ N +	+ N +	+++	X ++++	+++	+++	+++	+ X +	+++	+++	+++	+++	X + + + +	+++	+++	+++	++++	+++
Acinar cell carcinoma Esophagus Stomach	+ +	+ +	++	+++	+ +	+ +	+++	+ +	+ +	+ +	+++	+ +	++	+ +	+ +	X + +	++;	+ +	+ +	+ +	++	+ +	++	+ +	+++++
Squamous cell papilloma Small intestine Large intestine	+++	++	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+	* + +	+ +	+ +	+ +	++	+ +	+ +	+ +	++
URINARY SYSTEM Kidney Osteosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Neoplasm, NOS Adaposertinoma NOS matastatic	++	+ +	+ +	+ +	+ +	+ +	+ x +	- +	+ +	+ x +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	* * +							
Pheochromocytoma Thyroid Follicular cell adenoma Follicular cell carcinoma	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Parathyroid Adenoma, NOS Pancreatic ialets Islet cell carcinoma	+	+ +	+ + +	++	+ +	- +	+ +	++	+ +	++	++	++	++	++	+	+ +	+ +	+ +	+	+	+	+ +	+	++	++
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Papillary adenoma Endometrical stromal noim	+ +	++	+ +	++	++	* *	++	+ +	++	+ +	N +	++	+ +	+++	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+++
Ovary Papillary adenocarcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Carcinoma, NOS Adenocarcinoma, NOS Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N	N X	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Carcinoma, NOS, metastatic Acinar cell carcinoma, metastatic Malig, lymphoma, lymphocytic type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N	м М
Malig. lymphoma, histiocytic type Malignant lymphoma, mixed type					x		_			X			X	x							x				_

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE: HIGH DOSE

ANIMAL	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
NUMBER	Ő	2	3	4	6	7	8	9	ó	i	2	4	9	ő	4	5	7	9	0	1	2	3	4	5	9	TOTAL
WEEKS ON STUDY	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	1 0 3	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	N	+	+	+	*50 1
RESPIRATORY SYSTEM Lungs and bronchi	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenocarcinoma, NOS, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic		-	x			Ŧ		-			x								L		-	-	-			2 2 1
HEMATOPOIETIC SYSTEM					+ 		+ 						+					+ 		• •				-		
Bone marrow Spieen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	++++	++++	++++	+++++	+++-	++++	++++	++++	++++	+++++	++++	++++	++++	++++	+++++	++++	++++	++++	++++	++++	++++	++++	50 50 50 40
CIRCULATORY SYSTEM Heart	+	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			50
DIGESTIVE SYSTEM								·								-					-	<u> </u>			_	
Liver Hepatocellular adenoma Hepatocellular carcinoma	x X	÷ X	+	÷ X	+	÷ x	÷	+	÷ x	÷	÷	÷ X	÷ x	÷ x	+	÷	÷ x	÷	+	÷ X	+	+	÷ x	+	* x	50 50 7 7
Osteosarcoma, metastatic Bile duct Gallbladder & common bile duct Pancreas	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	++++	++++	+++	+++	+++	++++	++++	++++	+++	+++++	+++	++++	+++	+++	++++	+++	+++	+++	+++	++	+++++	1 50 *50 49
Acinar cell carcinoma Esophagus Stomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50 50
Squamous cell papilloma Small intestine Large intestine	+	++	• + +	+ +	• + +	+ +	+++	+ +	+ +	• + +	+ +	+ +	++	• + +	• + +	• + +	+++	• + +	• + +	• + +	, + +	• + +	+ +	• + +	+ +	1 50 49
URINARY SYSTEM Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Osteosarcoma Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 49
ENDOCRINE SYSTEM Pituitary	ţ.	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal Neoplasm, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	*	50 1
Adenocarcinoma, NOS, metastatic Pheochromocytoma Thyroid	+	+	+	+	+	+	л +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	1 49
Follicular cell adenoma Follicular cell carcinoma Parathyroid	+	+	+	-	+	+	+	+	+	+	х +	+	+	+	+	+	+	+	+	X +	+	+	х +	+	+	2 1 47
Adenoma, NOS Pancreatic islets Islet cell carcinoma	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	-	+	1 49 1
REPRODUCTIVE SYSTEM Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	•50
Adenocarcinoma, NOS Adenocarcinoma, NOS	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Papillary adenoma Endometrial stromal polyp Ovary	+	+	+	+	+	+	+	+	+	+	+	× +	+	+	+	+	+	+	+	+	+	+	X +	+	+	1 1 49
Papillary adenocarcinoma				×			-										-									1
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Carcinoma, NOS Adenocarcinoma, NOS Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 1 1
ALL OTHER SYSTEMS Multiple organs NOS Carcinoma, NOS, metastatic	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
Acinar cell carcinoma, metastatic Malig: lymphoma, lymphocytic type Malig. lymphoma, histiocytic type Malignant lymphoma, mixed type	x			x	x	x					x			x	x		x		x	x			x	x		1 5 11

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

* Animals Necropsied

Decabromodiphenyl Oxide NTP TR 309

98

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
	50	<u> </u>	50			
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICAI	LY 50		50		50	
INTEGUMENTARY SYSTEM				<u></u>		
*Skin	(50)		(50)		(50)	
Hyperkeratosis	2	(4%)				
*Subcutaneous tissue	(50)	(6.4)	(50)		(50)	
Epidermal inclusion cyst	1	(2%)		(00)		
Hematoma, NOS Hematoma, organized	1	(2%)		(2%)		
RESPIRATORY SYSTEM				<u></u>	<u></u>	
#Trachea	(50)		(50)		(49)	
Inflammation, suppurative	(00)		1	(2%)	(10)	
Inflammation, acute suppurative			-		1	(2%)
#Lung/bronchiole	(50)		(50)		(49)	
Hyperplasia, NOS					1	(2%)
Hyperplasia, focal	1	(2%)				
#Lung	(50)	(07)	(50)		(49)	
Bronchiectasis Congestion NOS	1	(2%) (9 <i>0</i> 4.)	~	(19)	F	(100)
Edema NOS	4	(8%)	2	(4%) (9%)	5	(10%) (10%)
Hemorrhage	1	(296)	1 9	(270)	4	(4270) (696)
Inflammation focal	2	(4%)	4	(8%)	2	(4%)
Inflammation, multifocal	3	(6%)	1	(2%)	ā	(6%)
Inflammation, diffuse	ĭ	(2%)	1	(2%)	· ·	(****
Inflammation, acute focal	3	(6%)		x = · · · x		
Inflammation, acute suppurative			1	(2%)	1	(2%)
Abscess, NOS	1	(2%)				
Pneumonia, chronic murine	1	(2%)				
Inflammation, chronic	35	(70%)	43	(86%)	42	(86%)
Fibrosis, focal	1	(2%)				(0~)
Digmontation NOS	1	(2%)			1	(2%)
Alveolar macronhages			1	(296)	2	(470)
Hyperplasia, alveolar enithelium	2	(4%)	2	(4%)	1	(2%)
#Lung/alveoli	(50)	/	(50)	·/	(49)	<u></u>
Pigmentation, NOS	1	(2%)				
IEMATOPOIETIC SYSTEM						
#Bone marrow	(50)		(50)		(50)	
Congestion, NOS	1	(2%)	•		1	(2%)
Hemorrhage		(0 <i>m</i>)	1	(2%)	1	(2%)
Hypoplasia, NOS	1	(2%) (4%)	3	(6%)		
nyperplasia, NOS Myelofibrosia	2	(4170)	2	(4170) (996)		
#Spleen	(49)		(50)	(270)	(49)	
Congestion, NOS			1	(2%)	(=0)	
Fibrosis, focal	4	(8%)	3	(6%)	10	(20%)
Fibrosis, multifocal	_		í	(2%)	1	(2%)
Fibrosis, diffuse	1	(2%)	4	(8%)	2	(4%)
Necrosis, NOS	1	(2%)	2	(4%)		
Necrosis focal	1	(2%)	2	(4%)	3	(6%)
110010515,10001					1	(2.96)
Metamorphosis, fatty					1	(4/0)
Metamorphosis, fatty Hematopolesis	1	(2%)	1	(2%)	. 	(2,2)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE

1	CONTR	ROL (UNTR)	LOW	DOSE	HIG	h dose
HEMATOPOIETIC SYSTEM (Continued)			<u> </u>			
#Mandibular lymph node	(50)	I.	(50)		(49)	
Congestion. NOS			1	(2%)	1	(2%)
Necrosis, NOS			1	(2%)	-	(=)
Hyperplasia, reticulum cell	1	(2.%)	-	(= /•/		
Hyperplasia, lymphoid	4	(896)	6	(12%)	13	(27%)
#Mediastinal lymph node	(50)		(50)	(12 %)	(49)	(41 %)
Congestion NOS	(00)		(00)	(6%)	(40)	(296)
Homorrhage			U	(0.20)	1	(270)
Dismontation NOS	0	(00)	1	(90)	1	(270)
At an NOS	3	(0%)	1	(270)	1	(2%)
Atrophy, NOS	1	(2%)			1	(2%)
Erythrophagocytosis	2	(4%)	2	(4%)		
Hyperplasia, reticulum cell	1	(2%)				
Hyperplasia, lymphoid	3	(6%)	1	(2%)	3	(6%)
#Pancreatic lymph node	(50)		(50)		(49)	
Hyperplasia, reticulum cell	(24)		1	(2%)		
#Mesenteric lymph pode	(50)		(50)		(49)	
Hemorrhage	(00)		(00)		(=0)	(2%)
Abecese NOS					1	(20)
Atrophy NOS	•	(99)			1	(470)
Rirophy, NOS	1	(2%)		(10)	1	(2%)
Lrythrophagocytosis		(** ***)	2	(4.%)		(0.0.01)
Hyperplasia, reticulum cell	26	(52%)	4	(8%)	19	(39%)
Hyperplasia, lymphoid	1	(2%)	1	(2%)	1	(2%)
#Renal lymph node	(50)		(50)		(49)	
Pigmentation, NOS	2	(4%)			1	(2%)
Erythrophagocytosis	1	(2%)				
Hyperplasia, lymphoid			1	(2%)		
#Iliac lymph node	(50)		(50)	(=)	(49)	
Pigmentation NOS	(00)	(296)	(00)		(10)	
Huperplasia lumphoid	1	(270)				
#Lung	(50)	(270)	(50)		(40)	
#Lung	(80)		(50)	(00)	(49)	
Leukocy losis, NOS	(50)		(50)	(2%)	(10)	
	(50)	(10)	(50)		(49)	
Leukocytosis, NOS	2	(4%)		(0~)		
Hematopolesis	1	(2%)	1	(2%)		
#Thymus	(47)		(40)		(44)	
Congestion, NOS			1	(3%)		
Hyperplasia, lymphoid	1	(2%)				
JIRCULATORY SYSTEM						
*Multiple organs	(50)		(50)		(50)	
Thrombosis, NOS	(,		(/		1	(2%)
Periarteritis			1	(2%)	-	
#Bone marrow	(50)		(50)		(50)	
Thrombosis NOS	(00)		1	(296)		
#Mandihular lymnh node	(50)		(50)	(200)	(40)	
Lymphangiestasis	(00)	(906)	(00)	(996)	(117) 0	(196)
#Modiagtinal lymph rode		(470)	(EN)	(470)	(40)	(4170)
	(00)		(00)		(49)	(0/1)
Lympnangiectasis	/= * ·				1	(2%)
#Mesenteric lymph node	(50)		(50)		(49)	
Lymphangiectasis	4	(8%)				
#Lung	(50)		(50)		(49)	
Thrombosis, NOS	1	(2%)	1	(2%)	2	(4%)
Thrombus, fibrin	_			-	1	(2%)
#Heart	(50)		(50)		(49)	. = *
Thrombosis NOS	(00)		(00)		1	(2.96)
Inflammation obvionio					1	(20)
Fibrosia	0	(19)	0	(10)	1	(270)
Pibrosis Degeneration NOS	2	(++70)	2	(1270) (1306)		
Degeneration, NOS			1	(2%)		

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	CONTE	IOL (UNTR)	LOW	DOSE	HIG	H DOSE
CIRCULATORY SYSTEM (Continued)						<u> </u>
#Heart/atrium	(50)		(50)		(49)	
Thrombosis, NOS	3	(6%)	11	(22%)	6	(12%)
Fibrosis			1	(2%)		
#Heart/ventricle	(50)		(50)		(49)	
Thrombosis, NOS			1	(2%)		
#Myocardium	(50)		(50)		(49)	
Mineralization			2	(4%)	1	(2%)
Inflammation, acute focal	1	(2%)				
Inflammation, chronic	1	(2%)		(1.5.2)	~ ~	
Inflammation, chronic local	27	(54%)	20	(40%)	25	(51%)
Fibroaia	9	(18%)	13	(26%)	17	(35%)
Necrosis focal	1	(2%) (9%)		(1490)	3 1	(10%)
*Coronary artery	(50)	(270)	(50)		(50)	(270)
Inflammation, chronic	(00)	(2%)	(00)		(00)	
*Mediastinal artery	(50)	(270)	(50)		(50)	
Inflammation, chronic	(00)		1	(2%)	(00)	
*Superior pancreatico-duodenal artery	(50)		(50)	(2,0)	(50)	
Inflammation, chronic	(3	(6%)	(()))	
*Vena cava	(50)		(50)	(2.17)	(50)	
Thrombosis, NOS	,		1	(2%)		
#Liver	(50)		(50)		(49)	
Thrombosis, NOS	1	(2%)			9	(18%)
#Hepatic sinusoid	(50)		(50)		(49)	
Pigmentation, NOS	2	(4%)				
#Testis	(47)		(50)		(49)	
Periarteritis	2	(4%)				
#Adrenal medulla	(49)		(50)		(49)	
Thrombosis, NOS	2	(4%)	1	(2%)		
DIGESTIVE SYSTEM						
#Salivary gland	(49)		(50)		(48)	
Necrosis, focal	1	(2%)			(
Atrophy, focal	1	(2%)			2	(4%)
Hyperplasia, diffuse					1	(2%)
#Liver	(50)		(50)		(49)	
Hernia, NOS	1	(2%)	3	(6%)		
Congestion, NOS	2	(4%)	2	(4%)		
Spongiosis	1	(2%)	1	(2%)		(22)
Hemotrnage	1	(2%)			1	(2%)
Inflammation abronia	1	(2%)	0	(69)	9	(40)
Granulama NOS	1 7	(470) (1496)	5	(0%)	2	(4.%)
Fibrosis focal	'	(14%)	1	(10%)	2	(4270)
Henatitis toxic	8	(16%)	13	(26%)	12	(270) (2496)
Degeneration NOS	10	(10%) (20%)	16	(32%)	21 21	(4396)
Degeneration, cystic	2	(4%)	2	(4%)	21 1	(2%)
Necrosis, focal	9	(18%)	5	(10%)	9	(18%)
Necrosis, coagulative	2	(4%)		~~~~	5	(10/0)
Metamorphosis, fatty	8	(16%)	13	(26%)	11	(22%)
Pigmentation, NOS	4	(8%)	4	(8%)	10	(20%)
Focal cellular change	21	(42%)	25	(50%)	27	(55%)
Hepatocytomegaly			2	(4%)		
Atrophy, focal			_		1	(2%)
Regeneration, NOS	2	(4%)	2	(4%)	2	(4%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
(50)		(50)		(49)	
(00)	(2%)	1	(296)	(40)	
L	(270)	1	(20)		
		1	(270)	,	(90)
		•		1	(2%)
		2	(4%)		
				1	(2%)
(50)		(50)		(49)	
17	(34%)	2	(4%)	6	(12%)
5	(10%)	3	(6%)	11	(22%)
29	(58%)	26	(52%)	25	(51%)
(49)	(00,0)	(50)	(02.0)	(49)	(01,0)
(40)	(90)	(00)		(40)	
1	(270)				
ł	(2%)				(00)
				1	(2%)
		2	(4%)		
7	(14%)	2	(4%)	9	(18%)
		3	(6%)	4	(8%)
(49)		(50)		(49)	
(40)		(00)	(90)	(10)	
(50)		(50)	(270)	(40)	·
(50)		(50)		(49)	
		1	(2%)		
		2	(4%)		
(49)		(50)		(49)	
1	(2%)				
ī	(2%)	4	(8%)		
(49)	(2,10)	(50)	(0,0)	(49)	
(43)		(00)		(40)	(90)
	(00)	•	(00)	1	(270)
1	(2%)	1	(2%)	1	(2%)
1	(2%)				
		2	(4%)		
				1	(2%)
7	(14%)	4	(8%)	9	(18%)
•	(1	(2%)	-	(
(40)		(50)	(2,0)	(40)	
(49)	(0.0)	(00)		(43)	
1	(2%)				(0.0)
				1	(2%)
		1	(2%)		
2	(4%)				
				4	(8%)
1	(2%)	1	(2%)	2	(4%)
1	\-/ \ /	1	(2%)		
		1	(296)		
•	(10)	1	(470)		(10a)
2	(4170)	Z	(4170)	5	(10%)
		-		1	(2%)
		3	(6%)	5	(10%)
(47)		(49)		(48)	
				1	(2%)
(47)		(49)		(48)	
(41)		1	(9%)	(10)	
		1	(904)	1	(99)
		1	(470)	1	(470)
		1	(2%)		
(47)		(49)		(48)	
				1	(2%)
				1	(2%)
				1	(2%)
				ī	(2%)
		1	(29%)	-	,
		-	(~ /V)		
	(50) (50) 17 5 29 (49) 1 1 7 (49) (50) (49) 1 1 (49) 1 1 (49) 1 1 (49) 1 2 (49) 1 1 (49) 1 1 (49) (50) (49) 1 1 (49) (50) (49) 1 1 (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (50) (49) (49) (49) (50) (49) (47) (47) (47) (47) (47)	(50) 1 (2%) $(50) 1 (2%)$ $(50) 17 (34%) 5 (10%) 29 (58%)$ $(49) 1 (2%) 1 (2%) 1 (2%)$ $(49) (50)$ $(49) (50)$ $(49) 1 (2%) 1 (2%) 1 (2%)$ $1 (2%) 1 (2%)$ $7 (14%)$ $(49) 1 (2%)$ $7 (14%)$ $(49) 1 (2%)$ $2 (4%)$ $1 (2%)$ $2 (4%)$ $1 (2%)$ $2 (4%)$ (47) (47)	$\begin{array}{c} \textbf{CONTROL (UNTR)} & \textbf{LOW} \\ \hline \\ (50) & (50) \\ 1 & (2\%) & 1 \\ 1 \\ & 2 \\ (50) & (50) \\ 17 & (34\%) & 2 \\ 5 & (10\%) & 3 \\ 29 & (58\%) & 26 \\ (49) & (50) \\ 1 & (2\%) & 1 \\ (2\%) & 1 \\ (2\%) & 1 \\ (50) & (50) \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 4 \\ (49) & (50) \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 2 \\ 7 & (14\%) & 4 \\ (49) & (50) \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 2 \\ 7 & (14\%) & 4 \\ (49) & (50) \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 1 \\ 2 & (4\%) & 2 \\ 7 & (14\%) & 4 \\ 1 & (49) & (50) \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 1 \\ 1 & (2\%) & 1 \\ 1 & (4\%) & 2 \\ (47) & (49) \\ (47) & (49) \\ (47) & (49) \\ 1 & 1 \\ (47) & (49) \\ \end{array}$	$\begin{array}{c} \text{CONTROL (UNTR)} & \text{LOW DOSE} \\ \hline \\ & 1 & (2\%) & 1 & (2\%) \\ & 1 & (2\%) & 1 & (2\%) \\ & 2 & (4\%) & 5 & (10\%) & 3 & (6\%) & 29 & (58\%) & 26 & (52\%) & (49) & (50) & 1 & (2\%$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE C1.SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
URINARY SYSTEM						the second
#Kidney	(48)		(50)		(49)	
Hamartoma			1	(2%)		
Mineralization			1	(2%)		
Congestion, NOS	2	(4%)	1	(2%)	1	(2%)
Hemorrhage	1	(2%)				
Nephropathy	45	(94%)	46	(92%)	47	(96%)
Necrosis, coagulative	1	(2%)				
Infarct, acute					1	(2%)
Pigmentation, NOS			1	(2%)		
#Kidney/cortex	(48)		(50)		(49)	
Cyst, NOS			4	(8%)		
Multiple cysts					1	(2%)
#Kidney/tubule	(48)		(50)		(49)	
Necrosis, focal	2	(4%)				
Pigmentation, NOS	35	(73%)	12	(24%)	13	(27%)
#Urinary bladder	(47)	(0~)	(48)	((49)	(0.41)
Hemorrhage	1	(2%)	1	(2%)	1	(2%)
ENDOCRINE SYSTEM						
#Pituitary	(50)		(50)		(50)	
Congestion, NOS			1	(2%)	1	(2%)
#Anterior pituitary	(50)		(50)	(=)	(50)	<u> </u>
Cyst. NOS	3	(6%)	2	(4%)	2	(4%)
Hemorrhage	1	(2%)	-	(2,		(=)
Hemorrhagic cyst	1	(2%)	1	(2%)		
Necrosis, focal	1	(2%)	-	(2.17)	1	(2%)
Pigmentation, NOS	2	(4%)	1	(2%)		
Hyperplasia, focal	6	(12%)	3	(6%)	3	(6%)
Angiectasis	3	(6%)	1	(2%)	1	(2%)
#Adrenal	(49)		(50)		(49)	
Metamorphosis, fatty			1	(2%)		
#Adrenal/capsule	(49)		(50)		(49)	
Fibrosis			1	(2%)		
#Adrenal cortex	(49)		(50)		(49)	
Congestion, NOS	1	(2%)	1	(2%)		
Metamorphosis, fatty	3	(6%)	3	(6%)	2	(4%)
Cytoplasmic vacuolization			1	(2%)		
Hypertrophy, focal			1	(2%)		
Hyperplasia, focal			3	(6%)	1	(2%)
#Adrenal medulla	(49)		(50)		(49)	
Hemorrhage	1	(2%)			_	(
Pigmentation, NOS		(000)		(0.10)	1	(2%)
Typerplasia, local #Thurnid	11	(4270)	12	(2470)	6	(12%)
Tiltimohranchial evet	(00)	(90)	(49)		(49)	(906)
Cyct NOS	1	(470) (906)			1	(270)
Cystic follieles	1	(470) (904)	9	(60)	0	(60)
Follicular over NOS	1	(470) (90 6)	3	(070)	J	(070)
Pigmentation NOS	1	(270) (9 04)				
Hyperplacia Casell	1	(470) (9406)	٥	(1906)	0	(194)
Hyperplasia, 0-0011 Hyperplasia, fallianlar call	12	(44170) (906)	0	(1270)	2	(4270)
#Darathuroid	(40)	(470)	(40)		(47)	
Hupernlagia NOS	(49)	(320)	(48)	(15%)	(4/)	(9100)
Tryper plasta, 1100	10	(0370)	((1070)	10	(2170)
#Pancroatic jalota	(40)		(EA)		(40)	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	CONTI	ROL (UNTR)	LOW	DOSE	HIG	h dose
REPRODUCTIVE SYSTEM	<u> </u>			·····	<u></u>	
*Mammary gland	(50)	i	(50)		(50)	
Dilatation/ducts	8	(16%)	1	(2%)	3	(6%)
Galactocele			2	(4%)	1	(2%)
Hyperplasia, diffuse	1	(2%)				
*Preputial gland	(50)		(50)		(50)	
Dilatation/ducts	1	(2%)	4	(8%)	2	(4%)
Abscess, NOS	2	(4%)	3	(6%)	1	(2%)
Inflammation, chronic	1	(2%)			1	(2%)
Hyperplasia, NOS	1	(2%)			1	(2%)
Hyperplasia, epithelial	1	(2%)				
Hyperplasia, focal			1	(2%)		
Hyperplasia, diffuse			1	(2%)		
Hyperkeratosis	1	(2%)	1	(2%)	1	(2%)
#Prostate	(47)		(49)		(49)	
Hemorrhage	1	(2%)				
Inflammation, suppurative	_		1	(2%)	1	(2%)
Inflammation, acute	1	(2%)	-		-	
Inflammation, acute focal	1	(2%)				
Abscess, NOS	8	(17%)	3	(6%)	4	(8%)
Inflammation, active chronic			2	(4%)	1	(2%)
Inflammation, chronic					1	(2%)
Inflammation, chronic focal	8	(17%)	3	(6%)	4	(8%)
Hyperplasia, epithelial	5	(11%)	2	(4%)	6	(12%)
Hyperplasia, focal	3	(6%)				
*Seminal vesicle	(50)		(50)		(50)	
Dilatation/ducts					1	(2%)
Cyst, NOS					1	(2%)
Inflammation, suppurative			1	(2%)		
#Testis	(47)		(50)		(49)	
Mineralization	1	(2%)				
Granuloma, spermatic					1	(2%)
Degeneration, NOS	6	(13%)	4	(8%)	2	(4%)
Aspermatogenesis	1	(2%)	1	(2%)		
Spermatogenic arrest			1	(2%)		
Hypospermatogenesis	1	(2%)	3	(6%)		
Hyperplasia, interstitial cell	5	(11%)	8	(16%)	6	(12%)
*Epididymis	(50)		(50)		(50)	
Granuloma, spermatic	1	(2%)				
Necrosis, fat	1	(2%)	1	(2%)		
NERVOUS SYSTEM						
#Cerebrum	(50)		(50)		(50)	
Hemorrhage	,		1	(2%)	3	(6%)
Necrosis, focal			2	(4%)		
Necrosis, lamellar			1	(2%)		
#Cerebellum	(50)		(50)		(50)	
Hemorrhage	1	(2%)	1	(2%)	2	(4%)
#Medulla oblongata Cyst, NOS	(50)		(50)		(50) 1	(2%)
SPECIAL SENSE ORGANS				<u></u>		
*Eye	(50)		(50)		(50)	
Synechia, anterior	1	(2%)			(20)	
Cataract	3	(6%)	1	(2%)	2	(4%)
Phthiaia hulhi	-		1	(29)		

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	CONTROL (UNTR)		LOW DOSE		HIGH DOSE	
SPECIAL SENSE ORGANS (Continued)				<u></u>		
*Eye/cornea	(50)		(50)		(50)	
Inflammation, acute focal					1	(2%)
Inflammation, chronic	1	(2%)			1	(2%)
Inflammation, chronic diffuse			1	(2%)		
Necrosis, focal					1	(2%)
*Eye/retina	(50)		(50)		(50)	
Degeneration, NOS	5	(10%)	1	(2%)	2	(4%)
*Zymbal gland	(50)		(50)		(50)	
Abscess, NOS					1	(2%)
MUSCULOSKELETAL SYSTEM						
*Skull	(50)		(50)		(50)	
Exostosis	(00)		(00)		1	(2%)
*Sternum	(50)		(50)		(50)	()
Fracture, NOS	(00)		(,		1	(2%)
*Muscle of neck	(50)		(50)		(50)	、 — · · · <i>,</i>
Fibrosis, focal	(())		(,		1	(2%)
Degeneration, NOS					1	(2%)
BODY CAVITIES					=	
*Mediastinum	(50)		(50)		(50)	
Edema, NOS			(,		1	(2%)
*Abdominal cavity	(50)		(50)		(50)	(=)
Necrosis, fat	3	(6%)	3	(6%)	6	(12%)
ALL OTHER SUSTEMS	.					
*Multiple organs	(50)		(50)		(50)	
Diletation/ducte	1	(296)	(00)		(00)	
Congestion NOS			3	(696)	1	(2.96)
Inflammation sunnurative			1	(2.%)	1	(270)
Inflammation chronic	9	(496)	3	(6%)		
Pigmentation, NOS		(296)	0			
Adinose tissue	•					
Edema, NOS					1	
Inflammation. chronic	1				•	
Inflammation, chronic focal	-				1	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

None

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
 # Number of animals examined microscopically at this site

٠
ANIMALS INITIALLY IN STUDY 50 50 50 50 ANIMALS NECROPSIED 50 50 50 50 INTEGUMENTARY SYSTEM 50 50 50 "Skin (50) (50) (50) Hyperplasia, focal 1 (2%) (50) (50) Acanthosis 1 (2%) (50) (50) Edems, NOS 1 (2%) (2%) (50) (50) Fracheal lumen (50) (49) (50) (60) 1 (2%) #Inflammation, suppurative (50) (49) (50) (50) (60) #Uung (50) (49) (50) (2%) 1 (2%) Inflammation, nuclifical 3 (6%) 2 (4%) 1 (2%) Inflammation, focal 2 (4%) 5 (10%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) 1 (2%) Abscess, NOS 1 <th></th> <th>CONTR</th> <th>OL (UNTR)</th> <th>LOW</th> <th>DOSE</th> <th colspan="3">HIGH DOSE</th>		CONTR	OL (UNTR)	LOW	DOSE	HIGH DOSE		
ANIMALS NECROPSIED 50 50 50 50 NIMALS NECROPSIED 50 50 50 NIMALS EXAMINED HISTOPATHOLOGICALLY 50 50 50 NTEGUMENTARY SYSTEM (50) (50) (50) "Subication focal 1 (2%) (50) (50) Acanthosis 1 (2%) (50) (50) Acanthosis 1 (2%) 1 (2%) (50) Protein RNOS 1 (2%) 1 (2%) (50) Protein Body, NOS (50) (49) (50) Inflammation, suppurative 1 (2%) 1 (2%) (50) #Tracheal lumen (50) (49) (50) (50) Congestion, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) Inflammation, suppurative 1 (2%) 1 (2%) 1 (2%) 1 (2%) Inflammation, conganized 1 (2%) 1 (2%) 1 (2%) 1 (2%) Inflammation, forait 2 (4%) 1 (2%) 1 (2%) 1 (2%) Inflammation, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) Inflammation, NOS	ANIMALS INITIALLY IN STUDY			50		50		
NIMALS EXAMINED HISTOPATHOLOGICALLY 50 50 50 INTEGUMENTARY SYSTEM (50) (50) (50) "Skin (50) (50) (50) Hyperplasia, focal 1 (2%) (50) (50) Acaathosis 1 (2%) (2%) (2%) Subcutancesus tissue (50) (50) (50) (50) RESPIRATORY SYSTEM "Tracheal lumen (50) (49) (60) "Tracheal lumen (50) (49) (60) (2%) "Inflammation, suppurative (50) (49) (50) (2%) "Inflammation, sepiration 1 (2%) 1 (2%) Inflammation, corponized 1 (2%) 1 (2%) Inflammation, focal 2 (4%) 1 (2%) Inflammation, focal 1 (2%) 1	ANIMALS NECROPSIED	50		50		50		
INTEGUMENTARY SYSTEM (50) (50) (50) (50) Hyperplasia, focal 1 (2%) - - - Acanthosis 1 (2%) - - - - Subcutaneous tissue (50) (50) (50) 1 (2%) - - Tesches llumen (50) (50) (50) 1 (2%) - - #Traches llumen (50) (49) (50) - 1 (2%) - #Traches llumen (50) (49) (50) - 1 (2%) - Inflammation, suppurative 1 (2%) 3 (6%) - 2 (4%) - 1 (2%) Inflammation, notal 3 (6%) 1 (2%) 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) - 1 (2%) -	ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50		
"Skin (50) (50) (50) (50) Hyperplasia, focal 1 (2%) * * *Subcutaneous tissue (50) (50) (50) Edema, NOS 1 (2%) * 1 (2%) *Subcutaneous tissue (50) (50) (50) Mercosis, fat 1 (2%) 1 (2%) * *Tracheal lumen (50) (60) (50) (50) roreign body, NOS 1 (2%) 3 (6%) 1 (2%) * #Inflammation, suppurative 1 (2%) 1 (2%) 1 (2%) Inflammation, NOS 1 (2%) 1 (2%) 1 (2%) Inflammation, cotal 2 (4%) 5 (10%) 1 (2%) Inflammation, cotal (ffuse 1 (2%) 1 (2%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) 1 (2%) Inflammation, cotal (ffuse 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 2 (4%) 1 (2%) 1 (2%) Pigmentation, NOS 2 (4%) 1 (2%) 1 (2%)	INTEGUMENTARY SYSTEM	_						
Hyperplasia, focal 1 (2%) Acanthosis 1 (2%) *Subcutaneous tissue (50) (50) (50) Edema, NOS 1 (2%) *Tracheal lumen (50) (50) (50) *Tracheal lumen (50) (49) (50) *Tracheal lumen (50) (49) (50) *Tracheal lumen (50) (49) (50) *Tracheal numation, suppurative 1 (2%) 3 (6%) 1 (2%) #Lang (50) (49) (50) (2%) Inflammation, sorganized 1 (2%) 1 (2%) 1 (2%) Inflammation, aspiration 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 44 (88%) 40 (82%) 44 (88%) Necrosis, foal 2 (4%) 1 (2%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) 1 (2%) Hyperplasia, NOS 2 (4%) 1 (2%) 1 (2%) Hyperplasia, NOS 2 (4%) 1 (2%) 1 (2%) Hyperplasia, NOS 2 (4%) 1 (2%) 1 (2%) Hyperplasia, NOS	*Skin	(50)		(50)		(50)		
Acanthosis 1 1 (2%) FSubcutaneous tissue (50) (50) (50) Edema, NOS 1 (2%) Exercise, fat 1 (2%) #Trachea (50) (49) (50) #Long (50) (49) (50) #Long (50) (49) (50) #Inflammation, suppurative 1 (2%) 1 #Ling (50) (50) (50) (50) Inflammation, foraited 2 (4%) 5 (10%) 1 (2%) Inflammation, chronic 44 (85%) 40 (82%) 44 (85%) Prigmentation, NOS 2 (4%) 1 (2%) 1 (2%) Hyperplasia, delar epithelium 1 (2%) 1 (2%) <	Hyperplasia, focal	1	(2%)					
"Subcitaneous issue (50) (50) (50) (50) (50) Necrosis, fat 1 (2%) "Tracheal lumen (50) (50) (50) Foreign body, NOS 1 (2%) (50) (50) #Trachea lumen (50) (49) (50) Inflammation, suppurative 1 (2%) 3 (6%) (2%) #Long (10%) 1 (2%) 1 (2%) Inflammation, focal 2 (4%) 5 (10%) 1 (2%) Inflammation, focal 2 (4%) 5 (10%) 1 (2%) Inflammation, focal 1 (2%) 1 (2%) 1 (2%) Inflammation, cost diffuee 1 (2%) 1 (2%) 1 (2%) Inflammation, cost diffuee 1 (2%) 1 (2%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) Hyperplasia, NOS 2 (4%) 1 (2%) 1 (2%) #Bone macrow (50) (50) (50) Hyperplasia, alveolar epithelium <	Acanthosis	1	(2%)	(20)		(
Litema, NOS 1 (2%) Necrosis, fat 1 (2%) RESPIRATORY SYSTEM 1 (2%) "Tracheal lumen (50) (50) Forsign body, NOS 1 (2%) #Trachea (50) (49) Congestion, NOS 1 (2%) Hematoma, organized 1 (2%) Inflammation, multifical 3 (6%) Pneumonia, aspiration 1 (2%) Inflammation, noted iffuse 1 (2%) Inflammation, noted iffuse 1 (2%) Inflammation, note offuse 1 (2%) Inflammation, NOS 2 (4%) Prigmentation, NOS 2 (4%) Hyperplasia, aveolar epithelium 1 (2%) Hyperplasia, aveolar epithelium 1 (2%) Hyperplasia, eticulum cell 1 (2%) Hyperplasia, eticulum cell 1 (2%) Hyperplasia, eticulum cell 1 (2%) Hyperplasia, hymphoid 1 (2%) Hyperplasi	"Subcutaneous tissue	(50)		(50)		(50)	(90)	
RESPIRATORY SYSTEM **Tracheal lumen (50) (50) (50) *Tracheal lumen (50) (50) 1 (2%) *Trachea (50) (49) (50) *Long (50) (49) (50) Congestion, NOS 1 (2%) 3 (6%) Hematoma, organized 1 (2%) 3 (50) (49) Inflammation, ocute diffuse 3 (6%) 1 (2%) Inflammation, acute diffuse 1 1 (2%) 1 (2%) Inflammation, chronic 44 (88%) 40 (82%) 44 (88%) Necrosis, focal 1 (2%) 1 (2%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) 1 (2%) Hemorthage 2 (4%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) <	Necrosis, fat	1	(2%)			1	(270)	
*Tracheal lumen (50) (50) (50) *Tracheal lumen (50) (49) (50) Inflammation, suppurative 1 (2%) *Trachea (50) (49) (50) Congestion, NOS 1 (2%) 3 (6%) Hematoma, organized 1 (2%) 1 (2%) Inflammation, focal 2 (4%) 5 (10%) 1 (2%) Inflammation, acute diffuse 1 (2%) 1 (2%) 1 (2%) Inflammation, acute diffuse 1 (2%)	RESPIRATORY SYSTEM				<u> </u>			
Foreign body, NOS III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	*Tracheal lumen	(50)		(50)		(50)		
#Trachea (50) (49) (50) Inflammation, supprative 1 (2%) 1 (2%) #Lung (50) (49) (50) (49) (50) Congestion, NOS 1 (2%) 1 (2%) 1 (2%) Inflammation, focal 2 (4%) 5 (10%) 1 (2%) Inflammation, acute diffuse 3 (6%) 1 (2%) 1 (2%) Inflammation, acute diffuse 1 (2%) </td <td>Foreign body, NOS</td> <td>(</td> <td></td> <td>()</td> <td></td> <td>1</td> <td>(2%)</td>	Foreign body, NOS	(()		1	(2%)	
Inflammation, suppurative 1 (2%) 1 (2%) #Lung (50) (49) (50) Congestion, NOS 1 (2%) 3 (6%) (50) Inflammation, focal 2 (4%) 5 (10%) 1 (2%) Inflammation, nultifocal 3 (6%) 2 (4%) Preumonia, aspiration 1 (2%) 1 (2%) Inflammation, acute diffuse 1 (2%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) Inflammation, chronic 44 (88%) 40 (82%) 44 (88%) Necrosis, focal 1 (2%) 1 (2%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) 1 (2%) #Bone marrow (50) (50) (50) (50) Hyperplasia, NOS 2 (4%) 1 (2%) 1 (2%) #Bone marrow (50) (50) (50) 1 (2%) Hemorrhage 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (4%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) Hyperplasia, itymphoid 1 (2%) 1 (2%	#Trachea	(50)		(49)		(50)		
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Inflammation, suppurative					1	(2%)	
Congestion, NOS 1 (2%) 3 (6%) Hematoma, organized 1 (2%) 1 1 (2%) Inflammation, focal 2 (4%) 5 (10%) 1 (2%) Inflammation, multifical 3 (6%) 2 (4%) 1 (2%) Inflammation, acute diffuse 1 (2%) 1 (2%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 44 (88%) 40 (82%) 44 (88%) Necrosis, focal 1 1 (2%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) Hemorrhage 2 (4%) 1 (2%) Hemorrhage 1 (2%) 1 (2%) Depletion, NOS 25 (51%) 22 (46%) 1 (2%) Hemorrhage 1 1 (2%)	#Lung	(50)		(49)	(22)	(50)		
riematom, organized 1 (2%) Inflammation, cold 2 (4%) 5 (10%) 1 (2%) Inflammation, multifocal 3 (6%) 2 (4%) Pneumonia, aspiration 1 (2%) 1 (2%) Inflammation, acute diffuse 1 (2%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) Inflammation, chronic 44 (88%) 40 (82%) 44 (88%) Necrosis, focal 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 2 (4%) 1 (2%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) 1 (2%) #Bone marrow (50) (50) (50) (50) Hyperplasia, NOS 2 (4%) 1 (2%) 1 (2%) #Bone marrow (50) 1 (2%) 1 (2%) Hemorrhage 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%)	Congestion, NOS	1	(2%)	3	(6%)			
Inflammation, notai 2 (4%) 5 (10%) 1 (2%) Inflammation, aspiration 3 (6%) 2 (4%) 1 (2%) Preumonia, aspiration 1 (2%) 1 (2%) 1 (2%) Inflammation, acute diffuse 1 (2%) 1 (2%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 44 (88%) 40 (82%) 44 (88%) Necrosis, focal 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 2 (4%) 1 (2%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) 1 (2%) #Bone marrow (50) (50) (50) (50) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (4%) 18 (36%) Hemorrhage 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemorrhage 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) 1 (2%) Hyperplasia, lymphoid 1 (2%)	Hematoma, organized		(40)	1	(2%)		(00)	
Initiality 3 (5%) 2 (4%) Preduminia, aspiration 1 (2%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) Inflammation, chronic 44 (88%) 40 (82%) 44 (88%) Necrosis, focal 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 2 (4%) 1 (2%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) 1 (2%) Hemorthage 2 (4%) 1 (2%) 1	Inflammation, focal	2	(4.%)	5	(10%)	1	(2%)	
Inflammation, acute diffuse 1 (2%) 1 (2%) Abscess, NOS 1 (2%) 1 (2%) Inflammation, chronic 44 (88%) 40 (82%) 44 (88%) Necrosis, focal 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 2 (4%) 1 (2%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) 1 (2%) HEMATOPOIETIC SYSTEM 2 (4%) 1 (2%) 1 (2%) #Bone marrow (50) (50) (50) (50) Hemorrhage 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosiderosis 1 (2%) 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) 1 (2%) Hyperplasia, lymphoid 1 (2%) 1 (2%) 1 (2%) Homatopoiesis 12 (24%) 24 (60%) 17 (34%) Hyperplasia, lymphoid 1 (2%) 1 (2%) 1 (2%) #Splenic follicles (49) (48) (50) A	Pneumonie expiration	ა	(0%)			2	(4270) (996)	
Abscess, NOS 1 (2%) 1 (2%) Inflammation, chronic 44 (88%) 40 (82%) 44 (88%) Necrosis, focal 1 (2%) 1 (2%) Pigmentation, NOS 2 (4%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) HEMATOPOIETIC SYSTEM 2 (4%) 1 (2%) #Bone marrow (50) (50) (50) Hemorrhage 2 (4%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosrikerosis 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosrikerosis 1 (2%) 1 (2%) 1 (2%) Hemosrikerosis 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) #Splenic follicles (49) (48) (50) 1 (2%) Inflammation, NOS 1 (2%) 3 (6%) 3 (6%) 3 (6%) #Splenic follicles (49) (48) (5	Inflammation soute diffuse					1	(270)	
Inflammation, chronic 44 (89%) 40 (82%) 44 (89%) Necrosis, focal 1 (2%) 1 (2%) Pigmentation, NOS 2 (4%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) #Bone marrow (50) (50) (50) Hyperplasia, NOS 2 (4%) 1 (2%) #Bone marrow (50) (50) (50) Hyperplasia, NOS 2 (4%) 1 (2%) #Bone marrow (50) (49) (48) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosiderosis 1 (2%) 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) 1 (2%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 1 (2%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 1 (2%) 1 (2%) #Myperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) #Mandibular lymph node (50) (49) (50)	Abscess, NOS	1	(2%)			i.	(2%)	
Necrosis, focal 1 (2%) 1 (2%) Pigmentation, NOS 2 (4%) 1 (2%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) #Bone marrow (50) (50) (50) #Bone marrow (50) 2 (4%) 1 (2%) #Bone marrow (49) (48) (50) Hemorthage 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosiderosis 1 (2%) 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) 1 (2%) Hyperplasia, lymphoid 1 (2%) 1 (2%) 1 (2%) #Splenic follicles (49) (48) (50) Inflammation, NOS 1 (2%) 1 (2%) 3 (6%) #Mandibular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 500 1 (2%) #Mandibular lymph node (50) (49) (50)	Inflammation, chronic	44	(88%)	40	(82%)	44	(88%)	
Pigmentation, NOS 2 (4%) Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) HEMATOPOIETIC SYSTEM (50) (50) (50) #Bone marrow (50) (50) (50) Hyperplasia, NOS 2 (4%) 1 (2%) #Bone marrow (49) (48) (50) Hemorrhage 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosiderosis 1 (2%) 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) 1 (2%) Hyperplasia, lymphoid 1 (2%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 3 (6%) 3 (6%) Atrophy, NOS 1 (2%) 1 (2%) 1 (2%) #Mandibular lymph node (50) (49) (50) Hyperplasia, eticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%)	Necrosis, focal		(,	1	(2%)	1	(2%)	
Hyperplasia, alveolar epithelium 1 (2%) 1 (2%) HEMATOPOIETIC SYSTEM (50) (50) (50) Hyperplasia, NOS 2 (4%) 1 (2%) Hemorrhage 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosrhage 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosiderosis 1 (2%) 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) 1 (2%) Hematopoiesis 12 (24%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 1 (2%) 4 (8%) #Mandibular lymph node (50) (49) (50) 1 (2%) #Mediastinal lymphoid 1 (2%) 1 (2%) 1 (2%) 1 (2%) #Mediastinal lymph node (50) (49) (50) 6%) 1 (2%) Pigmentation, NOS 7 (14%) 3 (6%) 3 (6%) 3 (6%)	Pigmentation, NOS	2	(4%)					
HEMATOPOIETIC SYSTEM (50) (50) (50) (50) Hyperplasia, NOS 2 (4%) 1 (2%) #Spleen (49) (48) (50) Hemorrhage 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosiderosis 1 (2%) 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) 1 (2%) Hematopoiesis 12 (24%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 1 (2%) 1 (2%) #Splenic follicles (49) (48) (50) Atrophy, NOS 1 (2%) 1 (2%) 1 (2%) #Mediastinal lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) #Mediastinal lymph node 10 (2%) 50) 50) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) Pigmentation, NOS	Hyperplasia, alveolar epithelium	1	(2%)			1	(2%)	
#Bone marrow (50) (50) (50) (50) Hyperplasia, NOS 2 (4%) 1 (2%) #Spleen (49) (48) (50) Hemorrhage 1 (2%) 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosiderosis 1 (2%) 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) Hyperplasia, lymphoid 1 (2%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 3 (6%) 4 (8%) #Splenic follicles (49) (48) (50) Mandibular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 4 (8%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 4 (8%) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 4 (8%) Hyperplasia, reticulum cell 1 (2%	HEMATOPOIETIC SYSTEM							
Hyperplasia, NOS2 (4%) 1 (2%) #Spleen(49)(48)(50)Hemorrhage1 (2%) 1Pigmentation, NOS25 (51%) 22 (46%) 18Hemosiderosis1 (2%) 1 (2%) Depletion, lymphoid1 (2%) 1 (2%) Hyperplasia, reticulun cell4 (8%) 1 (2%) Hyperplasia, lymphoid12 (24%) 24 (50%) 17Hematopoiesis12 (24%) 24 (50%) 17Hematopoiesis12 (24%) 24 (50%) 17Inflammation, NOS1 (2%) (48) (50) Atrophy, NOS1 (2%) (2%) (48) (50) Hyperplasia, reticulum cell1 (2%) (2%) (2%) Hyperplasia, lymphoid1 (2%) (6%) (50) Hemorrhage1 (2%) (2%) (6%) Hyperplasia, reticulum cell1 (2%) (2%) Pigmentation, NOS7 (14%) (6%) (6%) Hemorrhage1 (2%) (2%) (2%) Pigmentation, NOS7 (14%) (2%) (2%) Hyperplasia, reticulum cell1 (2%) (2%) Hyperplasia, reticulum cell1 (2%) (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS1 (2%) (2%) Hyperplasia,	#Bone marrow	(50)		(50)		(50)		
#Spleen (49) (48) (50) Hemorrhage 1 (2%) 1 Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Depletion, lymphoid 1 (2%) 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) 1 (2%) Hyperplasia, lymphoid 1 (2%) 1 (2%) 1 (2%) Hematopoiesis 12 (24%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) 17 (34%) #Splenic follicles (49) (48) (50) 1 (2%) Atrophy, NOS 1 (2%) 1 (2%) (48) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 4 (8%) Bepletion, lymp	Hyperplasia, NOS			2	(4%)	1	(2%)	
Hemorrhage 1 (2%) Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosiderosis 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) Hematopoiesis 12 (24%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 3 (50) 48%) #Atrophy, NOS 1 (2%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 4 (8%) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 4 (8%) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 3 (6%) 3 (6%) #Mediastinal lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Erythrophagocytosis 8 (16%) 3 (6%) 3 (6%) <td>#Spleen</td> <td>(49)</td> <td></td> <td>(48)</td> <td></td> <td>(50)</td> <td></td>	#Spleen	(49)		(48)		(50)		
Pigmentation, NOS 25 (51%) 22 (46%) 18 (36%) Hemosiderosis 1 (2%) 1 (2%) 1 Depletion, lymphoid 1 (2%) 1 (2%) 1 Hyperplasia, reticulum cell 4 (8%) 1 (2%) 1 (2%) Hyperplasia, lymphoid 1 (2%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 3 (50) 1 #Splenic follicles (49) (48) (50) Atrophy, NOS 1 (2%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 3 (6%) Hemorrhage 1 (2%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 3 (6%) 3 (6%) Hemorrhage 1 (2%) 2 (4%) 1 (2%) Pigmentation, NOS 7 (14%) 3 (6%) 3 (6%) Depletion, lymphoid 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Frythrophagocyt	Hemorrhage	05	(21.00)	1	(2%)	10	(0.00)	
Termosiderosis 1 (2%) 1 (2%) Depletion, lymphoid 1 (2%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) Hyperplasia, lymphoid 1 (2%) 1 (2%) Hematopoiesis 12 (24%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 1 (2%) #Splenic follicles (49) (48) (50) Atrophy, NOS 1 (2%) 1 (2%) #Mandibular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 4 (8%) Pigmentation, NOS 7 (14%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 2 (4%) 1 (2%) #Yperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Yperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) <td>Pigmentation, NOS</td> <td>25</td> <td>(51%)</td> <td>22</td> <td>(46%)</td> <td>18</td> <td>(36%)</td>	Pigmentation, NOS	25	(51%)	22	(46%)	18	(36%)	
Hyperplasia, reticulum cell 4 (8%) 1 (2%) Hyperplasia, reticulum cell 4 (8%) 1 (2%) Hyperplasia, lymphoid 1 (2%) 1 (2%) Hematopoiesis 12 (24%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 48) (50) #Splenic follicles (49) (48) (50) Atrophy, NOS 1 (2%) 3 (6%) 3 (6%) #Mandibular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 2 (4%) 1 (2%) #Yancreatic lymph node (50) (49) (50) #Pancreatic lymph node (50) (49) (50) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) <td< td=""><td>Depletion lymphoid</td><td>1</td><td>(2%)</td><td>1</td><td>(2%)</td><td></td><td></td></td<>	Depletion lymphoid	1	(2%)	1	(2%)			
Hyperplasia, lymphoid 1 (2%) 1 (2%) Hematopoiesis 12 (24%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) 48) (50) Inflammation, NOS 1 (2%) 48) (50) #Splenic follicles (49) (48) (50) Atrophy, NOS 1 (2%) 1 (2%) (50) #Mandibular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 4 (8%) Pigmentation, NOS 7 (14%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 2 (4%) 1 (2%) #Yhophagocytosis 8 (16%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) <	Hyperplasia, reticulum cell	•	(2,0)	4	(8%)	1	(2%)	
Hematopoiesis 12 (24%) 24 (50%) 17 (34%) #Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) ************************************	Hyperplasia, lymphoid			1	(2%)	1	(2%)	
#Splenic capsule (49) (48) (50) Inflammation, NOS 1 (2%) (48) (50) #Splenic follicles (49) (48) (50) Atrophy, NOS 1 (2%) (48) (50) #Mandibular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 4 (8%) #Mediastinal lymph node (50) (49) (50) Hemorrhage 1 (2%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 3 (6%) 4 (8%) Erythrophagocytosis 8 (16%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%)	Hematopoiesis	12	(24%)	24	(50%)	17	(34%)	
Inflammation, NOS 1 (2%) #Splenic follicles (49) (48) (50) Atrophy, NOS 1 (2%) 1 (2%) #Mandibular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 3 (6%) #Mediastinal lymph node (50) (49) (50) Hemorrhage 1 (2%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 3 (6%) 3 (6%) #Yperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%)	#Splenic capsule	(49)		(48)		(50)		
#Splenic follicles (49) (48) (50) Atrophy, NOS 1 (2%) #Mandibular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 3 (6%) #Mediastinal lymph node (50) (49) (50) (50) (50) Hemorrhage 1 (2%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 3 (6%) 4 (8%) Erythrophagocytosis 8 (16%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell <td>Inflammation, NOS</td> <td>1</td> <td>(2%)</td> <td></td> <td></td> <td></td> <td></td>	Inflammation, NOS	1	(2%)					
Atrophy, NOS 1 (2%) #Mandibular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 3 (6%) #Mediastinal lymph node (50) (49) (50) (50) (49) (50) #Mediastinal lymph node (50) (49) (50) (6%) (6%) (6%) Pigmentation, NOS 7 (14%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 2 (4%) 1 (2%) #Yperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%) </td <td>#Splenic follicles</td> <td>(49)</td> <td></td> <td>(48)</td> <td>(0~)</td> <td>(50)</td> <td></td>	#Splenic follicles	(49)		(48)	(0~)	(50)		
# Manadoular lymph node (50) (49) (50) Hyperplasia, reticulum cell 1 (2%) 3 (6%) 3 (6%) # Mediastinal lymph node (50) (49) (50) # Mediastinal lymph node (50) (49) (50) # Mediastinal lymph node (50) (49) (50) Hemorrhage 1 (2%) (49) (50) Pigmentation, NOS 7 (14%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 2 (4%) 1 (2%) Erythrophagocytosis 8 (16%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%)	Atrophy, NOS	(50)		1	(2%)			
11 (2%) 1 (2%) 3 (6%) 3 (6%) Hyperplasia, lymphoid 1 (2%) 3 (6%) 3 (6%) #Mediastinal lymph node (50) (49) (50) Hemorrhage 1 (2%) 1 (2%) 1 (2%) Pigmentation, NOS 7 (14%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 2 (4%) 1 (2%) Erythrophagocytosis 8 (16%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%)	# mandibular lymph node	(50)		(49)		(50)	(994)	
Hyperplasa, ynphold 1 (2%) 3 (6%) 3 (6%) #Mediastinal lymph node (50) (49) (50) Hemorrhage 1 (2%) 1 (2%) Pigmentation, NOS 7 (14%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 2 (4%) 1 (2%) Erythrophagocytosis 8 (16%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%)	Hyperplasia, reliculum cell Hyperplasia, lymphoid	,	(7 %)	9	(6%)	1	(470) (696)	
Hemorrhage 1 (2%) Pigmentation, NOS 7 (14%) 3 (6%) Depletion, lymphoid 1 (2%) Erythrophagocytosis 8 (16%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%)	#Mediastinal lymph node	(50)	(270)	· (49)	(070)	3 (50)	(070)	
Pigmentation, NOS 7 (14%) 3 (6%) 4 (8%) Depletion, lymphoid 1 (2%) 3 (6%) 3 (6%) Erythrophagocytosis 8 (16%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%) 1 (2%)	Hemorrhage	(00)		(=0)	(2%)			
Depletion, lymphoid1 (2%)Erythrophagocytosis8 (16%)3 (6%)Hyperplasia, reticulum cell1 (2%)2 (4%)#Pancreatic lymph node(50)(49)Pigmentation, NOS1 (2%)Hyperplasia, reticulum cell1 (2%)1 (2%)1 (2%)	Pigmentation, NOS	7	(14%)	3	(6%)	4	(8%)	
Erythrophagocytosis 8 (16%) 3 (6%) 3 (6%) Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%)	Depletion, lymphoid	i	(2%)	-		-	,	
Hyperplasia, reticulum cell 1 (2%) 2 (4%) 1 (2%) #Pancreatic lymph node (50) (49) (50) Pigmentation, NOS 1 (2%) 1 (2%) Hyperplasia, reticulum cell 1 (2%) 1 (2%)	Erythrophagocytosis	8	(16%)	3	(6%)	3	(6%)	
#Pancreatic lymph node(50)(49)(50)Pigmentation, NOS1 (2%)1 (2%)Hyperplasia, reticulum cell1 (2%)1 (2%)	Hyperplasia, reticulum cell	1	(2%)	2	(4%)	1	(2%)	
rigmentation, NOS1 (2%)1 (2%)Hyperplasia, reticulum cell1 (2%)	#Pancreatic lymph node	(50)	(00)	(49)		(50)	(00)	
ryperplasia, reticuum celi 1 (2%)	Figmentation, NOS	1	(2%)		(90)	1	(2%)	
Munomiana jumenhaid	nyperpiasia, reticuium cell			1	(2%)	•	(906)	

