NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 275

TOXICOLOGY AND CARCINOGENESIS STUDIES OF 2-CHLOROETHANOL (ETHYLENE CHLOROHYDRIN) (CAS NO. 107-07-3) IN F344/N RATS AND SWISS CD-1 MICE (DERMAL STUDIES) **U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES**

J.S. DEPARTMENT OF HEALTH AND HUMAN SERVICE Public Health Service National Institutes of Health

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP TECHNICAL REPORT ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF 2-CHLOROETHANOL (ETHYLENE CHLOROHYDRIN)

(CAS NO. 107-07-3)

IN F344/N RATS AND SWISS CD-1 MICE

(DERMAL STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

November 1985

NTP TR 275

NIH Publication No. 86-2531

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for testing in the NTP Carcinogenesis Program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

Five categories of interpretative conclusions were adopted in June 1983 for use in the Technical Reports series to specifically emphasize consistency and the concept of actual evidence of carcinogenicity. For each definitive study result (male rats, female rats, male mice, female mice), one of the following quintet will be selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of malignant neoplasms, studies that exhibit a substantially increased incidence of benign neoplasms, or studies that exhibit an increased incidence of a combination of malignant and benign neoplasms where each increases with dose.
- Some Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of benign neoplasms, studies that exhibit marginal increases in neoplasms of several organs/tissues, or studies that exhibit a slight increase in uncommon malignant or benign neoplasms.
- Equivocal Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related marginal increase of neoplasms.
- No Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenicity demonstrates that because of major qualitative or quantitative limitations, the studies cannot be interpreted as valid for showing either the presence or absence of a carcinogenic effect.

Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the earlier induction by chemicals of neoplasms that are commonly observed, or the induction by chemicals of more neoplasms than are generally found. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

This study was initiated by the National Cancer Institute's Carcinogenesis Bioassay Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for peer review.

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

CONTENTS

ABSTRACT	0
CONTRIBUTORS	1
	•
SUMMARY OF PEER REVIEW COMMENTS1	3
I. INTRODUCTION	5
II. MATERIALS AND METHODS	3
PROCUREMENT AND CHARACTERIZATION OF 2-CHLOROETHANOL	4
PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES	4
DERMAL APPLICATION	4
SINGLE-ADMINISTRATION STUDIES	5
FOURTEEN-DAY STUDIES	5
THIRTEEN-WEEK STUDIES	5
TWO-YEAR STUDIES	5
STUDY DESIGN	5
SOURCE AND SPECIFICATIONS OF TEST ANIMALS	D
ANIMAL MAINTENANCE	D
CLINICAL EXAMINATIONS AND PATHOLOGY	D
STATISTICAL METHODS	J
III. RESULTS	3
RATS	1
SINGLE-ADMINISTRATION STUDIES	4
FOURTEEN-DAY STUDIES	5
THIRTEEN-WEEK STUDIES	8
TWO-YEAR STUDIES	1
BODY WEIGHTS AND CLINICAL SIGNS	1
SURVIVAL	D
PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS	J
MICE	5
SINGLE-ADMINISTRATION STUDIES4	5
FOURTEEN-DAY STUDIES	3
THIRTEEN-WEEK STUDIES	1
TWO-YEAR STUDIES	1
BODY WEIGHTS AND CLINICAL SIGNS	1
SURVIVAL	l
PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS	L

PAGE

•

CONTENTS (Continued)

IV.	DISCUSSION AND CONCLUSIONS	57
v.	REFERENCES	61

PAGE

TABLES

TABLE 1	ACUTE TOXICITY OF 2-CHLOROETHANOL
TABLE 2	SUMMARY OF THE GENETIC TOXICOLOGY OF 2-CHLOROETHANOL
TABLE 3	CONCENTRATIONS OF 2-CHLOROETHANOL IN DOSE MIXTURES IN THE
	TWO-YEAR DERMAL STUDIES
TABLE 4	EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE DERMAL
	STUDIES OF 2-CHLOROETHANOL
TABLE 5	SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE SINGLE-
	ADMINISTRATION DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE 6	SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY
	DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE 7	SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK
	DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE 8	INCIDENCES OF PANCREATIC ACINAR CELL VACUOLAR CHANGE AND
	PULMONARY CONGESTION IN RATS IN THE THIRTEEN-WEEK DERMAL
	STUDIES OF 2-CHLOROETHANOL
TABLE 9	MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR DERMAL
	STUDIES OF 2-CHLOROETHANOL
TABLE 10	SURVIVAL OF RATS IN THE TWO-YEAR DERMAL STUDIES OF
	2-CHLOROETHANOL
TABLE 11	ANALYSIS OF SKIN TUMORS IN MALE RATS IN THE TWO-YEAR DERMAL
	STUDY OF 2-CHLOROETHANOL
TABLE 12	ANALYSIS OF PITUITARY GLAND LESIONS IN FEMALE RATS IN THE
	TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE 13	ANALYSIS OF OCULAR LESIONS IN RATS IN THE TWO-YEAR DERMAL
	STUDIES OF 2-CHLOROETHANOL