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE

Decabromodiphenyl Oxide, NTP TR 309

107

	CONTI	ROL (UNTR)	LOW	DOSE	HIGH DOSE	
HEMATOPOIETIC SYSTEM (Continued)				<u> </u>		
#Mesenteric lymph node	(50))	(49)		(50)	
Hemorrhage	1	(2%)	1	(2%)		
Pigmentation, NOS	2	(4%)				
Depletion, lymphoid	1	(2%)	1	(2%)		
Erythrophagocytosis					2	(4%)
Hyperplasia, reticulum cell	34	(68%)	23	(47%)	22	(44%)
Hyperplasia, lymphoid			1	(2%)		
#Renal lymph node	(50))	(49)		(50)	
Hemorrhage	1	(2%)				
Pigmentation, NOS	1	(2%)				
#Liver	(50)	(4.4~)	(49)	(0~)	(50)	(4.0.00)
Leukocytosis, NOS	7	(14%)	3	(6%)	5	(10%)
riematopoiesis	(50)	(2%)	1	(2%)	(50)	(2%)
#Adrenar Hematopoiesis	(50)		(48)		(50)	(2%)
CIRCULATORY SYSTEM	··	- <u></u>				
#Mandibular lymph node	(50)		(49)		(50)	
Lymphangiectasis	(00)		1	(2.96)	(00)	(2%)
#Mesenteric lymph node	(50)		(49)	(1,0)	(50)	(2,0)
Lymphangiectasis	3	(6%)	(40)		(00)	
#Heart	(50)		(49)		(50)	
Mineralization	(00)		(10)		1	(2%)
Inflammation, chronic	1	(2%)			1	(2%)
Fibrosis	_	(=,-,			ĩ	(2%)
#Heart/atrium	(50)		(49)		(50)	
Thrombosis, NOS			1	(2%)	1	(2%)
#Myocardium	(50)		(49)		(50)	
Mineralization			1	(2%)		
Inflammation, chronic focal	26	(52%)	20	(41%)	16	(32%)
Inflammation, chronic diffuse	10	(20%)	11	(22%)	8	(16%)
Fibrosis	1	(2%)	2	(4%)	2	(4%)
Degeneration, NOS	1	(2%)				
*Pulmonary artery	(50)		(50)		(50)	
Hyperplasia, NOS					1	(2%)
*Mesenteric artery	(50)	((50)	(0.01)	(50)	
Inflammation, chronic	1	(2%)	1	(2%)		
DIGESTIVE SYSTEM	(50)		(50)		(50)	
Hunorkorstosia	(50)		(00)	(0α)	(50)	
#Saliyary gland	(50)		(49)	(270)	(50)	
Inflammation chronic	(00)	(296)	(40)	(296)	(00)	
Fibrosis, diffuse	-	(270)	1	(2%)		
Atrophy, NOS	1	(2%)	-	(=,0)		
Atrophy, focal	· ·	(=,*)	1	(2%)	1	(2%)
#Liver	(50)		(49)	()	(50)	(=)
Hernia, NOS	6	(12%)	4	(8%)	4	(8%)
Congestion, NOS	1	(2%)	2	(4%)	1	(2%)
Hemorrhage	1	(2%)				
Inflammation, chronic	1	(2%)	1	(2%)		
Granuloma, NOS	23	(46%)	13	(27%)	17	(34%)
Fibrosis, focal	1	(2%)			1	(2%)
Hepatitis, toxic	4	(8%)	6	(12%)	6	(12%)
Necrosis, focal	2	(4%)	2	(4%)	5	(10%)
Metamorphosis, latty	9	(18%)	5	(10%)	4	(8%)
rigmentation, NOS	16	(32%)	8	(16%)	5	(10%)
r ocal cellular change	37	((4.%))	32	(00) (00)	31	(02%)
nepatocytomegaly	2	(4.%) (4.%)	1	(2%)		
Angiectasis	2	(4%)				

	CONTI	ROL (UNTR)	LOW	DOSE	HIGH DOSE		
DIGESTIVE SYSTEM (Continued)	· <u></u>						
#Liver/centrilobular	(50)		(49)		(50)		
Necrosis, coagulative			1	(2%)			
Cytoplasmic vacuolization					1	(2%)	
#Liver/hepatocytes	(50)		(49)		(50)		
Cytoplasmic vacuolization	1	(2%)					
#Bile duct	(50)		(49)		(50)		
Inflammation, chronic	5	(10%)	3	(6%)	2	(4%)	
Fibrosis			1	(2%)			
Hyperplasia, NOS	4	(8%)	8	(16%)	4	(8%)	
#Pancreas	(49)		(48)		(49)		
Ectopia			1	(2%)			
Hemorrhage		(1	(2%)	
Atrophy, focal	8	(16%)	8	(17%)	11	(22%)	
Atrophy, diffuse			2	(4%)	1	(2%)	
#Pancreatic acinus	(49)	(.	(48)		(49)		
Hyperplasia, focal	2	(4%)					
#Esophagus	(50)	<i></i>	(48)		(50)		
Hyperkeratosis	2	(4%)			1	(2%)	
#Stomach	(49)	(0.2)	(48)		(50)	~~~	
Ulcer, NOS	1	(2%)			4	(8%)	
Inflammation, chronic diffuse					1	(2%)	
Necrosis, focal				(0.01)	1	(2%)	
Amyloidosis	(10)		1	(2%)	(50)		
#Glandular stomach	(49)		(48)	(0)	(50)		
Edema, NOS		(00)	1	(2%)			
Ulcer, NOS	1	(2%)		(00)			
Inflammation, chronic diffuse		(09)	I	(2%)		(00)	
Necrosis, local	3	(6%)	4	(8%)	4	(8%)	
HyperKeratosis			1	(2%)			
Acantnosis	(40)		1	(2%)	(50)		
# Forestomacn	(49)		(48)	(00)	(50)		
nemorrnage		(10)	1	(2%)			
Inflammation, chronic local	2	(4%)	1	(001)			
Magnazia focal	0	(69)	1	(2%)			
Hunerkersterie	0 1	(070) (9 <i>0</i> 4.)	1	(270)	1	(90%)	
Aconthosis	1	(270)	1	(270)	1	(270)	
#Small intesting	U (01)	(0%)	(17)	(270)	(50)	(0%)	
Diverticulum	(40)	(296)	(41)		(00)		
#Cecum	(49)	(2.10)	(49)		(49)		
Hemorrhage	(43)	(296)	(40)		(40)	(2%)	
Necrosis, focal	ĩ	(2%)			ĩ	(2%)	
URINARY SYSTEM							
#Kidney	(50)		(49)		(50)		
Mineralization	/		1	(2%)	1	(2%)	
Congestion, NOS	1	(2%)			1	(2%)	
Abscess, NOS	1	(2%)					
Nephropathy	42	(84%)	44	(90%)	49	(98%)	
Metamorphosis, fatty			1	(2%)			
Pigmentation, NOS			1	(2%)			
#Kidney/cortex	(50)		(49)		(50)		
Cyst, NOS					1	(2%)	
#Kidney/tubule	(50)		(49)		(50)		
Mineralization					1	(2%)	
Necrosis, focal					2	(4%)	
Pigmentation, NOS	43	(86%)	35	(71%)	39	(78%)	
#Urinary bladder	(49)		(48)		(49)		
Distention	1	(2%)					

	CONTR	ROL (UNTR)	LOW	DOSE	HIGH DOSE		
ENDOCRINE SYSTEM	· · · · · · · · · · · · · · · · · · ·						
#Pituitary	(50)		(50)		(50)		
Cyst, NOS	()		1	(2%)	1	(2%)	
Hemorrhage	1	(2%)		(-		
Hyperplasia, focal	1	(2%)	1	(2%)			
Angiectasis	1	(2%)	1	(2%)			
#Anterior pituitary	(50)	(=,,,,	(50)	(= ,0)	(50)		
Cyst NOS	19	(24%)	(00) Q	(18%)	11	(2296)	
Multiple cysts	2	(496)		(10,0)	1	(22, 10)	
Hemorrhage	1	(906)	1	(9%)	•	(270)	
Hemorrhagio over	1	(20)	1	(270)		(90)	
Digmontation MOS	1	(270)	1	(270)	1	(270)	
Figmentation, NOS	2	(4%)	Z	(4%)	1	(2%)	
Hyperplasia, focal	3	(6%)	1	(2%)	3	(6%)	
Angiectasis	2	(4%)	5	(10%)	2	(4%)	
#Adrenal	(50)		(48)		(50)		
Congestion, NOS	1	(2%)			1	(2%)	
Infarct, NOS					1	(2%)	
Metamorphosis, fatty	1	(2%)					
#Adrenal cortex	(50)		(48)		(50)		
Accessory structure	1	(2%)					
Congestion, NOS	3	(6%)	1	(2%)			
Degeneration, NOS					1	(2%)	
Necrosis, focal					$\overline{2}$	(4%)	
Metamorphosis fatty	6	(1996)	9	(196)	10	(20%)	
Pigmentation NOS	v	(12,0)	4	(4/0)	10	(20%)	
Cutonlasmis us suchisation	•	(90)			1	(270)	
Um angla sia facal	. 1	(2%)		(0.01)		(00)	
"A luce l l ll	3	(0%)	4	(8%)	4	(8%)	
#Adrenal medulla	(50)	(1 m)	(48)		(50)	(0.4)	
Hyperplasia, local	2	(4%)	5	(10%)	1	(2%)	
#Periadrenal tissue	(50)		(48)		(50)		
Fibrosis					1	(2%)	
#Thyroid	(50)		(49)		(50)		
Cystic follicles			2	(4%)	1	(2%)	
Hyperplasia, C-cell	14	(28%)	7	(14%)	2	(4%)	
#Parathyroid	(49)		(49)		(47)		
Hyperplasia, NOS	1	(2%)			1	(2%)	
EPRODUCTIVE SYSTEM							
*Mammary gland	(50)		(50)		(50)		
Dilatation/ducts	25	(50%)	24	(48%)	24	(48%)	
Galactocele	2	(4%)	2	(4%)	2	(4%)	
*Clitoral gland	(50)		(50)		(50)	/	
Dilatation/ducts	1	(2%)			1	(2%)	
Cystic ducts	•	~~/~/			1	(2%)	
Inflammation, suppurative			1	(2%)	*	~,	
Inflammation, acute focal	1	(2%)	1				
Abscess NOS	1	(2%)					
Fibrosis diffuse	1	(296)					
Hyperplasia NOS	1	(29%)					
#I Itorna	(40)	(470)	(40)		(ED)		
π Oter us Hudnomotro	(49)	(60)	(49)	(60)	(00)	(0α)	
	3	(0%)	3	(10%) (10%)	4	(070)	
Disasta	1	(270)	1	(270)			
ryometra	1	(2%)				(A A :	
Inflammation, acute focal					1	(2%)	
Fibrosis	1	(2%)					
Figmentation, NOS			1	(2%)			
#Cervix uteri	(49)		(49)		(50)	_	
Cyst, NOS			2	(4%)	1	(2%)	
Abscess, NOS					2	(4%)	
Fibrosis	6	(12%)	1	(2%)	5	(10%)	

	CONTROL (UN	rr) LOW	DOSE	HIGH DOSE	
REPRODUCTIVE SYSTEM (Continued)					
#Uterus/endometrium	(49)	(49)		(50)	
Cyst, NOS	1 (2%)	x 7		(
Hyperplasia, cystic	2 (4%)	4	(8%)	4	(8%)
#Ovary	(48)	(48)		(50)	
Cyst, NOS	1 (2%)	2	(4%)	4	(8%)
#Ovary/follicle	(48)	(48)		(50)	
Hyperplasia, NOS				1	(2%)
NERVOUS SYSTEM					
#Cerebrum	(49)	(50)		(49)	
Hemorrhage	(30)	2	(4%)	(43)	
Cytoplesmic vecuolization		4	(4,0)	1	(296)
#Brain	(49)	(50)		(40)	(2,0)
Hemorrhage	9 (19h)	(00)		(
Necrosis, NOS	1 (2.96)				
#Cerebral basal surface	(49)	(50)		(49)	
Compression, NOS	(48)	(00)		(40)	(2%)
#Cerebellum	(49)	(50)		(49)	(2π)
Hemorrhage	(40)		(496)	(40)	
Necrosis focal		1	(296)		
SPECIAL SENSE ORGANS *Eye Hemorrhage Pannus Synechia, posterior Cataract Phthisis bulbi *Eye/cornea Inflammation, NOS Inflammation, acute *Eye/retina Degeneration, NOS *Harderian gland Granuloma, NOS	(50) 3 (6%) 8 (16%) 1 (2%) (50) (50) (50) (50)	$\begin{array}{c} (50) \\ 2 \\ 1 \\ (3) \\ (50) \\ 1 \\ (50) \\ 15 \\ (50) \\ 15 \\ (50) \end{array}$	(4%) (2%) (6%) (16%) (2%) (2%) (2%) (30%)	(50) 1 (50) (50) 1 (50) 1	(2%) (2%) (2%)
MUSCULOSKELETAL SYSTEM					
*Skull	(50)	(50)		(50)	
Exostosis		1 (2%)		
*Sternum	(50)	(50)		(50)	(100)
Exostosis	5 (10%)	3 (6%)	5	(10%)
BODY CAVITIES					
*Abdominal cavity	(50)	(50)		(50)	
Necrosis, fat	1 (2%)	1 (2%)		
*Mesentery Fibrosis	(50)	(50)		(50) 1	(2%)

•

	CONTR	CONTROL (UNTR)		LOW DOSE		HIGH DOSE	
ALL OTHER SYSTEMS							
*Multiple organs	(50)		(50)		(50)		
Congestion, NOS	1	(2%)	2	(4%)	3	(6%)	
Inflammation, chronic	1	(2%)	1	(2%)			
Pigmentation, NOS	2	(4%)			2	(4%)	
Adipose tissue							
Inflammation, chronic focal	1						

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
 # Number of animals examined microscopically at this site

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

(CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*Skin	(50)		(50)		(50)	
Edema, NOS					1	(2%)
Ulcer, NOS	3	(6%)			2	(4%)
Inflammation, chronic			1	(2%)		
Inflammation, chronic focal	1	(2%)				
Fibrosis	1	(2%)				
Parasitism			1	(2%)		
Hyperkeratosis					1	(2%)
Acanthosis	† 4	(8%)	4	(8%)	. 3	(6%)
Metaplasia, osseous	1	(2%)				
"Subcutaneous tissue	(50)		(50)		(50)	
Epidermal inclusion cyst			-	(0.4)	1	(2%)
Edema, NOS			1	(2%)	1	(2%)
Abscess, NOS	2	(4%)	1	(2%)	1	(2%)
Inflammation, chronic			1	(2%)		
RESPIRATORY SYSTEM						·
#Lung	(50)		(50)		(50)	
Atelectasis			1	(2%)		
Congestion, NOS	19	(38%)	13	(26%)	17	(34%)
Edema, NOS					1	(2%)
Hemorrhage			1	(2%)		
Inflammation, chronic	22	(44%)	34	(68%)	27	(54%)
Infection, fungal					1	(2%)
Alveolar macrophages	1	(2%)	6	(12%)	2	(4%)
Hyperplasia, alveolar epithelium	1	(2%)	2	(4%)	2	(4%)
IEMATOPOIETIC SYSTEM						
#Brain	(50)		(50)		(50)	
Leukocytosis, NOS			1	(2%)		
#Bone marrow	(49)		(50)		(50)	
Leukemoid reaction	7	(14%)	2	(4%)	1	(2%)
Hyperplasia, hematopoietic	9	(18%)	12	(24%)	9	(18%)
Hyperplasia, granulocytic	1	(2%)			1	(2%)
#Spleen	(49)		(50)		(50)	
Congestion, NOS			2	(4%)	2	(4%)
Necrosis, focal			1	(2%)		
Atrophy, NOS			2	(4%)		
Leukemoid reaction	5	(10%)	2	(4%)	2	(4%)
Hyperplasia, hematopoietic		(0~)	1	(2%)		
Hyperplasia, lymphoid	1	(2%)	~			(000
Hematopoiesis	11	(22%)	. 8	(16%)	10	(20%)
#Lymph node	(50)		(49)		(49)	(0.0)
Hyperplasia, lymphoid			1	(2%)	1	(2%)
#Mandibular lymph node	(50)		(49)		(49)	
Congestion, NOS			2	(4%)		(00)
Infection, fungal	~	(0~)	~	(100)	1	(2%)
Hyperplasia, lymphoid	3	(6%)	8	(16%)	9	(18%)
#Mediastinal lymph node	(50)		(49)	(00)	(49)	(0/1)
riyperplasia, lymphoid	150			(2%)	1	(2%)
#riepatic lymph node	(50)	(0.01)	(49)		(49)	
Hyperplasia, lymphoid	1	(2%)				

114

.

	CONTR	CONTROL (UNTR)		DOSE	HIGH DOSE		
HEMATOPOIETIC SYSTEM (Continued)				······································			
#Mesenteric lymph node	(50)		(49)		(49)		
Congestion, NOS	6	(12%)	16	(33%)	13	(27%)	
Hemorrhage	2	(4%)			1	(2%)	
Angiectasis	1	(2%)	3	(6%)	2	(4%)	
Leukocytosis, NOS	1	(2%)	2	(4%)	2	(4%)	
Leukemoid reaction		• • •	_	\ - · · · /	1	(2%)	
Plasmacytosis			1	(2%)		(
Hyperplasia, lymphoid	1	(2%)	3	(6%)	2	(4%)	
#Renal lymph node	(50)	,	(49)	(0.0)	(49)	()	
Hyperplasia, lymphoid	6	(12%)	2	(4%)	(
#Iliac lymph node	(50)	(12,0)	(49)	(4,0)	(49)		
Necrosis focal	(00)		(40)	(2%)	(43)		
Hyperplasia lymphoid	15	(30%)	5	(2.70) (10%)	4	(90^{\prime})	
# A villary lymph pode	(50)	(30%)	(40)	(10%)	(40)	(0%)	
Hunerplesie lymphoid	(00)	(9 <i>a</i>)	(43)		(43)	(997)	
#Brachial lymph pade	(50)	(270)	(40)		(40)	(2%)	
# Brachar lymph node	(00)	(90)	(49)		(49)		
#Inquinal lymph pada	(50)	(270)	(40)		(40)		
#inguinal lymph node	(00)	(00)	(49)	(00)	(49)	(07)	
#Deplifeel lawsplaced	3	(6%)	1	(2%)	1	(2%)	
#Poplicallymph hode	(00)	(0~)	(49)		(49)		
Hyperplasia, lymphoid	1	(2%)					
#Lung	(50)		(50)		(50)		
Leukocytosis, NOS	8	(16%)	7	(14%)	4	(8%)	
#Heart	(50)		(50)		(50)		
Leukocytosis, NOS	2	(4%)	2	(4%)	1	(2%)	
#Liver	(50)		(50)		(50)		
Leukocytosis, NOS	2	(4%)	1	(2%)	3	(6%)	
Leukemoid reaction	1	(2%)			1	(2%)	
Hematopoiesis					1	(2%)	
#Kidney	(49)		(50)		(50)	()	
Leukocytosis, NOS					1	(2%)	
#Adrenal	(49)		(50)		(50)		
Leukocytosis, NOS	1	(2%)			,		
#Thymus	(25)		(19)		(32)		
Cyst, NOS	()		1	(5%)	3	(9%)	
Congestion, NOS	1	(4%)	-	(,	_	(2.12)	
IRCULATORY SYSTEM							
*Subcutaneous tissue	(50)		(50)		(50)		
Periarteritis	1	(2%)					
#Heart	(50)		(50)		(50)		
Distention	4	(8%)			1	(2%)	
Thrombosis, NOS	2	(4%)	1	(2%)			
Thrombus, mural	1	(2%)					
Congestion, NOS			1	(2%)			
Inflammation, suppurative			2	(4%)	1	(2%)	
Inflammation, acute	1	(2%)					
Inflammation, chronic	6	(12%)	3	(6%)	5	(10%)	
Fibrosis, focal					1	(2%)	
Bacterial septicemia					1	(2%)	
#Heart/atrium	(50)		(50)		(50)		
Thrombosis, NOS	2	(4%)	3	(6%)	3	(6%)	
#Heart/ventricle	(50)	,	(50)	,	(50)	,	
Thrombosis, NOS	(00)		2	(4%)	1	(2%)	
#Myocardium	(50)		(50)		(50)	(2,0)	
Mineralization	(UU) 9	(4%)	9	(4%)	(00)		
Inflammation, suppurative	2	(2%)	4	(= /0)			
Abscess NOS	1	(2%)					
Fibrasis	1	(470)	1	(906)			
Degeneration NOS			L	(270)		(90)	
Degeneration, NOS					1	(2%)	

CIRCULATORY SYSTEM (Continued) (50) (50) (50) Inflammation, NOS 1 (2%) (50) (50) "Acria evalve (50) (50) (50) (50) "Acria evalve (50) (50) (50) (50) "Acria evalve echronic 1 (2%) 1 (2%) "Superior pancreaticoduodenal artery (50) (50) (50) (50) Inflammation, NOS 1 (2%) 1 (2%) "Breat artery (50) (50) (50) (50) Thrombosis, NOS 1 (2%) 1 (2%) "Pertarteritis (50) (50) (50) (50) Thrombosis, NOS 1 (2%) 1 (2%) Pertarteritis 1 (2%) 1 (2%) Thombosis, NOS 1 (2%) 1 (2%) Inflammation, chronic 11 (2%) 1 (2%) Inflammation, Songerative 1 (2%) 1<		CONTH	ROL (UNTR)	LOW	OOSE	HIGH DOSE	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CIRCULATORY SYSTEM (Continued)	<u></u>	······································		<u> </u>		
Inflammation, NOS 1 (2%) #Cardiac valve (50) (50) (50) Inflammation, active chronic 1 (2%) 1 (2%) "Superior panceaticoduodenal artery (50) (50) (50) Inflammation, active chronic 1 (2%) 1 (2%) "Superior panceaticoduodenal artery (50) (50) (50) Inflammation, NOS 1 (2%) 1 (2%) "Renal artery (50) (50) (50) Inflammation, NOS 1 (2%) 1 (2%) "Portal vein (50) (50) (50) Thrombosis, NOS 1 (2%) 1 (2%) # #Prostate (50) (50) (49) Periarteritis 1 (2%) 1 (2%) 1 (2%) #Suivary gland (50) (50) (50) Construct, NOS 7 (14%) 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic <t< td=""><td>#Endocardium</td><td>(50)</td><td></td><td>(50)</td><td></td><td>(50)</td><td></td></t<>	#Endocardium	(50)		(50)		(50)	
	Inflammation, NOS	' 1	(2%)				(
Inflammation, active chronic 1 (2%) (50) (50) (50) Thrombosis, NOS 1 (2%) 1 (2%) (50) (50) Inflammation, active chronic 1 (2%) 1 (2%) 1 (2%) "Superior pancreaticoduodenal artery (50) (50) (50) (50) Inflammation, NOS 1 (2%) 1 (2%) 1 (2%) "Periative trains (50) (50) (50) (50) Thrombosis, NOS 1 (2%) 1 (2%) (50) (50) Thrombosis, NOS 1 (2%) 1 (2%) (49) (50) Periateritis 1 (2%) 1 (2%) (49) (50) Thrombosis, NOS 1 (2%) 1 (2%) (49) (50) CESTIVE SYSTEM # (2%) 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 11 (2%) 1 (2%) 1 (2%) 1 (2%) Cangestion, NOS 7 (14%) 10 (20%) 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) 1 (2%) 1 (2	#Cardiac valve	(50)	• · · · ·	(50)		(50)	
*Acta (50) (60) (60) (60) Thrombosis, NOS 1 (2%) 1 (2%) *Superior parcreation/dudenal attery (50) (50) (50) (50) Periateritis 1 (2%) 1 (2%) *Renal attery (50) (50) (50) (50) Inflammation, NOS 1 (2%) 1 (2%) *Periateritis (50) (50) (50) (50) #Thrombosis, NOS 1 (2%) (2%) (50) #Liver (50) (50) (50) (50) #Prister (50) (50) (49) (50) Edema, NOS 1 (2%) 1 (2%) Inflammation, chronic 11 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) Inflammation, chronic foal 1 (2%) 1 (2%) Inflammation, chronic foal 1 (2%) 1	Inflammation, active chronic	1	(2%)			(
Information, active chronic 1	*Aorta	(50)		(50)	(00)	(50)	
Intratitutation, attribute 1 </td <td>Information native shrapis</td> <td>1</td> <td>$(\mathbf{Q}_{\mathbf{Q}})$</td> <td>1</td> <td>(2%)</td> <td></td> <td></td>	Information native shrapis	1	$(\mathbf{Q}_{\mathbf{Q}})$	1	(2%)		
Output to plant encoder and encoder ander and encoder and encoder and encoder and encoder and encoder a	*Superior paperenticeduoderal enterr	(50)	(270)	(50)		(50)	
Periateritis 1 (2%) (1.2%) *Reniateritis 1 (2%) (50) (50) Inflammation, NOS (50) (50) (50) *Portal vein (50) (50) (50) *Thrombosis, NOS 1 (2%) (50) (50) *Liver (50) (50) (50) *Prostate (50) (50) (49) *Periatteritis 1 (2%) 1 (2%) (49) *Periatteritis 1 (2%) 1 (2%) 1 (2%) DIGESTIVE SYSTEM * * (16%) *Salivary gland (50) (50) (50) Congestion, NOS 7 (14%) 7 (14%) 10 (20%) Hnammation, chronic 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) 2 (4%)	Inflammation NOS	(50)		(00)		(00)	(996)
*Renal artery (50) (50) (50) (50) (50) Inflammation, NOS (50) (50) (50) (50) Thrombosis, NOS (1 (2%) (50) (50) Thrombosis, NOS (1 (2%) (50) (50) Thrombosis, NOS (1 (2%) (50) (50) Periarteritis (1 (2%) (50) (50) (49) Periarteritis (1 (2%) (50) (50) (50) Edema, NOS (1 (2%) (50) (50) (50) Congestion, NOS (7 (14%) 7 (14%) 10 (20%) Hammation, chronic (1 (2%)	Periarteritis			1	(296)	1	(270)
Inflammation, NOS 1000 1 (2%) *Portal vein (50) (50) (50) Thrombosis, NOS 1 (2%) (50) (50) #Liver (50) (50) (50) Thrombosis, NOS 1 (2%) (2%) (2%) #Protate (50) (50) (49) Periatcertiz 1 (2%) 1 (2%) (2%) DIGESTIVE SYSTEM * 1 (2%) 1 (2%) #Salivary gland (50) (50) (50) (50) Edema, NOS 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 11 (22%) 1 (2%) 1 (2%) Hamation, chronic 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic foell 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic foell 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic foell 1 (2%) 1 (2%) 1 (2%) Priorosis 3 (6%) 1 (2%) 2 (4%) 1 (2%) Necrosis, foel 7 (14%) 1 (2%) 2 (4%) Necrosis, foel 7 (14%) 1 (2%) 2 (4%) Necrosis, foel 7 (14%) 1 (2%) 2 (4%) Necrosis, foel 1 (2%) 2 (4%)	*Renal artery	(50)		(50)	(2/0)	(50)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Inflammation, NOS	(007		(00)		1	(2%)
Thrombosis, NOS In (2%) In (2%) <thin (2%)<="" th=""> In (2%) <thin (2%)<="" th=""></thin></thin>	*Portal vein	(50)		(50)		(50)	(2,0)
#Liver (50) (50) (50) (50) Thrombosis, NOS 1 (2%) 1 (2%) Protatter (50) (50) (49) Protatteritis 1 (2%) 1 (2%) DIGESTIVE SYSTEM (50) (49) (50) Edema, NOS 1 (2%) 8 (16%) Liver (50) (50) (50) (50) Congestion, NOS 7 (14%) 7 (14%) 10 (20%) Inflammation, chronic 1 (2%)	Thrombosis, NOS	1	(2%)	(00)		(00)	
Thrombosis, NOS Inflammation, chronic Inflammation, chronic <thi< td=""><td>#Liver</td><td>(50)</td><td>(2,0)</td><td>(50)</td><td></td><td>(50)</td><td></td></thi<>	#Liver	(50)	(2,0)	(50)		(50)	
#Prostate (50) (50) (49) Periarteritis 1 (2%) (50) (49) DIGESTIVE SYSTEM #Salivary gland (50) (49) (50) Edema, NOS 11 (22%) 12 (24%) 8 (16%) #Liver (50) (50) (50) Congestion, NOS 7 (14%) 7 (14%) 10 (20%) Inflammation, chronic 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic focal 1 (2%) 1 (2%) 1 (2%) Granuloma, NOS 8 (16%) 22 (44%) 12 (24%) Necrosis, focal 7 (14%) 6 (12%) 1 (2%) Necrosis, focal 7 (14%) 6 (12%) 2 (4%) Necrosis, focal 7 (14%) 6 (12%) 2 (4%) Necrosis, focal 7 (14%) 6 (12%) 2 (4%) Necrosis, focal 1 (2%) 1 (2%) 1 (2%) Hipertorphy, NOS 2 (4%) 1 (2%) 1 (2%) #Liver/chepstocytes (50) (50) (50) (50) Necrosis, NOS 1 (2%) 1 (2%) 1 (2%) <td< td=""><td>Thrombosis, NOS</td><td>1</td><td>(2%)</td><td>1</td><td>(2%)</td><td></td><td></td></td<>	Thrombosis, NOS	1	(2%)	1	(2%)		
Periarteritis 1 (2%) DIGESTIVE SYSTEM #Salivary gland (50) (49) (50) Edema, NOS 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 11 (22%) 12 (24%) 8 (16%) #Liver (50) (50) (50) Congestion, NOS 7 (14%) 7 (14%) 10 (20%) Inflammation, chronic 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic focal 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic focal 1 (2%) 1 (2%) 1 (2%) Granuloma, NOS 8 (16%) 22 (44%) 12 (24%) Necrosis, focal 7 (14%) 6 (12%) 2 (4%) Necrosis, focal 7 (14%) 6 (12%) 6 (12%) Infarmation, chronic 1 (2%) 1 (2%) 1 (2%) Necrosis, focal 7 (14%) 6 (12%) 2 (4%) Necrosis, focal 1 (2%) 1 (2%) 2 (4%) #Liver/centrilobular (50) (50) (50) Necrosis, focal	#Prostate	(50)	((50)	()	(49)	
DIGESTIVE SYSTEM (50) (49) (50) #Salivary gland (50) (49) (50) Edema, NOS 1 (2%) 1 Inflammation, chronic 11 (22%) 12 (24%) 8 (16%) #Liver (50) (50) (50) (50) (50) Congestion, NOS 7 (14%) 7 (14%) 10 (20%) Inflammation, chronic 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic focal 1 (2%) 1 (2%) 1 (2%) Granuloma, NOS 8 (16%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%	Periarteritis	1	(2%)				
#Salivary gland (50) (49) (50) Edema, NOS 1 (2%) 1 (2%) Inflammation, chronic 11 (22%) 12 (24%) 8 (16%) #Liver (50) (50) (50) (50) (50) Congestion, NOS 7 (14%) 7 (14%) 10 (20%) Inflammation, chronic 1 (2%) 1	DIGESTIVE SYSTEM					<u> </u>	
Edema, NOS 1 (2%) 1 (2%) Inflammation, chronic 11 (2%) 12 (24%) 8 (16%) FLiver (50) (50) (50) Congestion, NOS 7 (14%) 7 (14%) 10 (20%) Hemorrhage 2 (4%) 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic focal 1 (2%) 1 (2%) 1 (2%) Granuloma, NOS 8 (16%) 22 (44%) 12 (24%) Necrosis, focal 7 (14%) 6 (12%) 1 (2%) Necrosis, coagutative 1 (2%) 2 (4%) 1 (2%) Infarct, NOS 2 (4%) 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 1 (2%) 2 (4%) Hepatocytomegaly 1 (2%) 2 (4%) 1 (2%) Necrosis, NOS 34 (68%) 32 (64%) 32 (64%) Necrosis, NOS 500 (50) (50) Necrosis, NOS 2 (4%) 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 2 (4%) 1 (2%) Verophasmic vacuoization 1 (2%	#Salivary gland	(50)		(49)		(50)	
Inflammation, chronic 11 (22%) 12 (24%) 8 (16%) #Liver (50) (50) (50) (50) Congestion, NOS 7 (14%) 7 (14%) 10 (20%) Inflammation, suppurative 1 (2%) 1 $(2\%$	Edema, NOS	(00)		(/		1	(2%)
#Liver (50) (50) (50) (50) Congestion, NOS 7 (14%) 7 (14%) 10 (20%) Inflammation, suppurative 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) 1 (2%) Granuloma, NOS 8 (16%) 22 (44%) 12 (24%) Fibrosis 1 (2%) 1 (2%) 1 (2%) Necrosis, Coagulative 1 (2%) 2 (4%) 1 (2%) Infarct, NOS 2 (4%) 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 1 (2%) 1 (2%) Necrosis, NOS 1 (2%) 1 (2%) 4 (4%) 32 (6%) 32 (6%) 32 (6%) 32 (6%) 32 (6%) 32 (6%) 32 (6%) 32 <td< td=""><td>Inflammation, chronic</td><td>11</td><td>(22%)</td><td>12</td><td>(24%)</td><td>8</td><td>(16%)</td></td<>	Inflammation, chronic	11	(22%)	12	(24%)	8	(16%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#Liver	(50)		(50)		(50)	
Hemorrhage 2 (4%) Inflammation, suppurative 1 (2%) Inflammation, chronic 1 (2%) Inflammation, chronic focal 1 (2%) Granuloma, NOS 8 (16%) 22 (44%) Fibrosis 1 (2%) Necrosis, NOS 3 (6%) 1 (2%) Necrosis, Coagulative 1 (2%) Inflarmorphosis, fatty 1 (2%) Hepatocytomegaly 1 (2%) #Lever/centrilobular (50) Necrosis, Rocal 1 (2%) Metamorphosis, fatty 1 (2%) Hepatocytomegaly 1 (2%) #Lever/centrilobular (50) Necrosis, Rocal 1 (2%) Necrosis, Rocal 1 (2%) Pattorytensing 1 (2%) #Liver/hepatocytes (50) Cytoplasmic vacuolization 1 (2%) Flocal cellular change 1 (2%) #Gailbiadder (50) (50) Distation, NOS 1 (2%) #Pancreas (48) (47) Congestion, NOS 1 (2%) #Pancreas (48) (47) Co	Congestion, NOS	7	(14%)	7	(14%)	10	(20%)
Inflammation, suppurative 1 (2%) 1 Inflammation, chronic 1 (2%) 1 Granuloma, NOS 8 (16%) 22 (44%) 12 (24%) Fibrosis 1 (2%) 1 (2%) 1 (2%) Necrosis, NOS 3 (6%) 1 (2%) 2 (4%) Necrosis, focal 7 (14%) 6 (12%) 2 (4%) Necrosis, focal 7 (14%) 6 (12%) 2 (4%) Metamorphosis, fatty 1 (2%) 2 (4%) 4 (2%) Hepatocytomegaly 1 (2%) 1 (2%) (2%) Metamorphosis, fatty 1 (2%) 1 (2%) (2%) Hupetocytomegaly 1 (2%) 1 (2%) (2%) Necrosis, NOS 1 (2%) 2 (4%) 2 (4%) Necrosis, NOS 50 (50) (50) 50 5 1	Hemorrhage	2	(4%)				
Inflammation, chronic 1 (2%) 1 (2%) Inflammation, chronic focal 1 (2%) 1 (2%) Granuloma, NOS 8 (16%) 22 (44%) 12 (24%) Fibrosis 1 (2%) 2 (4%) 1 (2%) Necrosis, NOS 3 (6%) 1 (2%) 2 (4%) Necrosis, coagulative 1 (2%) 2 (4%) Infarct, NOS 2 (4%) 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 2 (4%) Hepatocytomegaly 1 (2%) 2 (4%) #Liver/centrilobular (50) (50) (50) Necrosis, NOS 1 (2%) 2 (4%) 1 (2%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 1 (2%) 2 (4%) 1 (2%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 1 (2%) 5 (10%) (50) Necrosis, NOS 1 (2%) 5 (10%) (50) Plaisedder (50) (50) (50) (50) Distaction 1 (2%) 1 (2%) 1 (2%) #Pancreas (4	Inflammation, suppurative			1	(2%)		
Inflammation, chronic focal 1 (2%) 1 (2%) Granuloma, NOS 8 (16%) 22 (44%) 12 (24%) Fibrosis 1 (2%) 1 (2%) 1 (2%) Necrosis, NOS 3 (6%) 1 (2%) 2 (4%) Necrosis, coagulative 1 (2%) 6 (12%) Infarct, NOS 2 (4%) 1 (2%) Metamorphosis, fatty 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 1 (2%) #Liver/centrilobular (50) (50) (50) (50) Necrosis, NOS 1 (2%) 1 (2%) #Liver/hepatocytes (50) (50) (50) (50) Necrosis, NOS 1 (2%) 1 (2%) #Usertrophy, NOS 34 (68%) 32 (64\%) Necrosis, NOS 1 (2%) 1 (2%) Distantion 1 (2%) 1	Inflammation, chronic	1	(2%)	1	(2%)		
Granuloma, NOS 8 (16%) 22 (44%) 12 (24%) Fibrosis 1 (2%) 1 (2%) 1 (2%) Necrosis, focal 7 (14%) 6 (12%) 6 (12%) Necrosis, focal 7 (14%) 6 (12%) 6 (12%) Necrosis, focal 7 (14%) 6 (12%) 6 (12%) Necrosis, focal 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 2 (4%) Hepatocytomegaly 1 (2%) 2 (4%) #Liver/centrilobular (50) (50) Necrosis, focal 1 (2%) 2 (4%) Hypetrophy, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) Necrosis, NOS 1 (2%) 1 (2%) Focal cellular change 1 (2%) 1 (2%) *Gailbladder (50) (50) (50) Distention 1 (2%) 1 (2%) 1 (2%) *Bile duct (50) (50) (50) Dilatation, NOS 1 (2%) 1 (2%) 1 (2%) Edema, interstitial 1 (2%) 1 (2%) 1 (2%) Inflammati	Inflammation, chronic focal	1	(2%)			1	(2%)
Fibrosis 1 (2%) 1 (2%) Necrosis, NOS 3 (6%) 1 (2%) 2 (4%) Necrosis, coagulative 1 (2%) 6 (12%) 6 (12%) Necrosis, coagulative 1 (2%) 6 (12%) 6 (12%) Infarct, NOS 2 (4%) 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 1 (2%) 2 (4%) Hepatocytomegaly 1 (2%) 1 (2%) 1 (2%) #Liver/centrilobular (50) (50) (50) (50) Necrosis, focal 1 (2%) 2 (4%) 1 (2%) Hypertrophy, NOS 34 (68%) 32 (64%) (64%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 1 (2%) 1 (2%) 1 (2%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 1 (2%) 1 (2%) 1 (2%) "Gallbladder (50) (50) (50) Distention 1 (2%) 1 (2%) 1 (2%) #Bile duct (50) (50) 1 (2%) Congestion, NOS 1 (2%) 1 (2%)	Granuloma, NOS	8	(16%)	22	(44%)	12	(24%)
Necrosis, NOS 3 (6%) 1 (2%) 2 (4%) Necrosis, focal 7 (14%) 6 (12%) 6 (12%) Necrosis, coagulative 1 (2%) 1 (2%) Infarct, NOS 2 (4%) 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 2 (4%) Hepatocytomegaly 1 (2%) 2 (4%) #Liver/centrilobular (50) (50) (50) Necrosis, NOS 1 (2%) 2 (4%) Mypertrophy, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 34 (68%) 32 (64%) 32 (64%) #Liver/hepatocytes (50) (50) (50) (50) Necrosis, NOS 1 (2%) 1 (2%) 1 (2%) (4%) #Liver/hepatocytes (50) (50) (50) (50) (50) Necrosis, NOS 1 (2%) 1 (2%) 1 (2%) (4%) (47) Focal cellular change 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%	Fibrosis			1	(2%)	1	(2%)
Necrosis, rocal 7 (14%) 6 (12%) 6 (12%) Necrosis, rocal 1 (2%) 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 1 (2%) 1 (2%) Hepatocytomegaly 1 (2%) 1 (2%) 1 (2%) #Liver/centrilobular (50) (50) (50) (50) 0	Necrosis, NOS	3	(6%)	1	(2%)	2	(4%)
Necrosis, congulative 1 (2%) Infarct, NOS 2 (4%) 1 (2%) Metamorphosis, fatty 1 (2%) Hepatocytomegaly 1 (2%) #Liver/centrilobular (50) (50) Necrosis, NOS 1 (2%) Necrosis, focal 2 (4%) Hypertrophy, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 5 (10%) 5 (10%) Cytoplasmic vacuolization 1 (2%) 1 (2%) *Galibladder (50) (50) (50) Distention 1 (2%) 1 (2%) 1 (2%) #Bile duct (50) (50) (50) Dilatation, NOS 1 (2%) 1 (2%) 1 (2%) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) 1 (2%) 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) 1 (2%)	Necrosis, local	7	(14%)	6	(12%)	6	(12%)
Inflict, NOS 2 (4%) 1 (2%) 2 (4%) Metamorphosis, fatty 1 (2%) 1 (2%) Hepatocytomegaly 1 (2%) 1 (2%) #Liver/centrilobular (50) (50) (50) Necrosis, NOS 1 (2%) 2 (4%) Mypertrophy, NOS 2 (4%) 2 (4%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 1 (2%) 1 (2%) 1 (2%) Galcellular change 1 (2%) 1 (2%) 1 (2%) *Gallbladder (50) (50) (50) 1 (2%) #Bile duct (50) (50) (50) 1 (2%) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) 1 (2%) 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) <td< td=""><td>Inecrosis, coagulative</td><td></td><td>(10)</td><td>1</td><td>(2%)</td><td>9</td><td>(ACL)</td></td<>	Inecrosis, coagulative		(10)	1	(2%)	9	(ACL)
Hepatocytonegaly 1 (2%) #Liver/centrilobular (50) (50) Necrosis, NOS 1 (2%) Necrosis, NOS 2 (4%) Hypertrophy, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) Necrosis, NOS 2 (10%) (50) #Liver/hepatocytes (50) (50) Necrosis, NOS 5 (10%) (50) Cytoplasmic vacuolization 1 (2%) 1 (2%) Focal cellular change 1 (2%) 1 (2%) *Gallbladder (50) (50) (50) Distention 1 (2%) 1 (2%) #Bile duct (50) (50) (50) Dilatation, NOS 1 (2%) 1 (2%) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) 1 (2%) Edema, interstitial 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) 1 (2%) #Esophagus (49)	Matawanhagia fattu	2	(4%)	1	(270)	4	(4970)
Heipatocytointegary 1 (2%) #Liver/centrilobular (50) (50) Necrosis, NOS 1 (2%) Hypertrophy, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 5 (10%) 5 (10%) Cytoplasmic vacuolization 1 (2%) 1 (2%) Focal cellular change 1 (2%) 1 (2%) *Gallbladder (50) (50) (50) Distention 1 (2%) 1 (2%) #Bile duct (50) (50) (50) Dilatation, NOS 1 (2%) 1 (2%) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) 1 (2%) Edema, interstitial 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) 1 (2%) #Esophagus (49) (50)	Henatorytomorely	1	(270)			1	(20)
# Diverterint housing (50) (50) (50) (50) Necrosis, NOS 1 (2%) 2 (4%) Hypertrophy, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) (50) (50) Necrosis, NOS 5 (10%) (50) (50) Necrosis, NOS 5 (10%) (50) (50) Necrosis, NOS 1 (2%) 1 (2%) Cytoplasmic vacuolization 1 (2%) 1 (2%) Focal cellular change 1 (2%) 1 (2%) *Gallbladder (50) (50) (50) (50) Distention 1 (2%) 1 (2%) #Bile duct (50) (50) (50) 1 (2%) Dilatation, NOS 1 (2%) 1 (2%) 1 (2%) #Pancreas (48) (48) (47) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 <td< td=""><td>#Liver/contrilebular</td><td>(50)</td><td></td><td>(50)</td><td></td><td>(50)</td><td>(270)</td></td<>	#Liver/contrilebular	(50)		(50)		(50)	(270)
Necrosis, focal 2 (4%) Hypertrophy, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) (50) Necrosis, NOS 5 (10%) 5 (10%) Cytoplasmic vacuolization 1 (2%) 5 (10%) Focal cellular change 1 (2%) 1 (2%) *Gailbladder (50) (50) (50) Distention 1 (2%) 1 (2%) #Bile duct (50) (50) (50) Dilatation, NOS 1 (2%) 1 (2%) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) 1 (2%) Edema, interstitial 1 (2%) 1 (2%) Atrophy, NOS 1 (2%) 4(8) (47) Hypertrophy, NOS 1 (2%) 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) 1 (2%) #Esophagus (49) (50) (50) Inflammation, acute 1 (2%) 1 (2%)	Necrosis NOS	(00)		1	(2%)	(00)	
Hypertrophy, NOS 34 (68%) 32 (64%) #Liver/hepatocytes (50) (50) Necrosis, NOS 5 (10%) Cytoplasmic vacuolization 1 (2%) Focal cellular change 1 (2%) *Gallbladder (50) (50) Distention 1 (2%) #Bile duct (50) (50) Dilatation, NOS 1 (2%) #Pancreas (48) (47) Congestion, NOS 1 (2%) Edema, interstitial 1 (2%) Inflammation, chronic 1 (2%) Atrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) (48) (48) (47) Hypertrophy, NOS 1 (2%) #Pancreatic acinus (48) (47) Hypertrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) (48) (48) (47) Hypertrophy, NOS 1 (2%) 1 #Esophagus (49) (50) (50) Inflammation, acute 1 (2%) 1	Necrosis, focal			-		2	(4%)
#Liver/hepatocytes (50) (50) (50) Necrosis, NOS 5 (10%) Cytoplasmic vacuolization 1 (2%) Focal cellular change 1 (2%) *Gallbladder (50) (50) (50) Distention 1 (2%) (2%) #Bile duct (50) (50) (50) Dilatation, NOS 1 (2%) (2%) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) 1 Edema, interstitial 1 (2%) 1 Inflammation, chronic 1 (2%) 48) Hypertrophy, NOS 1 (2%) 48) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) 44) Hypertrophy, NOS 1 (2%) 50) #Esophagus (49) (50) (50) (50) Inflammation, acute 1 (2%) 50) 50)	Hypertrophy, NOS			34	(68%)	32	(64%)
Necrosis, NOS 5 (10%) Cytoplasmic vacuolization 1 (2%) Focal cellular change 1 (2%) *Gallbladder (50) (50) Distention 1 (2%) #Bile duct (50) (50) Dilatation, NOS 1 (2%) #Pancreas (48) (48) Congestion, NOS 1 (2%) Edema, interstitial 1 (2%) Inflammation, chronic 1 (2%) Atrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) Hypertrophy, NOS 1 (2%) #Pancreatic acinus (48) (47) Inflammation, chronic 1 (2%) #Pancreatic acinus (48) (48) Hypertrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) Hypertrophy, NOS 1 (2%) #Esophagus (49) (50) Inflammation, acute 1 (2%)	#Liver/hepatocytes	(50)		(50)	((50)	
Cytoplasmic vacuolization 1 (2%) Focal cellular change 1 (2%) *Gallbladder (50) (50) Distention 1 (2%) #Bile duct (50) (50) Distation, NOS 1 (2%) #Pancreas (48) (47) Congestion, NOS 1 (2%) Edema, interstitial 1 (2%) Inflammation, chronic 1 (2%) Atrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) (48) (48) (47) Inflammation, chronic 1 (2%) #Pancreatic acinus (48) (48) (48) (48) (47) Hypertrophy, NOS 1 (2%) #Esophagus (49) (50) Inflammation, acute 1 (2%)	Necrosis, NOS			(,		5	(10%)
Focal cellular change 1 (2%) 1 (2%) *Gallbladder (50) (50) (50) Distention 1 (2%) 1 (2%) #Bile duct (50) (50) (50) Dilatation, NOS 1 (2%) 1 (2%) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) 1 (2%) Edema, interstitial 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 448) (48) Hypertrophy, NOS 1 (2%) 1 (2%) #Esophagus (49) (50) (50) Inflammation, acute 1 (2%) 1 (2%)	Cytoplasmic vacuolization	1	(2%)				
*Gallbladder (50) (50) (50) Distention 1 (2%) #Bile duct (50) (50) (50) Dilatation, NOS 1 (2%) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) Edema, interstitial 1 (2%) Inflammation, chronic 1 (2%) Atrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) #Esophagus (49) (50) (50) Inflammation, acute 1 (2%)	Focal cellular change			1	(2%)	1	(2%)
Distention 1 (2%) #Bile duct (50) (50) Dilatation, NOS 1 (2%) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) 1 (2%) Edema, interstitial 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) 1 1 #Esophagus (49) (50) (50) Inflammation, acute 1 (2%) 1 1	*Gallbladder	(50)		(50)		(50)	
#Bile duct (50) (50) (50) Dilatation, NOS 1 (2%) (48) (47) #Pancreas (48) (48) (47) Congestion, NOS 1 (2%) 1 (2%) Edema, interstitial 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) 1 (2%) #Esophagus (49) (50) (50) Inflammation, acute 1 (2%) 1 (2%)	Distention					1	(2%)
Dilatation, NOS1 (2%)#Pancreas(48)(47)Congestion, NOS1 (2%)Edema, interstitial1 (2%)Inflammation, chronic1 (2%)Atrophy, NOS1 (2%)#Pancreatic acinus(48)(48)(48)(48)(47)Hypertrophy, NOS1 (2%)#Esophagus(49)(50)(50)Inflammation, acute1 (2%)	#Bile duct	(50)		(50)		(50)	
# Pancreas (48) (48) (47) Congestion, NOS 1 (2%) Edema, interstitial 1 (2%) Inflammation, chronic 1 (2%) Atrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) #Esophagus (49) (50) (50) Inflammation, acute 1 (2%)	Dilatation, NOS	1	(2%)				
Congestion, NOS 1 (2%) Edema, interstitial 1 (2%) Inflammation, chronic 1 (2%) Atrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) #Esophagus (49) (50) (50) Inflammation, acute 1 (2%)	#Pancreas	(48)		(48)		(47)	(00)
External, interstitial 1 (2%) Inflammation, chronic 1 (2%) Atrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) #Esophagus (49) (50) (50) Inflammation, acute 1 (2%)	Congestion, NUS					1	(2%)
Inflammation, chronic 1 (2%) Atrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) #Esophagus (49) (50) (50) Inflammation, acute 1 (2%)	Edema, interstitial				(90)	1	(2%)
Atrophy, NOS 1 (2%) #Pancreatic acinus (48) (48) (47) Hypertrophy, NOS 1 (2%) #Esophagus (49) (50) (50) Inflammation, acute 1 (2%)	Inflammation, chronic			1	(270)		
#Fancesult actives (46) (46) (47) Hypertrophy, NOS 1 (2%) #Esophagus (49) (50) Inflammation, acute 1 (2%)	Atrophy, NUS #Panamatia painus	(40)		1 / 40	(270)	147	
#Esophagus (49) (50) (50) Inflammation, acute 1 (2%)	#rancreatic acinus Hupertrophy NOS	(48)		(40) 1	(9%)	(47)	
Inflammation, acute (30)	#Esonhagus	(40)		(50)	(210)	(50)	
	Inflammation, acute	(40)		1	(2%)	(00)	

	CONTR	ROL (UNTR)	LOW	LOW DOSE		HIGH DOSE	
DIGESTIVE SYSTEM (Continued)	<u> </u>	······					
#Stomach	(49)		(50)		(50)		
Mineralization	(40)		1	(2.%)			
Licer NOS	'1	(2%)	•		1	(2%)	
Ulcer, acute	1	(2.%)			•	(270)	
Keratin nearl formation	-	(2.0)	1	(2%)			
#Glandular stomach	(49)		(50)	(2,0)	(50)		
Ulcer, NOS	3	(6%)	2	(4%)	3	(6%)	
Hyperplasia, epithelial	0	(0,0)	-	(10)	3	(6%)	
#Gastric submucosa	(49)		(50)		(50)	(0,0)	
Cvst. NOS	1	(2%)	(00)		(00)		
#Forestomach	(49)	(=,•,	(50)		(50)		
Ulcer, NOS	,		1	(2%)	1	(2%)	
Hyperkeratosis	1	(2%)	2	(4%)	3	(6%)	
Acanthosis			2	(4%)	4	(8%)	
URINARY SYSTEM							
#Kidney	(49)		(50)		(50)		
Ectopia	(40)	(2%)	(00)		1	(2%)	
Mineralization	3	(6%)	2	(4%)	4	(8%)	
Cyst. NOS	Ŭ	(0,0)	1	(2%)	-		
Congestion, NOS	10	(20%)	9	(18%)	11	(22%)	
Pyelonephritis, NOS	••		1	(2%)	1	(2%)	
Inflammation, suppurative			1	(2%)	•	(2,0)	
Glomerulonephritis, membranous			•	(1,0)	1	(2%)	
Pyelonephritis, acute					ī	(2%)	
Inflammation, acute	1	(2%)			_		
Inflammation, acute focal	2	(4%)			1	(2%)	
Abscess, NOS					1	(2%)	
Inflammation, chronic	32	(65%)	41	(82%)	41	(82%)	
Inflammation, chronic focal	2	(4%)					
Fibrosis, focal	1	(2%)					
Necrosis, NOS	1	(2%)					
Necrosis, focal	1	(2%)	1	(2%)	1	(2%)	
Infarct, NOS			2	(4%)			
Pigmentation, NOS	1	(2%)	-				
#Kidney/cortex	(49)		(50)		(50)		
Cyst, NOS	3	(6%)	1	(2%)	6	(12%)	
Necrosis, focal	1	(2%)					
Cytoplasmic vacuolization					1	(2%)	
#Kidney/tubule	(49)		(50)		(50)		
Dilatation, NOS	2	(4%)	2	(4%)	2	(4%)	
Cytoplasmic vacuolization	23	(47%)	32	(64%)	31	(62%)	
#Kidney/pelvis	(49)		(50)		(50)		
Dilatation, NOS	2	(4%)	1	(2%)			
Inflammation, suppurative	1	(2%)	1	(2%)			
*Ureter	(50)		(50)		(50)		
Distention	3	(6%)					
Inflammation, suppurative			1	(2%)			
Inflammation, chronic	1	(2%)					

.

	CONTR	OL (UNTR)	LOW DOSE		HIGH DOSE	
URINARY SYSTEM (Continued)	. <u></u>				<u> </u>	
#Urinary bladder	(50)		(50)		(50)	
Calculus, microscopic examination	1	(2%)				
Dilatation, NOS					2	(4%)
Distention	10	(20%)	1	(2%)	4	(8%)
Congestion, NOS	1	(2%)	3	(6%)	1	(2%)
Edema, NOS					1	(2%)
Hemorrhage					1	(2%)
Inflammation, suppurative	1	(2%)	1	(2%)		
Inflammation, acute	2	(4%)				
Inflammation, acute focal					1	(2%)
Inflammation, acute diffuse	1	(2%)			1	(2%)
Inflammation, active chronic			1	(2%)		
Inflammation, chronic	2	(4%)			1	(2%)
Fibrosis, diffuse	1	(2%)			-	
Necrosis, NOS					2	(4%)
Hyperplasia, epithelial					1	(2%)
#Urinary bladder/submucosa	(50)		(50)		(50)	
Edema, NOS	_		1	(2%)		
"Urethra	(50)		(50)		(50)	
Inflammation, acute	2	(4%)				<u></u>
ENDOCRINE SYSTEM						
#Pituitary	(50)		(49)		(47)	
Cyst, NOS	1	(2%)	1	(2%)	3	(6%)
Congestion, NOS	2	(4%)	2	(4%)	2	(4%)
#Anterior pituitary	(50)		(49)		(47)	
Cyst, NOS			1	(2%)	3	(6%)
#Adrenal	(49)		(50)		(50)	
Congestion, NOS	1	(2%)	3	(6%)	2	(4%)
#Adrenal/capsule	(49)		(50)		(50)	
Hyperplasia, NOS	22	(45%)	28	(56%)	28	(56%)
#Adrenal cortex	(49)		(50)		(50)	
Ectopia					1	(2%)
Congestion, NOS					2	(4%)
Hypertrophy, focal	8	(16%)	2	(4%)	5	(10%)
#Adrenal medulla	(49)		(50)		(50)	
Hyperplasia, NOS					1	(2%)
Hyperplasia, focal			1 -	(2%)	1	(2%)
#Thyroid	(50)		(50)		(50)	
Cyst, NOS			1	(2%)	1	(2%)
Colloid cyst			4	(8%)		
Congestion, NOS			1	(2%)		+
Inflammation, chronic	1	(2%)	1	(2%)		
Hyperplasia, follicular cell	2	(4%)	10	(20%)	19	(38%)
#Thyroid follicle	(50)		(50)		(50)	
Crystals, NOS			3	(6%)		
#Pancreatic islets	(48)		(48)		(47)	
Hyperplasia, NOS					2	(4%)
REPRODUCTIVE SYSTEM			-			
*Penis	(50)		(50)		(50)	
Hemorrhage	1	(2%)	1	(2%)		
Inflammation, suppurative	1	(2%)				
Inflammation, chronic diffuse	1	(2%)				
Necrosis, NOS			1	(2%)		
Acanthosis	1	(2%)				

118

. •

	CONTROL (UNTR)		LOW	DOSE	HIGH DOSE		
REPRODUCTIVE SYSTEM (Continued)					·······		
*Prepuce	(50)	1	(50)		(50)		
Hemorrhage	1	(2%)			(,		
Inflammation, suppurative	2	(4%)					
Inflammation, acute	1	(2%)	1	(2%)			
Inflammation, acute diffuse	1	(2%)					
Abscess, NOS			1	(2%)			
Inflammation, chronic focal	1	(2%)					
Necrosis, NOS	1	(2%)					
Hyperkeratosis	1	(2%)					
Acanthosis	1	(2%)	1	(2%)			
*Preputial gland	(50)		(50)		(50)		
Dilatation, NOS			2	(4%)	2	(4%)	
Dilatation/ducts	2	(4%)					
Cyst, NOS	2	(4%)			1	(2%)	
Cystic ducts	2	(4%)					
Hemorrhage	1	(2%)					
Inflammation, suppurative	5	(10%)			1	(2%)	
Abscess, NOS	3	(6%)	3	(6%)	2	(4%)	
Inflammation, active chronic			5	(10%)	5	(10%)	
Inflammation, chronic	1	(2%)	4	(8%)	3	(6%)	
Hyperplasia, diffuse	1	(2%)					
Hyperkeratosis	1	(2%)					
Metaplasia, squamous	1	(2%)					
#Prostate	(50)		(50)		(49)		
Congestion, NOS	1	(2%)					
Inflammation, suppurative	1	(2%)	2	(4%)	2	(4%)	
Inflammation, acute	2	(4%)					
Inflammation, acute focal			1	(2%)			
Inflammation, acute diffuse	2	(4%)			1	(2%)	
Abscess, NOS	3	(6%)			1	(2%)	
Inflammation, active chronic	1	(2%)	3	(6%)			
Inflammation, chronic	2	(4%)	_		1	(2%)	
*Seminal vesicle	(50)		(50)		(50)		
Mineralization					1	(2%)	
Distention	6	(12%)	2	(4%)	5	(10%)	
Retention of content	1	(2%)					
Cyst, NOS	4	(8%)			1	(2%)	
Inflammation, suppurative			1	(2%)			
Inflammation, acute	1	(2%)			1	(2%)	
Inflammation, acute focal	1	(2%)					
Inflammation, acute diffuse					1	(2%)	
Inflammation, active chronic			1	(2%)			
Inflammation, chronic	1	(2%)			3	(6%)	
Fibrosis					3	(6%)	
Necrosis, fat					1	(2%)	
*Coagulating gland	(50)		(50)		(50)		
Distention	1	(2%)					
Inflammation, suppurative	1	(2%)					
Inflammation, acute					1	(2%)	
Fibrosis					1	(2%)	
#Testis	(50)		(50)		(48)		
Mineralization	1	(2%)			2	(4%)	
Congestion, NOS					1	(2%)	
Inflammation, suppurative	1	(2%)					
Granuloma, spermatic	2	(4%)			1	(2%)	
Fibrosis	1	(2%)					
Aspermatogenesis	1	(2%)			1	(2%)	
Hypospermatogenesis			2	(4%)	4	(8%)	
Hyperplasia, interstitial cell	1	(2%)					

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
REPRODUCTIVE SYSTEM (Continued) *Epididymis Inflammation.suppurative	(50) 1 (2%)	(50)	(50)
Inflammation, active chronic Inflammation, chronic Granuloma, spermatic Aspermatogenesis Hypospermatogenesis	1 (2%) 3 (6%)	1 (2%) 2 (4%) 2 (4%) 1 (2%)	6 (12%) 1 (2%) 1 (2%)
NERVOUS SYSTEM #Brain Cyst, NOS Congestion, NOS Hemorrhage Infection, fungal Malacia	(50) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%) 1 (2%)
SPECIAL SENSE ORGANS *Ear Inflammation, suppurative	(50)	(50)	(50) 1 (2%)
MUSCULOSKELETAL SYSTEM None			
BODY CAVITIES None			
ALL OTHER SYSTEMS *Multiple organs Congestion, NOS Amyloidosis	(50) 1 (2%)	(50) 1 (2%)	(50)
Tail Exostosis Adipose tissue Cyst, NOS		1	1
SPECIAL MORPHOLOGY SUMMARY No lesion reported		1	

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
 # Number of animals examined microscopically at this site
 † Multiple occurrence of morphology in the same organ. Tissue is counted once only.

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY	50		50		<u></u>	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	Y 50		50		50	
INTEGUMENTARY SYSTEM				·····		
*Subcutaneous tissue	(50)		(50)		(50)	
Edema, NOS					1	(2%)
Abscess, NOS	1	(2%)				
RESPIRATORY SYSTEM						
*Nose	(50)		(50)		(50)	
Inflammation, suppurative	1	(2%)				
Infection, bacterial	1	(2%)				
#Lung	(50)		(50)		(50)	
Congestion, NOS	15	(30%)	9	(18%)	14	(28%)
Hemorrhage					1	(2%)
Pneumonia, aspiration					1	(2%)
Inflammation, suppurative		(00)			1	(2%)
rneumonia, chronic murine	1	(2%) (740)	00	(0.00)	10	(0.4.00)
Fibrasia facel	37	(74%)	33	(66%)	42	(84%)
Fibrosis, local Bestorial contisomia			1	(9π)	1	(270)
Infaction bacterial	,	(906)	1	(2%)	1	(270)
Alveolar macronhages	2	(470) (494)	9	(10)	1	(270) (196)
Hyperplasia, alveolar enithelium	2	(2%)	2	(296)	4	(2%)
		·····		(2,0)		(2 / ¢)
IEMATOPOIETIC SYSTEM	(20)				(= ~)	
Multiple organs	(50)	(10)	(50)		(50)	
Leukocytosis, NOS	2	(4%)		(90)		
	(50)		(40)	(2%)	(50)	
Congestion NOS	(00)	(20)	(48)		(60)	
Leukemoid reaction	1 2	(270) (1942)	2	(69)	6	(1996)
Hyperplesis bematanoietic	12	(4270) (960L)	5	(070)	0	(12/70)
#Snleen	(50)	(20%)	(50)	(10%)	(50)	(10%)
Necrosis NOS	(00)		(00)		(00)	(296)
Leukemoid reaction	7	(1496)	3	(6%)	6	(199L)
Hypernlasia, lymphoid	1	(296)	2	(496)	U	(12.0)
Hematopoiesis	5	(10%)	7	(14%)	10	(20%)
#Splenic capsule	(50)	(== ;;;)	(50)	(1.10)	(50)	(2010)
Inflammation, NOS	1	(2%)			1	(2%)
Inflammation, suppurative	1	(2%)	1	(2%)	1	(2%)
Abscess, NOS					1	(2%)
#Lymph node	(50)		(50)		(50)	
Angiectasis	1	(2%)	1	(2%)		
Hyperplasia, lymphoid	5	(10%)	2	(4%)	5	(10%)
#Mandibular lymph node	(50)		(50)		(50)	
Congestion, NOS	3	(6%)	1	(2%)	1	(2%)
Necrosis, NOS				(1	(2%)
Angiectasis	-	(100)	1	(2%)		
nyperplasia, lymphoid	5	(10%)	10	(20%)	12	(24%)
# Mediastinal lymph node	(50)	(90)	(50)		(50)	(00)
Longestion, NUS	1	(2%)			1	(2%)
Innammation, supportative	1	(996)			4	(070)
Hyperplasia, lymphoid	5	(10%)	4	(8%)	٩	(18%)
#Pancreatic lymph node	(50)		(50)		(50)	(10/0)
Congestion, NOS	1	(2%)	(00)			
Necrosis, NOS	1	(2%)				
	A 1	\ = / ¥ /				

	CONTI	ROL (UNTR)	LOW	DOSE	HIG	H DOSE
HEMATOPOIETIC SYSTEM (Continued)						
#Mesenteric lymph node	(50)		(50)		(50)	
Congestion, NOS	2	(4%)	2	(4%)	3	(6%)
Hemorrhagic cyst	1	(2%)				
Inflammation, suppurative			1	(2%)		
Inflammation, active chronic					1	(2%)
Necrosis, NOS			_		1	(2%)
Angiectasis	1	(2%)	3	(6%)	4	(8%)
Leukocytosis, NOS Hypopplasia, lymphoid	3	(6%) (6%)	1	(90)	1	(2%) (19%)
#Bonal lymph node	ن (50)	(0%)	(50)	(270)	(50)	(10%)
Congestion NOS			2	(4%)	1	(2.%)
Necrosis, focal	1	(2%)	~	(470)	-	(2,0)
Angiectasis	_	(,	1	(2%)		
Hyperplasia, lymphoid	2	(4%)	2	(4%)	2	(4%)
#Iliac lymph node	(50)		(50)		(50)	
Angiectasis	1	(2%)				
Hyperplasia, lymphoid	1	(2%)				
#Lung	(50)		(50)		(50)	
Leukocytosis, NOS	7	(14%)	8	(16%)	9	(18%)
#Heart	(50)	(0.0)	(50)		(50)	
Leukocytosis, NOS	(50)	(2%)	(50)		(50)	
Loukoovtosis NOS	(00)	(69)	(50)		(00)	(6%)
Leukemoid reaction	3 6	(0.76)	3	(6%)	3	(8%)
Hematonoiesis	1	(2%)	3	(6%)	2	(4%)
#Pevers patch	(50)	(270)	(49)		(50)	(4,0)
Hyperplasia, lymphoid	(00)		(,		1	(2%)
#Kidney	(50)		(50)		(50)	(,
Hyperplasia, lymphoid			1	(2%)	1	(2%)
#Ovary/parovarian	(49)		(50)		(49)	
Hyperplasia, lymphoid					1	(2%)
#Adrenal	(48)		(49)		(50)	
Leukocytosis, NOS					1	(2%)
Leukemoid reaction	1	(2%)	1	(2%)		(2.27)
Hematopolesis	(40)		3	(6%)	1	(2%)
#Adrenal cortex	(48)	(90)	(49)		(00)	(10-)
#Thymus	(31)	(270)	(34)		(40)	(4/0)
Cyst NOS	(01)	(3%)	1	(3%)	(40)	(3%)
Inflammation acute	1	(3%)	•	(0,0)	-	(0,0)
Necrosis, NOS	-	(0,0)			1	(3%)
Hyperplasia, lymphoid	2	(6%)				
CIRCULATORY SYSTEM						
#Lymph node	(50)		(50)	(0~)	(50)	
Thrombosis, NOS	(50)		1	(2%)	(50)	
# Mesenteric lymph hode	(50)		(50)	(90)	(50)	
#Heart	(50)		(50)	(2%)	(50)	
Inflammation. suppurative	(00)		(00)		1	(2%)
Inflammation, acute	2	(4%)			-	,
Inflammation, chronic	4	(8%)	1	(2%)	4	(8%)
#Base of heart	(50)		(50)		(50)	
Inflammation, suppurative	1	(2%)				
#Heart/atrium	(50)		(50)		(50)	
Thrombosis, NOS	7	(14%)			5	(10%)
#Heart/ventricle	(50)	(0.00)	(50)		(50)	
Inromposis, NUS	1	(2%)	(EA)		(=0)	
# myocaraiam Inflammation acuto	(50)	(9 %)	(00)		(00)	
Infection bacterie!	1	(2%)				
······································	1	\ \ /\\ /				

	CONTI	ROL (UNTR)	LOW	/ DOSE	HIG	h dose
CIRCULATORY SYSTEM (Continued)						
*Cerebral artery	(50)	1	(50)		(50)	
Infection, bacterial	1	(2%)	(
*Superior pancreaticoduodenal artery	(50)	· · · · · ·	(50)		(50)	
Thrombosis, NOS	,		(-+,		1	(2%)
*Uterine artery	(50)		(50)		(50)	
Inflammation, NOS	(22)		1	(2%)	(00)	
#Liver	(50))	(50)	(=,	(50)	
Thrombosis, NOS	2	(4%)			,	
#Uterus	(50)		(50)		(50)	
Thrombosis, NOS	1	(2%)	()		1	(2%)
#Adrenal	(48)		(49)		(50)	
Thrombosis, NOS	2	(4%)				
DIGESTIVE SYSTEM		·····		·····		
#Salivary gland	(49)		(49)		(50)	
Inflammation, chronic	11	(22%)	12	(24%)	13	(26%)
#Liver	(50)	\	(50)	(= = 10)	(50)	
Congestion NOS	7	(14%)	(00) A	(12%)	(UU) Q	(18%)
Hemorrhage	'	(1 = 10)	0	(14/0)	9	(2%)
Inflammation supportive			1	(2%)	1	
Inflammation chronic			1 9	(4%)	1	(2%)
Granuloma NOS	93	(46%)	2 97	(54%)	94	(48%)
Necrosia NOS	20	(40%)	41	(34170) (7904)	24 A	(40%)
Necrosis focel	3	(69)	2	(270)	4	(6%)
Informat NOS	1	(0%)	3	(0%)	ა	(0%)
Matemanhasia fattu	1	(2%)				
Metamorphosis, fatty	1	(2%)	4	(00)		
Cytoplasmic vacuolization		(• ~)	1	(2%)		
Anglectasis	2	(4%)	1	(2%)		
#Hepatic capsule	(50)		(50)		(50)	
Inflammation, NOS			1	(2%)		
Inflammation, suppurative	1	(2%)			3	(6%)
#Liver/centrilobular	(50)		(50)		(50)	
Necrosis, focal					1	(2%)
#Liver/hepatocytes	(50)		(50)		(50)	
Necrosis, NOS			1	(2%)		
Cytoplasmic vacuolization			1	(2%)		
Focal cellular change	1	(2%)	2	(4%)	2	(4%)
*Gallbladder	(50)		(50)		(50)	
Inflammation, acute	1	(2%)				
Necrosis, NOS	1	(2%)				
*Gallbladder/serosa	(50)		(50)		(50)	
Inflammation, suppurative	4	(8%)				
#Pancreas	(50)		(48)		(49)	
Cyst, NOS	1	(2%)			1	(2%)
Inflammation, suppurative			1	(2%)	1	(2%)
Inflammation, active chronic	5	(10%)	1	(2%)	2	(4%)
Inflammation, chronic	2	(4%)	4	(8%)	-3	(6%)
Necrosis, fat	-		•		1	(2%)
#Pancreatic acinus	(50)		(48)		(49)	
Inflammation, active chronic	(20)				1	(2%)
#Esophagus	(50)		(50)		(50)	
Inflammation, acute	1	(2%)	((00)	
#Stomach	(50)		(50)		(50)	
Ulcer, NOS			(00)		1	(2%)
Ulcer. acute	1	(2%)			*	
#Glandular stomach	(50)		(50)		(50)	
Cyst NOS	(00)		(00)		(00)	(996)
					1	(270)
Illeer NOS			1	(296)	c	(1906)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM (Continued)			
#Gastric submucosa	(50)	(50)	(50)
Cyst, NOS	(7.0)	3 (6%)	(50)
#Gastric serosa	(50)	(50)	(00)
Inflammation, suppurative	(50)	(50)	(50)
Inflammation NOS	(50)	(50)	1 (2%)
Ulcer NOS			1 (2%)
Inflammation, acute			3 (6%)
Inflammation, acute focal	1 (2%)	2 (4%)	
Inflammation, active chronic	1 (2%)		
Inflammation, chronic	1 (2%)	1 (2%)	1 (2%)
Erosion			3 (6%)
Hyperkeratosis	5 (10%)	8 (16%)	6 (12%) 6 (19%)
Acanthosis	9 (18%)	8 (16%)	6 (12%) (50)
#Small Intestine /serosa	(50)	(45)	1 (2%)
#Duodenum	(50)	(49)	(50)
Illeer NOS	1 (9%)	(=0)	
#Duodenal serosa	(50)	(49)	(50)
Inflammation, NOS	1 (2%)	(40)	(00)
#Colonic serosa	(50)	(50)	(49)
Inflammation, suppurative		1 (2%)	
URINARY SYSTEM			
#Kidney	(50)	(50)	(50)
Ectopia	1 (2%)	1 (2%)	1 (2%)
Mineralization	1 (2%)		
Hydronephrosis		0 (107)	1 (2%)
Congestion, NOS	10 (20%)	8 (16%)	9 (18%)
Pyelonephritis, NOS	1 (2%)	49 (0404)	47 (04%)
Inflammation, chronic	41 (82%) 1 (9%)	42 (84%)	47 (54%)
Glomonulosolonogia NOS	1 (2%)		1 (2%)
Infarct healed	1 (2%)		1 (2,0)
Hyperplasia, tubular cell	1 (278)		1 (2%)
#Kidney/capsule	(50)	(50)	(50)
Inflammation, active chronic	1 (2%)		
#Kidney/interstitium	(50)	(50)	(50)
Abscess, NOS	1 (2%)		
#Kidney/cortex	(50)	(50)	(50)
Cyst, NOS	(50)	(50)	(50)
# Kenal papilla	(60)	(80)	(30)
Negropia NOS	1 (99)		1 (270)
#Kidnew/tubule	(50)	(50)	(50)
Dilatation NOS	(86)	(00)	1 (2%)
#Urinary bladder	(50)	(48)	(49)
Inflammation, acute	1 (2%)		
Inflammation, active chronic	1 (2%)		
Inflammation, chronic	5 (10%)	2 (4%)	4 (8%)
#Urinary bladder/serosa	(50)	(48)	(49)
Necrosis, NOS		1 (2%)	
ENDOCRINE SYSTEM			(10)
#Pituitary	(40)	(45)	(49)
Congestion, NOS	4 (10%)	Z (4%)	2 (4%)
Angiectasis		1 (2%)	

	CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
ENDOCRINE SYSTEM (Continued)		<u></u>			<u> </u>	
#Anterior pituitary	(40)		(45)		(49)	
Cyst. NOS	2	(5%)	3	(796)	1	(2%)
Congestion NOS	1	(3%)	Ű	(1, k)	2	(496)
Hyperplacia NOS	ĥ	(15%)	11	(24%)	13	(27%)
Hyperplasia, 1000	2	(10,0)		(2470)	10	(27.0)
Angiectasis	e e	(15%)	13	(20%)	٩	(19.0%)
#Adronal	(48)	(10,0)	(49)	(23 10)	(50)	(10%)
Congestion NOS	(40)	(196)	(47)		1	(906)
Absong NOS	2	(4,10)	1	(906)	1	(270)
Hunorplasia NOS	1	(90)	1	(270)		
#A dramal/cancula	(49)	(270)	(40)		(50)	
#Adrenal/capsule	(48)		(49)		(50)	(00)
Inflammation, NOS					1	(2%)
Inflammation, active chronic	1	(2%)			1	(2%)
Hyperplasia, NOS	33	(69%)	36	(73%)	39	(78%)
Hyperplasia, focal	1	(2%)	1	(2%)		
#Adrenal cortex	(48)		(49)		(50)	
Cyst, NOS					1	(2%)
Congestion, NOS			2	(4%)	1	(2%)
Cytoplasmic vacuolization	3	(6%)	4	(8%)	3	(6%)
Hypertrophy, focal	3	(6%)	2	(4%)	1	(2%)
Hypertrophy, diffuse			6	(12%)	6	(12%)
Hyperplasia, NOS			1	(2%)		
Hyperplasia, focal			1	(2%)		
#Periadrenal tissue	(48)		(49)	(,	(50)	
Inflammation suppurative	(/		(,		1	(2.%)
#Thyroid	(50)		(50)		(49)	(2,0)
Colloid evet	(00)		(00)		(43)	(90)
Inflormation chronic	1	(0 <i>a</i>)	9	(69)	1	(270)
	1	(270)	3	(0%)	2	(44%)
Hyperplasia, local		(00)	•	(100)	1	(2%)
"There is falling	4	(8%)	9	(18%)	(10)	(14%)
Crystals, NOS	(50)		(50)	(2%)	(49)	
REPRODUCTIVE SYSTEM				- <u> </u>	<u></u>	
*Mammary gland	(50)		(50)		(50)	
Gelastacolo	(00)	(100)	(00)	(10)	(00)	(100)
Inflammation active chronic	1	(10%)	2	(4970)	5	(10%)
Innammation, active chrome	1	(270)	(50)		(50)	
#Uterus	(50)		(50)		(50)	(0~~)
Hemorrhagic cyst	•			(0.2.)	1	(2%)
Inflammation, suppurative	8	(16%)	4	(8%)	12	(24%)
Inflammation, active chronic	1	(2%)	_			
Inflammation, chronic			1	(2%)		
Fibrosis			1	(2%)		
Necrosis, fat			1	(2%)		
#Uterine serosa	(50)		(50)		(50)	
Abscess, NOS					1	(2%)
#Uterus/endometrium	(50)		(50)		(50)	
Hyperplasia, cystic	40	(80%)	43	(86%)	39	(78%)
#Fallopian tube	(50)		(50)		(50)	
Inflammation, suppurative			1	(2%)	1	(2%)
#Ovary/parovarian	(49)		(50)		(49)	
Inflammation, active chronic	,		/		1	(2%)
#Ovary	(49)		(50)		(49)	/
Minoralization			1	(2.%)	()	
WITTERATIZALIUTE			•		0	(100)
Cyst NOS	7	(14%)	F.	(1)(96)	×	(696)
Cyst, NOS Parovarian cyst	7 1 E	(14%)	5	(10%)	8	(16%)
Cyst, NOS Parovarian cyst Congestion NOS	7 15	(14%) (31%)	5 9 1	(10%) (18%) (2%)	8 19	(16%) (39%)

		<u>.</u>	·····		<u></u>
(49)		(50)		(49)	
7	(14%)	4	(8%)	5	(10%)
5	(10%)	3	(6%)	7	(14%)
1	(2%)	3	(6%)		
				1	(2%)
1	(2%)	1	(2%)		
					,
(50)		(50)		(50)	
		1	(2%)		
(50)		(50)		(50)	
		1	(2%)	_	
		1	(2%)	1	(2%)
1	(2%)			/	
(50)		(50)	(00)	(50)	
			(2%)		
(50)		(50)		(50)	
1	(2%)				
1	(2%)				
(50)		(50)		(50)	
27	(54%)	27	(54%)	30	(60%)
(50)		(50)		(50)	
1	(2%)				
1	(2%)	1	(2%)		
(50)		(50)		(50)	
1	(2%)				
1	(2%)				
(50)		(50)		(50)	
				1	(2%)
		·····			(4%)
(50)		(50)	(22)	(50)	
	(00)	_ 1	(2%)		
1	(2%) (4%)		(97)		
2	(4.%)	1	(2%)		
1					
1		1			
		1			
		1			
1		2		1	
	(49) 7 5 1 (50) (50) (50) 1 (50) 27 (50) 1 1 (50) 1 1 (50) 1 1 (50) 1 1 (50) 1 1 (50) 1 1 (50) 1 1 (50) 1 1 (50) 1 1 (50) 1 (50) 1 (50) (50) (50) (50) (50) (50) (50) (50)	$(49) \\ 7 (14\%) \\ 5 (10\%) \\ 1 (2\%) \\ (50) \\ (50) \\ (50) \\ (50) \\ (50) \\ 1 (2\%) \\ (50) \\ 1 (2\%) \\ (50) \\ 27 (54\%) \\ (50) \\ 1 (2\%) \\ (50) \\ 1 ($	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SPECIAL MORPHOLOGY SUMMARY

None

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

,

APPENDIX E

ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

Skin: Keratoacanthoma 2/50 (4%) 3/50 (6%) 1/50 (2%) Adjusted Rates (b) 5.1% 12.5% 3.8% Terminal Rates (c) 1/35 (3%) 3/24 (13%) 1/26 (4%) Week of First Observation 96 104 104 Life Table Tests (d) P=0.522N P=0.373 P=0.530N Cohrn-Armitage Trend Test (d) P=0.399N P=0.500 P=0.500N Subcutaneous Tissue: Fibroma 0/50 (6%) 4/50 (6%) 3/50 (6%) Adjusted Rates (b) 8.6% 12.5% 7.7% Adjusted Rates (c) 3/50 (6%) 2/24 (3%) 0/26 (0%) Week of First Observation 104 77 86 Incidental Tumor Tests (d) P=0.482 P=0.337 P=0.529N Cochran-Armitage Trend Test (d) P=0.482 P=0.437 P=0.529N Cochran-Armitage Trend Test (d) P=0.571 Incidental Tumor Tests (d) P=0.570 Fisher Exact Test (d) P=0.571 So (6%) 1/36 (6%) 1/36 (6%) Adjusted Rates (h) 1.43% 19.0% 1.38 <th></th> <th>Control</th> <th>25,000 ppm</th> <th>50,000 ppm</th>		Control	25,000 ppm	50,000 ppm
	Skin: Keratoacanthoma		· <u>····································</u>	
Adjusted Rates (b) 5.1% 1.26% 3.3% Terminal Rates (c) 1.05 (3%) 3.24 (13%) 1.26 (4%) Week of First Observation 96 1.04 1.04 Life Table Tests (d) P=0.522N P=0.373 P=0.530N Cochtran A-mittage Trend Test (d) P=0.373 P=0.500N Subcutaneous Tissue: Fibroma	Overall Rates (a)	2/50 (4%)	3/50 (6%)	1/50 (2%)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Adjusted Rates (b)	5.1%	12.5%	3.8%
Week of First Observation 96 104 104 104 Liff Table Tests (d) P=0.522N P=0.345 P=0.658N Cochran-Armitage Trend Test (d) P=0.383N P=0.373 P=0.530N Subcutaneous Tissue: Fibroma	Terminal Rates (c)	1/35 (3%)	3/24 (13%)	1/26 (4%)
	Week of First Observation	96	104	104
	Life Table Tests (d)	P = 0.522N	P = 0.345	P = 0.595N
$\begin{array}{c c} Cochran-Armitage Trend Test (d) & P=0.399N \\ Fisher Exact Test (d) & P=0.500 & P=0.500N \\ \hline \\ Subcutaneous Tissue: Fibroma \\ Overall Rates (a) & 3/50 (6\%) & 4/50 (8\%) & 3/50 (6\%) \\ Adjusted Rates (b) & 8.6\% & 12.5\% & 7.7\% \\ Terminal Rates (c) & 3/35 (9\%) & 2/24 (8\%) & 0/26 (0\%) \\ To the Table Test (d) & P=0.482 & P=0.347 & P=0.571 \\ Incidental Tumor Test (d) & P=0.481 & P=0.577 & P=0.528N \\ Cochran-Armitage Tend Test (d) & P=0.579 & P=0.500 & P=0.661 \\ \hline \\ Subcutaneous Tissue: Fibroma or Neurofibroma \\ Overall Rates (b) & 14.3\% & 19.0\% & 11.3\% \\ Terminal Rates (c) & 5/50 (10\%) & 6/50 (12\%) & 4/50 (8\%) \\ Adjusted Rates (b) & 14.3\% & 19.0\% & 11.3\% \\ Terminal Rates (c) & 5/35 (14\%) & 3/24 (13\%) & 1/26 (4\%) \\ Week of First Observation & 104 & 77 & 86 \\ Life Table Test (d) & P=0.430N & P=0.462 & P=0.443N \\ Cochran-Armitage Trend Test (d) & P=0.430N & P=0.462 & P=0.443N \\ Cochran-Armitage Trend Test (d) & P=0.430N & P=0.500 & P=0.631 \\ Incidental Tumor Test (d) & P=0.400N & P=0.462 & P=0.443N \\ Cochran-Armitage Trend Test (d) & P=0.400N & P=0.162 & P=0.443N \\ Cochran-Armitage Trend Test (d) & P=0.400N & P=0.162 & P=0.443N \\ Cochran-Armitage Trend Test (d) & P=0.400N & P=0.500N & P=0.500N \\ \hline \\ Subcutaneous Tissue: Fibrosarcoma \\ Coverall Rates (b) & 2.9\% & 0.05 & 0.2\% & 0.2$	Incidental Tumor Tests (d)	P = 0.483 N	P = 0.373	P = 0.530N
Fisher Exact Test (d) $P = 0.500$ $P = 0.500N$ Subcutaneous Tissue: Fibroma 3/50 (6%) 4/50 (8%) 3/50 (6%) Adjusted Rates (b) 8.6% 12.5% 7.7% Terminal Rates (c) 3/35 (9%) 2/24 (8%) 0/26 (0%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.482 P=0.347 P=0.529N Cochran-Armitage Trend Test (d) P=0.579 P=0.500 P=0.661 Subcutaneous Tissue: Fibroma or Neurofibroma 0verall Rates (a) 4/50 (10%) 6/50 (12%) 4/50 (8%) Adjusted Rates (b) 14.3% 19.0% 11.3% 12/26 (3%) Verail Rates (c) 5/35 (14%) 3/24 (13%) 12/26 (3%) Meek of First Observation 104 77 86 Lind Table Tests (d) P=0.400N P=0.462 P=0.300 P=0.634 Incidental Tumor Tests (d) P=0.404N 77 86 4/50 (8%) 0/50 (0%) 1/50 (2%) Adjusted Rates (b) 9.8% 0.050 (0%) 1/50 (2%) 4/50 (8%)<	Cochran-Armitage Trend Test (d)	P = 0.399N		
Subcutaneous Tissue: Fibroma Overall Rates (a) $3/50$ (6%) $4/50$ (8%) $3/50$ (6%) Adjusted Rates (b) 8.6% 12.5% 7.7% Terminal Rates (c) $3/35$ (9%) $2/24$ (8%) $0/26$ (0%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.481N P=0.537 P=0.571 Incidential Tumor Tests (d) P=0.491N P=0.500 P=0.661 Subcutaneous Tissue: Fibroma or Neurofibroma 6/50 (12%) 4/50 (8%) 4/50 (8%) Overall Rates (a) 5/50 (10%) 6/50 (12%) 4/50 (8%) 12.6 (4%) Adjusted Rates (b) 1.4 3% 19.0% 11.3% 12/26 (4%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.548 P=0.300 P=0.634 Incidential Tumor Tests (d) P=0.400N P=0.462 P=0.443N Cochran-Armitage Tend Test (d) P=0.050 P=0.500 P=0.500N Subcutaneous Tissue: Fibrosarcoma 0/50 (0%) 1/50 (2%) 4/50 (8%)	Fisher Exact Test (d)		P = 0.500	P = 0.500N
Overall Rates (a) $3/50$ (6%) $4/50$ (8%) $3/50$ (6%) Adjusted Rates (b) 8.6% 12.5% 7.7% Terminal Rates (c) $3/35$ (9%) $2/24$ (8%) $0/26$ (0%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.482 P=0.347 P=0.571 Incidental Tumor Tests (d) P=0.482 P=0.500 P=0.661 Subcutaneous Tissue: Fibroma or Neurofibroma $6/50$ (12%) $4/50$ (8%) $Adjusted$ Overall Rates (a) $5/50$ (10%) $6/50$ (12%) $4/50$ (8%) $Adjusted$ Adjusted Rates (b) 14.3% 19.0% 11.3% Terminal Rates (c) $5/50$ (10%) $7/26$ (8%) Adjusted Rates (b) 104 77 86 10.6% 10.6% 12.6% $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$ (8%) $7/26$	Subcutaneous Tissue: Fibroma			
Adjusted Rates (b) 6.6% 12.5% 7.7% Terminal Rates (c) 3/35 (9%) 2/24 (8%) 0/26 (0%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.482 P=0.347 P=0.571 Incidental Tumor Tests (d) P=0.491N P=0.537 P=0.529N Cochran-Armitage Trend Test (d) P=0.519 P=0.500 P=0.661 Subcutaneous Tissue: Fibroma or Neurofibroma 0verall Rates (a) 5/50 (10%) 6/50 (12%) 4/50 (8%) Adjusted Rates (b) 14.3% 19.0% 11.3% 7 Verail Rates (a) 5/35 (14%) 3/24 (13%) 1/26 (4%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.548 P=0.300 P=0.634 Incidental Tumor Tests (d) P=0.430N P=0.462 P=0.443N Cochran-Armitage Trend Test (d) P=0.430N P=0.500 P=0.500N Subcutaneous Tissue: Fibrosarcoma 0/50 (0%) 1/50 (2%) Adjusted Rates (b) 9.8% 0.0% 2.2% Cochran-Armitage Trend Test (d) P=0.1041N P=0.104N	Overall Rates (a)	3/50 (6%)	4/50 (8%)	3/50 (6%)
Terminal Rates (c) 3/35 (9%) 2/24 (8%) 0/26 (0%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.482 P=0.337 P=0.571 Incidental Tumor Tests (d) P=0.519 P=0.500 P=0.500 Subcutaneous Tissue: Fibroma or Neurofibroma 0 Verall Rates (a) 4/50 (8%) Adjusted Rates (b) 14.3% 19.0% 11.3% Terminal Rates (c) 5/30 (10%) 6/50 (12%) 4/50 (8%) Adjusted Rates (b) 14.3% 19.0% 11.3% Terminal Rates (c) 5/35 (14%) 3/24 (13%) 1/26 (4%) Week of First Observation 104 77 86 Incidental Tumor Tests (d) P=0.400N P=0.300 P=0.634 Incidental Tumor Tests (d) P=0.402N P=0.462 P=0.443N Cochran-Armitage Trend Test (d) P=0.500 P=0.500N P=0.500N Subcutaneous Tissue: Fibrosarcoma 0/50 (0%) 1/50 (2%) Adjusted Rates (b) 9.8% 0.0% 2.2% Terminal Rates (c) 2/35 (6%) 0/24 (0%) 0/26 (0%) P=0.238N	Adjusted Rates (b)	8.6%	12.5%	7.7%
Week of First Observation 104 77 86 Life Table Tests (d) P=0.431 P=0.347 P=0.571 Incidental Tumor Tests (d) P=0.491N P=0.537 P=0.529N Cochran-Armitage Trend Test (d) P=0.519 P=0.500 P=0.661 Subcutaneous Tissue: Fibroma or Neurofibroma 0verall Rates (a) 5/50 (10%) 6/50 (12%) 4/50 (8%) Adjuated Rates (b) 14.3% 19.0% 11.3% 1/26 (4%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.548 P=0.300 P=0.634 Incidental Tumor Tests (d) P=0.400N P=0.462 P=0.443N Cochran-Armitage Trend Test (d) P=0.400N P=0.500 P=0.500N Subcutaneous Tissue: Fibrosarcoma 0/50 (0%) 1/50 (2%) Adjusted Rates (b) 9.3% 0.0% 2.2% Adjuated Rates (c) 2/35 (6%) 0/24 (0%) 0/26 (0%) 0/50 (0%) Moreall Rates (a) 9.8% 0.0% 1/50 (2%) 2.3% Adjuated Rates (b) 8.6%	Terminal Rates (c)	3/35 (9%)	2/24 (8%)	0/26 (0%)
Life Table Tests (d) P=0.482 P=0.347 P=0.571 Incidental Tumor Tests (d) P=0.579 P=0.537 P=0.529N Cochran-Armitage Trend Test (d) P=0.579 P=0.661 Subcutaneous Tissue: Fibroma or Neurofibroma Overall Rates (a) $6/50$ (12%) $4/50$ (8%) Adjusted Rates (b) 14.3% 19.0% 11.3% Terminal Rates (c) $5/35$ (14%) $3/24$ (13%) 1/26 (4%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.462 P=0.634 Incidental Tumor Tests (d) P=0.400N P=0.462 P=0.443N Cochran-Armitage Trend Test (d) P=0.400N P=0.500 P=0.500N Subcutaneous Tissue: Fibrosarcoma 0verall Rates (a) $4/50$ (8%) $0/50$ (0%) $1/50$ (2%) Adjusted Rates (b) 9.8% 0.0% 2.2% 7 Terminal Rates (c) 2/25 (6%) 0/24 (0%) 0/26 (0%) Week of First Observation 75 87 7 Life Table Tests (d) P=0.082N P=0.019N P=0.104N Pelo.059N P=0.181N P=0.082N	Week of First Observation	104	77	86
	Life Table Tests (d)	P = 0.482	P = 0.347	P = 0.571
Cochran-Armitage Trend Test (d) $P=0.579$ Fisher Exact Test (d) $P=0.600$ $P=0.661$ Subcutaneous Tissue: Fibroma or Neurofibroma $6/50 (12\%)$ $4/50 (8\%)$ Overall Rates (a) $5/50 (10\%)$ $6/50 (12\%)$ $4/50 (8\%)$ Adjusted Rates (b) 14.3% 19.0% 11.3% Terminal Rates (c) $5/35 (14\%)$ $3/24 (13\%)$ $1/26 (4\%)$ Week of First Observation 104 77 86 Life Table Tests (d) $P=0.634$ $P=0.634$ Incidental Tumor Tests (d) $P=0.400N$ $P=0.462$ $P=0.443N$ Cochran-Armitage Trend Test (d) $P=0.434N$ $P=0.500$ $P=0.500N$ Subcutaneous Tissue: Fibrosarcoma $0/50 (0\%)$ $1/50 (2\%)$ $2/36 (6\%)$ $0/26 (0\%)$ Week of First Observation 75 87 87 11.3% Incidental Tumor Tests (d) $P=0.052N$ $P=0.044N$ $P=0.238N$ Incidental Tumor Tests (d) $P=0.052N$ $P=0.044N$ $P=0.109N$ Cochran-Armitage Trend Test (d) $P=0.052N$ $P=0.0181N$	Incidental Tumor Tests (d)	P = 0.491 N	P = 0.537	P = 0.529N
Fisher Exact Test (d) $P = 0.500$ $P = 0.661$ Subcutaneous Tissue: Fibroma or Neurofibroma 5/50 (10%) $6/50 (12\%)$ $4/50 (8\%)$ Adjusted Rates (b) 14.3% 19.0% 11.3% Terminal Rates (c) 5/35 (14%) 3/24 (13%) 1/26 (4%) Week of First Observation 104 77 86 Life Table Tests (d) $P = 0.548$ $P = 0.300$ $P = 0.6334$ Incidental Tumor Tests (d) $P = 0.400N$ $P = 0.4622$ $P = 0.443N$ Cochran-Armitage Trend Test (d) $P = 0.400N$ $P = 0.500$ $P = 0.500N$ Subcutaneous Tissue: Fibrosarcoma 0/50 (0%) 1/50 (2%) $A/djusted Rates (a)$ $0/50 (0\%)$ 1/50 (2%) Adjusted Rates (b) 9.8% 0.0% 2.2% $0/26 (0\%)$ $0/26 (0\%)$ Week of First Observation 75 87 87 87 Life Table Tests (d) $P = 0.052N$ $P = 0.19N$ $P = 0.19N$ $P = 0.19N$ Cochran-Armitage Trend Test (d) $P = 0.052N$ $P = 0.181N$ $P = 0.19N$ Intedental Tumor Tests (d) $P = 0.052N$ $P = 0.181N$ $P = 0.19N$	Cochran-Armitage Trend Test (d)	P = 0.579		
Subcutaneous Tissue: Fibroma or Neurofibroma Overall Rates (a) 5/50 (10%) 6/50 (12%) 4/50 (8%) Adjusted Rates (b) 14.3% 19.0% 11.3% Terminal Rates (c) 5/35 (14%) 3/24 (13%) 1/26 (4%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.548 P=0.300 P=0.634 Incidental Tumor Tests (d) P=0.434N P=0.462 P=0.443N Cohran Armitage Trend Test (d) P=0.434N P=0.500 P=0.500N Subcutaneous Tissue: Fibrosarcoma 0verail Rates (a) 4/50 (8%) 0/50 (0%) 1/50 (2%) Adjusted Rates (b) 9.8% 0.0% 2.2% Terminal Rates (a) 2/35 (6%) 0/24 (0%) 0/26 (0%) Week of First Observation 75 87 Terminal Rates (a) 0/26 (0%) P=0.109N Cohrent Armitage Trend Test (d) P=0.052N P=0.044N P=0.109N P=0.109N Cohrent Armitage Trend Test (d) P=0.052N P=0.044N P=0.109N P=0.181N Incidental Tumor Tests (d)	Fisher Exact Test (d)		P = 0.500	P = 0.661
Overall Rates (a) $5/50 (10\%)$ $6/50 (12\%)$ $4/50 (8\%)$ Adjusted Rates (b) 14.3% 19.0% 11.3% Terminal Rates (c) $5/35 (14\%)$ $3/24 (13\%)$ $1/26 (4\%)$ Week of First Observation 104 77 86 Life Table Tests (d) $P=0.548$ $P=0.300$ $P=0.634$ Incidental Tumor Tests (d) $P=0.462$ $P=0.443N$ Cochran-Armitage Trend Test (d) $P=0.434N$ $P=0.500$ $P=0.500N$ Subcutaneous Tissue: Fibrosarcoma $V=0.434N$ $P=0.500$ $P=0.500N$ Subcutaneous Tissue: Fibrosarcoma $0/50 (0\%)$ $1/50 (2\%)$ $A/3$ Adjusted Rates (a) $4/50 (8\%)$ $0/50 (0\%)$ $1/50 (2\%)$ Adjusted Rates (a) $2/36 (6\%)$ $0/24 (0\%)$ $0/226 (0\%)$ Week of First Observation 75 87 71 Integramentary System: Neurofibrosarcoma $0/250 (6\%)$ $0/26 (0\%)$ $9=0.138N$ Integramentary System: Neurofibrosarcoma $0/26 (4\%)$ $0/26 (0\%)$ $9=0.181N$ Integramentary System: Neurofibrosarcoma $0/26 (4\%)$ $0/26 (0\%)$ $9=0.181N$	Subcutaneous Tissue: Fibroma or Neurofibro	ma		
Adjusted Rates (b) 14.3% 19.0% 11.3% Terminal Rates (c) 5/35 (14%) 3/24 (13%) 1/26 (4%) Week of First Observation 104 77 86 Life Table Tests (d) P=0.40N P=0.300 P=0.634 Incidental Tumor Tests (d) P=0.40N P=0.462 P=0.443N Cochran-Armitage Trend Test (d) P=0.434N P=0.500 P=0.500N Subcutaneous Tissue: Fibrosarcoma 0/50 (0%) 1/50 (2%) Adjusted Rates (b) 9.8% 0.0% 2.2% Adjusted Rates (c) 2/35 (6%) 0/24 (0%) 0/26 (0%) Week of First Observation 75 Meek of First Observation 75 87 87 11.1% P=0.044N P=0.109N Cochran-Armitage Trend Test (d) P=0.052N P=0.044N P=0.109N 75 100N Cochran-Armitage Trend Test (d) P=0.062N P=0.044N P=0.109N 75 100N Cochran-Armitage Trend Test (d) P=0.062N P=0.059N P=0.181N 9 104 104 104 104 104 104 104 104 104 104 1	Overall Rates (a)	5/50 (10%)	6/50 (12%)	4/50 (8%)
Terminal Rates (c) 5/35 (14%) $3/24 (13\%)$ $1/26 (4\%)$ Week of First Observation 104 77 86 Life Table Tests (d) P=0.543 P=0.300 P=0.634 Incidental Tumor Tests (d) P=0.400N P=0.462 P=0.443N Cochran-Armitage Trend Test (d) P=0.400N P=0.500 P=0.500N Subcutaneous Tissue: Fibrosarcoma 0verall Rates (a) $4/50 (8\%)$ $0/50 (0\%)$ $1/50 (2\%)$ Adjusted Rates (b) 9.8% 0.0% 2.2% 2% Terminal Rates (c) 2/35 (6%) $0/24 (0\%)$ $0/26 (0\%)$ Week of First Observation 75 87 87 Life Table Tests (d) P=0.119N P=0.104N P=0.238N Incidental Tumor Tests (d) P=0.052N P=0.044N P=0.109N Cochran-Armitage Trend Test (d) P=0.052N P=0.104N P=0.109N Cochran-Armitage Trend Test (d) P=0.052N P=0.181N P Integunentary System: Neurofibrosarcoma 0/50 (6%) 2/50 (4%) 0/50 (0%) Week of First Observation 104 104 104 104 <td< td=""><td>Adjusted Rates (b)</td><td>14.3%</td><td>19.0%</td><td>11.3%</td></td<>	Adjusted Rates (b)	14.3%	19.0%	11.3%
Week of First Observation 104 77 86 Life Table Tests (d) P=0.548 P=0.300 P=0.634 Incidental Tumor Tests (d) P=0.400N P=0.462 P=0.443N Cochran-Armitage Trend Test (d) P=0.400N P=0.500 P=0.500N Subcutaneous Tissue: Fibrosarcoma 0verall Rates (a) 4/50 (8%) 0/50 (0%) 1/50 (2%) Adjusted Rates (b) 9.8% 0.0% 2.2% 7 Terminal Rates (c) 2/35 (6%) 0/24 (0%) 0/26 (0%) Week of First Observation 75 87 87 Life Table Tests (d) P=0.119N P=0.104N P=0.238N Incidental Tumor Tests (d) P=0.052N P=0.044N P=0.109N Cochran-Armitage Trend Test (d) P=0.052N P=0.059N P=0.181N Integumentary System: Neurofibrosarcoma 0/50 (6%) 2/50 (4%) 0/50 (0%) Adjusted Rates (b) 8.6% 8.3% 0.0% 178N Informat Rates (c) 3/35 (9%) 2/24 (8%) 0/26 (0%) Week of First Observation <	Terminal Rates (c)	5/35 (14%)	3/24 (13%)	1/26 (4%)
Life Table Tests (d) $P = 0.548$ $P = 0.300$ $P = 0.634$ Incidental Tumor Tests (d) $P = 0.400N$ $P = 0.462$ $P = 0.443N$ Cochran-Armitage Trend Test (d) $P = 0.434N$ Fisher Exact Test (d) $P = 0.434N$ Subcutaneous Tissue: Fibrosarcoma Overall Rates (a) $4/50$ (8%) $0/50$ (0%) $1/50$ (2%) Adjusted Rates (b) 9.8% 0.0% 2.2% Terminal Rates (c) $2/35$ (6%) $0/24$ (0%) $0/26$ (0%) Week of First Observation 75 87 Life Table Tests (d) $P = 0.119N$ $P = 0.104N$ $P = 0.238N$ Incidental Tumor Tests (d) $P = 0.052N$ $P = 0.044N$ $P = 0.109N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ Fisher Exact Test (d) $P = 0.082N$ Terminal Rates (c) $3/350$ (6%) $2/20$ (4%) $0/26$ (0%) Adjusted Rates (b) 8.6% 8.3% 0.0% Terminal Rates (c) $3/35$ (9%) $2/24$ (8%) $0/26$ (0%) Week of First Observation 104 104 Life Table Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.134N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.032N$ Fisher Exact Test (d) $P = 0.017N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.017N$ $P = 0.07N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma Overall Rates (a) 7/50 (14\%) 2/50 (4\%) 1/50 (2\%) Adjusted Rates (b) 18.0\% Adjusted Rates (c) 5/35 (14\%) 2/26 (6\%) 1/50 (2\%) Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.007N$ $P = 0.118N$ $P = 0.027N$ Cochran-Armitage Trend Test (d) $P = 0.014N$ Extend Test (e) $P = 0.014N$ Extend Test (for the first Observation 75 104 87 Life Table Tests (d) $P = 0.014N$ $P = 0.027N$ Cochran-Armitage Trend Test (d) $P = 0.014N$ Extend Test Test (d) $P = 0.014N$	Week of First Observation	104	77	86
Incidental Tumor Tests (d) $P = 0.400N$ $P = 0.462$ $P = 0.443N$ Cochran-Armitage Trend Test (d) $P = 0.434N$ $P = 0.500$ $P = 0.500N$ Subcutaneous Tissue: Fibrosarcoma $P = 0.643N$ $P = 0.500$ $P = 0.500N$ Subcutaneous Tissue: Fibrosarcoma $0/50 (0\%)$ $1/50 (2\%)$ $Adjustel Rates (a)$ $4/50 (8\%)$ $0/50 (0\%)$ $1/50 (2\%)$ Adjusted Rates (b) 9.8% 0.0% 2.2% 0.0% 2.2% Terminal Rates (c) $2/35 (6\%)$ $0/24 (0\%)$ $0/26 (0\%)$ 87 Life Table Tests (d) $P = 0.119N$ $P = 0.104N$ $P = 0.238N$ Incidental Tumor Tests (d) $P = 0.052N$ $P = 0.044N$ $P = 0.109N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ $P = 0.059N$ $P = 0.181N$ Integumentary System: Neurofibrosarcoma $0/50 (0\%)$ $0/50 (0\%)$ $0/26 (0\%)$ Week of First Observation 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 $1050 (2\%)$ $178N$ 2.2% <t< td=""><td>Life Table Tests (d)</td><td>P=0,548</td><td>P=0.300</td><td>P = 0.634</td></t<>	Life Table Tests (d)	P=0,548	P=0.300	P = 0.634
Cochran-Armitage Trend Test (d) $P=0.434N$ Fisher Exact Test (d) $P=0.500$ $P=0.500N$ Subcutaneous Tissue: Fibrosarcoma V <t< td=""><td>Incidental Tumor Tests (d)</td><td>P = 0.400N</td><td>P = 0.462</td><td>P = 0.443N</td></t<>	Incidental Tumor Tests (d)	P = 0.400N	P = 0.462	P = 0.443N
Fisher Exact Test (d) $P = 0.500$ $P = 0.500$ Subcutaneous Tissue: Fibrosarcoma $0/50 (0\%)$ $1/50 (2\%)$ Adjusted Rates (a) 9.8% 0.0% 2.2% Terminal Rates (c) $2/35 (6\%)$ $0/24 (0\%)$ $0/26 (0\%)$ Week of First Observation 75 87 Incidental Tumor Tests (d) $P = 0.104N$ $P = 0.238N$ Incidental Tumor Tests (d) $P = 0.052N$ $P = 0.044N$ $P = 0.109N$ Cochran-Armitage Trend Test (d) $P = 0.052N$ $P = 0.059N$ $P = 0.181N$ Integumentary System: Neurofibrosarcoma $2/50 (4\%)$ $0/56 (0\%)$ $0/26 (0\%)$ Meek of First Observation 104 104 104 Life Table Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Meek of First Observation 104 104 104 Life Table Tests (d) $P = 0.082N$ $P = 0.500N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.082N$ $P = 0.500N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0$	Cochran-Armitage Trend Test (d)	P = 0.434N		
Subcutaneous Tissue: Fibrosarcoma Overall Rates (a) $4/50$ (8%) $0/50$ (0%) $1/50$ (2%) Adjusted Rates (b) 9.8% 0.0% 2.2% Terminal Rates (c) $2/35$ (6%) $0/24$ (0%) $0/26$ (0%) Week of First Observation 75 87 Life Table Tests (d) P=0.119N P=0.044N P=0.238N Incidental Tumor Tests (d) P=0.082N P=0.044N P=0.109N Cochran-Armitage Trend Test (d) P=0.082N P=0.059N P=0.181N Integumentary System: Neurofibrosarcoma $0/50$ (6%) $2/50$ (4%) $0/50$ (0%) Adjusted Rates (a) $3/50$ (6%) $2/20$ (4%) $0/26$ (0%) Week of First Observation 104 104 104 Life Table Tests (d) P=0.141N P=0.670N P=0.178N Incidental Tumor Tests (d) P=0.082N P=0.178N P=0.178N Incidental Tumor Tests (d) P=0.082N P=0.570N P=0.178N Incidental Tumor Tests (d) P=0.082N P=0.178N P=0.0570N Fisher Exact	Fisher Exact Test (d)		P = 0.500	P = 0.500N
Overall Rates (a)4/50 (8%)0/50 (0%)1/50 (2%)Adjusted Rates (b)9.8%0.0%2.2%Terminal Rates (c)2/35 (6%)0/24 (0%)0/26 (0%)Week of First Observation7587Life Table Tests (d)P=0.119NP=0.104NP=0.238NIncidental Tumor Tests (d)P=0.052NP=0.044NP=0.109NCochran-Armitage Trend Test (d)P=0.082NP=0.059NP=0.181NIntegumentary System: Neurofibrosarcoma $V2/50 (4\%)$ 0/50 (0%)Overall Rates (a)3/50 (6%)2/50 (4%)0/26 (0%)Adjusted Rates (b)8.6%8.3%0.0%Terminal Rates (c)3/35 (9%)2/24 (8%)0/26 (0%)Week of First Observation104104Life Table Tests (d)P=0.141NP=0.670NP=0.178NIncidental Tumor Tests (d)P=0.082NP=0.670NP=0.178NCochran-Armitage Trend Test (d)P=0.082NP=0.670NP=0.178NFisher Exact Test (d)P=0.082NP=0.670NP=0.121NIntegumentary System: Fibrosarcoma or Neurofibrosarcoma0/260 (4%)1/50 (2%)Adjusted Rates (b)18.0%8.3%2.2%Terminal Rates (c)5/35 (14%)2/24 (8%)0/26 (0%)Week of First Observation7510487Life Table Tests (d)P=0.035NP=0.185NP=0.006NIncidental Tumor Tests (d)P=0.017NP=0.118NP=0.027NCochran-Armitage Trend Test (d)P=0.017NP=0.118NP=0.027N<	Subcutaneous Tissue: Fibrosarcoma			
Adjusted Rates (b)9.8%0.0%2.2%Terminal Rates (c)2/35 (6%)0/24 (0%)0/26 (0%)Week of First Observation7587Life Table Tests (d)P=0.119NP=0.104NP=0.238NIncidental Tumor Tests (d)P=0.052NP=0.044NP=0.109NCochran-Armitage Trend Test (d)P=0.082NP=0.059NP=0.181NIntegumentary System: Neurofibrosarcoma $Verall Rates (a)$ 3/50 (6%)2/50 (4%)0/50 (0%)Adjusted Rates (b)8.6%8.3%0.0%Terminal Rates (c)3/35 (9%)2/24 (8%)0/26 (0%)Week of First Observation104104104Life Table Tests (d)P=0.141NP=0.670NP=0.178NIncidental Tumor Tests (d)P=0.141NP=0.670NP=0.178NP=0.178NP=0.500NP=0.121NIncidental Tumor Tests (d)P=0.082NFisher Exact Test (d)P=0.082NP=0.500NP=0.121NIntegumentary System: Fibrosarcoma or Neurofibrosarcoma $V/50 (14\%)$ 2/50 (4%)1/50 (2%)Adjusted Rates (b)18.0%8.3%2.2%Terminal Rates (c)5/35 (14%)2/24 (8%)0/26 (0%)Meek of First Observation7510487Life Table Tests (d)P=0.035NP=0.185NP=0.066NNNNNWeek of First Observation75104871/50 (2%)NNUser at Test (d)P=0.017NP=0.118NP=0.027NNNNNCochran-Armitage Trend Test (d)P=0.014N<	Overall Rates (a)	4/50 (8%)	0/50 (0%)	1/50 (2%)
Terminal Rates (c) $2/35 (6\%)$ $0/24 (0\%)$ $0/26 (0\%)$ Week of First Observation 75 87 Life Table Tests (d) $P = 0.119N$ $P = 0.104N$ $P = 0.238N$ Incidental Tumor Tests (d) $P = 0.052N$ $P = 0.044N$ $P = 0.109N$ Cochran-Armitage Trend Test (d) $P = 0.052N$ $P = 0.044N$ $P = 0.109N$ Fisher Exact Test (d) $P = 0.052N$ $P = 0.044N$ $P = 0.19N$ Integumentary System: Neurofibrosarcoma $P = 0.059N$ $P = 0.181N$ Integumentary System: Neurofibrosarcoma $2/50 (4\%)$ $0/50 (0\%)$ Adjusted Rates (a) $3/50 (6\%)$ $2/50 (4\%)$ $0/50 (0\%)$ Adjusted Rates (a) $3/50 (6\%)$ $2/50 (4\%)$ $0/26 (0\%)$ Meek of First Observation 104 104 104 Life Table Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.082N$ $P = 0.500N$ $P = 0.178N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $0/26 (0\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.035N$ $P = 0.185N$ $P = 0.066N$ Incidental Tumor Tests (d) $P = 0.017N$ $P $	Adjusted Rates (b)	9.8%	0.0%	2.2%
Week of First Observation7587Life Table Tests (d) $P = 0.119N$ $P = 0.044N$ $P = 0.238N$ Incidental Tumor Tests (d) $P = 0.052N$ $P = 0.044N$ $P = 0.109N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ $P = 0.059N$ $P = 0.181N$ Integumentary System: Neurofibrosarcoma $P = 0.059N$ $P = 0.181N$ Overall Rates (a) $3/50$ (6%) $2/50$ (4%) $0/50$ (0%)Adjusted Rates (b) 8.6% 8.3% 0.0% Terminal Rates (c) $3/35$ (9%) $2/24$ (8%) $0/26$ (0%)Week of First Observation 104 104 Life Table Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.082N$ $P = 0.500N$ $P = 0.178N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $O/26$ (0%) $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $O/26$ (0%) $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $O/26$ (0%) $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $O/26$ (0%) $P = 0.050N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $P = 0.050N$ $P = 0.02\%$ Overall Rates (c) $5/35$ (14%) $2/24$ (8%) $0/26$ (0%)Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.035N$ <td< td=""><td>Terminal Rates (c)</td><td>2/35 (6%)</td><td>0/24 (0%)</td><td>0/26(0%)</td></td<>	Terminal Rates (c)	2/35 (6%)	0/24 (0%)	0/26(0%)
Life Table Tests (d) $P = 0.119N$ $P = 0.104N$ $P = 0.238N$ Incidental Tumor Tests (d) $P = 0.052N$ $P = 0.044N$ $P = 0.109N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ $P = 0.059N$ $P = 0.181N$ Integumentary System: Neurofibrosarcoma $P = 0.059N$ $P = 0.181N$ Overall Rates (a) $3/50 (6\%)$ $2/50 (4\%)$ $0/50 (0\%)$ Adjusted Rates (b) 8.6% 8.3% 0.0% Terminal Rates (c) $3/35 (9\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 104 104 Life Table Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.082N$ $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $V = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $V = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $V = 0.02\%$ $V = 0.02\%$ Overall Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.035N$ $P = 0.185N$ $P = 0.066N$ Incidental Tumor Tests (d) $P = 0.017N$ $P = 0.118N$ $P = 0.027N$ Cochran-Armitage Trend Test (d) $P = 0.014N$ $P = 0.020N$ $P = 0.020N$	Week of First Observation	75		87
Incidental Tumor Tests (d) $P = 0.052N$ $P = 0.044N$ $P = 0.109N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ $P = 0.059N$ $P = 0.181N$ Fisher Exact Test (d) $P = 0.059N$ $P = 0.181N$ Integumentary System: NeurofibrosarcomaOverall Rates (a) $3/50 (6\%)$ $2/50 (4\%)$ $0/50 (0\%)$ Adjusted Rates (b) 8.6% 8.3% 0.0% Terminal Rates (c) $3/35 (9\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 104 104 Life Table Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.082N$ $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $P = 0.500N$ $P = 0.121N$ Overall Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.035N$ $P = 0.185N$ $P = 0.066N$ Incidental Tumor Tests (d) $P = 0.017N$ $P = 0.118N$ $P = 0.027N$ Cochran-Armitage Trend Test (d) $P = 0.014N$ $P = 0.020N$ $P = 0.202N$	Life Table Tests (d)	P = 0.119N	P = 0.104N	P = 0.238N
Cochran-Armitage Trend Test (d) $P = 0.082N$ Fisher Exact Test (d) $P = 0.059N$ $P = 0.181N$ Integumentary System: Neurofibrosarcoma $2/50 (4\%)$ $0/50 (0\%)$ Adjusted Rates (a) $3/50 (6\%)$ $2/50 (4\%)$ $0/50 (0\%)$ Adjusted Rates (b) 8.6% 8.3% 0.0% Terminal Rates (c) $3/35 (9\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 104 104 Life Table Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.082N$ $P = 0.500N$ $P = 0.178N$ Fisher Exact Test (d) $P = 0.082N$ $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma O $O/26 (0\%)$ Overall Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.035N$ $P = 0.118N$ $P = 0.027N$	Incidental Tumor Tests (d)	P = 0.052N	P = 0.044N	P = 0.109N
Fisher Exact Test (d) $P = 0.059N$ $P = 0.181N$ Integumentary System: Neurofibrosarcoma $0 \vee erall Rates (a)$ $3/50 (6\%)$ $2/50 (4\%)$ $0/50 (0\%)$ Adjusted Rates (b) 8.6% 8.3% 0.0% Terminal Rates (c) $3/35 (9\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 104 104 Life Table Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.082N$ $P = 0.670N$ $P = 0.178N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $O \vee erall Rates (a)$ $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% $7/50 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 8.1% $1.50 (2\%)$ Meek of First Observation 75 104 87 $1.50 (2\%)$ $1.60 (0\%)$ Week of First Observation 75 104 87 $1.50 (2\%)$ $1.50 (2\%)$ $1.50 (2\%$	Cochran-Armitage Trend Test (d)	P = 0.082N		
Integumentary System: Neurofibrosarcoma Overall Rates (a) $3/50 (6\%)$ $2/50 (4\%)$ $0/50 (0\%)$ Adjusted Rates (b) 8.6% 8.3% 0.0% Terminal Rates (c) $3/35 (9\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 104 104 104 Life Table Tests (d) P=0.141N P=0.670N P=0.178N Incidental Tumor Tests (d) P=0.141N P=0.670N P=0.178N Cochran-Armitage Trend Test (d) P=0.082N P=0.500N P=0.121N Integumentary System: Fibrosarcoma or Neurofibrosarcoma Overall Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) P=0.035N P=0.185N P=0.066N Incidental Tumor Tests (d) P=0.017N P=0.118N P=0.027N Cochran-Armitage Trend Test (d) P=0.014N P=0.020N	Fisher Exact Test (d)		P = 0.059N	P = 0.181N
Overall Rates (a) $3/50 (6\%)$ $2/50 (4\%)$ $0/50 (0\%)$ Adjusted Rates (b) 8.6% 8.3% 0.0% Terminal Rates (c) $3/35 (9\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 104 104 104 Life Table Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Incidental Tumor Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma 0 $0/26 (0\%)$ $1/50 (2\%)$ Adjusted Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.035N$ $P = 0.185N$ $P = 0.027N$ Cochran-Armitage Trend Test (d) $P = 0.017N$ $P = 0.118N$ $P = 0.027N$	Integumentary System: Neurofibrosarcoma			
Adjusted Rates (b) 8.6% 8.3% 0.0% Terminal Rates (c) $3/35 (9\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 104 104 Life Table Tests (d) $P=0.141N$ $P=0.670N$ $P=0.178N$ Incidental Tumor Tests (d) $P=0.141N$ $P=0.670N$ $P=0.178N$ Cochran-Armitage Trend Test (d) $P=0.082N$ $P=0.500N$ $P=0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $P=0.500N$ $P=0.121N$ Overall Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P=0.035N$ $P=0.185N$ $P=0.066N$ Incidental Tumor Tests (d) $P=0.017N$ $P=0.118N$ $P=0.027N$ Cochran-Armitage Trend Test (d) $P=0.014N$ $P=0.020N$ $P=0.020N$	Overall Rates (a)	3/50 (6%)	2/50 (4%)	0/50 (0%)
Terminal Rates (c) $3/35 (9\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation104104Life Table Tests (d)P=0.141NP=0.670NP=0.178NIncidental Tumor Tests (d)P=0.141NP=0.670NP=0.178NCochran-Armitage Trend Test (d)P=0.082NP=0.500NP=0.121NFisher Exact Test (d)P=0.082NP=0.500NP=0.121NIntegumentary System: Fibrosarcoma or Neurofibrosarcoma $0/26 (0\%)$ 1/50 (2%)Overall Rates (a)7/50 (14%)2/50 (4%)1/50 (2%)Adjusted Rates (b)18.0%8.3%2.2%Terminal Rates (c)5/35 (14%)2/24 (8%)0/26 (0%)Week of First Observation7510487Life Table Tests (d)P=0.035NP=0.185NP=0.066NIncidental Tumor Tests (d)P=0.017NP=0.118NP=0.027NCochran-Armitage Trend Test (d)P=0.014NP=0.014NP=0.020N	Adjusted Rates (b)	8.6%	8.3%	0.0%
Week of First Observation104104Life Table Tests (d) $P=0.141N$ $P=0.670N$ $P=0.178N$ Incidental Tumor Tests (d) $P=0.141N$ $P=0.670N$ $P=0.178N$ Cochran-Armitage Trend Test (d) $P=0.082N$ $P=0.670N$ $P=0.178N$ Fisher Exact Test (d) $P=0.082N$ $P=0.500N$ $P=0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $Overall Rates (a)$ $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P=0.035N$ $P=0.185N$ $P=0.066N$ Incidental Tumor Tests (d) $P=0.017N$ $P=0.118N$ $P=0.027N$ Cochran-Armitage Trend Test (d) $P=0.014N$ $P=0.020N$ $P=0.020N$	Terminal Rates (c)	3/35 (9%)	2/24 (8%)	0/26 (0%)
Life Table Tests (d) $P=0.141N$ $P=0.670N$ $P=0.178N$ Incidental Tumor Tests (d) $P=0.141N$ $P=0.670N$ $P=0.178N$ Cochran-Armitage Trend Test (d) $P=0.082N$ $P=0.670N$ $P=0.178N$ Fisher Exact Test (d) $P=0.082N$ $P=0.500N$ $P=0.121N$ Integumentary System: Fibrosarcoma or NeurofibrosarcomaOverall Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P=0.035N$ $P=0.185N$ $P=0.066N$ Incidental Tumor Tests (d) $P=0.017N$ $P=0.118N$ $P=0.027N$ Cochran-Armitage Trend Test (d) $P=0.014N$ $P=0.020N$ $P=0.020N$	Week of First Observation	104	104	
Incidental Tumor Tests (d) $P = 0.141N$ $P = 0.670N$ $P = 0.178N$ Cochran-Armitage Trend Test (d) $P = 0.082N$ $P = 0.082N$ $P = 0.500N$ $P = 0.121N$ Fisher Exact Test (d) $P = 0.082N$ $P = 0.500N$ $P = 0.121N$ Integumentary System: Fibrosarcoma or Neurofibrosarcoma $Overall Rates (a)$ $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.035N$ $P = 0.185N$ $P = 0.066N$ Incidental Tumor Tests (d) $P = 0.017N$ $P = 0.118N$ $P = 0.027N$ Cochran-Armitage Trend Test (d) $P = 0.014N$ $P = 0.020N$ $P = 0.020N$	Life Table Tests (d)	P = 0.141N	P = 0.670N	P = 0.178N
Cochran-Armitage Trend Test (d) $P=0.082N$ Fisher Exact Test (d) $P=0.082N$ Integumentary System: Fibrosarcoma or NeurofibrosarcomaOverall Rates (a) $7/50 (14\%)$ Adjusted Rates (b) 18.0% Rates (c) $5/35 (14\%)$ Verial Rates (c) $5/35 (14\%)$ Week of First Observation 75 Life Table Tests (d) $P=0.035N$ Incidental Tumor Tests (d) $P=0.017N$ $P=0.014N$ $P=0.027N$ First for first (d) $P=0.014N$	Incidental Tumor Tests (d)	P = 0.141N	P = 0.670 N	P = 0.178N
Integumentary System: Fibrosarcoma or Neurofibrosarcoma Overall Rates (a) $7/50 (14\%)$ $2/50 (4\%)$ $1/50 (2\%)$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.035N$ $P = 0.185N$ $P = 0.066N$ Incidental Tumor Tests (d) $P = 0.017N$ $P = 0.118N$ $P = 0.027N$ Cochran-Armitage Trend Test (d) $P = 0.014N$ $P = 0.020N$ $P = 0.020N$	Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.082N	P-0 500N	P-0 191N
Integumentary System: Fibrosarcoma or Neurofibrosarcoma Overall Rates (a) 7/50 (14%) 2/50 (4%) 1/50 (2%) Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) 5/35 (14%) 2/24 (8%) 0/26 (0%) Week of First Observation 75 104 87 Life Table Tests (d) P=0.035N P=0.185N P=0.066N Incidental Tumor Tests (d) P=0.017N P=0.118N P=0.027N Cochran-Armitage Trend Test (d) P=0.014N P=0.020N D=0.020N	Fisher EAdul Lest (U)		r = 0.00014	r = 0,14111
Overall rates (a) $(30(14\%))$ $2/30(4\%)$ $(150(2\%))$ Adjusted Rates (b) 18.0% 8.3% 2.2% Terminal Rates (c) $5/35(14\%)$ $2/24(8\%)$ $0/26(0\%)$ Week of First Observation 75 104 87 Life Table Tests (d) $P = 0.035N$ $P = 0.185N$ $P = 0.066N$ Incidental Tumor Tests (d) $P = 0.017N$ $P = 0.118N$ $P = 0.027N$ Cochran-Armitage Trend Test (d) $P = 0.014N$ $P = 0.020N$ $P = 0.020N$	Integumentary System: Fibrosarcoma or Neu	rofibrosarcoma	2/50 (494)	1/50 (2%)
Terminal Rates (c) $5/35 (14\%)$ $2/24 (8\%)$ $0/26 (0\%)$ Week of First Observation75 104 87Life Table Tests (d) $P=0.035N$ $P=0.185N$ $P=0.066N$ Incidental Tumor Tests (d) $P=0.017N$ $P=0.118N$ $P=0.027N$ Cochran-Armitage Trend Test (d) $P=0.014N$ $P=0.020N$ $P=0.020N$	Adjusted Rates (b)	18 (19%)	8.3%	9 9 %
Verticities (d) $0.35(14\%)$ $2/24(5\%)$ $0.25(0\%)$ Week of First Observation7510487Life Table Tests (d) $P=0.035N$ $P=0.185N$ $P=0.066N$ Incidental Tumor Tests (d) $P=0.017N$ $P=0.118N$ $P=0.027N$ Cochran-Armitage Trend Test (d) $P=0.014N$ $P=0.020N$ $P=0.020N$	Tarminal Rates (0)	5/35 (1/4)	9/9/ (Q0L)	2.270 0/96 (0%)
Week of First Observation 75 104 67 Life Table Tests (d) $P = 0.035N$ $P = 0.185N$ $P = 0.066N$ Incidental Tumor Tests (d) $P = 0.017N$ $P = 0.118N$ $P = 0.027N$ Cochran-Armitage Trend Test (d) $P = 0.014N$ $P = 0.014N$	Wook of First Observation	0/00(1470) 75	2/24 (070) 104	97
Late Fable Fests (d) $F = 0.055 N$ $F = 0.056 N$ $F = 0.066 N$ Incidental Tumor Tests (d) $P = 0.017 N$ $P = 0.118 N$ $P = 0.027 N$ Cochran-Armitage Trend Test (d) $P = 0.014 N$ $P = 0.014 N$	ife Teble Tests (d)	10 D-0.02EN	D-0195N	D-0 066N
$\begin{array}{c} \text{Restriction result} (d) & P=0.01(N) & P=0.116N & P=0.02(N) \\ \text{Cochran-Armitage Trend Test} (d) & P=0.014N \\ \text{Fisher Funct Fact} (d) & P=0.020N & P=0.020N \\ \end{array}$	Lite rable resus (u) Incidental Tumor Tests (d)	$\mathbf{P} = 0.00000$	F = 0.100	P = 0.0001
Countrain farming the field test (d) $\Gamma = 0.014$ N $\Gamma = 0.000$ N $\Gamma = 0.000$ N	Cachean Armitage Trend Test (d)	r = 0.01 / IN D = 0.01 / IN	r U.1101N	r -0.02/1
	Countain-Armitage Frend fest (d)	r = 0.0141N		D-0.020M

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE

	Control	25,000 ppm	50,000 ppm
Subcutaneous Tissue: Fibroma or Fibrosarco)ma	<u> </u>	
Overall Rates (a)	7/50 (14%)	4/50 (8%)	4/50 (8%)
Adjusted Rates (b)	18.0%	12.5%	9.8%
Terminal Rates (c)	5/35 (14%)	2/24 (8%)	0/26 (0%)
Week of First Observation	75	77	86
Life Table Tests (d)	P = 0.310N	P = 0.440N	P = 0.378N
Incidental Tumor Tests (d)	P = 0.121 N	P = 0.205N	P = 0.123N
Cochran Armitage Trend Test (d)	P = 0.202N	1 - 0.20011	1 - 0.12010
Fisher Exact Test (d)	1 - 0.20210	P = 0.262N	P = 0.262N
Integumentary System: Neurofibroma or Neu	irofibrosarcoma		
Overall Rates (a)	5/50 (10%)	4/50 (8%)	1/50 (2%)
Adjusted Rates (b)	14.3%	15.2%	3.8%
Terminal Rates (c)	5/35 (14%)	3/24 (13%)	1/26 (4%)
Week of First Observation	104	98	104
Life Table Tests (d)	P = 0.165N	P = 0.561	P = 0.181 N
Incidental Tumor Tests (d)	P = 0.147N	P = 0.579	P = 0.181N
Cochran-Armitage Trend Test (d)	P = 0.080 N	-	
Fisher Exact Test (d)		P = 0.500 N	P = 0.102N
Integumentary System: Fibroma, Neurofibror	na, Fibrosarcoma, c	or Neurofibrosarcoma	L
Overall Rates (a)	12/50 (24%)	8/50 (16%)	5/50 (10%)
Adjusted Rates (b)	31.7%	26.7%	13.3%
Terminal Rates (c)	10/35 (29%)	5/24 (21%)	1/26 (4%)
Week of First Observation	75	77	86
Life Table Tests (d)	P = 0.124N	P = 0.509 N	P = 0.143 N
Incidental Tumor Tests (d)	P = 0.038N	P = 0.300N	P = 0.036N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.041N	P = 0.227 N	P = 0.054N
Lung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	1/50 (2%)	1/50 (2%)	3/49 (6%)
Adjusted Rates (b)	2.9%	4.2%	9.6%
Terminal Rates (c)	1/35 (3%)	1/24 (4%)	1/26 (4%)
Week of First Observation	104	104	93
Life Table Tests (d)	P = 0.148	P = 0.676	P = 0.227
Incidental Tumor Tests (d)	P = 0.186	P = 0.676	P = 0.298
Cochran-Armitage Trend Test (d)	P = 0.196	1 01010	
Fisher Exact Test (d)	1 - 0.100	P = 0.753	P=0.301
Hematopoietic System: Mononuclear Cell Leu	ıkemia		
Overall Rates (a)	30/50 (60%)	33/50 (66%)	35/50 (70%)
Adjusted Rates (b)	67.9%	81.9%	82.8%
Terminal Rates (c)	21/35 (60%)	17/24 (71%)	19/26 (73%)
Week of First Observation	81	72	76
Life Table Tests (d)	P = 0.028	P = 0.029	P = 0.031
Incidental Tumor Tests (d)	P = 0.215	P=0.292	P = 0.285
Cochran-Armitage Trend Test (d)	P = 0.172		
Fisher Exact Test (d)		P = 0.339	P = 0.201
Salivary Gland: Sarcoma or Fibrosarcoma			
Overall Rates (a)	1/49 (2%)	0/50(0%)	3/48 (6%)
Adjusted Rates (b)	2.9%	0.0%	10.5%
Terminal Rates (c)	1/35 (3%)	0/24 (0%)	2/26 (8%)
Week of First Observation	104		97
Life Table Tests (d)	P = 0.127	P = 0.575N	P = 0.214
Incidental Tumor Tests (d)	P = 0.148	P = 0.575N	P = 0.253
Cochran-Armitage Trend Test (d)	P = 0.170		D 0.001
Fisher Exact Test (d)		P = 0.495N	P = 0.301

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	Control	25,000 ppm	50,000 ррт
Liver: Neoplastic Nodule	<u></u>		<u></u>
Overall Rates (a)	1/50 (2%)	7/50 (14%)	15/49 (31%)
Adjusted Rates (b)	2.9%	27.1%	52.7%
Terminal Rates (c)	1/35 (3%)	6/24 (25%)	13/26 (50%)
Week of First Observation	104	89	87
Life Table Tests (d)	P<0.001	B=0.008	P~0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.000	P<0.001
Coobran Armitage Trend Test (d)	P < 0.001	F = 0.014	1 < 0.001
Fisher Exact Test (d)	r < 0.001	P=0.030	P<0.001
Liver: Neoplastic Nodule or Hepatocellu	lar Carcinoma		
Overall Rates (a)	2/50 (4%)	8/50 (16%)	15/49 (31%)
Adjusted Rates (b)	5.2%	31.1%	52.7%
Terminal Rates (c)	1/35 (3%)	7/24 (29%)	13/26 (50%)
Week of First Observation	97	89	87
Life Table Tests (d)	P<0.001	P = 0.012	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.072	P<0.001
Cochran Armitage Trend Test (d)	P<0.001	E - 0.022	1 20.001
Fisher Exact Test (d)	F < 0.001	P = 0.046	P<0.001
			* ~~~~
Pancreas: Acinar Cell Adenoma			
Overall Rates (a)	0/49 (0%)	0/50 (0%)	4/49 (8%)
Adjusted Rates (b)	0.0%	0.0%	13.7%
Terminal Rates (c)	0/35 (0%)	0/24 (0%)	2/25 (8%)
Week of First Observation		• • • •	97
Life Table Tests (d)	P = 0.010	(e)	P = 0.037
Incidental Tumor Tests (d)	P = 0.017	(e)	P = 0.067
Cochran-Armitage Trend Test (d)	P = 0.015		
Fisher Exact Test (d)	_ ,,,,,,	(e)	P = 0.059
Pituitary: Adenoma			
Overall Rates (a)	10/50 (20%)	10/50 (20%)	9/50 (18%)
Adjusted Rates (b)	25.0%	33.1%	28.4%
Terminal Rates (c)	6/35 (17%)	6/24 (25%)	5/26 (19%)
Week of First Observation	85	60	0/20 (1 <i>0 %)</i> 03
I ife Table Tests (d)	D-0419	07 D-0.215	70 D - 0.479
Lite 18Die 1ests (d)	P = 0.413	P=0.315	r=0.472
Incidental Tumor Tests (d)	P = 0.460 N	P=0.577	P = 0.490 N
Cochran-Armitage Trend Test (d)	P = 0.450N	w	
Fisher Exact Test (d)		P = 0.598	P = 0.500 N
Pituitary: Adenoma or Carcinoma			0/F0/40~
Overall Rates (a)	10/50 (20%)	11/50 (22%)	9/50 (18%)
Aujustea Rates (D)	20.0%	36.8%	28.4%
Terminal Kates (c)	6/35 (17%)	7/24 (29%)	5/26 (19%)
week of First Observation	85	69	93
Life Table Tests (d)	P = 0.405	P = 0.225	P = 0.472
Incidental Tumor Tests (d)	P = 0.471N	P = 0.457	P = 0.490 N
Cochran-Armitage Trend Test (d)	P = 0.450N		
Fisher Exact Test (d)		P = 0.500	P = 0.500 N
Adrenal Gland: Cortical Adenoma			
Overall Rates (a)	4/49 (8%)	1/50 (2%)	1/49 (2%)
Adjusted Rates (b)	10.7%	2.8%	4.0%
Terminal Rates (c)	3/35 (9%)	0/24(0%)	1/25 (4%)
Week of First Observation	96	89	104
Life Table Tests (d)	P = 0.172N	P = 0.289N	P = 0.287 N
Incidental Tumor Tests (d)	P = 0.103N	P = 0.154N	P = 0.236N
Cochran-Armitage Trend Test (d)	P=0.100N	3140711	
Fisher Exact Test (d)		P = 0.175N	P = 0.181 N
risher Lixact lest (a)		P=0.175N	P=0.181N

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	Control	25,000 ppm	50,000 ppm
Adrenal Gland: Pheochromocytoma			<u></u>
Overall Rates (a)	31/49 (63%)	18/50 (36%)	18/49 (37%)
Adjusted Rates (b)	79.4%	59.1%	53.4%
Terminal Rates (c)	27/35 (77%)	12/24 (50%)	11/25 (44%)
Week of First Observation	95	85	87
Life Table Tests (d)	P = 0.136N	P = 0.234N	P = 0.162N
Incidental Tumor Tests (d)	P = 0.017N	P = 0.075N	P = 0.018N
Cochran-Armitage Trend Test (d)	P = 0.006N		
Fisher Exact Test (d)		P = 0.006 N	P = 0.007 N
Adrenal Gland: Malignant Pheochromocytoma			
Overall Rates (a)	4/49 (8%)	1/50 (2%)	5/49 (10%)
Adjusted Rates (b)	11.4%	2.6%	16.2%
Terminal Rates (c)	4/35 (11%)	0/24(0%)	3/25 (12%)
Week of First Observation	104	87	87
Life Table Tests (d)	P = 0.296	P = 0.294N	P = 0.332
Incidental Tumor Tests (d)	P = 0.404	P = 0.186N	P = 0.444
Cochran-Armitage Trend Test (d)	P = 0.420		
Fisher Exact Test (d)		P = 0.175N	P = 0.500
Adrenal Gland: Pheochromocytoma or Maligna	ant Pheochromocy	ytoma	
Overall Rates (a)	32/49 (65%)	19/50 (38%)	23/49 (47%)
Adjusted Rates (b)	82.0%	60.1%	65.2%
Terminal Rates (c)	28/35 (80%)	12/24 (50%)	14/25 (56%)
Week of First Observation	95	85	87
Life Table Tests (d)	P = 0.418N	P = 0.254N	P = 0.487N
Incidental Tumor Tests (d)	P = 0.094N	P = 0.063N	P = 0.105 N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.043 N	P=0.006N	P = 0.051 N
Thyroid Gland: C.Cell Adenoma			
Overall Rates (a)	6/50 (19%)	5/49 (10%)	1/49 (9%)
Adjusted Bates (b)	16 7%	19.9%	38%
Terminal Rates (c)	5/35 (14%)	A/2A(1796)	1/26 (4%)
Week of First Observation	103	9/24 (11 %)	104
Life Table Tests (d)	D-0119N	P=0.510	D-0119N
Incidental Tumor Tests (d)	P = 0.095N	P = 0.510	P = 0.000 N
Cochran-Armitage Trend Test (d)	P = 0.053N	1 = 0.004	1 = 0.0331
Fisher Exact Test (d)	1 -0.00210	P = 0.514N	P=0.059N
Thyroid Gland; C-Cell Adenoma or Carcinoma			
Overall Rates (a)	8/50 (16%)	6/49 (12%)	3/49 (6%)
Adjusted Rates (b)	22.2%	23.2%	9.6%
Terminal Rates (c)	7/35 (20%)	5/24 (21%)	2/26 (8%)
Week of First Observation	103	98	76
Life Table Tests (d)	P = 0.188N	P = 0.561	P = 0.206 N
Incidental Tumor Tests (d)	P = 0.151N	P = 0.601	P = 0.166 N
Cochran-Armitage Trend Test (d)	P = 0.083N		
Fisher Exact Test (d)		P = 0.403 N	P=0.106N
Pancreatic Islets: Islet Cell Adenoma			
Overall Rates (a)	4/49 (8%)	1/50 (2%)	1/49 (2%)
Adjusted Rates (b)	11.4%	2.3%	4.0%
Terminal Rates (c)	4/35 (11%)	0/24 (0%)	1/25 (4%)
Week of First Observation	104	79	104
Life Table Tests (d)	P = 0.171N	P = 0.288N	P = 0.292N
Incidental Tumor Tests (d)	P = 0.129N	P = 0.186N	P = 0.292N
Cochran-Armitage Trend Test (d)	P = 0.100N		
Fisher Exact Test (d)		P = 0.175N	P = 0.181N

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE

	Control	25,000 ppm	50,000 ppm
Mammary Gland: Fibroadenoma			· · · ·
Overall Rates (a)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	12.5%	0.0%
Terminal Rates (c)	0/35 (0%)	3/24 (13%)	0/26 (0%)
Week of First Observation		104	
Life Table Tests (d)	P = 0.550	P=0.063	(e)
Incidental Tumor Tests (d)	P = 0.550	P=0.063	(e)
Cochran-Armitage Trend Test (d)	P = 0.640		
Fisher Exact Test (d)		P = 0.121	(e)
Mammary Gland: Fibroadenoma or Ade	nocarcinoma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	2.9%	12.5%	0.0%
Terminal Rates (c)	1/35 (3%)	3/24 (13%)	0/26 (0%)
Week of First Observation	104	104	
Life Table Tests (d)	P = 0.482N	P = 0.181	P = 0.559 N
Incidental Tumor Tests (d)	P = 0.482N	P = 0.181	P = 0.559 N
Cochran-Armitage Trend Test (d)	P = 0.378N		
Fisher Exact Test (d)		P=0.309	P = 0.500N
Preputial Gland: Carcinoma			
Overall Rates (a)	4/50 (8%)	4/50 (8%)	2/50 (4%)
Adjusted Rates (b)	11.4%	12.7%	7.7%
Terminal Rates (c)	4/35 (11%)	2/24 (8%)	2/26 (8%)
Week of First Observation	104	72	104
Life Table Tests (d)	P = 0.403N	P = 0.465	P = 0.480N
Incidental Tumor Tests (d)	P = 0.337 N	P = 0.646N	P = 0.480N
Cochran-Armitage Trend Test (d)	P = 0.274N		
Fisher Exact Test (d)		P = 0.643	P=0.339N
Preputial Gland: Adenoma or Carcinom	a		
Overall Rates (a)	4/50 (8%)	5/50 (10%)	4/50 (8%)
Adjusted Rates (b)	11.4%	16.7%	15.4%
Terminal Rates (c)	4/35 (11%)	3/24 (13%)	4/26 (15%)
Week of First Observation	104	72	104
Life Table Tests (d)	P = 0.405	P = 0.308	P=0.473
Incidental Tumor Tests (d)	P=0.459	P = 0.478	P = 0.473
Cochran-Armitage Trend Test (d)	P = 0.571		
Fisher Exact Test (d)		P = 0.500	P=0.643
Prostate: Adenoma			
Overall Rates (a)	3/47 (6%)	0/49 (0%)	3/49 (6%)
Adjusted Rates (b)	8.6%	0.0%	11.3%
Terminal Rates (c)	3/35 (9%)	0/24 (0%)	2/25 (8%)
Week of First Observation	104		103
Life Table Tests (d)	P = 0.463	P = 0.194N	P = 0.507
Incidental Tumor Tests (d)	P = 0.525	P = 0.194N	P = 0.585
Cochran-Armitage Trend Test (d)	P = 0.585N		
Fisher Exact Test (d)		P = 0.113N	P = 0.641 N
Testis: Interstitial Cell Tumor			
Overall Rates (a)	44/47 (94%)	47/50 (94%)	47/49 (96%)
Adjusted Rates (b)	97.7%	100.0%	97.9%
Terminal Rates (c)	34/35 (97%)	24/24 (100%)	24/25 (96%)
Week of First Observation	75	68	57
Life Table Tests (d)	P = 0.010	P = 0.003	P = 0.009
Incidental Tumor Tests (d)	P = 0.478	P = 0.473	P = 0.620
Cochran-Armitage Trend Test (d)	P = 0.392		
Fisher Exact Test (d)		P = 0.631	P = 0.480

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	Control	25,000 ppm	50,000 ppm
Musculoskeletal System: Osteosarcoma			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	7.3%	0.0%
Terminal Rates (c)	0/35 (0%)	0/24 (0%)	0/26 (0%)
Week of First Observation		71	
Life Table Tests (d)	P = 0.617	P = 0.108	(e)
Incidental Tumor Tests (d)	P = 0.503N	P = 0.301	(e)
Cochran-Armitage Trend Test (d)	P = 0.640		
Fisher Exact Test (d)	- 0.000	P = 0.121	(e)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the dosed and control groups.

	Control	25,000 ppm	50,000 ppm
Subcutaneous Tissue: Sarcoma or Fibro	sarcoma	<u></u>	
Overall Rates (a)	3/50 (6%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	6.9%	2.0%	2.9%
Terminal Rates (c)	2/40(5%)	0/33 (0%)	1/34 (3%)
Week of First Observation	81	66	104
Life Table Tests (d)	P = 0.239N	P = 0.350N	P = 0.359N
Incidental Tumor Tests (d)	P = 0.159N	P = 0.237N	P = 0.388N
Coobran, Armitago Trond Tost (d)	P = 0.100 M	F = 0.23711	1 -0.30014
Fisher Exact Test (d)	r = 0.2021	P = 0.309N	P = 0.309N
Hematopoietic System; Mononuclear Cel	l Leukemia		
Overall Rates (a)	14/50 (28%)	21/50 (42%)	18/50 (36%)
Adjusted Rates (b)	30.6%	53.5%	42.8%
Terminal Rates (c)	9/40 (23%)	15/33 (45%)	11/34 (32%)
Week of First Observation	74	95	75
Life Table Tests (d)	P = 0.124	P = 0.043	P = 0.157
Incidental Tumor Tests (d)	P = 0.295	P = 0.102	P = 0.362
Cochran-Armitage Trend Test (d)	P = 0.232		
Fisher Exact Test (d)		P = 0.104	P=0.260
Liver: Neoplastic Nodule			
Overall Rates (a)	1/50 (2%)	3/49 (6%)	9/50 (18%)
Adjusted Rates (b)	2.5%	9.1%	24.4%
Terminal Rates (c)	1/40 (3%)	3/33 (9%)	'7/34 (21%)
Week of First Observation	104	104	87
Life Table Tests (d)	P = 0.002	P = 0.239	P=0.005
Incidental Tumor Tests (d)	P = 0.002	P = 0.239	P = 0.006
Cochran-Armitage Trend Test (d)	P = 0.004		
Fisher Exact Test (d)		P=0.301	P=0.008
Liver: Neoplastic Nodule or Hepatocellu	lar Carcinoma		
Overall Rates (a)	1/50 (2%)	5/49 (10%)	9/50 (18%)
Adjusted Rates (b)	2.5%	15.2%	24.4%
Terminal Rates (c)	1/40 (3%)	5/33 (15%)	7/34 (21%)
Week of First Observation	104	104	87
Life Table Tests (d)	P = 0.003	P = 0.064	P = 0.005
Incidental Tumor Tests (d)	P = 0.003	P = 0.064	P = 0.006
Cochran-Armitage Trend Test (d)	P = 0.006		
Fisher Exact Test (d)		P=0.098	P=0.008
Pituitary Gland: Adenoma			
Overall Rates (a)	24/50 (48%)	22/50 (44%)	24/50 (48%)
Adjusted Rates (b)	58.4%	55.6%	64.6%
Terminal Rates (c)	23/40 (58%)	16/33 (48%)	21/34 (62%)
Week of First Observation	97	86	76
Life Table Tests (d)	P = 0.259	P = 0.418	P = 0.274
Incidental Tumor Tests (d)	P = 0.344	P = 0.567	P=0.388
Cochran-Armitage Trend Test (d)	P = 0.540		
Fisher Exact Test (d)		P = 0.421 N	P = 0.579
Pituitary Gland: Adenoma or Carcinoma			
Overall Rates (a)	25/50 (50%)	24/50 (48%)	25/50 (50%)
Adjusted Rates (b)	59.3%	59.4%	65.3%
Terminal Rates (c)	23/40 (58%)	17/33 (52%)	21/34 (62%)
Week of First Observation	84	86	76
Life Table Tests (d)	P = 0.257	P = 0.335	P = 0.278
Incidental Tumor Tests (d)	P = 0.383	P = 0.513	P = 0.430
Cochran-Armitage Trend Test (d)	P = 0.540		
Fisher Exact Test (d)		P = 0.500 N	P = 0.579

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE

	Control	25,000 ppm	50,000 ppm
Adrenal Gland: Cortical Adenoma	·····		
Overall Rates (a)	4/50 (8%)	0/48 (0%)	2/50 (4%)
Adjusted Rates (b)	10.0%	0.0%	5.9%
Terminal Rates (c)	4/40 (10%)	0/33 (0%)	2/34 (6%)
Week of First Observation	104		104
Life Table Tests (d)	P = 0.279N	P = 0.090 N	P = 0.414N
Incidental Tumor Tests (d)	P = 0.279N	P = 0.090 N	P = 0.414N
Cochran-Armitage Trend Test (d)	P = 0.223N		
Fisher Exact Test (d)		P = 0.064N	P=0.339N
Adrenal Gland: Pheochromocytoma			
Overall Rates (a)	3/50 (6%)	4/48 (8%)	2/50 (4%)
Adjusted Rates (b)	6.9%	11.2%	5.4%
Terminal Rates (c)	2/40 (5%)	3/33 (9%)	1/34 (3%)
Week of First Observation	74	91	96
Life Table Tests (d)	P = 0.487N	P = 0.417	P = 0.558N
Incidental Tumor Tests (d)	P = 0.387 N	P=0.499	P = 0.383N
Cochran-Armitage Trend Test (d)	P = 0.417N		
Fisher Exact Test (d)		P = 0.477	P = 0.500 N
Adrenal Gland: Pheochromocytoma or Mal	ignant Pheochromoc	ytoma	
Overall Rates (a)	4/50 (8%)	4/48 (8%)	2/50 (4%)
Adjusted Rates (b)	9.3%	11.2%	5.4%
Terminal Rates (c)	3/40 (7%)	3/33 (9%)	1/34 (3%)
Week of First Observation	74	91	96
Life Table Tests (d)	P = 0.345N	P = 0.552	P = 0.402N
Incidental Tumor Tests (d)	P = 0.257N	P = 0.630	P = 0.252N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.275N	P-0.619	P-0 339N
risher Bract Test (u)		r = 0.015	r = 0.33311
Thyroid Gland: C-Cell Adenoma			
Overall Rates (a)	9/50 (18%)	6/49 (12%)	5/50 (10%)
Adjusted Rates (b)	22.5%	18.2%	13.6%
Terminal Rates (c)	9/40 (23%)	6/33 (18%)	3/34 (9%)
Week of First Observation	104	104	98
Life Table Tests (d)	P = 0.242N	P = 0.436N	P = 0.294N
Incidental Tumor Tests (d)	P = 0.210N	P = 0.436N	P = 0.241 N
Cochran-Armitage Trend Test (d)	P = 0.152N		
Fisher Exact Test (d)		P = 0.303N	P = 0.194N
Thyroid Gland: C-Cell Carcinoma			
Overall Rates (a)	2/50 (4%)	4/49 (8%)	3/50 (6%)
Adjusted Rates (b)	5.0%	11.8%	8.8%
Terminal Rates (c)	2/40 (5%)	3/33 (9%)	3/34 (9%)
Week of First Observation	104	103	104
Life Table Tests (d)	P = 0.337	P = 0.254	P = 0.426
Incidental Tumor Tests (d)	P = 0.367	P = 0.287	P = 0.426
Cochran-Armitage Trend Test (d)	P = 0.417		
Fisher Exact Test (d)		P = 0.329	P = 0.500
Thyroid Gland: C-Cell Adenoma or Carcino	ma		
Overall Rates (a)	11/50 (22%)	10/49 (20%)	8/50 (16%)
Adjusted Rates (b)	27.5%	29.4%	22.0%
Terminal Rates (c)	11/40 (28%)	9/33 (27%)	6/34 (18%)
week of First Observation	104	103	98
Life Table Tests (d)	P = 0.412N	P=0.499	F≈0.450N
Incidental Tumor Tests (d)	P = 0.358N	P = 0.523	P = 0.396N
Cochran-Armitage Trend Test (d)	P = 0.264N	-	D 0 00055
Fisher Exact Test (d)		P = 0.521N	P = 0.306 N

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

Decabromodiphenyl Oxide, NTP TR 309

	Control	25,000 ppm	50,000 ppm
Mammary Gland: Fibroadenoma	·····	······	
Overall Rates (a)	24/50 (48%)	18/50 (36%)	21/50 (42%)
Adjusted Rates (b)	54.2%	46.2%	53.4%
Terminal Rates (c)	20/40 (50%)	13/33 (39%)	16/34 (47%)
Week of First Observation	74	86	86
Life Table Tests (d)	P = 0.521	P = 0.387N	P = 0.546
Incidental Tumor Tests (d)	P = 0.439N	P = 0.210N	P = 0.456N
Cochran-Armitage Trend Test (d)	P = 0.306N		
Fisher Exact Test (d)		P = 0.156N	P = 0.344N
Mammary Gland: Adenoma or Fibroader	noma		
Overall Rates (a)	24/50 (48%)	18/50 (36%)	23/50 (46%)
Adjusted Rates (b)	54.2%	46.2%	57.2%
Terminal Rates (c)	20/40 (50%)	13/33 (39%)	17/34 (50%)
Week of First Observation	74	86	86
Life Table Tests (d)	P = 0.366	P = 0.387 N	P = 0.385
Incidental Tumor Tests (d)	P = 0.485	P = 0.210N	P = 0.554
Cochran-Armitage Trend Test (d)	P = 0.460N		
Fisher Exact Test (d)		P = 0.156N	P = 0.500 N
Mammary Gland: Adenoma, Fibroadenor	na, Adenocarcinoma, or	Papillary Cystadeno	carcinoma
Overall Rates (a)	25/50 (50%)	18/50 (36%)	24/50 (48%)
Adjusted Rates (b)	56.5%	46.2%	59.8%
Terminal Rates (c)	21/40 (53%)	13/33 (39%)	18/34 (53%)
Week of First Observation	74	86	86
Life Table Tests (d)	P = 0.358	P = 0.323N	P = 0.374
Incidental Tumor Tests (d)	P = 0.476	P = 0.161 N	P = 0.541
Cochran-Armitage Trend Test (d)	P = 0.460 N	1 0.1011	1 0.011
Fisher Exact Test (d)	1 - 0.40011	P = 0.113N	P = 0.500 N
Clitoral Gland: Carcinoma			
Overall Rates (a)	4/50 (8%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	10.0%	7 2%	8 8%
Terminal Rates (c)	4/40 (10%)	1/33 (396)	3/34 (9%)
Week of First Observation	104	49	104
Life Table Tests (d)	P = 0.497 N	P = 0.580N	P = 0.589N
Incidental Tumor Tests (d)	P = 0.471 N	P = 0.381 N	P = 0.589N
Cochran-Armitage Trend Test (d)	P = 0.421 N	1 - 0.00111	1 0100011
Fisher Exact Test (d)	1 - 0.14111	P = 0.500 N	P = 0.500N
Clitoral Gland: Adenoma or Carcinoma			
Overall Rates (a)	4/50 (8%)	4/50 (8%)	4/50 (8%)
Adjusted Rates (b)	10.0%	10.1%	11.8%
Terminal Rates (c)	4/40 (10%)	2/33 (6%)	4/34 (12%)
Week of First Observation	104	49	104
Life Table Tests (d)	P = 0.487	P = 0.555	P = 0.552
Incidental Tumor Tests (d)	P = 0.510	P = 0.559N	P = 0.552
Cochran-Armitage Trend Test (d)	P = 0.573		
Fisher Exact Test (d)		P = 0.643	P = 0.643
Uterus: Endometrial Stromal Polyp			
Overall Rates (a)	9/49 (18%)	10/49 (20%)	11/50 (22%)
Adjusted Rates (b)	22.5%	26.7%	28.6%
Terminal Rates (c)	9/40 (23%)	7/33 (21%)	8/34 (24%)
Week of First Observation	104	86	79
Life Table Tests (d)	P=0.233	P=0.338	P = 0.269
Incidental Tumor Tests (d)	P = 0.333	P = 0.409	P = 0.422
Cochran-Armitage Trend Test (d)	P = 0.373	1 - 0.402	1 - 0.742
Fisher Exact Test (d)	0.010	P = 0.500	P = 0.421

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	Control	25,000 ppm	50,000 ppm
Jterus: Endometrial Stromal Polyp or S	arcoma		
Overall Rates (a)	10/49 (20%)	10/49 (20%)	12/50 (24%)
Adjusted Rates (b)	24.3%	26.7%	30.4%
Terminal Rates (c)	9/40 (23%)	7/33 (21%)	8/34 (24%)
Week of First Observation	99	86	72
Life Table Tests (d)	P = 0.234	P = 0.432	P = 0.269
Incidental Tumor Tests (d)	P=0.369	P = 0.532	P = 0.481
Cochran-Armitage Trend Test (d)	P = 0.377		
Fisher Exact Test (d)		P = 0.599N	P = 0.426
ymbal Gland: Carcinoma			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	7.4%	0.0%
Terminal Rates (c)	0/40 (0%)	1/33 (3%)	0/34 (0%)
Week of First Observation		72	
Life Table Tests (d)	P = 0.609	P = 0.104	(e)
Incidental Tumor Tests (d)	P = 0.480N	P = 0.177	(e)
Cochran-Armitage Trend Test (d)	P = 0.640		
Fisher Exact Test (d)	_ 510-10	P = 0.121	(e)

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 50,000-ppm and control groups.

	Control	25,000 ppm	50,000 ppm
Subcutaneous Tissue: Fibroma			······································
Overall Rates (a)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	12.0%	0.0%
Terminal Rates (c)	0/19(0%)	3/25 (12%)	0/24(0%)
Week of First Observation	0/10(0/0)	103	() = 2 (() /0)
Life Table Tests (d)	P = 0.582N	P = 0.171	(e)
Incidental Tumor Tests (d)	P = 0.582N	P = 0.171	(e)
Cochran-Armitage Trend Test (d)	P = 0.640	1 = 0.1 / 1	(0)
Fisher Exact Test (d)	x = 0.0 x 0	P = 0.121	(e)
Subcutaneous Tissue: Fibrosarcoma			
Overall Rates (a)	6/50 (12%)	8/50 (16%)	10/50 (20%)
Adjusted Rates (b)	27.6%	23.8%	28.2%
Terminal Rates (c)	4/19 (21%)	2/25 (8%)	3/24 (13%)
Week of First Observation	82	72	60
Life Table Tests (d)	P = 0.378	P = 0.561 N	P = 0.442
Incidental Tumor Tests (d)	P = 0.420	P = 0.593N	P = 0.462
Cochran-Armitage Trend Test (d)	P = 0.170		
Fisher Exact Test (d)		P = 0.387	P = 0.207
Integumentary System: Fibrosarcoma			
Overall Rates (a)	7/50 (14%)	8/50 (16%)	1.0/50 (20%)
Adjusted Rates (b)	32.5%	23.8%	28.2%
Terminal Rates (c)	5/19 (26%)	2/25 (8%)	3/24 (13%)
Week of First Observation	82	72	60
Life Table Tests (d)	P = 0.490	P = 0.437N	P = 0.557
Incidental Tumor Tests (d)	P = 0.542	P = 0.459N	P = 0.585
Cochran-Armitage Trend Test (d)	P = 0.251		
Fisher Exact Test (d)		P = 0.500	P=0.298
Integumentary System: Sarcoma or Fibro	osarcoma		
Overall Rates (a)	7/50 (14%)	9/50 (18%)	10/50 (20%)
Adjusted Rates (b)	32.5%	27.1%	28.2%
Terminal Rates (c)	5/19 (26%)	3/25 (12%)	3/24 (13%)
Week of First Observation	82	72	60
Life Table Tests (d)	P=0.498	P = 0.530N	P=0.557
Incidental Tumor Tests (d)	P = 0.549	P = 0.557 N	P = 0.585
Cochran-Armitage Trend Test (d)	P = 0.254		
Fisher Exact Test (d)		P = 0.393	P = 0.298
Integumentary System: Fibroma, Sarcom	a, or Fibrosarcoma	10///0.1010	10/50 (00 %)
Overall Rates (a)	7/50 (14%)	12/50 (24%)	10/50 (20%)
Adjusted Rates (b)	32.5%	37.1%	28.2%
Terminal Rates (c)	5/19 (26%)	6/25 (24%)	3/24 (13%)
Week of First Observation	82	72	60
Life Table Tests (d)	P = 0.520	P = 0.414	P = 0.557
Incidental Tumor Tests (d)	P = 0.535 N	P = 0.385	P = 0.585
Cochran-Armitage Trend Test (d)	P = 0.263		
Fisher Exact Test (d)		P=0.154	P=0.298
Integumentary System: Fibroma or Fibro	sarcoma	11/00/0000	10/50 (00%)
Overall Rates (a)	7/50(14%)	11/50(22%)	10/50 (20%)
Aujusted Rates (D) Terminal Bates (a)	52.0% E(10.0000)	33.8% E/05 (00 %)	20.2%
Veek of First Observation	0/19 (20%) 99	0/20 (20%) 79	3/24 (13%) 80
Life Table Tests (d)	04 D = 0 513	12 R = 0.400	00 D-0557
Incidental Tumor Tests (d)	P = 0.513	F - 0.433 D - 0 475	P = 0.007
Coobran_Armitage Trend Test (d)	P = 0.9441	r - 0.4(0	r - 0.000
Fisher Event Test (d)	r -0.201	P-0.919	D-0.908
risher Exact rest(u)		r=0.218	r = 0.230

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDYOF DECABROMODIPHENYL OXIDE

	Control	25,000 ppm	50,000 ppm
Lung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	4/50 (8%)	1/50 (2%)	4/50 (8%)
Adjusted Rates (b)	21.1%	4.0%	13.5%
Terminal Rates (c)	4/19 (21%)	1/25 (4%)	2/24 (8%)
Week of First Observation	103	103	35
Life Table Tests (d)	P = 0.466N	P = 0.102N	P = 0.503N
Incidental Tumor Tests (d)	P = 0.536N	P = 0.102N	P = 0.583N
Cochran-Armitage Trend Test (d)	P = 0.583		
Fisher Exact Test (d)		P = 0.181 N	P = 0.643
Lung: Alveolar/Bronchiolar Carcinoma			
Overall Rates (a)	2/50 (4%)	4/50 (8%)	1/50 (2%)
Adjusted Rates (b)	10.5%	16.0%	4.2%
Terminal Rates (c)	2/19 (11%)	4/25 (16%)	1/24 (4%)
Week of First Observation	103	103	103
Life Table Tests (d)	P = 0.306N	P = 0.468	P = 0.418N
Incidental Tumor Tests (d)	P = 0.306N	P = 0.468	P = 0.418N
Cochran-Armitage Trend Test (d)	P = 0.406N		
Fisher Exact Test (d)		P = 0.339	P = 0.500 N
Lung: Alveolar/Bronchiolar Adenoma or	Carcinoma		
Overall Rates (a)	5/50 (10%)	4/50 (8%)	5/50 (10%)
Adjusted Rates (b)	26.3%	16.0%	17.4%
Terminal Rates (c)	5/19 (26%)	4/25 (16%)	3/24 (13%)
Week of First Observation	103	103	35
Life Table Tests (d)	P = 0.419N	P = 0.324N	P = 0.471N
Incidental Tumor Tests (d)	P = 0.477N	P = 0.324N	P = 0.544N
Cochran-Armitage Trend Test (d)	P = 0.568		
Fisher Exact Test (d)		P = 0.500N	P = 0.630
Hematopoietic System: Malignant Lymph	ioma. Mixed Type		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	5.3%	12.0%	4.2%
Terminal Rates (c)	1/19 (5%)	3/25(12%)	1/24 (4%)
Week of First Observation	104	103	103
Life Table Tests (d)	P = 0.531N	P = 0.406	P = 0.710N
Incidental Tumor Tests (d)	P = 0.531 N	P = 0.406	P = 0.710N
Cochran-Armitage Trend Test (d)	P = 0.610		
Fisher Exact Test (d)		P = 0.309	P = 0.753N
Hematopoietic System: Lymphoma, All N	falignant		
Overall Rates (a)	2/50 (4%)	7/50 (14%)	4/50 (8%)
Adjusted Rates (b)	10.5%	24.5%	16.7%
Terminal Rates (c)	2/19(11%)	5/25 (20%)	4/24 (17%)
Week of First Observation	104	82	103
Life Table Tests (d)	P = 0.431	P = 0.174	P = 0.447
Incidental Tumor Tests (d)	P = 0.427	P = 0.203	P = 0.447
Cochran-Armitage Trend Test (d)	P = 0.297		
Fisher Exact Test (d)		P = 0.080	P=0.339
Hematopoietic System: Lymphoma or Le	ukemia		
Overall Rates (a)	2/50 (4%)	7/50 (14%)	6/50 (12%)
Adjusted Rates (b)	10.5%	24.5%	23.5%
Terminal Rates (c)	2/19 (11%)	5/25 (20%)	5/24 (21%)
Week of First Observation	104	82	. 92
Life Table Tests (d)	P = 0.210	P = 0.174	P = 0.219
Incidental Tumor Tests (d)	P = 0.203	P = 0.203	P = 0.224
Cochran-Armitage Trend Test (d)	P = 0.122		

139

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	Control	25,000 ppm	50 ,000 ppm
Circulatory System: Hemangioma			· · · · · · · · · · · · · · · · · · ·
Overall Rates (a)	0/50 (0%)	4/50 (8%)	0/50 (0%)
Adjusted Rates (b)	0.0%	15.4%	0.0%
Terminal Rates (c)	0/19 (0%)	3/25 (12%)	0/24 (0%)
Week of First Observation		100	
Life Table Tests (d)	P = 0.546N	P = 0.105	(e)
Incidental Tumor Tests (d)	P = 0.529N	P = 0.104	(e)
Cochran-Armitage Trend Test (d)	P = 0.622		
Fisher Exact Test (d)		P=0.059	(e)
Circulatory System: Hemangioma or Hema	angiosarcoma		
Overall Rates (a)	2/50 (4%)	6/50 (12%)	2/50 (4%)
Adjusted Rates (b)	9.6%	21.8%	6.7%
Terminal Rates (c)	1/19 (5%)	4/25 (16%)	1/24 (4%)
Week of First Observation	94	92	72
Life Table Tests (d)	P = 0.445N	P = 0.247	F = 0.589N
Incidental Tumor Tests (d)	P = 0.414N	P = 0.266	F' = 0.564N
Cochran-Armitage Trend Test (d)	P = 0.579		
Fisher Exact Test (d)		P = 0.134	F = 0.691 N
Liver: Hepatocellular Adenoma			
Overall Rates (a)	4/50 (8%)	12/50 (24%)	12/50 (24%)
Adjusted Rates (b)	19.0%	46.2%	39.0%
Terminal Rates (c)	3/19 (16%)	11/25 (44%)	7/24 (29%)
Week of First Observation	81	100	60
Life Table Tests (d)	P = 0.078	P = 0.081	P = 0.095
Incidental Tumor Tests (d)	P = 0.084	P = 0.088	P = 0.099
Cochran-Armitage Trend Test (d)	P = 0.027		
Fisher Exact Test (d)		P = 0.027	P = 0.027
Liver: Hepatocellular Carcinoma			
Overall Rates (a)	5/50 (10%)	14/50 (28%)	8/50 (16%)
Adjusted Rates (b)	20.7%	42.9%	26.8%
Terminal Rates (c)	1/19 (5%)	8/25 (32%)	4/24 (17%)
Week of First Observation	81	72	76
Life Table Tests (d)	P=0.494	P = 0.118	P = 0.486
Incidental Tumor Tests (d)	P = 0.523	P = 0.139	P = 0.542
Cochran-Armitage Trend Test (d)	P = 0.258		
Fisher Exact Test (d)		P = 0.020	P=0.277
Liver: Hepatocellular Adenoma or Carcino	oma		
Overall Rates (a)	8/50 (16%)	22/50 (44%)	18/50 (36%)
Adjusted Rates (b)	33.9%	67.7%	56.5%
Terminal Rates (c)	4/19 (21%)	15/25 (60%)	11/24 (46%)
Week of First Observation	81	72	60
Life Table Tests (d)	P = 0.124	P = 0.036	P = 0.115
Incidental Tumor Tests (d)	P = 0.116	P=0.036	P = 0.116
Fisher Exact Test (d)	P = 0.021	P = 0.002	P=0.019
Inyrold Gland: Follicular Cell Adenoma	0.00	0.000	0.00
Overall Rates (a)	0/50 (0%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	0.0%	10.8%	12.5%
Terminal Rates (c)	0/19(0%)	2/25 (8%)	3/24(13%)
Week of First Observation	5	90	103
Life Table Tests (d)	P = 0.142	P = 0.184	P = 0.163
Incidental Tumor Tests (d)	P = 0.138	P = 0.210	P=0.163
Cochran-Armitage frend Test (d)	P=0.101	B-0.191	D-0191
FISHER EXACT LEST (Q)		r=0.121	P = 0.121

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	Control	25,000 ppm	50,000 ppm
Thyroid: Follicular Cell Adenoma or Carcin	noma		
Overall Rates (a)	0/50 (0%)	4/50 (8%)	3/50 (6%)
Adjusted Rates (b)	0.0%	14.7%	12.5%
Terminal Rates (c)	0/19(0%)	3/25 (12%)	3/24 (13%)
Week of First Observation		90	103
Life Table Tests (d)	P = 0.168	P = 0.109	P = 0.163
Incidental Tumor Tests (d)	P = 0.164	P = 0.124	P = 0.163
Cochran-Armitage Trend Test (d)	P = 0.118		
Fisher Exact Test (d)		P=0.059	P = 0.121
Adrenal Gland: Adenoma or Cortical Aden	oma		
Overall Rates (a)	1/49 (2%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	5.3%	8.0%	11.6%
Terminal Rates (c)	1/19 (5%)	2/25 (8%)	2/24 (8%)
Week of First Observation	103	103	96
Life Table Tests (d)	P = 0.294	P=0.596	P = 0.402
Incidental Tumor Tests (d)	P = 0.305	P=0.596	P = 0.418
Cochran-Armitage Trend Test (d)	P = 0.228		
Fisher Exact Test (d)		P=0.508	P=0.316
Harderian Gland: Papillary Adenocarcinon	18		
Overall Rates (a)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	9.8%	0.0%
Terminal Rates (c)	0/19 (0%)	1/25 (4%)	0/24 (0%)
Week of First Observation		90	
Life Table Tests (d)	P = 0.558N	P=0.194	(e)
Incidental Tumor Tests (d)	P = 0.568N	P = 0.246	(e)
Cochran-Armitage Trend Test (d)	P=0.640		
Fisher Exact Test (d)		P = 0.121	(e)
Harderian Gland: Adenocarcinoma or Papi	llary Adenocarcinoma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	5.3%	9.8%	0.0%
Terminal Rates (c)	1/19 (5%)	1/25 (4%)	0/24 (0%)
Week of First Observation	103	90	
Life Table Tests (d)	P = 0.287 N	P≈0.433	P = 0.453N
Incidental Tumor Tests (d)	P = 0.282N	P = 0.509	P = 0.453N
Cochran-Armitage Trend Test (d)	P = 0.378N		
Fisher Exact Test (d)		P = 0.309	P = 0.500N

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 50,000-ppm and control groups.

	Control	25,000 ppm	50,000 ppm
Subcutaneous Tissue: Fibrosarcoma or	Neurofibrosarcoma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	3.7%	7.4%	3.1%
Terminal Rates (c)	1/27 (4%)	0/31 (0%)	1/32 (3%)
Week of First Observation	103	90	103
Life Table Tests (d)	P = 0.563N	P=0.348	P = 0.724N
Incidental Tumor Tests (d)	P = 0.564N	P = 0.336	P = 0.724N
Cochran-Armitage Trend Test (d)	P = 0.610		
Fisher Exact Test (d)		P = 0.309	P = 0.753
Lung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	4/50 (8%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	13.7%	6.5%	6.3%
Terminal Rates (c)	3/27 (11%)	2/31 (6%)	2/32 (6%)
Week of First Observation	95	103	103
Life Table Tests (d)	P = 0.192N	P = 0.283N	P = 0.265 N
Incidental Tumor Tests (d)	P = 0.209N	P = 0.311N	P = 0.290N
Cochran-Armitage Trend Test (d)	P = 0.252N		
Fisher Exact Test (d)		P = 0.339N	P = 0.339N
Lung: Alveolar/Bronchiolar Adenoma or	Carcinoma		
Overall Rates (a)	6/50 (12%)	4/50 (8%)	4/50 (8%)
Adjusted Rates (b)	19.7%	12.9%	11.3%
Terminal Rates (c)	4/27 (15%)	4/31 (13%)	3/32 (9%)
Week of First Observation	95	103	87
Life Table Tests (d)	P = 0.218N	P = 0.299N	P = 0.276N
Incidental Tumor Tests (d)	P = 0.240N	P = 0.343N	P = 0.308N
Cochran-Armitage Trend Test (d)	P = 0.303N		
Fisher Exact Test (d)		P = 0.370N	P = 0.370N
Hematopoietic System: Malignant Lymph	oma. Undifferentiated 3	lvpe	
Overall Rates (a)	4/50 (8%)	2/50 (4%)	0/50 (0%)
Adjusted Rates (b)	11.2%	4 7%	0.0%
Terminal Rates (c)	1/27(4%)	0/31 (0%)	0/32(0%)
Week of First Observation	84	86	0.02(0,0)
Life Table Tests (d)	P = 0.031 N	P = 0.311N	P = 0.052N
Incidental Tumor Tests (d)	P = 0.029N	P = 0.310N	P = 0.062N
Cochran-Armitage Trend Test (d)	P = 0.037N		
Fisher Exact Test (d)		P = 0.339N	P = 0.059N
Homotopointia System, Molignant Lumph	oma Iumphaautia Tura		
Averall Rotes (a)	5/50 (1004)	5 1/50 (99L)	1/50 (2%)
Adjusted Potes (h)	15 90	4/30(8%)	1/30 (270)
Terminal Potes (b)	10,070	10.2%	J.170 1/00 (201)
Week of First Observation	2/27 (1%)	1/31 (3%)	1/32 (3%)
Life Table Terra (d)	91 D0.000M	00 D 0 440N	
Life Table Tests (d)	P = 0.000 N	P = 0.440 N	P = 0.078 N
Cashran Armitage Trand Test (d)	P=0.101N	P = 0.552 N	P = 0.092 N
Fisher Exact Test (d)	P=0.080M	P = 0.500N	P = 0.103N
Homotopointia Sustan, Malimont Tomot	omo Victioanti- Tra-		
Overall Potes (a)	9/50 (Age)	9/50 (49)	5/50 (100)
Adjusted Deter (b)	2/00 (4170) 17 A 04	2/00 (4%) A 9/2	0/00 (10%) 19 7 <i>0</i>
Aujusieu Aales (b) Terminal Bates (c)	(.4470	4.0%	12.1%
Herminal Rates (C)	2/27 (7%)	0/31 (0%)	2/32 (6%)
week of First Observation	104	55	87
Life Table Tests (d)	P = 0.200	P = 0.649N	P = 0.291
Incidental Tumor Tests (d)	P=0.121	P = 0.626	P = 0.281
Cocnran-Armitage Trend Test (d)	P = 0.146	D	D 0.010
risner Exact Test (d)		P = 0.691 N	P = 0.218

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE
	Control	25,000 ppm	50,000 ppm
Hematopoietic System: Malignant Lymp	homa. Mixed Type		<u></u>
Overall Rates (a)	6/50 (12%)	5/50(10%)	11/50 (22%)
Adjusted Rates (b)	20.8%	14.8%	33.1%
Terminal Rates (c)	5/27 (19%)	4/31 (13%)	10/32 (31%)
Week of First Observation	95	80	99
Life Table Tests (d)	P = 0.170	P = 0.415N	P = 0.243
Incidental Tumor Tests (d)	P = 0.154	P = 0.425N	P = 0.208
Cochran-Armitage Trend Test (d)	P = 0.102		
Fisher Exact Test (d)	1 -0,100	P = 0.500 N	P = 0.143
Hematopoietic System: Lymphoma, All 1	Malignant		
Overall Rates (a)	17/50 (34%)	14/50 (28%)	17/50 (34%)
Adjusted Rates (b)	48.5%	32.6%	46.2%
Terminal Rates (c)	10/27 (37%)	5/31 (16%)	13/32 (41%)
Week of First Observation	84	65	87
Life Table Tests (d)	P = 0.356N	P = 0.245N	P = 0.366N
Incidental Tumor Tests (d)	P = 0.487 N	P = 0.320N	P = 0.437N
Cochran-Armitage Trend Test (d)	P = 0.543		
Fisher Exact Test (d)		P = 0.333N	P = 0.584N
Hematopoietic System: Lymphoma or Le	eukemia		
Overall Rates (a)	17/50 (34%)	15/50 (30%)	17/50 (34%)
Adjusted Rates (b)	48.5%	34.6%	46.2%
Terminal Rates (c)	10/27 (37%)	5/31 (16%)	13/32 (41%)
Week of First Observation	84	65	87
Life Table Tests (d)	P = 0.353N	P = 0.306N	P = 0.366N
Incidental Tumor Tests (d)	P = 0.494N	P = 0.417N	P = 0.437 N
Cochran-Armitage Trend Test (d)	P = 0.542		
Fisher Exact Test (d)	1 0.012	P = 0.415N	P = 0.584N
Liver: Hepatocellular Adenoma			
Overall Rates (a)	5/50 (10%)	10/50 (20%)	7/50 (14%)
Adjusted Rates (b)	16.8%	31.2%	21.9%
Terminal Rates (c)	4/27 (15%)	9/31 (29%)	7/32 (22%)
Week of First Observation	83	102	103
Life Table Tests (d)	P = 0.466	P = 0.196	P=0.497
Incidental Tumor Tests (d)	P = 0.456	P = 0.184	P=0.509
Cochran-Armitage Trend Test (d)	P = 0.336		
Fisher Exact Test (d)		P = 0.131	P=0.380
Liver: Hepatocellular Carcinoma			
Overall Rates (a)	3/50 (6%)	4/50 (8%)	7/50 (14%)
Adjusted Rates (b)	10.7%	12.1%	20.8%
Terminal Rates (c)	2/27 (7%)	3/31 (10%)	6/32 (19%)
Week of First Observation	101	93	96
Life Table Tests (d)	P = 0.175	P = 0.566	P = 0.243
Incidental Tumor Tests (d)	P = 0.139	P = 0.499	P = 0.196
Cochran-Armitage Trend Test (d)	P = 0.114		
Fisher Exact Test (d)		P = 0.500	P = 0.159
Liver: Hepatocellular Adenoma or Carci	noma		
Overall Rates (a)	8/50 (16%)	13/50 (26%)	13/50 (26%)
Adjusted Rates (b)	26.7%	39.1%	39.1%
Terminal Rates (c)	6/27 (22%)	11/31 (35%)	12/32 (38%)
Week of First Observation	83	93	96
Life Table Tests (d)	P = 0.259	P = 0.256	P=0.290
Incidental Tumor Tests (d)	P = 0.219	P = 0.209	P = 0.258
Cochran-Armitage Trend Test (d)	P = 0.141	_	
Fisher Exact Test (d)		P = 0.163	P = 0.163

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

	Control	25,000 ppm	50,000 ppm
Pituitary: Adenoma			
Overall Rates (a)	8/40 (20%)	6/45 (13%)	6/49 (12%)
Adjusted Rates (h)	25 196	19.2%	17.4%
Terminal Rates (c)	$\frac{4}{24}(17\%)$	4/27(15%)	4/32 (13%)
Week of First Observation	53	90	99
Life Table Tests (d)	P = 0.192N	P = 0.317N	P = 0.235N
Incidental Tumor Tests (d)	P = 0.232N	P = 0.323N	P = 0.335N
Cochran Armitage Trend Test (d)	P = 0.198N	1 - 0.0.0011	
Fisher Exact Test (d)	1 -0.10010	P = 0.296N	P=0.239N
Thyroid Gland: Follicular Cell Adenoma			
Overall Rates (a)	1/50 (2%)	3/50 (6%)	2/49 (4%)
Adjusted Rates (b)	2.9%	7.8%	6.3%
Terminal Rates (c)	0/27 (0%)	1/31 (3%)	2/32 (6%)
Week of First Observation	95	80	103
Life Table Tests (d)	P = 0.455	P = 0.332	P≔0.555
Incidental Tumor Tests (d)	P = 0.419	P = 0.279	P = 0.514
Cochran-Armitage Trend Test (d)	P = 0.391		
Fisher Exact Test (d)	1 01001	P=0.309	P = 0.492
Thyroid Gland: Follicular Cell Adenoma o	or Carcinoma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	3/49 (6%)
Adjusted Rates (b)	2.9%	7.8%	9.4%
Terminal Rates (c)	0/27(0%)	1/31 (3%)	3/32 (9%)
Week of First Observation	95	80	103
Life Table Tests (d)	P = 0.291	P = 0.332	P=0.365
Incidental Tumor Tests (d)	P = 0.263	P = 0.279	P=0.331
Cochran-Armitage Trend Test (d)	P = 0.231		- 0.001
Fisher Exact Test (d)	x — 0.201	P = 0.309	P=0.301
Uterus: Endometrial Stromal Polyp			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	0.0%	9.7%	3.1%
Terminal Rates (c)	0/27 (0%)	3/31 (10%)	1/32 (3%)
Week of First Observation		103	103
Life Table Tests (d)	P = 0.431	P = 0.145	P=0.534
Incidental Tumor Tests (d)	P = 0.431	P = 0.145	P = 0.534
Cochran-Armitage Trend Test (d)	P = 0.378		1 0.001
Fisher Exact Test (d)	1 - 0.010	P = 0.121	P = 0.500
	• / >		
nargerian Giang: Carcinoma or Adenocal	rcinoma (e)	0/50 (00)	2/60 (60)
Adjusted Detec (b)	2/3U (4%) 6 Eq.	0/00(0%)	3/30 (0%) 9 Km
Aujusted Rates (b)	0.070	0.0%	0.070 9/09 (60)
I erminal Kates (C)	1/27 (4%)	0/31(0%)	2/32 (0%)
week of First Observation	90	D 0 00033	89
Lite Table Tests (d)	P = 0.440	P = 0.222N	P== 0.562
Incidental Tumor Tests (d)	P = 0.429	P = 0.262N	P==0.552
Cochran-Armitage Trend Test (d)	P = 0.390		
Fisher Exact Test (d)		P = 0.247N	P == 0.500
Harderian Gland: Adenoma, Carcinoma, o	r Adenocarcinoma (f)	0/50/07	0/50 (00)
Overall Rates (a)	4/50 (8%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	13.7%	0.0%	8.5%
Terminal Rates (c)	3/27 (11%)	0/31 (0%)	2/32 (6%)
Week of First Observation	95		89
Life Table Tests (d)	P = 0.345N	P = 0.051 N	P = 0.421 N
Incidental Tumor Tests (d)	P = 0.354N	P = 0.061 N	P==0.430N
Cochran-Armitage Trend Test (d)	P = 0.406N		

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE (Continued)

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY **OF DECABROMODIPHENYL OXIDE (Continued)**

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N). (e) Includes carcinoma, NOS, adenocarcinoma, NOS, and papillary adenocarcinoma

(f) Includes adenoma, NOS, papillary adenoma, carcinoma, NOS, adenocarcinoma, NOS, and papillary adenocarcinoma

Decabromodiphenyl Oxide, NTP TR 309

APPENDIX F

HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE RECEIVING NO TREATMENT

TABLE F1. HISTORICAL INCIDENCE OF LEUKEMIA IN F344/N RATS RECEIVING NO TREATMENT (a)

	Incidence in Controls		
	Male	Female	
No 2-year studies by Hazleton	a Laboratories America are included in the histo	rical data base.	······
Overall Historical Inciden	ce		
TOTAL SD (b)	458/1,727 (26.5%) 8.83%	307/1,772 (17.3%) 6.00%	
Range (c) High Low	23/50 5/50	19/50 3/50	

(a) Data as of August 3, 1984, for studies of at least 104 weeks (b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

TABLE F2. HISTORICAL INCIDENCE OF SPLENIC TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT (a)

	Incidence of Sarcomas in Controls	
No 2-year studies by Hazleton Lab	pratories America are included in the historical data base.	
Overall Historical Incidence		
TOTAL SD (b)	5/1,705 (0.3%) 0.7 4%	
Range (c) High Low	1/45 0/90	

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(a) Bata as of Hegure 0, 1002, for statics of acteurs for access for

TABLE F3. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT (a)

.

	Incidence in Controls			
	Neoplastic Nodule	Carcinoma	Neoplastic Nodule or Carcinoma	
No 2-year studies by H	fazleton Laboratories America are i	included in the historical	data base.	
Overall Historical I	ncidence			
TOTAL SD (b)	61/1,719 (3.5%) 3.34%	12/1,719(0.7%) 0.98%	73/1,719 (4.2%) 3.45%	
Range (c) High Low	6/4 9 0/50	1/49 0/90	7/ 49 0/50	

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

TABLE F4. HISTORICAL INCIDENCE OF PANCREATIC ACINAR CELL TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT (a)

<u></u>	Incidence in Controls	
No 2-year studies by Hazleton Lab	oratories America are included in the historical data base.	
Overall Historical Incidence		
TOTAL SD (c)	(b) 3/1,667 (0.2%) 0.59%	
Range (d) High Low	1/47 0/88	

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(b) No acinar cell carcinomas have been observed.

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.

TABLE F5. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN FEMALE F344/N RATS **RECEIVING NO TREATMENT (a)**

	Incidence in Controls			
	Neoplastic Nodule	Carcinoma	Neoplastic Nodule or Carcinoma	
No 2-year studies by	Hazleton Laboratories America are i	included in the historical	data base.	
Overall Historical	Incidence			
TOTAL SD (b)	46/1,766 (2.6%) 2.77%	3/1,766(0.2%) 0.75%	48/1,766 (2.7%) 2.99%	
Range (c) High Low	4/50 0/50	2/50 0/88	5/50 0/50	

(a) Data as of August 3, 1984, for studies of at least 104 weeks
(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

TABLE F6. HISTORICAL INCIDENCE OF MUSCULOSKELETAL SYSTEM TUMORS IN MALE F344/N **RATS RECEIVING NO TREATMENT (a)**

	Incidence of Osteoma or Osteosarcoma in Controls	
No 2-year studies by Hazleton Lab	pratories America are included in the historical data base.	
Overall Historical Incidence	· · · ·	
TOTAL SD (c)	(b) 8/1,727 (0.5%) 0.96%	
Range (d) High Low	2/50 (e) 0/50	

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(b) Includes one osteoma and seven osteosarcomas

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.
(e) The low range for osteosarcoma alone is 0/90.

TABLE F7. HISTORICAL INCIDENCE OF ZYMBAL GLAND TUMORS IN F344/N RATS RECEIVING NO TREATMENT (a)

	Incidence in	Controls
	Male	Female
No 2-year studies by Hazleton	n Laboratories America are included in the histo	rical data base.
Overall Historical Inciden	ICE	
TOTAL SD (d)	(b) 11/1,772 (0.6%) 1.28%	(c) 6/1,772 (0.3%) 1.14%
Range (e) High Low	3/50 0/90	3/50 0/88

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(b) Total includes nine squamous cell carcinomas, one carcinoma, NOS, and one ceruminous carcinoma. One squamous cell papilloma, three squamous cell carcinomas, three sebaceous adenocarcinomas, and one ceruminous carcinoma of the ear canal were also observed; the inclusion of these tumors would not affect the reported range. No benign Zymbal gland tumors were observed.

(c) Total includes one adenocarcinoma, NOS, three squamous cell carcinomas, and two adenosquamous carcinomas. Three squamous cell carcinomas of the ear canal were also observed; the inclusion of these tumors would not affect the reported range. No benign tumors were observed.

(d) Standard deviation

(e) Range and SD are presented for groups of 35 or more animals.

TABLE F8. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE B6C3F1 MICE RECEIVING NO TREATMENT (a)

	Incidence in Controls				
	Adenoma	Carcinoma	Adenoma or Carcinoma		
No 2-year studies by	Hazleton Laboratories America	are included in the historic	cal data base.		
Overall Historical	Incidence				
TOTAL SD (b)	179/1,784 (10.0%) 7.36%	377/1,784 (21.1%) 6.54%	540/1,784 (30.3%) 8.04%		
Range (c) High Low	(d) 22/50 0/49	16/50 4/50	(e) 29/50 7/50		

151

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

(d) Second high, 9/50

(e) Second high, 20/50

TABLE F9. HISTORICAL INCIDENCE OF THYROID GLAND FOLLICULAR CELL TUMORS IN MALEB6C3F1 MICE RECEIVING NO TREATMENT (a)

	Incidence in Controls		
	Adenoma	Carcinoma	Adenoma or Carcinoma
No 2-year studies by	y Hazleton Laboratories America	are included in the histori	cal data base.
Overall Historical	l Incidence		
TOTAL	(b) 26/1,680 (1.5%)	2/1,680 (0.1%)	28/1,680 (1.7%)
SD (c)	2.06%	0.49%	2.09%
Range (d)			
High	3/42	1/47	3/42
Low	0/50	0/50	0/50

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(b) Total includes one papillary adenoma and one cystadenoma.

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.

TABLE F10. HISTORICAL INCIDENCE OF TESTICULAR TUMORS IN MALE B6C3F1 MICE RECEIVING
NO TREATMENT (a)

	Incidence of Interstitial Cell Tumors in Controls	
No 2-year studies by Hazleton Labor	atories America are included in the historical data base.	
Overall Historical Incidence		
TOTAL SD (b)	5/1,768 (0.3%) 0.71%	
Range (c)		

1/48

0/50

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(b) Standard deviation

High

Low

(c) Range and SD are presented for groups of 35 or more animals.

APPENDIX G

GENETIC TOXICOLOGY OF

DECABROMODIPHENYL OXIDE

Strain	Dose (µg/plate)	- 59	+ S9 (rat)	+ S9 (hamster)
TA100	0 100 333 1,000 3,333 10,000	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$121 \pm 7.8 \\ 142 \pm 6.4 \\ 131 \pm 5.0 \\ 137 \pm 9.8 \\ 178 \pm 8.7 \\ 130 \pm 17.3 \\ 17.3 \\ 17.3 \\ 130 \pm 17.3 \\ 17.3 \\ 130 \pm 17.3 \\ 17.3 \\ 130 \pm 17.3 \\ 130 \\ 10$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
TA1535	0 100 333 1,000 3,333 10,000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
TA1537	0 100 333 1,000 3,333 10,000	$5 \pm 0.7 9 \pm 0.9 9 \pm 4.2 8 \pm 2.1 10 \pm 2.5 10 \pm 2.3 $	$8 \pm 1.0 \\ 10 \pm 1.5 \\ 10 \pm 1.5 \\ 7 \pm 1.3 \\ 13 \pm 2.1 \\ 11 \pm 3.4$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
TA98	0 100 333 1,000 3,333 10,000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE G1. MUTAGENICITY OF DECABROMODIPHENYL OXIDE IN SALMONELLA TYPHIMURIUM

(a) The S9 fractions were prepared from the livers of Aroclor 1254-induced male Sprague-Dawley rats and male Syrian hamsters. Cells and study compound or solvent (DMSO) were incubated for 20 minutes at 37° C in the presence of either S9 or buffer. After the addition of soft agar, the contents of each tube were poured onto minimal medium, and the plates were incubated at 37° C for 48 hours (Haworth et al., 1983). The experiment was performed twice, each in triplicate; because the results were similar, data from only one experiment are shown.

(b) Mean \pm standard error

Compound	Dose (µg/ml)	Total Mutant Clones	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequency (mutants/10 ⁶ clonable cells)
DMSO			·····		
		134 103 140 178	98 105 115 100	100 100 100 100	45 33 41 59
Ethyl methane:	sulfonate				
	15	750 762	57 70	32 36	436 365
Decabromodip	nenyloxide				
	7	77 1 4 3	89 90	87 88	29 53
	8	97 180	81 118	85 125	40 51
	9	49 130	90 99	86 93	35 44
	10	115 152	97 104	91 99	40 49

TABLE G2. MUTAGENICITY OF DECABROMODIPHENYL OXIDE IN L5178Y/TK^{+/-} MOUSE LYMPHOMACELLS IN THE ABSENCE OF S9 (a)

(a) Experiments were performed twice, all doses were tested in duplicate, except the solvent control (DMSO), which was tested in triplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells (6×10^{5} /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^{6} cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium to determine the percentage of viable cells.

Compound	Dose (µg/ml)	Total Mutant Clones	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequency (mutants/10 ⁶ clonable cells)
DMSO				· · · · · · · · · · · · · · · · · · ·	
		117 90 90 87	78 77 66 68	100 100 100 100	50 39 45 43
3-Methylcholan	threne				
	2.5	544 474	53 36	35 31	344 437
Decabromodiph	enyloxide				
	7	75 91	57 53	74 84	44 57
	8	58 97	64 124	84 158	30 26
	9	51 85	55 60	70 76	31 48
	10	114 94	83 52	104 72	46 61

TABLE G3. MUTAGENICITY OF DECABROMODIPHENYL OXIDE IN L5178Y/TK*/-MOUSE LYMPHOMACELLS IN THE PRESENCE OF S9 (a)

(a) Experiments were performed twice, all doses were tested in duplicate, except the solvent control (DMSO), which was tested in triplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells (6×10^5 /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^6 cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium to determine the percentage of viable cells. S9 was prepared from the livers of Aroclor 1254-induced male F344/N rats.

.

TABLE G4. INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY DECABROMODIPHENYL OXIDE (a)

- S9 (b)		+ S	9 (c)
Dose (µg/ml)	SCE/Cell	Dose (µg/ml)	SCE/Cell
DMSO		DMSO	
10 µl	8.5	10 µl	9.3
Decabromodiphenyl oxide		Decabromodiphenyl oxide	
50	8.1	50	8.6
100	7.9	100	9.3
250	8.1	250	8.4
500	7.6	500	8.8
Mitomycin C		Cyclophosphamide	
0.001	11.1	0.3	12.9
0.010	49.0	2.0	35.6

(a) SCE = sister-chromatid exchange

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 2 hours at 37° C. Then BrdU was added, and incubation was continued for 24 hours. Cells were washed, fresh medium containing BrdU (10 μ M) and colcemid (0.1 μ g/ml) was added, and incubation was continued for 2-3 hours. Cells were then collected by mitotic shake-off, treated for 3 minutes with potassium chloride (75 mM), washed twice with fixative, and dropped onto slides and air dried. Staining was by a modified technique (after Perry and Wolff, 1974; Goto et al., 1978).

(c) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37° C. Then cells were washed, and medium containing 10 µM BrdU was added. Cells were incubated for a further 26 hours, with colcemid (0.1 µg/ml) present for the final 2-3 hours. S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats.

TABLE G5. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY DECABROMODIPHENYL OXIDE (a)

- 59) (b)	+ S9 (c)	
Dose (µg/ml)	Abs/100 Cells (percent cells w/abs)	Dose (µg/ml)	Abs/100 Cells (percent cells w/abs)
DMSO		DMSO	
10 µl	1	10 µl	1
Decabromodiphenyl oxid	e	Decabromodiphenyl oxide	
50	0	50	0
100	0	100	2
250	1	250	0
500	0	500	1
Mitomycin C		Cyclophosphamide	
0.150	16	15.0	28
0.250	22	30.0	40

(a) Abs = aberrations

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid (0.1 µg/ml) was added. After a further 2-3 hours of incubation, cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.

(c) In the presence of $\tilde{S}9$, cells were incubated with study compound or solvent for 2 hours at 37°C. Cells were then washed, medium was added, and incubation was continued for 8-10 hours. Colcemid (0.1 µg/ml) was added for the last 2-3 hours of incubation; then cells were harvested and fixed as described in footnote (b). S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats.

Decabromodiphenyl Oxide, NTP TR 309 158

APPENDIX H

CHEMICAL CHARACTERIZATION OF

DECABROMODIPHENYL OXIDE

APPENDIX H. CHEMICAL CHARACTERIZATION

I. Identity and Purity Determinations of Decabromodiphenyl Oxide Performed by the Analytical Chemistry Laboratory

				Determined		<u>Literature Values</u>
А.	Lo	t No	b. 08287-2			
	1.	Ph	ysical properties			
		a.	Appearance:	Fine, off-white, 1	microcrystalline p	owder
		b.	Melting point:	298.4°-302.5° C 299.0°-302.0° C (Dupont 900 DT	A)	290°-306° C (Norris et al., 1973; Kociba et al., 1975; AIHA, 1981)
	2.	Sp	ectral data			
		a.	Infrared			
			Instrument:	Beckman IR-12		
			Phase:	1% potassium bromide pellet		
			Results:	See Figure 5		No literature reference found. Consistent with structure.
		b.	Ultraviolet/visible			
			Instrument:	Cary 118		
			Solvent:	<i>p</i> -Dioxane		
			Results:	There was no ab between 800-350	sorbance) nm.	No literature reference found. Consistent
				λ _{max} (nm)	$\epsilon imes 10^{-3}$	with structure.
				306 (shoulder) 277	$2.480 \pm 0.007 \\ 5.593 \pm 0.033$	
	3.	Wa	ater analysis (Karl Fis	cher): $0.04\% \pm 0$.	01 (δ)%	

4. Elemental analysis

Element	С	Br	
Theory (T)	15.02	83.31	
Determined (D)	15.02 15.20	83.39 83.26	
Percent D/T	100.60	100.02	

FIGURE 5. INFRARED ABSORPTION SPECTRUM OF DECABROMODIPHENYL OXIDE (LOT NO. 08287-2)

161

Decabromodiphenyl Oxide, NTP TR 309

5. Chromatographic analyses

a. Thin-layer chromatography

Plates: System I--Whatman KC₁₈ reversed-phase with fluorescent indicator System II--Silica Gel 60 F-254 **Reference standard:** 2,4,6-Tribromophenol, 40 μg (10 μg/μl in toluene) **Amount spotted:** 100 and 300 μg (10 μg/μl in toluene) **Visualization:** Ultraviolet, 254 nm

System 1: Methanol (100%)

R_f: 0.47 (major) R_{st}: 0.56

System 2: Hexane (100%)

R_f: 0.68 (major) R_{st}: 6.48

b. High-performance liquid chromatography

Instrument: Waters Programmable Component System Column: μBondapak C₁₈, 300 mm × 4 mm, ID Detector: Ultraviolet, 254 nm Flow rate: 1 ml/min Sample injected: 10 μl of 0.5 mg/ml in tetrahydrofuran Solvent program: Methanol (Fischer HPLC):water (95:5) Results: Major peak, one minor peak, and one shoulder on the minor peak

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	9.1	$\left[\begin{array}{c} 0.76 \\ 0.82 \end{array} \right]$	1.31
2 3	9.8 12.0	1.00	100

Note: Reducing the solvent ratio from 95% methanol to 70% methanol increased the retention time of the major peak to 18 minutes. No additional impurity peaks were detected.

- c. Gas chromatography: Gas chromatography was attempted with an SP-2100 column. The compound would not elute even at high isothermal temperatures.
- 6. Conclusions: The results of elemental analysis for carbon and bromine were consistent with the theoretical values. Thin-layer chromatography by two systems indicated a major spot only. High-performance liquid chromatography indicated two impurities before the major peak. The smaller of these impurities was detected as a shoulder on the larger impurity peak. The combined area of the two impurities was 1.3% of the major peak area. The infrared and the ultraviolet/visible spectra were consistent with the structure.

APPENDIX H. CHEMICAL CHARACTERIZATION

B.	Lo	tno. D12478	Determined	<u>Literature values</u>
	1.	Physical properties		
		Appearance:	White, microcrystalline powder	
	2.	Spectral data		
		a. Infrared		
		Instrument:	Beckman IR-12	
		Phase:	1% in potassium bromide pellet	
		Results:	See Figure 6	No literature reference found. Consistent with structure.
		b. Ultraviolet/visible		
		Instrument:	Cary 118	
		Solvent:	1,4-dioxane	
		Results:	No maximum from 800 to 350 nm, but a gradual increase in absorbance toward 350 nm.	No literature reference found. Consistent with structure.

$\lambda_{max}(nm)$	$\epsilon imes 10^{-3}$
306	$2.314 \pm 0.02(\delta)$
277	$5.313 \pm 0.09(\delta)$

3. Water analysis (Karl Fischer): <0.05%

4. Elemental analysis

Element	С	Br
Theory (T)	15.02	83.31
Determined (D)	14.79 14.75	83.55 83.74
Percent D/T	98.34	100.40

FIGURE 6. INFRARED ABSORPTION SPECTRUM OF DECABROMODIPHENYL OXIDE (LOT NO. D12478)

5. Chromatographic analysis

a. Thin-layer chromatography

Plates: Silica Gel 60 F-254, 0.25 mm layer Reference standard: 2,4,6-Tribromophenol (10 mg/ml in toluene) Amount spotted: 10 and 30 µg (1 mg/ml in toluene) Visualization: Ultraviolet (254 nm) Solvent system: Hexane (100%)

Results

R_f: 0.35 (major) R_{st}: 9.6

b. High-performance liquid chromatography (HPLC)

Instrument system Pump(s): Waters 6000A Programmer: Waters 660 Detector: Waters 440 Injector: Waters U6K Column: µBondapak C₁₈, 300 mm × 3.9 mm, ID Detection: Ultraviolet, 254 nm Guard column: CO:PELL ODS, 72 mm × 2.3 mm, ID Solvent system: Acetonitrile:water (90:10) Flow rate: 1 ml/min Samples injected: 10 µl solution of 0.4 mg decabromodiphenyl oxide per 1 ml tetrahydrofuran

Results: Major peak and two impurities before the major peak with relative areas of 1.5% and 1.3%. A system using 100% acetonitrile, isocratic, revealed no additional impurities, and the retention time of the major peak was 7.5 minutes.

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>	
1	13.5	0.81	1.5	
2	14.5	0.87	1.3	
3	16.75	1.00	100	

6. Conclusions: The result of elemental analysis for bromine was in agreement with the theoretical value, whereas that for carbon was slightly low. Thin-layer chromatography indicated a major spot only. High-performance liquid chromatography indicated two impurities before the major peak with areas totaling 2.8% of the area of the major peak. The two impurities had areas 1.5% and 1.3% of the major peak area. This HPLC analysis compares with two impurities before the major peak with a combined area of 1.3% of the major peak for lot no. 08287-2. The infrared and ultraviolet/visible spectra were consistent with the structure of decabromodiphenyl oxide and with the spectra for lot no. 08287-2.

APPENDIX H. CHEMICAL CHARACTERIZATION

Determined

See Figure 7

(a) 296

276

Literature Values

- C. Lot no. MM04080-1
 - 1. Appearance: White, microcrystalline powder
 - 2. Spectral data
 - a. Infrared

Instrument:	Beckman IR-12
Phase:	1% potassium
	bromide pellet

Results:

No literature reference found. Consistent with structure.

b. Ultraviolet/visible

Instrument:	Cary 118	
Solvent:	p-Dioxane	
Results:	There was no absorbance between 800-350 nm at a concentration of 0.13 mg/ml	No literature reference found. Consistent with structure.
	$\lambda_{max}(nm)$ $\epsilon imes 10^{-3}$	
	306 2.46 ± 0.03	_

 2.77 ± 0.02

 5.57 ± 0.08

(a) Observed in spectrum of lot no. D12478 but not calculated or reported

3. Water analysis (Karl Fischer): <0.1%

4. Elemental analysis

Element	С	Br
Theory (T)	15.02	83.31
Determined (D)	$\begin{array}{c} 14.52\\ 14.34\end{array}$	82.73 82.79
Percent D/T	96.07	99.34

FIGURE 7. INFRARED ABSORPTION SPECTRUM OF DECABROMODIPHENYL OXIDE (LOT NO. MM04080-1)

5. Chromatographic analyses

a. Thin-layer chromatography

Plates: System I--Silica Gel 60 F-254, 0.25 mm layer; System II--Whatman KC₁₈ reversed-phase with fluorescent indicator, 0.25 mm layer **Reference standard:** 2,4,6-Tribromophenol, 10 µg (1 µl of a 10 µg/µl solution in toluene)

Amount spotted: 1, 10, and 30 µg (1, 10, and 30 µl of a 1 µg/µl solution in toluene) Visualization: Ultraviolet, 254 nm

System 1: Hexane (100%) System 2: Methanol (100%)

Results

Spot <u>Intensity</u>	Rf	<u>R</u> st	
System 1			
Major	0.52	5.2	
Trace	origin		
Reference	0.10		

System 2

Major	0.21	0.29
Trace	origin	
Reference	0.72	

b. High-performance liquid chromatography

Instrument system Pump: Varian 5020 liquid chromatograph Detector: Waters 440 Injector: Waters U6K Column: μBondapak C₁₈, 300 mm × 3.9 mm, ID Guard column: Whatman CO:PELL ODS, 72 × 2.3 mm, ID Detector: Ultraviolet, 254 nm Solvent system: Water:acetonitrile (23:77), isocratic Flow rate: 1 ml/min Sample injected: 10 μl of 0.5 mg/ml in tetrahydrofuran, filtered

Results: Major peak and three impurities before the major peak with relative areas of 0.23%, 2.0%, and 2.3% that of the major peak. Another impurity before the major peak had a relative area of less than 0.1% that of the major peak. No additional impurities were observed when the sample solution was injected at 100%, 90%, and 80% acetonitrile. A visual comparison of profiles between lot no. D12478 and lot no. MM04080-1 indicated the same impurities in both samples but at lower levels in lot no. D12478.

APPENDIX H. CHEMICAL CHARACTERIZATION

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	13.1	0.68	0.23
2	14.8	0.76	2.0
3	16.0	0.82	2.3
4	19.4	1.00	100

6. Conclusions: The results of the elemental analysis for carbon and bromine were low when compared with the theoretical values. Water content was found to be less than 0.1% by Karl Fischer analysis, compared with less than 0.05% for lot no. D12478. Thin-layer chromatography indicated a major spot and a trace impurity on each of two systems. High-performance liquid chromatography indicated three impurities before the major peak with relative areas that were 0.23%, 2.0%, and 2.3%. One additional impurity before the major peak had a relative area of less than 0.1% that of the major peak. Major peak comparison of lot nos. D12478 and MM04080-1 indicated that lot no. MM04080-1 was 95.2% \pm 1.0(δ)% when normalized to lot no. D12478. The infrared and ultraviolet/visible spectra were consistent with the structure of decabromodiphenyl oxide and with the spectra for lot no. D12478.

APPENDIX H. CHEMICAL CHARACTERIZATION

				Determined		<u>Literature Values</u>
D.	D. Lotno. MM811102-3-1		. MM811102-3-1			
	1.	Ap	pearance:	White, crystalli	ine powder	
	2.	Sp	ectral data			
		a.	Infrared			
			Instrument:	Perkin-Elmer 2	283	
			Phase:	2% in potassium bromide pellet	n	
			Results:	See Figure 8		No literature reference found. Consistent with structure.
		b.	Ultraviolet/visible			
			Instrument:	Cary 219		
			Solvent:	<i>p</i> -Dioxane		
			Results:	No absorbance from 800 to 350 concentration o	observed nm at a f 0.12 mg/ml	No literature reference found; spectra consistent with structure.
				λ_{max} (nm)	$\epsilon imes 10^{-3}$	
				306 (a) 296 (shoulder) 276 (shoulder)	$2.46 \pm 0.01(\delta) 2.74 \pm 0.01(\delta) 5.55 \pm 0.02(\delta)$	
				(a) Observed in spec D12478 but not calc	ctrum of lot no. culated or reported	
	3.	Wa	ter analysis (Karl F	ischer): 0.010%	$\pm 0.001(\delta)\%$	
	4.	Ele	emental analysis			

Element	С	Br
Theory (T)	15.02	83.31
Determined (D)	14.87 14.83	83.30 83.42
Percent D/T	98.87	100.06

FIGURE 8. INFRARED ABSORPTION SPECTRUM OF DECABROMODIPHENYL OXIDE (LOT NO. MM811102-3-1)

5. Chromatographic analysis

a. Thin-layer chromatography

Plates: System 1--Silica Gel 60 F-254, 0.25 mm layer; System 2--Whatman KC₁₈ reversed-phase with fluorescent indicator, 0.20 mm layer **Reference standard:** 2,4,6-Tribromophenol, 10 μg (1 μl of a 10 μg/μl solution in toluene) **Amount spotted:** 1, 10, and 30 μg (1, 10, and 30 μl of a 1 μg/μl solution in toluene)

System 1: Hexanes (100%) **System 2:** Methanol (100%)

Visualization: Ultraviolet (254 nm)

Results

Spot <u>Intensity</u>	<u>R</u> f	$\underline{\mathbf{R}}_{st}$	
System 1			
Major	0.39	6.5	
Reference	0.06		

System 2

Major	0.23	0.32
Minor	origin	
Reference	0.72	

b. High-performance liquid chromatography

(1) Impurity profile

Instrument system Pump(s): Waters 6000A Programmer: Waters 660 Detector: Waters 440 Injector: Rheodyne 7125 with 10 μl loop Column: μBondapak C₁₈, 300 mm × 3.9 mm, ID Detection: Ultraviolet, 254nm Guard column: Whatman CO:PELL ODS, 72 mm × 2.3 mm, ID Solvent system: Water:acetonitrile (12:88), isocratic Flow rate: 1 ml/min Samples injected: 0.45 mg/ml decabromodiphenyl oxide in tetrahydrofuran, filtered Volume injected: 10 μl

Results: Major peak and three impurities before the major peak with relative areas greater than or equal to 0.1% of the major peak area. Two of the impurities had areas 1.3% that of the major peak. A system using 100% and 90% acetonitrile showed no additional peaks.

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (a) (percent of <u>major peak)</u>	
1	15.2	0.70	0.1	
2	17.0	0.78	1.3	
3	18.4	0.85	1.3	
4	21.7	1.00	100	

(a) Detector response is very dependent on the absorbance of a substance at the detection wavelength used. The values reported are absolute areas expressed as percentages of the area of the major peak and do not take into account the different molar absorptivity values of the compound and its impurities. Therefore, the areas reported do not necessarily reflect the actual weight percentages of the impurities in the sample.

(2) Major peak lot comparison: Lot no. MM811102-3-1 and lot no. D12478 were analyzed for content of decabromodiphenyl oxide by high-performance liquid chromatography. Major peak areas were compared with internal standard peak areas, and the percent of decabromodiphenyl oxide in lot MM811102-3-1 was calculated relative to lot no. D12478. The instrument system described in I.D.5.b.(1) was used with the following changes.

Integrator: Varian CDS111L

Guard column: None

Solvent system: Water: acetonitrile (6:94), isocratic

Samples injected: Accurately weighed solutions containing approximately 0.24 mg/ml of decabromodiphenyl oxide and 8.86×10^{-3} mg/ml of the internal standard, anthracene, in tetrahydrofuran. The solutions were filtered into amber septum vials.

Retention times: Anthracene--4.0 min; decabromodiphenyl oxide--10.5 min

Results

Sample	Percent Decabromodiphenyl Oxide <u>Compared with Lot No. D12478</u>
Lot no. D12478	$100.0 \pm 0.1(8)$
Lot no. MM811102-3-1	$100.5 \pm 0.2(\delta)$

6. Conclusions: The results of the elemental analysis for carbon and bromine were consistent with the theoretical values. Water content (Karl Fischer titration) was $0.010\% \pm 0.001(\delta)\%$ compared with less than 0.05% for lot no. D12478. Thin-layer chromatography indicated a major spot and a minor impurity by one system and a major spot only by a second system. High-performance liquid chromatography indicated three impurities with areas totaling 2.7% that of the major peak. The three impurities before the major peak had relative areas of 0.1%, 1.3%, and 1.3% that of the major peak. A similar impurity profile was detected for lot no. D12478: three impurities before the major peak with relative areas of 0.1%, 1.6%, and 1.3% that of the major peak comparison of lot no. D12478 and lot no. MM811102-3-1 indicated that lot no. MM811102-3-1 was $100.5\% \pm 2.0(\delta)\%$ pure when normalized to lot no. D12478. The infrared and ultraviolet/visible spectra were consistent with the spectra for lot no. D12478 and with the structure of decabromodiphenyl oxide.

II. Chemical Stability Study Performed by the Analytical Chemistry Laboratory

- A. Sample storage: The decabromodiphenyl oxide samples were stored at -20° , 5° , 25° , and 60° C for 2 weeks in glass tubes with Teflon[®]-lined lids.
- **B.** Analytical method: The high-performance liquid chromatographic system used is described below. The major peak areas of the 5°, 25°, and 60° C samples were compared with the average of the major peak areas for the -20° C sample injections, which served as the standard. Each area was adjusted for the weight of the sample.

Instrument: Waters Programmable Component System Column: μ Bondapak C₁₈, 300 × 4 mm, ID Detector: Ultraviolet, 254 nm Solvent: Acetonitrile (100%), 1 ml/min Retention time: 5.9 min

C. Results

<u>Storage Temperature</u>	<u>Percent Purity</u>	
– 20° C	100.0 ± 0.9	
5° C	99.2 ± 0.9	
25° C	100.3 ± 0.9	
60° C	99.6 ± 0.9	

D. Conclusion: Decabromodiphenyl oxide is stable as the bulk chemical for 2 weeks at temperatures up to 60° C.

III. Chemical Stability Study at the Study Laboratory

A. Identity determination by infrared spectroscopy

Instrument: Perkin-Elmer 597 Phase: 1% Potassium bromide pellet

B. Purity determination

1. Thin-layer chromatography: Solutions of decabromodiphenyl oxide were prepared and processed simultaneously with an internal standard solution of 2,4,6-tribromophenol.

Plates: Silica gel 60, F-254 nm, 0.25-mm layer Solvent system: 100% Hexane at ambient temperature Visualization: Ultraviolet lamp at 254 nm Reference standard: 2,4,6-tribromophenol (10 mg/ml in toluene) Sample solutions: Decabromodiphenyl oxide (1 mg/ml in toluene) Amount spotted: 20 µl of each

2. High-performance liquid chromatography

Instrument: Waters HPLC model 440 with ultraviolet detector at 254 nm Column: μ Bondapak C₁₈ (3.9 mm \times 300 mm) with CO:PELL ODS guard column Mobile phase: Water:acetonitrile (10:90), isocratic, 1.0 ml/min Chart speed: 0.5 in/min Attenuation: 0.1 Standard: Solutions of 0.4 mg/ml decabromodiphenyl oxide in tetrahydrofuran Injection volume: 10 μ l

C. Results

1. Thin-layer chromatography

Date of		Reference		Bulk	
<u>Analysis</u>	<u>Lot No.</u>	R _f	R _{st}	R _f	R _{st}
04/02/79	08287-2	0.69	5.31	0.66	6.25
04/13/79	08287-2	0.58	5.80	0.57	5.70
08/13/79	D12478	0.70	7.00	0.70	7.00
12/09/79	D12478	0.60	5.00	0.60	5.00

Date of		Purity (percent)	
<u>Analysis</u>	Lot No.	Reference	<u>Bulk</u>
02/11/80	08287-2	97.24	97.09
02/11/80	D12478	97.24	97.28
05/09/80	MM04080-1	97.75	96.67
09/24/80	MM04080-1	96.47	96.47
01/07/81	MM04080-1	95.36	95.34
05/12/81	MM04080-1	95.56	95.65
09/25/81	MM04080-1	95.99	95.56
01/27/82	MM04080-1	96.22	95.60
03/18/82	MM811102-3-1	95.50	97.30
10/18/82	MM811102-3-1	97.75	97.70

2. High-performance liquid chromatography

High-performance liquid chromatography replaced thin-layer chromatography as the purity analytical method because the purity results obtained from the thin-layer chromatography analyses were not consistent.

D. Conclusion: No notable degradation of the test material occurred during the studies.

IV. Isolation and Identification of Impurities in Decabromodiphenyl Oxide

A. Introduction: The purpose of this analysis was to isolate and identify two impurities previously observed in the lot no. MM811102-3-1 of decabromodiphenyl oxide by high-performance liquid chromatography (HPLC). The two impurity peak areas were 1.3% and 1.6% relative to the major peak in the previous HPLC analysis.

The HPLC method developed by the Dow Chemical USA was used without modification for the impurity profile analysis and subsequent isolation of the major impurities in this lot of decabromodiphenyl oxide. These HPLC fractions were then analyzed by direct inlet mass spectrometry to identify the two impurities.

B. High-performance liquid chromatography

1. Sample preparation: A solution (approximately 0.5 mg/ml) of decabromodiphenyl oxide was prepared in tetrahydrofuran and filtered for HPLC analysis.

2. Instrumental system

Solvent delivery system: Varian 5020 HPLC Detector: Tracor 970A Injector: Waters WISP 710B Electronic integration: Nelson 4400 Data System Detection: Ultraviolet, 220 nm (254 nm was used in the previous analysis) Column: Dupont Zorbax ODS, 250 × 4.6 mm ID Guard column: Whatman CO:PELL ODS, 23 × 3.9 mm ID Mobile phase: 100% Acetonitrile, 1.2 ml/min Volume injected: 10 µl Column temperature: 40°C

3. Results: A major peak and three impurity peaks, with areas greater than 0.1% relative to the major peak (Figure 9), were observed. All the impurity peaks eluted before the major peak.

Peak No.	Retention Time (min)	Retention Time (relative to major peak)	Area (a) (percent of major peak)
1	7.7	0.73	0.3
2	8.2	0.78	3.7
- 3	9.3	0.89	1.7
4	10.5	1.00	100

(a) Detector response is very dependent on the absorbance of a substance at the detection wavelength used. The values reported are absolute areas expressed as percentages of the area of the major peak and do not take into account the different ε values of the compound and its impurities. Therefore, the areas reported do not necessarily reflect the actual weight percentages of the impurities in the sample.

FIGURE 9. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC PROFILE OF DECABROMODIPHENYL OXIDE (LOT NO. MM811102-3-1)
C. Ultraviolet/visible spectra of the major component and impurities

- 1. Sample preparation: A 2.3 mg/ml solution of decabromodiphenyl oxide was prepared volumetrically in tetrahydrofuran. The solution was filtered for HPLC analysis.
- 2. Instrument system: Ultraviolet/visible spectra of the major peak and the impurity peaks were obtained with a Hewlett-Packard 1040A high-speed spectrophotometric HPLC detector. The HPLC conditions described above were used, with the following exceptions:

Injector: Rheodyne 7125 Detector: Hewlett-Packard 1040A Monitoring wavelength: 220 nm Lamp current: Low Scanning range: 190-600 nm Scanning step: 2 nm

3. Results: The spectra of decabromodiphenyl oxide and its major impurities are presented in Figure 10. The spectra are very similar, indicating that the two impurities are probably compounds that have structures closely related to the major component. The absorbance maxima of the three peaks are also quite near the detection wavelength used in the impurity profile analysis. The relative area percent values reported for the impurities in the impurity profile should therefore closely approximate their actual concentrations in the sample.

D. Isolation of the major component and two impurities

- 1. Procedure: A concentrated solution of decabromodiphenyl oxide was prepared in tetrahydrofuran and repeatedly injected into an HPLC system similar to that used for the impurity profile. The fractions containing the two largest impurities and the major peak were collected as they eluted from the analytical column. The fractions were immersed in a 50° C water bath and evaporated to dryness under a stream of purified nitrogen. The samples were then stored at -20° C before analysis by direct inlet mass spectrometry (Section IV.E.).
- 2. Instrument system: The instrumental parameters described in IV.B.2. were used with the following exceptions:

Injector: Rheodyne 7125 **Samples injected:** Solutions of 6.0 mg/ml decabromodiphenyl oxide in tetrahydrofuran, filtered

FIGURE 10. ULTRAVIOLET/VISIBLE SPECTRUM OF DECABROMODIPHENYL OXIDE AND TWO MAJOR IMPURITIES

E. Identification of impurities by mass spectrometry

1. Sample preparation: The three HPLC fractions were reconstituted in 50 µl of acetonitrile. Aliquots (1-5 µl) of the reconstituted samples were evaporated in a gold cup for direct inlet mass spectrophotometric analysis.

2. Instrument system

Instrument: Finnigan MAT 311-A mass spectrometer Data processor: Incos 2400 Data System Electron energy: 70 eV Scan range: 50-1,075 amu Scan rate: 7.00 sec/scan Scan times: Up: 5.70 Top: 0.30 Down: 0.00 Bottom: 1.00 Electron multiplier voltage: - 1800 V Emission current: 1 mA Resolution: 1,000 Accelerator voltage: 3000 V Sample introduction: Direct inlet probe (gold cup) Probe temperature program: 30°-450° C in 1,000 sec Probe temperature at sampling point: Approximately 250° C

3. Results

Peak no. 4 (major component of decabromodiphenyl oxide): The mass list is presented in Table H1. The spectrum was found to be consistent with a literature reference mass spectrum of decabromodiphenyl oxide (EPA/NIH, 1980). An abundant molecular ion cluster (m/z 950-m/z 958) was observed with an isotopic ratio consistent with that for a molecule containing 10 bromine atoms. The fragmentation observed indicated several losses of Br and Br₂ from the molecular ion. A mass spectrum of the major component is presented in Figure 11.

Peak no. 2: The mass list obtained from peak no. 2 is presented in Table H2. This impurity was identified from the mass spectrum as an isomer of nonabromodiphenyl oxide $(C_{12}HOBr_9)$. A molecular ion was observed at m/z 871 (nominal mass for ⁷⁹Br, 78.9183, was used for molecular weight calculations). The isotopic ratio for the molecular ion cluster was consistent with the theoretical isotopic pattern for a molecule containing nine bromine atoms. An initial loss of 80 amu (HBr) from the molecular ion was observed. Subsequent losses of 79 (Br) and 159 amu (Br₂) were repeatedly observed, yielding a fragmentation pathway analogous to that observed for the major component. The loss of 28 amu from the m/z 640 ion was observed at m/z 612, indicating the loss of CO which is characteristic of aromatic diphenylethers. A specific isomer of nonabromodiphenyl oxide was not identified. A mass spectrum of the impurity is presented in Figure 12.

Mass	Relative Abundance (percent of base peak)	Mass	Relative Abundance (percent of base peak)	
35.32	1.08	302.75	5.23	
43.98	2.45	303.78	1.55	
60.03	1.53	304.78	2.91	
66.02	1.27	305.78	4.09	
72.02	1.77	306.75	3.04	
78.96	3.05	307.75	1,13	
79.97	3.40	308.78	2.87	
80.95	3.14	310.78	8.08	
81.97	3.27	312.75	8.10	
106.97	0.27	314.75	2,51	
132.00	5.50	317.75	3.73	
138.92	7.49	318.75	8,68	
140.92	7.50	319.25	1,25	
144.92	1.88	319.75	12.06	
145.92	3.34	320.25	1.59	
146.94	2.04	320.75	8.71	
150.92	4.94	321.75	1.26	
152.92	5.00	321.75	3.51	
166.92	1.31	343.25	1.04	
168.95	2.46	344.25	3.06	
186.42	1.53	345.25	5.11	
210.94	1.78	346.25	5.12	
217.84	6.66	347.25	2.90	
219.84	13.29	358.25	1.64	
220.86	1.22	358.75	2.04	
221.84	6.30	359.22	2.86	
224.84	1.24	359.75	3.38	
225.84	1.74	360.22	2.98	
226.84	1.19	360.75	3.24	
229.84	10.14	361.22	1.71	
231.84	20.14	361.75	1.89	
232.84	1.67	368.78	1.56	
233.84	9.87	370.78	4.26	
234.86	1.07	372.78	4.28	
238.87	1.22	374.75	1.48	
239.84	1.22	377.69	1.79	
240.87	1.10	379.69	2.68	
247.84	1.31	381.69	1.68	
265.31	5.94	387.69	1.67	
265.81	1.46	389.69	6.24	
266.31	6.20	391.69	9.43	
267.28	3.33	393.69	6.13	
274.75	1.12	395.69	2.54	
276.75	1.07	396.69	7.65	
289.84	1.74	397.19	1.07	
291.84	3.42	397.69	24.93	
293.84	1.78	398.19	0.34 40.00	
296.75	0.67	398.69	43.90	
298.78	10.79	JJJ.17	0.00 60.61	
300.75	10.70	399.09	10.00	

TABLE H1. TABULATED MASS SPECTRUM FOR DECABROMODIPHENYL OXIDE (PEAK NO. 4)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mass	Relative Abundance (percent of base peak)	Mass	Relative Abundance (percent of base peak)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 400.19	8.10	715.44	1.14	
	400.69	47.95	716.44	2.53	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	401.19	6.41	717.44	3.49	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	401.69	23.00	718.44	4.64	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	402.19	3.27	719.44	5.62	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	402.69	6.57	720.44	4.62	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.69	1.93	721.44	5.63	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	405.69	4.03	722.44	3.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	407.69	5.61	723.44	3.22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	409.69	3.65	724.44	1.15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	438.16	1.30	725.44	1.10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	439.16	2.09	791.37	1.52	
441.16 1.29 794.37 1.63 456.62 6.29 796.37 5.64 458.62 11.77 797.37 82.89 460.62 11.47 798.37 11.11 462.62 5.48 799.37 100.00 464.62 1.10 800.37 13.39 470.62 1.20 801.37 78.40 472.62 1.15 802.37 10.69 477.69 1.80 803.37 38.71 479.69 2.64 804.37 4.96 481.69 1.67 805.37 11.29 486.62 1.21 806.37 1.48 488.62 1.38 807.37 1.26 528.62 3.88 875.31 1.02 534.62 3.79 879.31 3.38 534.62 1.61 880.31 1.89 534.62 1.61 880.31 1.86 560.62 1.61 880.31 1.86 560.62 1.61 883.31 2.09 613.56 1.57 951.19 2.54 635.56 4.23 953.25 11.58 637.56 10.68 955.19 31.23 638.66 1.49 957.12 55.13 639.50 14.13 958.25 6.76 640.50 2.14 961.25 48.97 643.50 4.22 962.25 7.80 694.50 3.09 965.25 10.28 692.50 4.88 966.87	440.16	2.15	793.37	12.50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	441.16	1.29	794.37	1,03	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	454.62	1.59	795.37	41.89	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	456.62	6.29	796.37	0.04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	408.62		191.31	02.09	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	460.62	11.47	198.37	100.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	402.02	0.48 1.10	199.31	13.30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	404.02	1.10	801.37	79 40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	470.02	1.20	801.37	10.60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	477 60	1.10	802.37	38 71	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	417.05	2.64	804.37	496	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	481 69	1.67	805.37	11 29	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	486.62	1.91	806.37	1 48	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	488.62	1.21	807.37	1 26	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	528.62	3.88	875.31	1.02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	530.62	8.00	876 31	1 15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	531.62	1.02	877.31	2.38	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	539.69	7 75	878 31	1.89	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	534 62	3 79	879.31	3.38	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	558.62	1.61	880.31	1.86	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	560.62	1.01	881.31	3.55	
	609.56	151	882.31	1.43	
	611.56	1.71	883.31	2.09	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	613.56	1.57	951.19	2.54	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	635.56	4.23	953.25	11.58	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	637.56	10.68	955,19	31.23	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	638.56	1.49	957.12	55.13	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	639.50	14.13	958.25	6.76	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	640.50	2.14	959.19	60.51	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	641.50	10.51	960.25	7.80	
643.504.22962.256.43686.441.11963.2527.66688.443.28964.253.89690.505.03965.2510.28692.504.88966.873.65694.503.09	642.56	1.42	961.25	48.97	
686.441.11963.2527.66688.443.28964.253.89690.505.03965.2510.28692.504.88966.873.65694.503.093.093.65	643.50	4.22	962.25	6.43	
688.443.28964.253.89690.505.03965.2510.28692.504.88966.873.65694.503.093.09	686.44	1.11	963.25	27.66	
690.505.03965.2510.28692.504.88966.873.65694.503.093.09	688.44	3.28	964.25	3.89	
692.50 4.88 966.87 3.65 694.50 3.09	690.50	5.03	965.25	10.28	
694. 50 3.09	692.50	4.88	966.87	3.65	
	694.50	3.09			

TABLE H1. TABULATED MASS SPECTRUM FOR DECABROMODIPHENYL OXIDE (PEAK NO. 4) (Continued)

FIGURE 11. MASS SPECTRUM OF DECABROMODIPHENYL OXIDE (PEAK NO. 4)

Mass	Relative Abundance (percent of base peak)	Mass	Relative Abundance (percent of base peak)	
 35.26	1.94	87.09	3.42	
35.31	4.05	88.09	1.77	
35.36	2.54	89.07	1.86	
35.40	6.84	90.96	1.46	
35.45	9.07	91.10	1.52	
36.88	2.27	92.95	1.52	
37.93	7.61	93.11	1.25	
38.98	13.20	95.12	3.81	
40.00	28.07	96.03	13.34	
41.02	61.34	96.12	1.63	
42.02	3.84	97.02	15.24	
43.01	4.94	97.12	4.43	
43.05	4.40	98.09	2.45	
43.99	100.00	99.11	1.63	
45.00	3.66	100.01	3.10	
48.01	4.20	101.05	1.83	
49.02	1.62	105.09	1.64	
50.02	1.44	105.48	4.04	
53.06	1.01	105.99	42.06	
54.06	1.54	106.49	9.11	
55.07	9.99	109.99	41.59	
56.09	3.87	107.10	1.18	
57.10	8.28	107.49	4.56	
60.04	30.67	108.03	5.88	
61.04	20.58	109.02	7.18	
62.04	1.34	109.12	1.48	
66.02	56.50	109.95	3.30	
66.52	34.13	110.11	1.94	
67.02	6.41	110.94	1.51	
67.07	3.10	111.14	2.33	
60.07	1.40	112.10	1.00	
69.01	7.06	114.94	4.06	
70.09	3.95	115.09	1.05	
71 10	7 13	115.94	1.57	
72.02	14 74	116.94	2.87	
73.04	21 93	119.02	10.25	
74.05	2 63	120.01	694	
75.05	4.18	121.01	3.50	
76.05	1.07	123.13	1.28	
77.06	2.83	125.14	1.33	
78.97	11.80	127.13	1.35	
79.09	1.83	129.09	1.13	
79.98	13.51	131.00	3.83	
80.55	2.46	132.02	46.42	
80.96	11.25	133.03	57.10	
81.10	4.59	134.02	8.74	
81.98	13.59	135.00	3.40	
82.12	2.42	138.94	12.89	
83.13	6.00	139.94	11.83	
84.05	10.23	140.94	13.45	
84.14	1.98	141.94	10.07	
85.05	6.39	143.00	1.16	
85.15	4.16	144.94	2.90	
86.06	1.03	145.44	8.13	

TABLE H2. TABULATED MASS SPECTRUM FOR NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 2)

Mass	Relative Abundance (percent of base peak)	Mass	Relative Abundance (percent of base peak)	
145.94	5.91	233.86	8.19	
146.44	13.60	234.87	6.35	
146.98	21.75	235.02	4.17	
147.44	6.43	239.87	1.60	
147.95	1.80	240.41	1.45	
149.05	1.24	241.91	1.13	
150.02	4.56	263.03	1.24	
150.94	7.64	264.84	2.17	
151.95	20.20	265.84	4.29	
152.94	8.50	266.34	1.72	
153.95	20.58	266.81	4.25	
154.95	2.04	267.81	2.63	
161.08	1.28	274.78	1.14	
162.94	1.21	276.78	1.21	
164.94	1.31	277.84	1.33	
166.95	1.19	278.81	5.96	
169.00	37.77	279.84	11.41	
169.97	1.78	280.34	1.26	
178.02	1.92	280.84	12.26	
184.98	4.63	281.34	1.60	
185.44	1.33	281.81	5.36	
185.94	9.19	282.81	1.07	
186.44	2.30	285.00	4.63	
186.95	9.23	290.87	10.90	
187.45	1.05	291.87	2.34	
187.95	3.94	292.87	20.73	
188.95	1.03	293.87	2.73	
189.90	1.37	294.01	9.01	
193.91	1.10	290.07	3.65	
199.09	1.51	298.78	11 50	
199.94	3.80	299.78	2.93	
200.94	3.28	300 78	10.95	
210.95	1 51	301.78	3.04	
211.95	11 74	302.78	3.41	
212.95	5.10	303.78	1.28	
213.95	11 74	304.28	1.95	
214.95	2.58	305.28	4.25	
217.86	6.24	306.28	5.37	
218.89	8.93	307.28	3.66	
219.86	12.59	308.28	1.69	
220.87	15.81	308.78	1.13	
221.87	6.39	309.81	2.16	
222.87	7.03	310.78	3.46	
224.3 9	1.98	311.78	6.48	
225.36	10.68	312.78	4.43	
225.87	1.96	313.03	1.15	
226.36	14.83	313.78	5.96	
226.87	2.39	314.78	1.51	
227.36	10.77	315.78	1.89	
227.87	1.31	319.28	1.46	
228.36	2.02	319.78	1.63	
229.86	6.45	320.28	2.51	
230.87	5.78	320.81	2.82	
231.86	13.81	321.28	2.10	
232.87	11.08	321.78	1.12	

TABLE H2. TABULATED MASS SPECTRUM FOR NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 2) (Continued)

	Mass	Relative Abundance (percent of base peak)	Mass	Relative Abundance (percent of base peak)	
• • • • • • • • • • • • • • • • • • •	325.78	1.03	532.62	1.05	
	327.78	4.11	533.69	2.43	
	329.81	3.59	535.69	1.24	
	331.78	1.00	557. 62	6.59	
	335.00	5.33	558.62	1.14	
	357.75	4.66	559.62	13.17	
	358.75	14.23	560.69	1.55	
	359.25	1.54	561.62	13.04	
	359.75	22.37	562.62	1.98	
	360.25	3.18	563.62	6.09	
	360.75	22.40	000.02	1.20	
	301.20	3.51	610 56	2.57	
	362.25	1 60	612.56	7.03	
	362.20	3.91	614.56	5.02	
	369.84	1.10	616.56	1.80	
	371.78	4.18	636.56	1.40	
	372.81	1.83	637.62	1.07	
	373.78	4.31	638.56	3.98	
	374.81	1.10	639.56	2.71	
	375.78	1.54	640.56	5.38	
	376.75	1.13	641.56	2.55	
	377.69	1.16	642.56	3.57	
	378.72	2.80	643.56	2.33	
	379.72	2.36	644.56	1.39	
	380.72	4.47	645.56	1.10	
	381.72	1.19	713.56	1.29	
	382.72	2.34	715.50	11.56	
	389.72	2.66	716.44	1.31	
	391.72	3.67	717.50	33.29	
	393.72	2.46	718.50	5.10	
	397.81	1.57	719.50	54.53	
	399.78	4.23	720.50	7.17	
	400.78	1.50	721.00	52.80	
	401.70	4.09	722.50	20.65	
	403.70	1.75	723.50	4.06	
	403.72	2.62	725.50	9.77	
	409.72	1.69	726.50	1.04	
	448.72	2.71	727.50	1.31	
	450.72	11.26	799.44	1.28	
	451.72	1.56	801.37	1.09	
	452.72	16.35	803.37	1.00	
	453.72	2.05	873.37	1.66	
	454.72	11.63	875.31	6.90	
	455.72	1.01	876.37	1.00	
	456.69	4.60	877.37	15.93	
	458.66	4.82	878.31	1.04	
	400.02	0.47 2.00	019.31	22.01	
	402.00	2.UV 0.56	000.3 (881 91	2.70	
	404.04	3 16	882.31	296	
	480.72	5 36	883.31	14.42	
	481.75	1.13	884.31	1.93	
	482.72	3.34	885.31	5.76	

TABLE H2. TABULATED MASS SPECTRUM FOR NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 2) (Continued)

FIGURE 12. MASS SPECTRUM OF NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 2)

Peak no. 3: The mass list obtained from peak no. 3 is presented in Table H3. This impurity was identified as a second isomer of nonabromodiphenyl oxide ($C_{12}HOBr_9$). The mass spectrum obtained from peak no. 3 resembled the mass spectrum obtained from peak no. 2. A specific isomer on nonabromodiphenyl oxide was not identified. A mass spectrum of this impurity is presented in Figure 13.

4. Conclusions: High-performance liquid chromatographic analysis detected two impurities that were estimated at 3.7% and 1.7% relative to the major component by peak area comparison at 220 nm. HPLC analysis with a spectrophotometric detector revealed similar ultraviolet/visible spectra for the major component and the two impurities. These two impurities were isolated by HPLC and identified by direct inlet mass spectrometry as two isomers of nonabromodiphenyl oxide.

Mass	Relative Abundance (percent of base peak)	Mass	Relative Abundance (percent of base peak)
35.36	1.09	111.14	1.68
35.41	1.68	113.12	1.13
35.46	1.72	114.95	2.77
38.98	1.44	115.95	2.05
40.00	2.94	116.95	2.28
41.02	7.81	119.04	2.56
43.06	1.54	120.00	4.07
43.99	17.43	120.99	3.67
45.04	1.44	123.95	1.23
55.08	3.15	124.61	1.10
56.10	1.44	125.14	1,29
57.10	4.19	130.95	1.10
60.04	7.19	132.02	18.69
61.04	8.87	133.03	35.43
66.02	25.17	133. 9 5	2.40
66.52	19.82	134.05	4.23
67.03	3.82	134.94	1.46
69.01	3.51	135.08	3.34
69.09	2.73	138.94	8.80
70.09	1.28	139.95	9.87
71.10	3.07	140.94	10.12
72.03	4.53	141.95	8.95
73.04	8.46	144.94	3.43
75.06	2.18	145.44	12.08
77.07	1.28	145.94	7.69
78.97	4.21	146.44	22.65
79.98	7.24	146.97	10.68
80.55	2.99	147.44	10.90
80.97	4.23	147.95	1.90
81.11	2.20	149.05	5.21
81.98	1.23	149.91	1.20
82.12	1.09	150.05	1,29
63.13 94.05	2.00	150.25	9.07
84.00	2.30	150.54	1.69
04.14	1.24	151.05	14.99
95.00	2.21	152.95	6.92
87.09	1 41	153.95	13.58
89.09	2 74	154 95	1 19
95.12	2.05	161.00	1.16
76.04	4.30	164.94	1.22
96.12	1.11	166.97	1.36
97.02	4.52	169.00	9.28
97.13	2.66	177.17	2.30
98.10	1.16	177.95	1.83
99.12	1.04	184.95	6.69
105.09	1.30	185.45	2.08
105.49	4.23	185.95	17.01
106.00	45.74	186.44	4.62
106.49	8.91	186.61	1.25
106.99	45.52	186.95	20.04
107.50	5.84	187.27	1.38
108.03	2.39	187.45	2.89
108.95	1.68	187.95	7.24
109.06	3.50	188.97	1.37
109.95	3.46	189.95	1.37
110.95	1.45	193.91	1.40

TABLE H3. TABULATED MASS SPECTRUM FOR NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 4)

Mass	Relative Abundance (percent of base peak)	Mass	Relative Abundance (percent of base peak)	
195.91	1.62	281.34	4.18	
196.91	1.75	281.84	15.55	
198.94	2.70	282.34	1.82	
199.95	5.62	282.84	3.17	
200.94	5.93	285.00	1.32	
201.95	2.35	290.87	10.97	
210.94	1.09	291.87	2.31	
211.95	9.87	292.87	22.20	
212.95	3.39	293.87	3.20	
213.94	10.01	294.87	11.22	
214.95	1.75	295.87	1.37	
217.86	5.98	296.81	4.97	
218.87	9.95	297.81	1.58	
219.86	13.38	298.78	13.34	
220.87	16.17	299.81	4.54	
221.86	7.41	300.78	13.61	
222.87	7.51	301.81	4.04	
224.37	0.27	302.78	4.32 1 FF	
224.80	1,33	303.78	1.00	
220.37	23.01	304.31	0.00	
225.87	4.01	304.81	1.02	
226.37	34.19	305.28	13.47	
226.87	4.89	305.78	1.62	
227.37	22.20	300.20	1 10	
227.87	3.07	300.78	1.19	
220.07	0.20	307.20	12.07	
229.00	0.40	307.70	1.30	
230.07	4.00	308.28	9.77	
232.80	9.28	309.81	2.11	
233.86	9.30	310 78	6 61	
234.91	5.91	311.81	6.72	
239.28	3.29	312.81	7.60	
239.86	4.37	318.81	6.59	
240.34	2.73	314.78	2.50	
240.52	2.34	315.81	2.16	
240.87	1.65	318.31	1.98	
241.19	2.02	318.84	1.42	
241.39	1.48	319.28	4.33	
241.87	2.05	319.78	2.15	
263.84	1.07	320.28	5.96	
264.84	5.57	320.81	3.87	
265.34	1.59	321.28	4.15	
265.84	11.98	321.81	2.05	
266.34	2.62	322.28	1.70	
266.84	11.83	322.81	1.17	
267.31	2.29	325.81	1.30	
267.84	6.47	327.81	3.56	
268.31	1.10	329.81	3.34	
268.87	1.62	331.78	1.01	
274.78	2.20	335.03	1.40	
276,78	1.93	300.78	2.00	
211,84	2.97 15 70	001.10 959 90	10.00	
2 (0.04	10.70 9 AQ	358 79	2.12 44 51	
219.34 970 QA	2.00 29.26	359.78	5.86	
219.04	3.83	359 78	72.53	
280.84	28.42	360.28	9.16	
		-		

TABLE H3. TABULATED MASS SPECTRUM FOR NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 4) (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mass	Relative Abundance (percent of base peak)	Mass	Relative Abundance (percent of base peak)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		69.06	533.69	3.71
361.76 41.37 555.69 1.59 362.28 5.40 557.69 8.03 362.75 14.00 558.69 1.14 362.82 1.73 559.69 2.40 369.81 1.55 561.69 2.40 371.81 4.27 562.62 2.10 372.81 1.57 563.69 7.79 373.81 4.60 564.69 1.08 374.81 1.31 565.69 1.62 375.78 2.24 608.62 4.18 376.72 2.21 616.62 9.75 377.72 2.01 611.62 1.44 376.72 2.21 616.62 9.74 380.72 1.29 616.65 9.71 381.72 7.60 612.62 1.29 379.72 3.21 615.66 3.971 381.72 2.12 616.66 3.971 382.72 1.28 641.62 2.474 389.72 4.49 636.62 2.11 384.72 1.28 641.62 3.24 392.72 1.28 641.62 3.24 392.72 1.28 641.62 2.61 399.73 1.00 643.54 2.61 399.74 1.00 643.54 2.61 399.75 1.00 643.64 3.07 400.75 1.56 72.50 8.17 397.75 1.00 633.67 1.267 400.75 1.56 72.50 8.63	361.25	9.09	535.69	2.05
362.28 5.40 557.69 8.03 362.75 14.00 558.69 1.14 363.28 1.73 559.69 15.53 363.78 1.85 560.69 2.40 368.81 1.51 561.69 15.47 371.81 4.27 562.62 2.10 372.81 1.57 563.69 7.79 373.81 4.60 564.69 1.08 374.81 1.31 565.69 1.62 375.78 2.24 608.62 4.18 376.72 2.21 610.62 9.75 377.772 2.01 611.62 1.44 378.72 7.60 612.62 1.299 379.72 3.21 616.66 3.90 389.72 4.49 639.62 2.11 384.72 1.88 637.62 2.11 387.77 1.16 638.62 4.74 389.72 4.49 639.62 2.19 391.72 6.68 640.56 6.88 392.72 1.28 641.62 3.16 399.81 4.78 613.56 3.16 400.78 1.39 716.65 3.07 400.78 1.39 716.60 8.17 400.75 1.56 72.50 18.61 400.75 1.88 62.62 3.16 40.75 1.81 44.62 3.10 399.72 1.84 77.60 8.17 400.78 1.39 71.65 3.66 <td>361.78</td> <td>41.37</td> <td>555.69</td> <td>1.59</td>	361.78	41.37	555.69	1.59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	362.28	5.40	557.69	8.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	362.75	14.00	558,69	1.14
368, 781.86 $560, 69$ 2.40 $372, 81$ 1.51 $561, 69$ 1.6.47 $372, 81$ 1.57 $562, 62$ 2.10 $372, 81$ 1.57 $563, 69$ 1.62 $374, 81$ 1.31 $565, 69$ 1.62 $374, 81$ 1.31 $565, 69$ 1.62 $376, 72$ 2.21 $610, 62$ 9.75 $377, 72$ 2.01 $611, 62$ 1.44 $378, 72$ 7.60 $612, 62$ 1.54 $380, 72$ 1.59 $614, 56$ 9.71 $381, 72$ 7.12 $613, 62$ 1.54 $380, 72$ 1.59 $614, 56$ 9.71 $381, 72$ 7.32 $636, 62$ 2.11 $384, 72$ 1.88 $637, 62$ 1.21 $387, 77$ 1.16 $638, 62$ 4.74 $389, 72$ 4.49 $639, 62$ 2.19 $391, 72$ 6.666.685.17 $392, 72$ 1.88641, 623.24 $393, 71$ 1.50643, 562.61 $399, 81$ 4.76613, 563.16 $400, 22$ 1.44715, 5620, 74 $400, 78$ 1.39716, 503.07 $401, 21$ 1.39716, 503.07 $401, 22$ 1.31717, 5060.31 $400, 75$ 1.56725, 501.861 $40, 75$ 1.56725, 501.861 $40, 75$ 1.56775, 501.861 $40, 75$ 1.56775, 501.861 $40, 75$ 1.57735, 501.861<	363.28	1.73	559.69	15.53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	363.78	1.85	560.69	2.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	369.81	1.51	561.69	15.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	371.81	4.27	562.62	2.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	372.81	1.57	563.69	1.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	373.81	4.00	004.09 565.60	1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	374.81 275 79	1.31	000.09 608.69	1.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	376 79	2.24	610.62	4.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	377 72	2.21	611.62	1 44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	378 72	7.60	612.62	12.99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	379.72	3.21	613.62	1.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	380.72	11.59	614.56	9.71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	381.72	2.12	616.56	3.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	382.72	7.32	636.62	2.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	384.72	1.88	637.62	1.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	387.37	1.16	638.62	4.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	389.72	4.49	639.62	2.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	391.72	6.68	640.56	6.88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	392.72	1.28	641.62	3.24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	393.72	3.82	642.56	5.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	397.78	1.50	643.56	2.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	399.25	1.81	644.62	2.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	399.81	4.78	613.56	3.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400.22	1.44	715.56	20.74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400.78	1.39	716.50	3.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	401.22	1.31	717.50	017
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	401.81	4.72	710.50	0.17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.78	2.04	719.00	19.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	405.12	2.07	720.00	98.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400.13	2.59	727.50	12 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	401.13	2.08	723.50	57 17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400.10	2.01	724 50	7 65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	410 75	1.30	725.50	18.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	448.75	4.07	726.50	2.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	450.75	14.28	727.50	2.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	451.75	1.94	799.44	1.44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	452.75	21.38	801.44	1.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	453.75	2.80	873.37	2.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	454.72	14.57	875.37	10.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	455.75	1.95	876.37	1.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	456.69	6.95	877.37	25.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	458.66	0.94 6 E7	010.37	3.23 36 94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400.00	0.0/ 9.00	018.01 880 97	5 1 1
476.75 3.55 661.37 30.22 480.75 4.83 882.37 4.59 481.75 1.10 883.37 24.10 482.72 3.66 884.37 3.32 484.75 1.08 885.37 9.82 531.69 4.17 886.37 1.44 532.69 1.12 887.37 2.53	402.62 470 75	2.90	000.01 881 27	35.89
480.75 4.65 662.37 4.05 481.75 1.10 883.37 24.10 482.72 3.66 884.37 3.32 484.75 1.08 885.37 9.82 531.69 4.17 886.37 1.44 532.69 1.12 887.37 2.53	4/8.70 ADD 75	0.70 A QQ	001.01 889 27	A 59
482.72 3.66 884.37 3.32 484.75 1.08 885.37 9.82 531.69 4.17 886.37 1.44 532.69 1.12 887.37 2.53	400.75	1 10	883.37	24.10
484.75 1.08 885.37 9.82 531.69 4.17 886.37 1.44 532.69 1.12 887.37 2.53	401.70	3 66	884 37	3.32
531.69 4.17 886.37 1.44 532.69 1.12 887.37 2.53	484.75	1.08	885.37	9.82
532.69 1.12 887.37 2.53	531.69	4.17	886.37	1.44
	532.69	1.12	887.37	2.53

TABLE H3. TABULATED MASS SPECTRUM FOR NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 4) (Continued)

Decabromodiphenyl Oxide, NTP TR 309

FIGURE 13. MASS SPECTRUM OF NONABROMODIPHENYL OXIDE ISOMER (PEAK NO. 3)

Decabromodiphenyl Oxide, NTP TR 309

194

.

APPENDIX I

PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS

I. Studies Conducted at the Analytical Chemistry Laboratory

A. Preparation procedure

- Premix: Decabromodiphenyl oxide (309.9 ± 0.1 mg) was added directly to 200 g of Wayne Lab Blox[®] rodent feed. This premix was homogenized by rotation in a 1-quart, large-mouth, glass jar for 15 minutes on a ball-mill-type tumbler apparatus.
- 2. Bulk mixing: The above premix and 1,300 g more feed were mixed in a Patterson-Kelly® twin-shell blender with pin-type intensifier bar for a total of 15 minutes. The blender was loaded from the top of the shells as follows: 650 g of feed was poured in and allowed to settle and level at the bottom (vertex of the "V"); then the dry premix was poured in on top of the feed from each side; this layer was covered with the remaining 650 g of feed poured in from each side. After elapsed mixing times of 10 and 15 minutes, duplicate 5-g samples were removed from the top of each shell and the bottom trap of the blender for subsequent analysis.
- 3. Extraction and analysis: Each sample was placed in a 200-ml centrifuge bottle and triturated with 50 ml of nonstabilized tetrahydrofuran (high-performance liquid chromatography grade) for 30 seconds in a Brinkmann Polytron® high-speed blender. The mixture was placed in an ultrasonic vibratory bath for 2 minutes and centrifuged for 15 minutes. The supernatant solution was pipetted into a 100-ml volumetric flask. The feed residue was mixed with an additional 50 ml of tetrahydrofuran and treated again as described above. The combined supernatant solutions were brought to volume (100 ml) with additional tetrahydrofuran. After filtration through Millipore® (0.5 µ) filters, the sample extract solutions were analyzed by the high-performance liquid chromatographic system described below.

Instrument: Waters Programmable Component System Column: μBondapak C₁₈, 300 mm × 4 mm, ID Column temperature: Ambient Solvent: 100% Methanol, 1 ml/min Detection: Ultraviolet, 254 nm Retention time: 6.5 min

4. Quality control: Two blank (undosed) feed samples and three individually spiked mixtures (at the 200-ppm concentration) were extracted and prepared for analysis in the manner described above for the test samples. No interference from feed was found at the retention time of decabromodiphenyl oxide in the chromatograms. Chromatographic detector linearity was determined with standard solutions of the study chemical in tetrahydrofuran. A standard curve, from which the decabromodiphenyl oxide content of the test sample extracts was determined, was also constructed from these standard solutions. The stability of the test solutions and the chromatographic system was monitored throughout the analysis by periodic injections of the 11 µg/ml standard solution.

B. Homogeneity

1. Results

Sample <u>Location</u>	Sampling <u>Time (min)</u>	Average Concentration (ppm) Found in Formulated Diet (a,b)
Right	10	229 ± 12
Left	10	245 ± 14
Bottom	10	209 ± 11
Right	15	198 ± 11
Left	15	225 ± 12
Bottom	15	205 ± 11

(a) Corrected for a spiked recovery yield of 88% \pm 3(δ)%. The target concentration of chemical in feed was 206.6 \pm 0.6 ppm.

(b) Error values are average deviations obtained in the instrumental measurements of the test solutions.

2. Conclusion: Decabromodiphenyl oxide mixed with stock rodent feed at the 200-ppm concentration was found more homogenous when mixed for 15 minutes (rather than 10 minutes) in a Patterson-Kelly[®], 4-quart, twin-shell blender with a pin-type intensifier bar.

C. Stability

- 1. Sample mixing and storage: A stock solution of decabromodiphenyl oxide in nonstabilized high-performance liquid chromatography grade tetrahydrofuran (0.2418 mg/ml) was prepared, and 5 ml of this solution was added to individual 5-g samples of Wayne Lab-Blox[®] rodent feed. The tetrahydrofuran was then removed from the samples on a rotary evaporator (30 minutes, 25° C water bath temperature). The dried samples were stored, in duplicate, at -20° , 5°, 25°, and 45° C for 2 weeks.
- 2. Extraction and analysis: Each stability sample was quantitatively transferred to a 200-ml centrifuge bottle and extracted according to the procedure described in section I.A.3. An aliquot (5 ml) of each extract solution was filtered through a 0.5-µ Millipore[®] filter and then analyzed by the same high-performance liquid chromatographic system described in section I.A.3.
- **3. Quality control:** Undosed feed samples and individual samples (at the 200-ppm concentration) were extracted and prepared for analysis in the manner described for the test samples. The blank showed no feed interference.

4. Results

<u>Storage Temperature</u>	Average Concentration (ppm) Chemical <u>Found in Formulated Diet (a,b)</u>
– 20° C	249 ± 14
5° C	244 ± 14
25° C	242 ± 13
45° C	221 ± 12

(a) Corrected for a spiked recovery yield of 88% \pm 3(8)%. The target concentration of chemical in feed was 242 \pm 5 ppm.

 $(b)\ Error values are average deviations obtained in the instrumental measurements of the test solutions$

5. Conclusion: Decabromodiphenyl oxide mixed with stock rodent feed at 240 ppm was found to be stable over a 2-week storage period at temperatures of 25° C and below. Samples stored for 2 weeks at 45° C showed slight but significant loss of major component.

II. Studies Conducted at the Study Laboratory

A. Preparation: Decabromodiphenyl oxide was weighed and mixed with a small amount of feed for 2 minutes. The premix was transferred to a Hobart[®] mixer with 5 kg of NIH 07 Rat and Mouse Ration and mixed for 1 minute/kg of feed. This mixture was transferred to a Patterson-Kelley[®] twin-shell blender with the required amount of feed and mixed for 1 min/kg of feed.

B. Homogeneity

A 5-g sample in a 50-ml test tube was extracted with 40 ml of tetrahydrofuran for 10 minutes on a horizontal shaker. The sample was centrifuged at 2,500 rpm for 15 minutes, and the supernatant was transferred to a 125-ml Erlenmeyer flask. The feed residue was extracted again with 40 ml of tetrahydrofuran. The combined extracts were filtered through Whatman #1 filter paper into a 100-ml volumetric flask. The solutions were brought to volume with tetrahydrofuran. Dilutions from 1:2 to 1:10 were made in order to inject 10-µl aliquots into the high-performance liquid chromatograph under the following conditions:

Instrument: Waters Model 6000A high-performance liquid chromatograph with U6K injector linked to a Waters Data Module System Column: μ Bondapak C₁₈, 300 mm \times 25 mm Solvent: Water:acetonitrile (90:10), 1 ml/minute Detection: Waters 440 model, ultraviolet, 254 nm Retention time: 15.29 min for major peak

All feed samples were analyzed in duplicate, including control feed. Samples were quantitated against a standard of decabromodiphenyl oxide by the Data Module Integration System.

2. Results

Sample Location	Target Concentration (ppm)	Determined Concentration (ppm)	Determined Concentration as Percent of Target Concentration (wt/wt)
Top left	25,000	24,600	98.4
Top right	25,000	24,500	98.0
Bottom	25,000	23,800	95.2
Top left	50,000	47,900	95.8
Top right	50,000	51,300	102.6
Bottom	50,000	48,700	97.4

C. Conclusion: The homogeneity of both mixes was excellent. All results were within specifications $(\pm 10\%)$.

Decabromodiphenyl Oxide, NTP TR 309 24

200

APPENDIX J

METHODS OF ANALYSIS OF FORMULATED DIETS

I. Study Laboratory

A. Preparation and analysis of dosed feed samples:

A 5-g sample of feed was weighed in duplicate and transferred into 50-ml test tubes containing 40 ml of tetrahydrofuran. The test tubes were shaken on a horizontal shaker for 10 minutes or ultrasonicated for 2 minutes. The samples were centrifuged at 2,500 rpm for 15 minutes, and the supernatant was transferred to a 125-ml Erlenmeyer flask. The feed was reextracted with 40 ml of tetrahydrofuran, shaken, and centrifuged as above. The extracts were combined and filtered through Whatman #1 filter paper into a 100-ml volumetric flask. The samples were diluted to 1:50 or 1:100 for injection.

Instrument parameters

Instrument: Waters Data Module System, equipped with 6000A pump and U6K injector Detector: Waters Model 440, ultraviolet, 254 nm Column: Waters µBondapak C_{18} , 300 mm \times 3.9 mm Solvent: 10% water:90% acetonitrile, isocratic, 1 ml/min Retention time: 14 min for major peak

B. Preparation and analysis of spiked feed samples: Appropriate amounts of decabromodiphenyl oxide were weighed into 5-g aliquots of feed to obtain final concentrations similar to the levels to be analyzed. The spiked feed samples were processed simultaneously with the dosed feed samples.

II. Analytical Chemistry Laboratory

- A. Preparation of spiked feed standards: Two standard solutions of decabromodiphenyl oxide were prepared independently in high-performance liquid chromatography (HPLC) grade tetrahydrofuran. These solutions were diluted with tetrahydrofuran to make six standards. Aliquots (100 ml) of the six standard solutions were pipetted into individual 200-ml centrifuge bottles containing 10 g of undosed feed to make spiked feed standards bracketing the specified concentration range of the referee sample. One 200-ml centrifuge bottle containing 10 g of undosed feed with 100 ml of tetrahydrofuran for use as a blank. The spiked feeds and the feed blank were sealed and allowed to stand overnight at room temperature before analysis.
- **B.** Preparation of the referee sample: Triplicate weights of the referee feed sample (~10 g weighed to the nearest 0.01 g) were transferred to individual 200-ml centrifuge bottles. HPLC-grade tetrahydrofuran (100 ml) was pipetted into each sample; then the bottles were sealed and allowed to stand overnight at room temperature before analysis.
- C. Analysis: Feed samples (10 g treated with 100 ml of tetrahydrofuran in 200-ml centrifuge bottles) were placed on a Burrell Model 75 Wrist-Action® shaker and were shaken at maximum stroke for 20 minutes. The extraction mixtures were centrifuged for 10 minutes; then 3-ml aliquots of the supernatant solutions were diluted to 50 ml with tetrahydrofuran and thoroughly mixed. The solutions were filtered through a 0.5-µ Millipore® filter, and the decabromodiphenyl oxide content of the filtrate was determined by the high-performance liquid chromatography analysis described below.

Instrument parameters

Instrument: Waters Data Module System, equipped with 6000A pump and U6K injector Detector: Waters Model 440, ultraviolet, 254 nm, 0.5 AUFS Column: Waters μBondapak C₁₈ (3.9 mm × 300 mm, ID) Solvent: 100% methanol, 1 ml/min Volume injected: 15 μl Retention time: 3.6 min

The amount of decabromodiphenyl oxide in the referee sample was determined from the linear regression equation computed for the standard data, using peak area measurements and the amount of decabromodiphenyl oxide added to the spiked feed standards.

D. Quality Assurance: The referee feed sample was analyzed in triplicate, and the undosed feed sample was analyzed once. For calibration, six spiked feed standards bracketing the specified concentration range of the referee sample were made from two independently prepared standard solutions. Triplicate injections of each standard and sample solution were made into the liquid chromatograph in a randomized order.

Decabromodiphenyl Oxide, NTP TR 309 204

APPENDIX K

RESULTS OF ANALYSIS OF FORMULATED DIETS

	Concentration of Decabromodiphenyl Oxide in Feed (ppm)		
Date Mixed	Target	Determined	
02/06/79	3,100	2,850	
	3,100	2,850	
	3,100	3,140	
	6,300	(b) 5,440	
	12,500	(b) 14,180	
	25,000	(c) 27,590	
	50,000	59,800	
	50,000	52,490	
	50,000	52,000	
02/27/7 9	6,300	(d) 6,890	
	6,300	(d) 6,450	
	12,500	(d) 12,500	
	12,500	(d) 12,500	

TABLE K1. RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE THIRTEEN-
WEEK FEED STUDIES OF DECABROMODIPHENYL OXIDE (a)

(a) Results of duplicate analysis

(b) Sample out of specification; remixed.(c) Sample out of specification; not remixed.

(d) Remix

TABLE K2. RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE (a)

	Determined Concentration for Target Concentration of				
Date Mixed	25,000 ppm	50,000 ppm			
07/08/80	24.300	50,000			
07/24/80	24,655	51,600			
07/31/80		46.050			
08/21/80	22,550	,			
11/06/80	25,000	49.200			
12/31/80	23,300	46,800			
01/29/81	22,270	46 500			
04/02/81	22.750	48.050			
10/08/81	26.050	48.050			
12/10/81	24,600	50,950			
01/28/82	23,150	48,250			
03/18/82	24,350	51,300			
05/06/82	26.450	53,600			
06/24/82	26.000	50,600			
08/19/82	22,650	47,950			
Experimental mean	24.148	49.207			
Standard deviation	1.403	2.206			
Coefficient of variation (percent)	5.8	4.5			
Range	22.270-26.450	46.050-53.600			
Number of samples	14	14			

(a) Results of duplicate analysis

		Determined Concentration				
Date Mixed	Target Concentration (ppm)	Study Laboratory	Analytical Laboratory			
07/24/80	50,000	51,600	49,660			
04/02/81	25,000	22,750	25,200			
12/10/81	50,000	50,950	51,900			
06/24/82	50,000	50,600	50,200			
08/19/82	25,000	22,650	25,800			

TABLE K3. RESULTS OF REFEREE ANALYSIS OF FORMULATED DIETS IN THE TWO-
YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

Decabromodiphenyl Oxide, NTP TR 309 208

•

APPENDIX L

SENTINEL ANIMAL PROGRAM

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen $B6C3F_1$ mice and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group are killed at 6, 12, and 18 months on study. Data from animals surviving 24 months are collected from 5/50 randomly selected control animals of each sex and species. The blood from each animal is collected and clotted, and the serum is separated. The serum is cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests are performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	ELISA
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai (6, 12, 18 mo)	M.Ad. (mouse adenovirus) LCM (lymphocytic choriomeningitis virus) MHV (6,12 mo) Sendai (24 mo)	MHV (mouse hepatitis virus) (18, 24 mo)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai (6, 12, 18 mo)	RCV (rat coronavirus) Sendai (24 mo)	

II. Results

Results are presented in Table L1.

TABLE L1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE (a)

	Interval (months)	No. of Animals	Positive Serologic Reaction for
Rats	6		None positive
	12	9/10	RCV
	18	2/3 5/10	RCV KRV
	24	4/10	Sendai
Mice	6		None positive
	12		None positive
	18		None positive
	24		None positive

(a) Blood samples were taken from sentinel animals at 6, 12, and 18 months after the start of dosing and from the control animals just before they were killed; samples were sent to Microbiological Associates, Inc. (Bethesda, MD) for the Animal Disease Screening Program.

.

Decabromodiphenyl Oxide, NTP TR 309 212

APPENDIX M

FEED AND COMPOUND CONSUMPTION BY RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF DECABROMODIPHENYL OXIDE

Control		25,000 ppm				5 0.000 mag				
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body Weight (grams)	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b)	Dose/ Day (c)
1	15	208	18	209	1.2	2,153	16	207	1.1	3,865
2	17	236	17	236	1.0	1,801	17	238	1.0	3,571
3	17	259	18	260	1.1	1,731	18	259	1,1	3,475
4	17	276	18	281	1.1	1,601	19	279	1.1	3,405
5	16	291	17	295	1.1	1,441	17	294	1.1	2,891
6	17	305	17	308	1.0	1,380	17	307	1.0	2,769
7	16	317	19	320	1.2	1,484	17	317	1.1	2,681
8	16	329	19	331	1.2	1,435	17	328	1.1	2,591
9	15	339	16	344	1.1	1,163	16	339	1.1	2,360
. 10	15	347	16	352	1.1	1,136	16	348	1.1	2,299
11	16	354	16	359	1.0	1,114	16	353	1.0	2,266
12	15	361	16	372	1.1	1,075	16	361	1.1	2,216
17	19	389	18	400	0.9	1,125	18	392	0.9	2,296
21	16	412	17	416	1.1	1,022	18	413	1.1	2,179
25	14	424	15	431	1.1	870	15	422	1.1	1,777
29	17	431	17	440	1.0	966	17	429	1.0	1,981
33	16	438	17	450	1.1	944	18	441	1.1	2,041
37	17	447	18	447	1.1	1,007	18	438	1.1	2,055
41	18	435	18	438	1.0	1,027	20	426	1.1	2,347
45	16	447	18	449	1.1	1,002	17	441	1.1	1,927
49	15	444	16	443	1.1	903	17	441	1.1	1,927
53	15	452	16	456	1.1	877	17	448	1.1	1,897
57	15	449	16	451	1.1	887	16	444	1.1	1,802
61	17	452	18	453	1.1	993	16	445	0.9	1,798
65	16	456	18	449	1.1	1.002	18	452	1.1	1.991
69	12	449	17	440	1.4	966	18	443	1.5	2,032
73	15	452	15	449	1.0	835	16	448	1.1	1.786
77	14	449	16	449	1.1	891	17	451	1.2	1.885
81	14	449	19	442	1.4	1.075	15	441	1.1	1.701
85	16	445	16	440	1.0	909	15	434	0.9	1.728
89	13	436	15	436	1.2	860	15	429	1.2	1.748
93	12	423	17	430	1.4	988	16	419	1.3	1,909
97	12	413	13	412	1.1	789	13	408	1.1	1,593
101	14	413	15	400	1.1	938	16	395	1.1	2,025
103	13	404	16	396	1.2	1.010	16	395	1.2	2,025
104	13	402	14	397	1.1	882	13	389	1.0	1,671
Mean	15.3	390	16.7	391	1.1	1,119	16.6	387	1.1	2,236
SD(d)	1.7		1.4		0.1	311	1.4		0.1	575
CV (e)	11.1		8.4		9.1	27.8	8.4		9.1	25.7

TABLE M1. FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE TWO-YEAR FEEDSTUDY OF DECABROMODIPHENYL OXIDE

(a) Grams of feed removed from feed hopper per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of decabromodiphenyl oxide consumed per day per kilogram of body weight
(d) Standard deviation

(e) Coefficient of variation = (standard deviation/mean) \times 100
Co		rol		25.00) ppm		50.000 ppm			
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body Weight (grams)	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b)	Dose/ Day (c)
1	10	139	11	139	1.1	1,978	11	138	1.1	3,986
2	11	150	11	151	1.0	1,821	11	150	1.0	3,667
3	10	159	11	159	1.1	1,730	11	157	1.1	3,503
4	11	168	13	169	1.2	1,923	14	167	1.3	4,192
5	10	173	10	174	1.0	1,437	11	.173	1.1	3,179
6	10	179	11	182	1.1	1,511	12	177	1.2	3,390
7	10	185	11	186	1.1	1,478	11	184	1.1	2,989
8	10	191	10	191	1.0	1,309	11	188	1.1	2,926
9	10	195	10	196	1.0	1,276	10	192	1.0	2,604
10	10	199	10	198	1.0	1,263	11	198	1.1	2,778
11	11	202	10	199	0.9	1,256	11	198	1.0	2,778
12	9	204	10	205	1.1	1,220	11	203	1.2	2,709
17	10	217	10	214	1.0	1,168	10	209	1.0	2,392
21	10	223	10	219	1.0	1,142	11	217	1.1	2,535
25	9	228	10	227	1.1	1,101	10	223	1.1	2,242
29	11	233	10	229	0.9	1,092	11	227	1.0	2,423
33	10	238	10	234	1.0	1,068	11	234	1.1	2,350
37	11	244	12	240	1.1	1,250	12	239	1.1	2,510
41	11	246	11	240	1.0	1,146	12	240	1.1	2,500
45	11	252	12	251	1.1	1,195	12	247	1.1	2,429
49	12	256	12	255	1.0	1,176	12	254	1.0	2,362
53	12	269	12	268	1.0	1,119	13	268	1.1	2,425
57	12	278	12	276	1.0	1,087	12	272	1.0	2,206
61	12	288	15	286	1.3	1,311	13	283	1.1	2,297
65	13	299	12	297	0.9	1,010	13	294	1.0	2,211
69	12	307	12	303	1.0	990	13	297	1.1	2,189
73	12	315	12	315	1.0	952	13	309	1.1	2,104
77	13	327	12	324	0.9	926	13	314	1.0	2,070
81	12	331	12	327	1.0	917	13	324	1.1	2,006
85	12	337	13	332	1.1	979	13	327	1.1	1,988
89	11	341	12	335	1.1	896	13	329	1.2	1,976
93	11	338	11	334	1.0	823	13	322	1.2	2,019
97	11	338	12	330	1.1	909	12	319	1.1	1,881
101	12	333	11	328	0.9	838	13	318	1.1	2,044
103	11	329	13	334	1.2	973	14	322	1.3	2,174
104	9	333	12	336	1.3	893	12	320	1.3	1,875
vlean	10.9	251	11.3	250	1.0	1.199	11.9	245	1.1	2,553
SD (d)	1.1		1.2		0.1	296	1.1		0.1	588
2V (e)	10.1		10.6		10.0	24.7	9.2		9.1	23.0

TABLE M2. FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE TWO-YEAR FEEDSTUDY OF DECABROMODIPHENYL OXIDE

(a) Grams of feed removed from feed hopper per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of decabromodiphenyl oxide consumed per day per kilogram of body weight

(d) Standard deviation

(e) Coefficient of variation = (standard deviation/mean) \times 100

	Cont	Control		25,000 ppm				50,000 ppm			
	Grams	Body	Grams	Body	Low/	Dose/	Grams	Body	High/	Dose/	
Week	Feed/ Day (a)	Weight (grams)	Feed/ Day (a)	Weight (grams)	Control (b)	Day(c)	Feed/ Day (a)	Weight (grams)	Control (b)	Day (c)	
	4	29.4	5	27.9	1.3	4.480	5	29.3	1.3	8.532	
2	4	30.6	4	29.7	1.0	3.367	4	29.7	1.0	6.734	
3	4	30.9	5	30.2	1.3	4.139	5	30.6	1.3	8.170	
4	4	32.0	5	31.6	1.3	3,956	4	32.1	1.0	6,231	
5	5	31.8	4	31.5	0.8	3,175	5	31.5	1.0	7,937	
6	4	33.2	4	32.3	1.0	3,096	4	31.6	1.0	6,329	
7	4	34.0	5	33.3	1.3	3,754	4	33.4	1.0	5,988	
8	4	34.8	2	33.6	0.5	1,488	4	34.1	1.0	5,865	
9	4	34.7	4	35.1	1.0	2,849	4	34.0	1.0	5,882	
10	5	35.4	5	34.1	1.0	3,666	5	34.2	1.0	7,310	
11	4	35.2	4	34.5	1.0	2,899	5	34.7	1.3	7,205	
12	4	35.6	4	35.2	1.0	2,841	5	35.1	1.3	7,123	
16	4	36.5	4	36.5	1.0	2,740	4	35.9	1.0	5,571	
20	4	36.9	4	36.4	1.0	2,747	4	35.9	1.0	5,571	
24	5	37.0	5	36.4	1.0	3,434	5	36.2	1.0	6,906	
28	5	38.5	5	38.4	1.0	3,255	5	37.3	1.0	6,702	
32	5	39.9	5	40.1	1.0	3,117	5	39.0	1.0	6,410	
36	4	39.0	4	41.0	1.0	2,439	5	40.0	1.3	6,250	
40	6	40.4	4	41.1	0.7	2,433	5	39.6	0.8	6,313	
42	5	41.0	5	41.0	1.0	3,049	5	40.0	1.0	6,250	
44	D E	40.Z	ð	41.7	1.0	2,998	5	40.8	1.0	6,127	
40	5 6	41.0	4	41.7	0.8	4,090	5	40.8	1.2	1,000	
40 50	5	41.0	4	43.0	0.7	2,020	0 5	42.0	0.8	0,902 6 098	
52	4	39.6	- 1 5	41.0	1.3	2,400	5	41.0	1.0	6 083	
54	6	41 2	4	41.3	0.7	9 491	5	39.8	0.8	6 281	
56	5	40.0	5	41.0	1.0	3 019	4	40.4	0.8	4 950	
58	5	40.0	ő	41.5	1 2	3 614	4	41.5	0.0	4,800	
60	5	40.7	5	42.1	1.0	2 969	4	41.0	0.8	4 854	
62	5	40.1	Ă	41.3	0.8	2 421	5	41.1	1.0	6.083	
64	Å.	40.9	4	41.6	1.0	2 404	4	41.1	1.0	4,866	
66	5	40.0	6	39.0	1.2	3.846	5	40.0	1.0	6.250	
68	5	40.0	6	39.7	1.2	3.778	6	39.6	1.2	7.576	
70	5	39.0	6	39.0	1.2	3,846	6	39.0	1.2	7,692	
72	6	38.6	7	39.9	1.2	4,386	6	38.8	1.0	7,732	
74	7	39.3	6	39.7	0.9	3,778	6	39.3	0.9	7,634	
76	6	38.3	6	39.5	1.0	3,797	6	38. 9	1.0	7,712	
80	6	40.0	6	39.0	1.0	3,846	6	39.0	1.0	7,692	
84	6	39.0	6	39.0	1.0	3,846	6	38.0	1.0	7,895	
88	5	39.1	5	38.8	1.0	3,222	5	39.5	1.0	6,329	
92	5	40.0	6	40.0	1.2	3,750	5	39.0	1.0	6,410	
96	5	40.0	5	39.0	1.0	3,205	5	38.0	1.0	6,57 9	
100	5	38.0	5	38.0	1.0	3,289	6	37.0	1.2	8,108	
102 103	5 9	37.0 37.0	5 5	38.0 38.0	1.0 0.6	3,289 3,289	5 6	37.0 38.0	1.0 0.7	6,757 7,895	
	5.0	37 7	<u>م م</u>	27 8	1.0	3 202	5.0		1.0	6 645	
nean (d)	1.0	91.1	Ο Λά	0110	0.9	695	0.0	01.0	0.1	955	
	1.0		0.0		v.4	040	0.1		U.1	000	

TABLE M3. FEED AND COMPOUND CONSUMPTION BY MALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE

(a) Grams of feed removed from feed hopper per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of decabromodiphenyl oxide consumed per day per kilogram of body weight

(d) Standard deviation

(e) Coefficient of variation = (standard deviation/mean) \times 100

TABLE M4. FEED AND COMPOUND CONSUMPTION BY FEMALE MICE IN THE TWO-YEAR FEED STUDY OF DECABROMODIPHENYL OXIDE

	Control			125 ppm				500 ppm			
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body Weight (grams)	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b)	Dose/ Day (c)	
1	6	21.7	6	21.7	1.0	6,912	6	21.6	1.0	13,889	
2	6	22.7	5	22.5	0.8	5,556	5	22.6	0.8	11,062	
3	6	23.4	5	23.1	0.8	5,411	5	22.7	0.8	11,013	
4	5	23.8	5	24.0	1.0	5,208	5	23.7	1.0	10,549	
5	6	24.2	5	24.4	0.8	5,123	5	24.0	0.8	10,417	
6	5	25.1	5	24.9	1.0	5,020	5	24.5	1.0	10,204	
7	6	25.9	5	25.8	0.8	4,845	6	24.7	1.0	12,146	
8	5	25.7	6	25.9	1.2	5,792	6	25.2	1.2	11,905	
9	5	26.5	5	26.6	1.0	4,699	5	26.0	1.0	9,615	
10	5	27.7	5	27.0	1.0	4,630	5	26.7	1.0	9,363	
11	6	27.3	5	27.2	0.8	4,596	5	26.7	0.8	9,363	
12	5	28.1	5	27.4	1.0	4,002	5	27.0	1.0	9,209	
16	5	28.9	õ	28.4	1.0	4,401	5	28.0	1.0	0,141	
20	5	30.1	5	30.4	1.0	4,112	5	30.5	1.0	0,197	
24	6	30.3	້	30.7	0.8	4,072	5	30.9	0.8	0,001	
28	5	32.7	5	32.5	1.0	3,840	5	32.0	1.0	7,022	
32	5	34.6	5	34.8	1.0	3,592	0	34.9	1.0	7,103	
36	6	36.0	5	37.0	0.8	3,378	6	37.0	1.0	0,100	
40	õ	35.7	5	37.6	1.0	3,324	0 F	37.7	1.0	0,031	
42	5	38.0	5	36.0	1.0	3,472	0	39.0	1.0	6,410 5 019	
44	5	37.5	õ	38.0	1.0	3,289	4	39.9	0.8	5,013	
40	Ð	38.9	ອ	39.0	1.0	3,205	5	39.0	1.0	6,410	
40	0 5	38.0	0 F	39.0	1.0	3,200	0 E	40.0	1.0	6,200	
50	5	38.0	5	39.0	1.0	3,200	5	30.0	1.0	6,579	
54	5	30. 5 20 1	4 5	40.3	0.0	2,401	5	39.4	1.0	6 345	
56	5	207	5	30.0	1.0	3,034	5	40 1	1.0	6 234	
50	5	39.7	5	39.9	1.0	3,133	5	40.1	1.0	6 234	
20	5	40.4	3	39.9	1.0	2 4 8 8	4	40.1	0.8	4 950	
64	5	40.7	· •	40.2	0.0	2,400	5	39.6	1.0	6 313	
04 66	5	20.0	4	40.7	0.0	2,407	5	40.0	1.0	6 250	
70	5	39.0	4 5	41.0	1.0	2,400	5	38.3	1.0	6 527	
74	5	39.4	5 5	40.7	1.0	3,071	5	387	1.0	6 460	
74	5	39.0	5	40.9	1.0	3,000	6	385	1.0	7 799	
20	5	39.3 A1 0	5	40.0	1.0	3,004	5	39.0	1.2	6 410	
84	5	41.0	5	41.0	1.0	2976	4	40.0	0.8	5,000	
88	5	42.6	4	42.0	0.8	2,342	5	40.9	1.0	6.112	
92	4	41.0	Ā	43.0	1.0	2,326	5	40.0	1.3	6.250	
96	6	41.0	5	44.1	0.8	2,834	5	41.0	0.8	6,098	
100	7	40.0	8	42.0	1.1	4,762	5	38.0	0.7	6,579	
102	6	42.0	5	43.0	0.8	2,907	5	43.0	0.8	5,814	
103	7	41.0	6	43.0	0.9	3,488	7	43.0	1.0	8,140	
	53	34.6	5.0	35.1	0.9	3.758	5.1	34.5	1.0	7.776	
D(d)	0.6	01.0	0.0	00.1	0 1	1.088	0.5	0 -10	0.1	2.145	
	0.0		0.1		V. 4	1,000	0.0		~	-,	

(a) Grams of feed removed from feed hopper per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of decabromodiphenyl oxide consumed per day per kilogram of body weight

(d) Standard deviation
(e) Coefficient of variation = (standard deviation/mean) × 100

Decabromodiphenyl Oxide, NTP TR 309 218

APPENDIX N

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Meal Diet: June 1980 to July 1982

(Manufactured by Zeigler Bros., Inc., Gardners, PA)

TABLE N1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

Ingredients (b)	Percent by Weight		
Ground #2 yellow shelled corn	24.50		
Ground hard winter wheat	23.00		
Soybean meal (49% protein)	12.00		
Fish meal (60% protein)	10.00		
Wheat middlings	10.00		
Dried skim milk	5.00		
Alfalfa meal (dehydrated, 17% protein)	4.00		
Corn gluten meal (60% protein)	3.00		
Soy oil	2.50		
Brewer's dried yeast	2.00		
Dry molasses	1.50		
Dicalcium phosphate	1.25		
Ground limestone	0.50		
Salt	0.50		
Premixes (vitamin and mineral)	0.25		

(a) NIH, 1978; NCI, 1976

(b) Ingredients should be ground to pass through a U.S. Standard Screen No. 16 before being mixed.

	Amount	Source	
Vitamins		. , , , , , , , , , , , , , , , , , , ,	
Α	5,500,000 IU	Stabilized vitamin A palmitate or acetate	
D_3	4,600,000 IU	D-activated animal sterol	
d-a-Tocopheryl acetate	20,000 IU		
Riboflavin	3.4 g		
Thiamine	10.0 g	Thiamine mononitrate	
Niacin	30.0 g		
d-Pantothenic acid	18.0 g	d-Calcium pantothenate	
Folic acid	2.2 g	•	
Pyridoxine	1.7 g	Pyridoxine hydrochloride	
B12	4,000.0 mcg		
Biőtin	140.0 mg	d-Biotin	
K ₃	2.8 g	Menadione activity	
Choline	560.0 g	Choline chloride	
Minerals			
Iron	120.0 g	Iron sulfate	
Manganese	60.0 g	Manganous oxide	
Zinc	16.0 g	Zincoxide	
Copper	4.0 g	Copper sulfate	
Iodine	1.4 g	Calcium iodate	
Cobalt	0.4 g	Cobalt carbonate	

TABLE N2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

(a) Per ton (2,000 lb) of finished product

Nutrient	Mean ± Standard Deviation	Range	Number of Samples
Crude protein (percent by weight)	24.20 ± 1.00	22.6-26.3	24
Crude fat (percent by weight)	5.02 ± 0.46	4.2-6.0	24
Crude fiber (percent by weight)	3.48 ± 0.41	2.4-4.3	24
Ash (percent by weight)	6.66 ± 0.41	5.97-7.42	24
Essential amino acids (percent of t	otal diet)		
Arginine	1.260	1.21-1.31	2
Cystine	0.395	0.39-0.40	2
Glycine	1.175	1.15-1.20	2
Histidine	0.553	0.530-0.576	2
Isoleucine	0.908	0.881-0.934	2
Leucine	1.905	1.85-1.96	2
Lysine	1.250	1.20-1.30	2
Methionine	0.310	0.306-0.314	2
Phenylalanine	0.967	0.960-0.974	2
Threonine	0.834	0.827-0.840	2
Tryptophan	0.175	0.171-0.178	Z
Tyrosine	0.587	0.566-0.607	Z
vallhe	1.085	1.05-1.12	2
Essential fatty acids (percent of tot	al diet)		
Linoleic	2.37		1
Linolenic	0.308		1
Arachidonic	0.008		1
Vitamins			
Vitamin A (IU/kg)	$11,087 \pm 1,723$	7,200-17,000	24
Vitamin D (IU/kg)	6,300		1
a-Tocopherol (ppm)	37.6	31.1-44.0	2
Thiamine (ppm)	18.8 ± 0.36	7.4-26.0	(b) 23
Riboflavin (ppm)	6.9	6.1-7.4	2
Niacin (ppm)	75	65-85	2
Pantothenic acid (ppm)	30.2	29.8-30.5	2
Pyridoxine (ppm)	7.2	5.6-8.8	2
Folic acid (ppm)	2.1	1.8-2.4	2
Vitamin B (nnh)	199	10.6 15.0	2
Choline (ppm)	3 315	3 200-3 430	2
Minerals	0,010	0,200 0,400	-
(alaium (normant)	1 97 + 0 10	0 91 1 6	94
Deschorus (percent)	1.27 ± 0.19 1 00 + 0.09	0.01-1.0	2** 94
Potossium (percent)	0.00 ± 0.08	0.772 0.846	24
Chloride (percent)	0.557	0 479-0 635	2
Sodium (nercent)	0.304	0 258-0 349	2
Magnesium (percent)	0.172	0 166-0 177	2
Sulfur (percent)	0.278	0.270-0.285	$\overline{2}$
Iron (ppm)	418	409-426	2
Manganese (ppm)	90.8	86.0-95.5	2
Zinc (ppm)	55.1	54.2-56.0	2
Copper (ppm)	12.68	9.65-15.70	2
lodine (ppm)	2.58	1.52-3.64	2
Chromium (ppm)	1.86	1.79-1.93	2
Cobalt (ppm)	0.57	0.49-0.65	2

TABLE N3. NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION (a)

(a) One or two batches of feed analyzed were manufactured in January and/or April 1983.
(b) One batch (7/22/81) not analyzed for thiamine.

.

TABLE N4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Contaminant	Mean ± Standard Deviation	Range	Number of Samples
Arsenic (ppm)	0.39 ± 0.17	0.13-0.93	24
Cadmium (ppm) (a)	<0.1		24
Lead (ppm)	1.09 ± 0.72	0.33-2.93	24
Mercury (ppm) (a)	< 0.05		
Selenium (ppm)	0.30 ± 0.07	0.16-0.48	24
Aflatoxins (ppb) (a, b)	<10		24
Nitrate nitrogen (ppm) (c)	8.50 ± 4.39	0.6-18.0	24
Nitrite nitrogen (ppm) (c)	2.05 ± 1.28	0.4-5.3	24
BHA (ppm) (d, e)	3.68 ± 2.71	0.4-11.0	24
BHT (ppm) (d)	2.65 ± 1.13	1.2-4.9	24
Aerobic plate count (CFU/g)	70.729 ± 49.351	7.000-210.000	21
Coliform (MPN/g) (f)	731 ± 880	<3-2.400	24
E. coli (MPN/g)	7.50 ± 7.68	<3-23	24
Total nitrosamines (pph) (g, h)	7 24 + 6 70	1 8.94 5	99
Total nitrosamines (nnh) (g, i)	17 03 + 28 20	1 8.101 6	22 9A
N-Nitrosodimethylamine (ppb) (g, i)	5 55 + 6 07	0.7.20.0	24
N-Nitrosodimethylamine (ppb) (g, f)	1329 ± 2686	0.7-99	22 9A
N-Nitrosopyrrolidine (ppb)	1.32 ± 0.81	0.3-3.5	24
Pesticides (ppm)			
a-BHC (a. 1)	< 0.01		94
B-BHC(a)	< 0.02		24
v-BHC-Lindane (a)	< 0.01		24
δ-BHC (a)	< 0.01		24
Heptachlor (a)	< 0.01		24
Aldrin (a)	< 0.01		24
Heptachlor epoxide (a)	< 0.01		24
DDE (a, m)	< 0.01	0.05 (7/14/81)	24
DDD(a)	< 0.01	,	24
DDT (a)	< 0.01		24
HCB (a)	< 0.01		24
Mirex (a)	< 0.01		24
Methoxychlor (a, m)	< 0.05	0.13 (8/25/81)	24
Dieldrin (a)	< 0.01		24
Endrin (a)	< 0.01		24
Telodrin (a)	<0.01		24
Chlordane (a)	< 0.05		24
Toxaphene (a)	<0.1		24
Estimated PCB's (a)	<0.2		24
Konnel (a)	< 0.01		24
Ethion (a)	< 0.02		24
Trithion (a)	< 0.05		24
Diazinon (a)	<0.1		24
Methyl parathion (a)	<0.02		24
Ethyl parathion (a)	<0.02		24
Malathion (n)	0.08 ± 0.05	<0.05-0.25	24
Endosulfan I (a)	<0.01		24
Engosultan II (a)	< 0.01		24
Endosulfan sulfate (a)	< 0.03		24

TABLE N4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION (Continued)

- (a) All values were less than the detection limit, given in the table as the mean.
- (b) Detection limit was reduced from 10 ppb to 5 ppb after 7/81.
- (c) Source of contamination: Alfalfa, grains, and fish meal
- (d) Source of contamination: Soy oil and fish meal
- (e) Two batches contained less than 0.5 ppm.
- (f) MPN = most probable number
- (g) All values were corrected for percent recovery.

(h) Mean, standard deviation, and range exclude two very high values of 101.6 and 100.3 ppb in batches produced on 1/26/81 and 4/27/81.

(i) Mean, standard deviation, and range include the very high values given in footnote h.

(j) Mean, standard deviation, and range exclude two very high values of 97.9 and 99 ppb in batches produced on 1/26/81 and 4/27/81.

- (k) Mean, standard deviation, and range include the high values given in footnote j.
- (1) BHC = hexachlorocyclohexane or benzene hexachloride
- (m) One observation was above the detection limit. The value and the date it was obtained are listed under the range.
- (n) Nine batches contained more than 0.05 ppm.

APPENDIX O

DISPOSITION OF DECABROMODIPHENYL OXIDE IN

F344/N RATS

I. Materials and Methods

A. Chemicals: Unlabeled decabromodiphenyl oxide was obtained from Fluka Chemical Corporation, Hauppauge, New York. No purity was specified. [U-14C]decabromodiphenyl oxide (lot no. 83-127-22-25), with a stated specific activity of 16.9 mCi/mmol (0.0176 mCi/mg), was supplied by Midwest Research Institute. No radiochemical purity was indicated.

The radiochemical purity of the ¹⁴C-decabromodiphenyl oxide used in the dosing solutions and formulated diets was assessed by high-performance liquid chromatography (HPLC) with a Waters Chromatograph equipped with a model 6000A pump, a model U6K injector, a model 440 absorbance detector, and a model 730 data module. The following conditions were used:

Sample: 0.010-0.020 ml of solution of ¹⁴C-decabromodiphenyl oxide in tetrahydrofuran (THF) Column: Nova-Pak C₁₈

Solvent: 93% methanol, 1 ml/min UV wavelength: 254 nm

The effluent was collected in vials, as a series of 1-ml samples, starting immediately after injection of the sample and continuing for 30 minutes. Samples were diluted with 15 ml of ScintiVerse I solution and assayed for radioactivity in a Packard Tricarb Scintillation counter. In this chromatographic system, decabromodiphenyl oxide had a retention time of 20-22 minutes. The percent purity was determined by dividing the disintegrations per minute (dpm) present in the major eluted peak by the total dpm eluted from the column. The radiochemical purity of ¹⁴C-decabromodiphenyl oxide was 97.9%-99.2%. Unlabeled decabromodiphenyl oxide was assayed similarly, except that the purity was calculated by dividing the area of the major UV peak by the total area of all peaks not in the chromatogram of the blank. Unlabeled decabromodiphenyl oxide was 92% pure, with other components eluting at 12.9 minutes (1%), 17.5 minutes (2%), and 22.5 minutes (5%).

To allow calculation of the specific activity of the ¹⁴C-decabromodiphenyl oxide in the dosing solutions and formulated diets, portions were added to the ScintiVerse I scintillation solution and assayed for radioactivity in a Packard Tri-Carb counter. Feed samples were combusted in a Packard 301 sample oxidizer before assay.

Solutions for intravenous injection were prepared at room temperature, with sonication as necessary, and used immediately after preparation. Rats were injected intravenously in the tail vein with 0.1 ml/100 g of body weight. To determine whether the preparations were homogenous and stable, the concentrations of decabromodiphenyl oxide in the dosing solutions and in the formulated diets were determined, before and after dosing, by HPLC analysis with the system described above, except that amounts of 0.003-0.020 ml were injected. The amount present in each sample was calculated from the area under the major UV-absorbing peaks by relating these values to those of a standard curve. To determine the amounts of decabromodiphenyl oxide in the batches of feed, the compound was extracted with THF before HPLC analysis.

B. Study animals: Seven- to eight-week old F344/N rats were purchased from Charles River Laboratories, Stoneridge, New York. The rats, housed five per cage in suspended, solidbottom, polycarbonate cages lined with hardwood chips, were quarantined for 3-13 days. Food and water were provided at all times, unless otherwise indicated. Before initiation of each feed study, three to six rats were killed, examined and found to have no evidence of ectoparasites or endoparasites and to have no gross abnormalities. For acclimation to the powdered diet, rats to be exposed by feeding were fed powdered chow for 3 days before day 1 of the feeding studies. On study day 1, rats in studies involving more than three animals were randomized by use of a table of random numbers and were identified by inscribing numbers with a felt-tip marker on the dorsal side of the tail. After exposure, the rats, except those in experiment E, were placed in metabolism cages for the duration of the studies and were killed by exsanguination after anesthetization. Those in experiment E were restrained and, at the end of the experiment, killed by an overdose of ether.

C. Procedures

1. Experiment A--Uptake and disposition of 14C-decabromodiphenvl oxide in F344/N male rats after exposure in the diet: Formulated diets containing decabromodiphenyl oxide were prepared by mixing decabromodiphenyl oxide and ¹⁴Cdecabromodiphenyl oxide, in various proportions, with pulverized Wayne Lab-Blox® feed. Mixing was accomplished by placing bottles containing the chemical, feed, and mixing stones on automatic rollers. Each preparation of feed was mixed until homogeneity was attained. Analysis of each was accomplished by extracting samples with THF and assaying by HPLC. The amounts present were calculated by comparison to a standard curve. The feed preparations were determined to be homogenous and stable by assay of quadruplicate samples before and after the feeding periods. Rats were assigned to six groups of three rats each. The rats, 8 weeks old, weighed 156-184 g on study day 1. The feed was provided to the rats in glass beakers inside porcelain jars. The jars had metal screw caps with a center opening 2.5 cm in diameter. Feed consumption was measured daily, beginning with the acclimation period. Fresh feed was supplied each day. Each group of rats was fed the standard diet, which contained unlabeled decabromodiphenyl oxide, on days 1-7 and 9-11 and the study diet, containing ¹⁴C-decabromodiphenyl oxide, on day 8. Group I received feed containing the highest concentration of decabromodiphenyl oxide (5.11%) and group VI, the lowest (0.0238%).

Urine and feces were collected separately each day on study days 9-12. On day 12, tissues were collected separately from each rat. A portion of the collected blood was centrifuged to obtain plasma. The following tissues were collected, blotted on filter paper (if appropriate), wrapped in foil, frozen on dry ice, and stored frozen until analysis: liver, kidney, lung, voluntary muscle, fat, skin (ear), brain, gut contents, and gut tissue.

For assay of radioactivity, the total collection of feces from each rat was dried at room temperature for 3 days, weighed, and pulverized in a Salton Quick Mill grinder (Salton, Inc., Bronx, New York). Quadruplicate portions of each collection were combusted in the sample oxidizer before assay. Portions of urine, plasma, and whole blood were placed in combustion cups and allowed to dry overnight before combustion and assay for radioactivity. Portions of fat were combusted and assayed without drying. No other types of collected samples were assayed.

- 2. Experiment B--Disposition of ¹⁴C-decabromodiphenyl oxide after intravenous injection in F344/N male rats: Five rats, 8.5 weeks old and weighing 150-171 g on study day 1, were used. They were injected intravenously in the tail vein with ¹⁴C-decabromodiphenyl oxide in THF:Emulphor:water (1:1:2, v/v/v). Analysis of the dosing solution by HPLC revealed that it was not stable. Before dosing, the concentration was 0.533 ± 0.019 mg/ml (8,150 nCi/ml) and after dosing, 0.429 ± 0.010 mg/ml (6,580 nCi/ml). Although a few tissues were collected and analyzed as described in experiment A, the results were compromised by the instability of the dosing solution.
- 3. Experiment C--Uptake and disposition of ¹⁴C-decabromodiphenyl oxide in F344/N male rats at 24, 48, and 72 hours after exposure: Rats were assigned to six groups of three rats each. The 8-week-old rats weighed 149-165 g on study day 1. Feed containing high (4.80%) and low (0.0277%) concentrations of labeled or unlabeled decabromodiphenyl oxide were prepared and characterized as described for experiment A. The preparations were determined to be homogenous and stable. Groups I-III were fed a diet containing the higher amount of decabromodiphenyl oxide, and groups IV-VI were fed a diet containing the lower amount. Rats were killed as follows: group I and IV, on day 10; groups II and V, on day 11; and groups III and VI, on day 12. Tissue and other samples were collected as described in experiment A; in addition, the spleen was collected.

Samples of whole blood, plasma, urine, and feces were assayed as described for experiment A. Portions of other tissues and gut contents were assayed after homogenization in 9 volumes of water after combustion.

To determine the extractability of ¹⁴C-decabromodiphenyl oxide from feces, a solution (THF:Emulphor:water, 2:1:2, v/v/v) containing this compound was added to feces from F344/N rats, and the feces were dried and pulverized. To quadruplicate 0.5-g portions, 5 ml of water was added, and the preparations were sonicated for 15 minutes. THF (10 ml) and benzene (10 ml) were added, and the preparations were shaken for 60 minutes and centrifuged. The solid material was further extracted, twice with 10 ml of benzene and three times with 10 ml of THF. The pooled benzene extracts were washed with 5 ml of water. The upper phase, the benzene extract, was retained for analysis. The lower phase was added to the combined THF extracts, and 5 ml of benzene was added. The resulting upper layer was retained as the THF extract. The percent extractability was calculated by dividing the amounts in the benzene and THF extracts by the total amount present in all fractions and multiplying by 100. The value derived was 99.7% \pm 0.2%.

To determine the extent of metabolism of ¹⁴C-decabromodiphenyl oxide by rats fed decabromodiphenyl oxide and ¹⁴C-decabromodiphenyl oxide, pulverized fecal samples collected on days 9-11 were pooled for all rats within a dose group. (There was no appreciable radioactivity in the feces for day 12.) Each of the pooled fecal samples was mixed on a roller apparatus, and portions (0.5 g) were extracted as described above. Of the total radioactivity present, 99.4% \pm 0.2% was in the benzene and THF extracts. The extracts were evaporated to dryness. The benzene extracts were dissolved (or suspended) in 4 ml of THF/benzene (1:1, v/v), and the THF extracts in 1 ml of THF. The benzene extracts from rats fed the two highest doses were cloudy with a white substance. Both types of extracts were exposed to the HPLC procedure described above. To determine the extractability of ¹⁴C-decabromodiphenyl oxide from liver, a portion of liver from an F344/N rat was homogenized in 9 volumes of water, ¹⁴C-decabromodiphenyl oxide was added, and the preparation was homogenized again and lyophilized to dryness. For each of four portions, extractions were performed with three separate 5-ml portions of THF. The extracts were allowed to evaporate to dryness before radioassay. The remaining pellets were also subjected to radioassay. The percent extractability was calculated by dividing the amount in the extracts by this amount plus the amount in the pellet and multiplying by 100. The value derived was 86.4% \pm 1.9%.

In some experiments, a model 1040A photodiode assay spectrophotometric detector (Hewlett-Packard, Palo Alto, California) was used to obtain UV spectra of components eluting from the HPLC column.

- 4. Experiment D--Disposition of ¹⁴C-decabromodiphenyl oxide in male F344/N rats 72 hours after intravenous injection: Rats weighed 134-137 g and were 7.5 weeks old. Three rats were injected intravenously with ¹⁴C-decabromodiphenyl oxide (1.07 mg/kg, 0.0173 mCi/kg) in THF:Emulphor:water (2:1:2, v/v/v). As determined by the HPLC assay described in I.A., the dosing solution was found to be stable and homogeneous. Urine and feces were collected daily for 3 days. At 72 hours after dosing, tissue and other samples, including spleen and tail, were collected as described in experiment A. Feces (0-48 h and 48-72 h) were pooled separately, extracted, and assayed.
- 5. Experiment E--Biliary excretion of ¹⁴C-decabromodiphenyl oxide after intravenous administration to F344/N rats: Six rats (165-181 g, 8.5 weeks old) were anesthetized with pentobarbital (30 mg/kg, intraperitoneally), and their bile ducts were cannulated. The rats were allowed to recover from the anesthesia before ¹⁴Cdecabromodiphenyl oxide (0.947 mg/kg, 0.016 mCi/kg) in THF:Emulphor:water (2:1:2, v/v/v) was injected intravenously. As determined by the HPLC assay described in I.A., the dosing solution was found to be stable and homogeneous. Bile was collected at designated times over a 4-hour period. During bile collection, each rat was provided water from a bottle placed within reach of the animal. The rats were killed 4 hours after dosing, and their tails were collected and homogenized in 9 volumes of water. Measured portions of each bile sample and portions of the tail homogenates were assayed for radioactivity after combustion.

D. Results

Experiment A: Rats were fed, on days 1-7 and 9-11, unlabeled decabromodiphenyl oxide in amounts ranging from 238 to 51,100 ppm in the diet and on day 8 with ¹⁴C-decabromodiphenyl oxide in similar amounts (Table O1). Over the entire period, rats in group I (51,100 ppm) consumed significantly less food (P < 0.025) than those in groups III, IV, V, and VI (238 ppm). For day 8, however, the difference in consumption was not significant (0.10 < P < 0.25) by a one-way analysis of variance.

In the 72 hours after the diet containing 14 C-decabromodiphenyl oxide was removed, recovery of radiolabel in the feces ranged from 91.3% \pm 4.0% to 101% \pm 4% of the amount ingested (Table O2). Recovery was not related to the dose of decabromodiphenyl oxide. Although the liver contained only small amounts of radioactivity, rats fed the smaller amounts of unlabeled decabromodiphenyl oxide had a greater percentage of radioactivity in this organ. The amounts ranged from 0.008% of the dose for group I to 0.064% for group VI. Although the amount of radioactivity in fat was also low, there was a tendency for rats fed the smaller amounts of unlabeled decabromodiphenyl oxide to have more radioactivity in this tissue. The amounts ranged from 0.072% for group I to 0.157% for group VI, with the value for Group IV (0.090%) being out of line.

A notable result of exposure to decabromodiphenyl oxide was that the liver weights of rats were significantly greater (P<0.001) for those consuming diets with large concentrations of decabromodiphenyl oxide (Figure 14). For the two lowest concentrations, the weights were 9.65 ± 0.92 g and 9.80 ± 0.19 g and, for the two highest concentrations, 13.8 ± 0.9 g and 13.7 ± 1.3 g.

Experiment B: As noted above, the results from this experiment were compromised by the instability of the dosing solution. The only results of note were that 15.8% \pm 4.3% of the dose (based on the predosing value) was found in the lungs of these rats 72 hours after dosing. Such a large amount in this tissue, which collects particulate material injected into the bloodstream, tends to confirm that precipitation of ¹⁴C-decabromodiphenyl oxide in the dosing solution had occurred. This experiment was repeated with a different dosing formulation (experiment D).

230

Rat	Feed Consumed	Co Decabromodi	oncentration of the second s	Decabromodiphenyl Oxide <u>Consumed on Day 8</u>		
Group	(g/day)	Unlabeled (a)	Labeled (b)	nCi/g(b)	mg	nCi[¹⁴ C]
. I	(c,d) 14.4 ± 1.0	51,100	48,600	214 ± 5	716 ± 58	$3,150 \pm 250$
II	15.1 ± 1.1	25,400	24,400	219 ± 28	370 ± 10	$3,320 \pm 90$
III	16.5 ± 0.7	4,730	5,000	232 ± 23	78.0 ± 5.1	$3,620 \pm 240$
IV	17.1 ± 0.3	2,510	2,490	212 ± 19	43.9 ± 2.4	$3,740 \pm 200$
v	16.9 ± 0.5	496	521	206 ± 8	8.72 ± 0.40	$3,460 \pm 160$
VI	17.0 ± 1.5	238	261	215 ± 23	4.37 ± 0.68	$3,610 \pm 560$

TABLE 01. FEED CONSUMPTION, DECABROMODIPHENYL OXIDE CONCENTRATION IN THE DIET,
AND DECABROMODIPHENYL OXIDE CONSUMED BY F344/N RATS

(a) Concentration of unlabeled decabromodiphenyl oxide in feed, fed on days 1-7 and 9-11; the values are the averages of those derived by analysis before and after feeding. (b) Concentration of ¹⁴C-decabromodiphenyl oxide in feed, fed on day 8; the values are the averages of those derived by analysis

before and after feeding. (c) Mean \pm standard deviation for three rats

(d) Significantly less than (P<0.025) values for groups III, IV, V, and VI

TABLE 02. DISPOSITION OF RADIOACTIVITY IN F344/N RATS 72 HOURS AFTER EXPOSURE TO ¹⁴C-DECABROMODIPHENYL OXIDE IN THE DIET ON DAY 8

Rat Group	Feces (days 8-12) (percent of dose)	Liver (day 12) (percent of dose)	Fat (a) (day 12) (percent of dose)
I	(b) 95.5 ± 9.9	0.008 ± 0.002	0.072 ± 0.041
II	93.0 ± 5.0	0.006 ± 0.001	0.088 ± 0.022
III	91.3 ± 4.0	0.011 ± 0.003	0.126 ± 0.017
ĪV	101 ± 4	0.016 ± 0.003	0.090 ± 0.027
v	100 ± 1	0.043 ± 0.010	0.161 ± 0.026
VI	97.7 ± 5.8	0.064 ± 0.003	0.157 ± 0.007

(a) Considered to be 7% of total body weight

(b) The values are means \pm standard deviation for three rats.

The values on the horizontal axis are the total amounts of decabromodiphenyl oxide and ¹⁴Cdecabromodiphenyl oxide consumed (days 1-12). The points represent the means, and the vertical and horizontal bars, the standard deviations.

FIGURE 14. EFFECT OF EXPOSURE TO DECABROMODIPHENYL OXIDE ON LIVER WEIGHTS OF F344/N RATS

232

Experiment C: These rats were fed a diet containing unlabeled decabromodiphenyl oxide on days 1-7 and day 9 (groups I and IV), days 1-7 and days 9-10 (groups II and V), or days 1-7 and days 9-11 (groups II and VI) (Table O3). For groups I-III, unlabeled decabromodiphenyl oxide concentration was 48,000 ppm, and for groups IV-VI, 277 ppm unlabeled decabromodiphenyl oxide. A diet containing correspondingly similar amounts of ¹⁴C-decabromodiphenyl oxide was fed on day 8. Although for groups I-II the mean values for feed consumption were lower than those for groups IV-VI, the difference was not significantly different. The amount of ¹⁴C-decabromodiphenyl oxide consumed was in proportion to the content of the diet. The radioactivity ingested ranged from 3,070 \pm 60 nCi to 3,590 \pm 140 nCi, but the amounts were not related to the concentrations of decabromodiphenyl oxide in formulated diets.

Recovery of radioactivity in the feces ranged from $82.5\% \pm 4.7\%$ to $86.4\% \pm 8.5\%$ and was not related to the dietary concentration of decabromodiphenyl oxide or to the time the rats were killed (24, 48, or 72 hours) after consumption of ¹⁴C-decabromodiphenyl oxide (Table O4). For both doses, the percent of the dose remaining in the gut contents (less than 4%) decreased with time the rats were killed after exposure to ¹⁴C-decabromodiphenyl oxide. A similar observation was noted for gut tissue, which contained less than 0.04% of the dose.

At 72 hours, the liver contents of radioactivity in rats exposed to decabromodiphenyl oxide in the diet were low (0.016% of the dose for rats fed 48,000 ppm decabromodiphenyl oxide and 0.109% for rats fed 277 ppm decabromodiphenyl oxide). These values are consistent with the values derived in experiment A. For rats fed the low amount of decabromodiphenyl oxide, the liver contained $0.449\% \pm 0.010\%$ of the dose of ¹⁴C-decabromodiphenyl oxide at 24 hours after feeding and $0.213\% \pm 0.016\%$ at 48 hours. Also consistent with results for experiment A, liver weights for rats receiving the high dose were 12.5 ± 0.7 g; those from rats given the low dose were 8.68 ± 0.69 g.

The maximum percent of dose in other organs and tissues was as follows: kidney, 0.016%; spleen, 0.003%; lungs, 0.011%; brain, less than 0.001%; muscle (considered to be 50% of body weight), 0.248%; fat (considered to be 7% of body weight), 0.077%; and skin (considered to be 16% of body weight), 0.252% (Table O4). For all of these tissues, the maximum value were for rats in groups fed the smaller dose.

The remaining portions of the liver homogenates from rats in group IV were lyophilized to dryness and extracted three times with 5 ml of THF. The extract containing the most radioactivity was purified on a Sep-Pak C_{18} cartridge and analyzed by HPLC under the conditions described above, except that 0.05 ml of sample was injected. Fractions of 1 ml were collected and assayed for radioactivity, revealing that 81% of the radioactivity eluted at the retention time of decabromodiphenyl oxide (23 minutes). The remainder of the sample was further purified by HPLC and passage through a Sep-Pak cartridge. A final HPLC analysis allowed a UV spectrum to be determined for the radioactive material. The spectrum was identical to that for decabromodiphenyl oxide (Figure 15).

In extracts of feces, three main metabolite peaks, eluting at 3-6 minutes, 6-12 minutes, and 12-17 minutes, were evident; decabromodiphenyl oxide eluted at 17-25 min (Table O5). The percent of metabolites present tended to increase as the concentration of decabromodiphenyl oxide in the diet increased. For samples derived from rats fed larger amounts, however, the results are equivocal due to the low recovery of injected radioactivity. Such low recovery was probably due to precipitation of decabromodiphenyl oxide and possibly decabromodiphenyl oxide metabolites when solutions approaching saturation were injected into the HPLC instrument.

233

TABLE 03. FEED CONSUMPTION, DECABROMODIPHENYL OXIDE CONCENTRATION IN THE DIET,
AND DECABROMODIPHENYL OXIDE CONSUMED BY F344/N RATS
24, 48, OR 72 HOURS AFTER EXPOSURE

Rat Group	Food Consumed	Conc Decabromod	entration of the second s	Decabromodiphenyl Oxide Consumed on Day 8		
	(g/day)	Unlabeled (a)) Labeled (I	$\mathbf{nCi/g}(\mathbf{b})$	mg	nCi [¹⁴ C]
I	(c) 12.6 ± 2.3	48.000	48,500	219 ± 9	(c) 755 ± 129	(c) $3,410 \pm 58$
II	12.9 ± 2.7	48,000	48,500	219 ± 9	794 ± 32	$3,590 \pm 14$
111	13.8 ± 2.5	48,000	48,500	219 ± 9	744 ± 250	$3,360 \pm 1,13$
IV	14.3 ± 2.3	277	259	215 ± 5	3.70 ± 0.07	$3,070 \pm 6$
v	15.7 ± 2.0	277	259	215 ± 5	4.27 ± 0.51	$3,540 \pm 420$
vi	15.8 ± 2.4	277	259	215 ± 5	4.06 ± 1.15	$3,370 \pm 96$

(a) Concentration (ppm) of unlabeled decabromodiphenyl oxide in the feed on days 1.7 and 9 (groups I and IV), days 1.7, and days 9.10 (groups II and V), or days 1.7 and days 9.11 (groups III and VI). Values are the averages of those derived by analysis before and after feeding.
(b) Concentration (ppm) of ¹⁴C-decabromodiphenyl oxide in the feed for day 8. Values for ppm decabromodiphenyl oxide are averages of those derived by analysis before and after feeding. The values for nCi/g are the mean ± standard deviation for four

separate determinations. (c) Mean \pm standard deviation for three rats

Tissue or Sample	Group I (kill day = 10) Percent of Dose nCi/g or ml		Group II (kill o Percent of Dose	day = 11) nCi/g or ml	Group III (kill day = 12) Percent of Dose nCi/g or ml		
Urine	(b) 0.004 ± 0.002	(c)	0.007 ± 0.003	(c)	0.008 ± 0.005	(c)	
Feces	85.3 ± 7.1	(c)	85.6 ± 4.5	(c)	85.1 ± 5.5	(c)	
Gut contents	3.32 ± 1.65	(c)	0.552 ± 0.873	(c)	0.059 ± 0.039	(c)	
Gut tissue	0.031 ± 0.016	0.255 ± 0.132	0.012 ± 0.011	0.095 ± 0.086	0.001 ± 0.001	0.013 ± 0.011	
Liver	0.007 ± 0.001	0.019 ± 0.005	0.007 ± 0.006	0.019 ± 0.015	0.016 ± 0.006	0.040 ± 0.004	
Kidneys	< 0.001	0.007 ± 0.004	< 0.001	0.009 ± 0.003	< 0.001	0.009 ± 0.005	
Lungs	< 0.001	0.015 ± 0.006	< 0.001	0.010 ± 0.006	0.001 ± 0.001	0.022 ± 0.005	
Spleen	< 0.001	0.031 ± 0.018	< 0.001	0.038 ± 0.025	< 0.001	0.022 ± 0.011	
Brain	< 0.001	< 0.01	< 0.001	< 0.01	< 0.001	< 0.01	
Muscle (d)	0.015 ± 0.014	0.005 ± 0.005	0.014 ± 0.005	0.006 ± 0.002	0.008 ± 0.012	0.004 ± 0.006	
Skin (e)	0.099 ± 0.018	0.115 ± 0.024	0.049 ± 0.017	0.061 ± 0.023	0.036 ± 0.013	0.038 ± 0.008	
Fat(f)	0.040 ± 0.015	0.107 ± 0.036	0.018 ± 0.004	0.049 ± 0.010	0.012 ± 0.012	0.025 ± 0.022	
Blood (g)	0.003 ± 0.001	0.006 ± 0.002	0.001 ± 0.002	0.003 ± 0.004	0.014 ± 0.011	0.023 ± 0.009	
Plasma (h)	0.001 ± 0.001	0.003 ± 0.003	0.001 ± 0.001	0.002 ± 0.002	0.006 ± 0.002	0.019 ± 0.003	
Total recovery							
(percent of dose)	88.8		86.3		85.3		
Tissue or Sample	Group IV (k Percent of Dose	ill day = 10) e nCi/g or ml	Group V (kill d Percent of Dose	lay = 11) nCi/g or ml	Group VI (kill day = 12) Percent of Dose nCi/g or ml		
Urine	·=	······································		· · · · · · · · · · · · · · · · · · ·			
onne	0.012 ± 0.005	(c)	0.011 ± 0.003	(0)	0.012 ± 0.007	(0)	
Fores	0.012 ± 0.005 864 + 85	(c) (c)	0.011 ± 0.003 839 ± 09	(c) (c)	0.012 ± 0.007 825 ± 47	(c) (c)	
Feces Gut contents	$\begin{array}{r} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \end{array}$	(c) (c)	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \end{array}$	(c) (c) (c)	$\begin{array}{r} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \end{array}$	(c) (c)	
Feces Gut contents Gut tissue	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \end{array}$	(c) (c) (c) 0 302 + 0 023	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \end{array}$	(c) (c) (c) 0.181 + 0.023	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \end{array}$	(c) (c) (c) 0.107 ± 0.024	
Feces Gut contents Gut tissue Liver	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \end{array}$	$(c) (c) (c) 0.181 \pm 0.023 0.846 \pm 0.057$	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \end{array}$	(c) (c) (c) 0.107 ± 0.024 0.440 ± 0.203	
Feces Gut contents Gut tissue Liver Kidneys	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \end{array}$	(c) (c) (c) 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059	
Feces Gut contents Gut tissue Liver Kidneys Lungs	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.001 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015 0.457 ± 0.022	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \\ 0.007 \pm 0.000 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066 0.321 ± 0.051	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \\ 0.004 \pm 0.001 \end{array}$	(c) (c) 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059 0.167 ± 0.055	
Feces Gut contents Gut tissue Liver Kidneys Lungs Soleen	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.001 \\ 0.003 \pm 0.001 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015 0.457 ± 0.022 0.273 ± 0.030	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \\ 0.007 \pm 0.000 \\ 0.002 \pm 0.000 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066 0.321 ± 0.051 0.160 ± 0.017	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \\ 0.004 \pm 0.001 \\ 0.001 \pm 0.000 \end{array}$	(c) (c) (c) 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059 0.167 ± 0.055 0.074 ± 0.028	
Feces Gut contents Gut tissue Liver Kidneys Lungs Spleen Brain	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.001 \\ 0.003 \pm 0.001 \\ < 0.001 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015 0.457 ± 0.022 0.273 ± 0.030 < 0.01	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \\ 0.007 \pm 0.000 \\ 0.002 \pm 0.000 \\ < 0.001 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066 0.321 ± 0.051 0.160 ± 0.017 < 0.01	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \\ 0.004 \pm 0.001 \\ 0.001 \pm 0.000 \\ < 0.001 \end{array}$	(c) (c) (c) 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059 0.167 ± 0.055 0.074 ± 0.028 < 0.01	
Feces Gut contents Gut tissue Liver Kidneys Lungs Spleen Brain Muscle (d)	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.001 \\ 0.003 \pm 0.001 \\ < 0.001 \\ 0.198 \pm 0.024 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015 0.457 ± 0.022 0.273 ± 0.030 < 0.01 0.006 ± 0.001	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \\ 0.007 \pm 0.000 \\ 0.002 \pm 0.000 \\ < 0.001 \\ 0.244 \pm 0.016 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066 0.321 ± 0.051 0.160 ± 0.017 < 0.01 0.009 ± 0.001	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \\ 0.004 \pm 0.001 \\ 0.001 \pm 0.000 \\ < 0.001 \\ 0.248 \pm 0.007 \end{array}$	(c) (c) () 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059 0.167 ± 0.055 0.074 ± 0.028 < 0.01 0.002 ± 0.002	
Feces Gut contents Gut tissue Liver Kidneys Lungs Spleen Brain Muscle (d) Skin (e)	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.001 \\ 0.003 \pm 0.001 \\ < 0.001 \\ 0.198 \pm 0.024 \\ 0.252 \pm 0.018 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015 0.457 ± 0.022 0.273 ± 0.030 < 0.01 0.006 ± 0.001 0.257 ± 0.022	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \\ 0.007 \pm 0.000 \\ 0.002 \pm 0.000 \\ < 0.001 \\ 0.244 \pm 0.016 \\ 0.207 \pm 0.031 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066 0.321 ± 0.051 0.160 ± 0.017 < 0.01 0.009 ± 0.001 0.232 ± 0.062	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \\ 0.004 \pm 0.001 \\ 0.001 \pm 0.000 \\ < 0.001 \\ 0.248 \pm 0.007 \\ 0.136 \pm 0.018 \end{array}$	(c) (c) (c) 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059 0.167 ± 0.055 0.074 ± 0.028 < 0.01 0.008 ± 0.002 0.144 ± 0.042	
Feces Gut contents Gut tissue Liver Kidneys Lungs Spleen Brain Muscle (d) Skin (e) Fat (f)	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.001 \\ 0.003 \pm 0.001 \\ < 0.001 \\ 0.198 \pm 0.024 \\ 0.252 \pm 0.018 \\ 0.062 \pm 0.033 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015 0.457 ± 0.022 0.273 ± 0.030 < 0.01 0.006 ± 0.001 0.257 ± 0.022 0.145 ± 0.073	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \\ 0.007 \pm 0.000 \\ 0.002 \pm 0.000 \\ < 0.001 \\ 0.244 \pm 0.016 \\ 0.207 \pm 0.031 \\ 0.077 \pm 0.022 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066 0.321 ± 0.051 0.160 ± 0.017 < 0.01 0.232 ± 0.062 0.196 ± 0.073	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \\ 0.004 \pm 0.001 \\ 0.001 \pm 0.000 \\ < 0.001 \\ 0.248 \pm 0.007 \\ 0.136 \pm 0.018 \\ 0.048 \pm 0.001 \end{array}$	(c) (c) (c) 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059 0.167 ± 0.055 0.074 ± 0.028 < 0.01 0.008 ± 0.002 0.144 ± 0.042	
Feces Gut contents Gut tissue Liver Kidneys Lungs Spleen Brain Muscle (d) Skin (e) Fat (f) Blood (g)	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.001 \\ 0.003 \pm 0.001 \\ < 0.001 \\ 0.198 \pm 0.024 \\ 0.252 \pm 0.018 \\ 0.062 \pm 0.033 \\ 0.043 \pm 0.006 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015 0.457 ± 0.022 0.273 ± 0.030 < 0.01 0.006 ± 0.001 0.257 ± 0.022 0.145 ± 0.073 0.077 ± 0.009	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \\ 0.007 \pm 0.000 \\ 0.002 \pm 0.000 \\ < 0.001 \\ 0.244 \pm 0.016 \\ 0.207 \pm 0.031 \\ 0.077 \pm 0.022 \\ 0.024 \pm 0.010 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066 0.321 ± 0.051 0.160 ± 0.017 < 0.01 0.009 ± 0.001 0.232 ± 0.062 0.196 ± 0.073 0.048 ± 0.023	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \\ 0.004 \pm 0.001 \\ 0.001 \pm 0.000 \\ < 0.001 \\ 0.248 \pm 0.007 \\ 0.136 \pm 0.018 \\ 0.048 \pm 0.001 \\ 0.026 \pm 0.008 \end{array}$	(c) (c) (c) 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059 0.167 ± 0.055 0.074 ± 0.028 < 0.01 0.008 ± 0.002 0.144 ± 0.042 0.115 ± 0.026	
Feces Gut contents Gut tissue Liver Kidneys Lungs Spleen Brain Muscle (d) Skin (e) Fat (f) Blood (g) Plasma (h)	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.001 \\ 0.003 \pm 0.001 \\ < 0.001 \\ 0.198 \pm 0.024 \\ 0.252 \pm 0.018 \\ 0.062 \pm 0.033 \\ 0.043 \pm 0.006 \\ 0.035 \pm 0.004 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015 0.457 ± 0.022 0.273 ± 0.030 < 0.01 0.006 ± 0.001 0.257 ± 0.022 0.145 ± 0.073 0.077 ± 0.009 0.112 ± 0.010	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \\ 0.007 \pm 0.000 \\ 0.002 \pm 0.000 \\ < 0.001 \\ 0.244 \pm 0.016 \\ 0.207 \pm 0.031 \\ 0.077 \pm 0.022 \\ 0.024 \pm 0.010 \\ 0.019 \pm 0.006 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066 0.321 ± 0.051 0.160 ± 0.017 < 0.01 0.009 ± 0.001 0.232 ± 0.062 0.196 ± 0.073 0.048 ± 0.023 0.067 ± 0.019	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \\ 0.004 \pm 0.001 \\ 0.001 \pm 0.000 \\ < 0.001 \\ 0.248 \pm 0.007 \\ 0.136 \pm 0.018 \\ 0.048 \pm 0.001 \\ 0.026 \pm 0.008 \\ 0.021 \pm 0.004 \end{array}$	(c) (c) (c) 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059 0.167 ± 0.055 0.074 ± 0.028 < 0.01 0.008 ± 0.002 0.144 ± 0.042 0.115 ± 0.026 0.050 ± 0.024 0.068 ± 0.007	
Feces Gut contents Gut tissue Liver Kidneys Lungs Spleen Brain Muscle (d) Skin (e) Fat (f) Blood (g) Plasma (h) Total recovery (percent of dose)	$\begin{array}{c} 0.012 \pm 0.005 \\ 86.4 \pm 8.5 \\ 1.82 \pm 0.36 \\ 0.038 \pm 0.004 \\ 0.449 \pm 0.010 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.001 \\ 0.003 \pm 0.001 \\ < 0.001 \\ 0.198 \pm 0.024 \\ 0.252 \pm 0.018 \\ 0.062 \pm 0.033 \\ 0.043 \pm 0.006 \\ 0.035 \pm 0.004 \end{array}$	(c) (c) (c) 0.302 ± 0.023 1.62 ± 0.012 0.407 ± 0.015 0.457 ± 0.022 0.273 ± 0.030 < 0.01 0.006 ± 0.001 0.257 ± 0.022 0.145 ± 0.073 0.077 ± 0.009 0.112 ± 0.010	$\begin{array}{c} 0.011 \pm 0.003 \\ 83.9 \pm 0.9 \\ 0.518 \pm 0.413 \\ 0.021 \pm 0.000 \\ 0.213 \pm 0.016 \\ 0.016 \pm 0.000 \\ 0.007 \pm 0.000 \\ 0.002 \pm 0.000 \\ < 0.001 \\ 0.244 \pm 0.016 \\ 0.207 \pm 0.031 \\ 0.077 \pm 0.022 \\ 0.024 \pm 0.010 \\ 0.019 \pm 0.006 \end{array}$	(c) (c) (c) 0.181 ± 0.023 0.846 ± 0.057 0.430 ± 0.066 0.321 ± 0.051 0.160 ± 0.017 < 0.01 0.009 ± 0.001 0.232 ± 0.062 0.196 ± 0.073 0.048 ± 0.023 0.067 ± 0.019	$\begin{array}{c} 0.012 \pm 0.007 \\ 82.5 \pm 4.7 \\ 0.093 \pm 0.029 \\ 0.011 \pm 0.001 \\ 0.109 \pm 0.029 \\ 0.013 \pm 0.001 \\ 0.004 \pm 0.001 \\ 0.001 \pm 0.000 \\ < 0.001 \\ 0.248 \pm 0.007 \\ 0.136 \pm 0.018 \\ 0.048 \pm 0.001 \\ 0.026 \pm 0.008 \\ 0.021 \pm 0.004 \\ \end{array}$	(c) (c) (c) 0.107 ± 0.024 0.440 ± 0.203 0.295 ± 0.059 0.167 ± 0.055 0.074 ± 0.028 < 0.01 0.008 ± 0.002 0.144 ± 0.042 0.144 ± 0.026 0.050 ± 0.024 0.068 ± 0.007	

TABLE 04. DISPOSITION OF RADIOACTIVITY IN RATS 24, 48, OR 72 HOURS AFTER EXPOSURE TO14C-DECABROMODIPHENYL OXIDE IN THE DIET ON DAY 8 (a)

(a) Rats were fed unlabeled decabromodiphenyl oxide in the diet on days 1-7, 14C-decabromodiphenyl oxide in the diet on day 8, and unlabeled decabromodiphenyl oxide in the diet through the kill day. (b) Tetrahydrofuran extract mean \pm standard deviation for three rats

(c) Not calculated

(c) Not calculated
(d) Considered to be 50% of body weight
(e) Considered to be 16% of body weight
(f) Considered to be 7% of body weight
(g) Considered to be 9% of body weight
(h) Considered to be 5% of body weight

Wavelength (nm)

280

FIGURE 15. ULTRAVIOLET SPECTRA OF REFERENCE DECABROMODIPHENYL OXIDE (-----) AND OF THE ISOLATE FROM THE LIVERS (------) OF F344/N RATS EXPOSED TO DECABROMODIPHENYL OXIDE IN THE DIET

Concentration of			Re	(a)				
Decabromodiphe Oxide in	nyl		Metabolites	1	Decabromodiphenyl Oxide	Radioactivity (nCi)		
Diet (ppm)	Extract	3-6 min	6-12 min	12-17 min	17-25 min	Injected	Recovered	
50,000	Benzene (c) THF	(b) 5.47 (4.57) 1.82 (2.50)	5.34 (6.04) 2.64 (2.40)	9.87 (3.31) 1.80 (2.58)	62.2 (69.0) 9.81 (9.52)	0.93 (0.37) 0.78 (0.15)	0.16 (0.22) 0.11 (0.18)	
Total recovery		7.29 (7.07)	7.98 (8.44)	11.7 (5.89)	72.0 (78.5)			
25,000	Benzene THF	11.7 (8.90) 3.40 (2.11)	7.51 (4.65) 1.87 (1.00)	5.38 (9.15) 2.08 (2.09)	57.8 (59.7) 10.3 (12.4)	1.16 (0.46) 0.99 (0.20)	0.41 (0.27) 0.29 (0.15)	
Total recovery		15.1 (11.0)	9.38 (5.65)	7.46 (11.2)	68.1 (72.1)			
5,000	Benzene THF	3.26 0.36	2.57 0.05	2.54 0.17	80. 4 10.6	2.80 0.71	1.57 0.44	
Total recovery		3.62	2.62	2.71	91.0			
2,500	Benzene THF	5.28 0.74	3.47 0.65	2.86 0.54	75.5 11.0	2.33 0.69	2.23 0.67	
Total recovery		6.02	4.12	3.40	86.5			
500	Benzene THF	2.70 0.72	2.27 0.56	1.55 0.69	74.2 16.8	4.08 0.95	3.78 1.07	
Total recovery		3.42	2.83	2.24	91.0			
250	Benzene THF	0.00 0.67	0.00 0.31	0.00 0.52	86.6 11.8	4.51 0.69	3.61 0.71	
Total recovery		0.67	0.31	0.52	98.4			

TABLE 05. RECOVERY OF DECABROMODIPHENYL OXIDE AND METABOLITES IN EXTRACTS OFFECES OF RATS FED DIETS CONTAINING DECABROMODIPHENYL OXIDE

(a) High-performance liquid chromatographic analysis(b) Percent radioactivity in sample; the numbers in parentheses represent values obtained after dilution and reassay of the extracts.

(c) Tetrahydrofuran

To determine if the loss was associated only with decabromodiphenyl oxide or with decabromodiphenyl oxide and its metabolites, the benzene and THF extracts for samples from feces of rats exposed to diets containing 50,000 and 25,000 ppm decabromodiphenyl oxide were diluted by 2.5-fold and fivefold, respectively. The previously insoluble material in the benzene extracts, presumably decabromodiphenyl oxide, went into solution. Although recovery of radioactivity from injected portions of the benzene extracts was higher than the previous recovery, it was still incomplete (Table O5). No further dilutions were possible due to the reduced amount of radioactivity present. The relative amounts of decabromodiphenyl oxide and decabromodiphenyl oxide metabolites did not change drastically, an indication that, on injection of these extracts, both decabromodiphenyl oxide and its metabolites were being lost in equal proportions.

Experiment D: At 72 hours after an intravenous dose of ^{14}C -decabromodiphenyl oxide (1.07 mg/kg), feces plus gut contents contained 74% of the dose (Table O6). The radioactivity appeared to be present in relatively high and approximately equal concentrations in the liver, kidney, and lung. Only traces of radioactivity were in the urine, spleen, and brain. Although the tails contained an average of 9.5% of the dose, there was little difference for the three individual rats, an indication that all three received equivalent amounts in the bloodstream. Muscle and skin retained 12.9% and 7.25% of the dose, respectively. Relative to tissues other than brain and spleen, the concentration of radioactivity in blood was low (1.36 nCi/ml); most of that present was in the plasma (1.97 nCi/ml).

Extraction of the feces of these rats showed that most of the excreted material was decabromodiphenyl oxide metabolites (Table O7). Unchanged decabromodiphenyl oxide constituted 36.5% of the total for the 0- to 48-hour collection period and 40.4% for the 48- to 72-hour period.

Experiment E: Although two of the three rats examined in the initial health check for this experiment had in their livers a single scar-like focus, three additional rats examined had no such defects. Examination of the livers of rats used in the experiment revealed no abnormalities.

As determined by assay of the tail, one of the six rats with biliary cannulas was improperly injected. The values derived for bile from this rat were not used in further calculations. For the remaining five rats, the rate of excretion and the cumulative excretion in the bile of radioactivity from 14C-decabromodiphenyl oxide is shown in Figure 16. Of the dose administered, $7.17\% \pm 1.01\%$ appeared in the bile in 4 hours. From 1.5 to 4 hours, the rate of excretion was the same, 2.2% of the dose per hour. Tails of the five rats contained 5.38% \pm 2.11% of the administered dose, an indication that each received an adequate dose.

TABLE 06. DISTRIBUTION OF RADIOACTIVITY IN F344/N RATS ADMINISTERED 14C-DECABROMODIPHENYL OXIDE BY INTRAVENOUS INJECTION

Tissue or Sample	Percent of Dose (a)	nCi/g or ml	
Urine	(b) 0.129± 0.007	(c)	
Feces	70.0 ± 2.5		
Gut contents	4.21 ± 1.71		
Gut tissue	0.853 ± 0.127		
Tail	9.50 ± 0.89		
Liver	4.27 ± 1.05	15.1 ± 3.9	
Kidney	0.697 ± 0.073	13.7 ± 1.4	
Lung	0.361 ± 0.030	13.3 ± 1.4	
Spleen	0.027 ± 0.004	1.78 ± 0.42	
Brain	0.047 ± 0.003	0.69 ± 0.04	
Muscle (d)	12.9 ± 1.1	4.32 ± 0.68	
Skin (e)	7.25 ± 0.76	7.53 ± 0.41	
Fat(f)	2.99 ± 1.94	7.33 ± 5.25	
Blood (g)	0.732 ± 0.053	1.36 ± 0.17	
Plasma (h)	0.589 ± 0.068	1.97 ± 0.35	

(a) 72 hours after intravenous injection

(b) The numbers are the means \pm standard deviation for three rats.

(c) Not calculated

(d) Considered to be 50% of body weight

(e) Considered to be 16% of body weight

(f) Considered to be 7% of body weight (g) Considered to be 9% of body weight

(h) Considered to be 5% of body weight

TABLE 07. RECOVERY OF DECABROMODIPHENYL OXIDE AND METABOLITES FROM FECES OF F344/N RATS ADMININISTERED DECABROMODIPHENYL OXIDE BY INTRAVENOUS INJECTION

Collection Time			Retention Time (a)		
			Metabolites		Decabromodiphenyl Oxide
	Extract	3-6 min	6-12 min	12-17 min	17-25 min
(b) 0-48 B	Benzene (c) THF	4.9 ± 1.6 (c) 19.7 ± 4.2	0.5 ± 0.1 1.7 ± 0.5	2.1 ± 0.6 2.5 ± 0.9	28.5 ± 8.2 8.0 ± 2.4
	Total	24.6	2.2	4.6	36.5
(b) 48-72	Benzene THF	10.4 18.7	6.9 4.3	7.0 2.5	36.3 4.1
	Total	29.1	11.2	9.5	40.4

(a) From HPLC analysis

(b) The 0-48 hour fecal collections for the three rats were assayed separately. The 48-72 hour fecal collections were combined before assay.

(c) The numbers are the means \pm standard deviation of the percent of radioactivity in the samples for three rats.

The points represent the means and the vertical bars, the standard deviations. For one point, the standard deviation was too small to be displayed.

FIGURE 16. BILIARY EXCRETION OF RADIOACTIVITY IN F344/N RATS ADMINISTERED DECABROMODIPHENYL OXIDE BY INTRAVENOUS INJECTION

APPENDIX P

DATA AUDIT SUMMARY

APPENDIX P. DATA AUDIT SUMMARY

An audit was conducted on the archival data and pathology materials for the toxicology and carcinogenesis studies of decabromodiphenyl oxide in rats and mice. This study was performed at Hazleton Laboratories America, Vienna, Virginia, under a subcontract with Tracor Jitco, Inc., from the National Cancer Institute. The studies were conducted from July 1980 to July 1982 for mice and from September 1980 to September 1982 for rats and was initiated before the requirement of compliance to Good Laboratory Practice standards by NTP in October 1980. The audit was conducted at Dynamac Corporation and at the NTP Archives in Research Triangle Park, North Carolina. The audit involved the following Dynamac personnel: L. Keifer, Ph.D.; J. Konz, M.S.P.H.; R. Schueler, D.V.M.; M. Perrault, B.S.; C. Sexsmith, B.S.; and Eva Zurek. An additional participant was C. Veigle (Pathology Associates, Inc.).

The full audit report has been reviewed and approved by NTP personnel and is on file at the National Institute of Environmental Sciences, Research Triangle Park, North Carolina. The audit consisted of an indepth review of the data and pathology materials collected during the conduct of these studies as well as review of the correspondence. For the inlife toxicology data, this review involved examination of 100% of the records on animal receipt and husbandry, mortality, environmental conditions, and dosing and examination of body weight and clinical observation data for 10% of the animals. In the review of the chemistry data, all of the available records associated with initial analysis and stability testing by Midwest Research Institute were examined. Records pertaining to bulk chemical analysis and diet preparation and analysis by the study laboratory were examined. The audit of the pathology materials included review of 100% of the Individual Animal Data Records (IADR's) for gross observation to microscopic diagnosis correlation and clerical errors, examination of the wet tissues of 10% of the animals for unidentified lesions, correct animal identification, correlation of slides and tissue blocks for all control and high dose groups, and verification of the reported pathology on a 10% sample of the animals.

Review of the toxicologic data found no problems that affected interpretation of the study. Temperature and humidity readings outside the range specified in the protocol were recorded frequently during several months of the study. No relationship was found between the periods of poor environmental control and mortality. A review of the available chemistry data found no discrepancies.

Although several discrepancies were noted between gross observation and microscopic diagnosis records, these were adequately resolved by subsequent examination of wet tissues and slides.

Overall, the items identified during the audit did not substantially reduce confidence in the data reported. Some problems and discrepancies were identified and discussed in the audit report; most of these were adequately resolved.