TABLES (Continued)

TABLE 14	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE SINGLE- ADMINISTRATION DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE 15	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE 16	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE 17	MEAN BODY WEIGHTS AND SURVIVAL OF MALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE 18	MEAN BODY WEIGHTS AND SURVIVAL OF FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE 19	SURVIVAL OF MICE IN THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE 20	ANALYSIS OF LUNG LESIONS IN MICE IN THE TWO-YEAR DERMAL STUDIES
TABLE 21	ANALYSIS OF HEMATOPOIETIC SYSTEM TUMORS IN MICE IN THE TWO-YEAR
TABLE 22	ANALYSIS OF ADRENAL CORTICAL LESIONS IN MALE MICE IN THE TWO-YEAR
	DERMAL STUDI OF 4-CHLOROEINANOL

PAGE

FIGURES

PAGE

FIGURE	1	GROWTH CURVES FOR RATS ADMINISTERED 2-CHLOROETHANOL BY
		DERMAL APPLICATION FOR TWO YEARS
FIGURE	2	KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED
		2-CHLOROETHANOL BY DERMAL APPLICATION FOR TWO YEARS
FIGURE	3	GROWTH CURVES FOR MICE ADMINISTERED 2-CHLOROETHANOL BY
		DERMAL APPLICATION FOR TWO YEARS
FIGURE	4	KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED
		8-CHLOROETHANOL BY DERMAL APPLICATION FOR TWO YEARS
FIGURE	5	KAPLAN-MEIER SURVIVAL CURVES FOR MALE MICE ADMINISTERED
		3-CHLOROETHANOL BY DERMAL APPLICATION FOR TWO YEARS WITH
		WEEK-ONE DEATHS CENSORED
FIGURE	6	INFRARED ABSORPTION SPECTRUM OF 2-CHLOROETHANOL (LOT NO. A3X) 157
FIGURE	7	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 2-CHLOROETHANOL
		(LOT NO. A3X)
FIGURE	8	INFRARED ABSORPTION SPECTRUM OF 2-CHLOROETHANOL (LOT NO. C742) 162
FIGURE	9	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 2-CHLOROETHANOL
		(LOT NO. C742)

APPENDIXES

APPENDIX A	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR
	DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE
	TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE A2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE
	TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE AS	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE
	TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE A4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
	TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
APPENDIX B	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR
	DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE
	TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE
	TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE B3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
	TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE B4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE
	TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
APPENDIX C	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN
	THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE C1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE C2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
APPENDIX D	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN
	THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

PAGE

7

APPENDIXES (Continued)

PAGE

TABLE D1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	MICE IN THE IWO-TEAR DERMAL STUDY OF 2-CHLOROETHANOL
TABLE D2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL
APPENDIX E	ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR
	DERMAL STUDIES OF 2-CHLOROETHANOL
TABLE E1	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR
	DERMAL STUDY OF 2-CHLOROETHANOL
TABLE E2	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR
	DERMAL STUDY OF 2-CHLOROETHANOL
TABLE E3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR
	DERMAL STUDY OF 2-CHLOROETHANOL
TABLE E4	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR
	DERMAL STUDY OF 2-CHLOROETHANOL
APPENDIX F	GENETIC TOXICOLOGY OF 2-CHLOROETHANOL
TABLE F1	MUTAGENICITY OF 2-CHLOROETHANOL IN SALMONELLA
TABLE F2	INDUCTION OF SEX-LINKED RECESSIVE LETHAL MUTATIONS IN
	DROSOPHILA BY 2-CHLOROETHANOL
APPENDIX G	CHEMICAL CHARACTERIZATION OF 2-CHLOROETHANOL
APPENDIX H	PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES
APPENDIX I	ANALYSIS OF DOSE MIXTURES: METHODS
APPENDIX J	ANALYSES OF DOSE MIXTURES: DATA
TABLE JI	CONCENTRATIONS OF SCHLOROFTHANOL IN THE TWO.YEAR DEPMAL
	STUDIES
TABLE JX	REBULTB OF REFEREE ANALISES OF 2-CHLOROETHANOL/ETHANOL
	MIXTURES IN THE TWO-YEAR DERMAL STUDIES
APPENDIX K	SENTINEL ANIMAL PROGRAM

APPENDIXES (Continued)

TABLE K1	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN
	THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL
APPENDIX L	INGREDIENTS, NUTRIENT COMPOSITION, AND MEASURED CONTAMINANT
	LEVELS OF THE NIH 07 DIET
TABLE L1	INGREDIENTS OF THE NIH 07 DIET
TABLE L2	VITAMINS AND MINERALS IN THE NIH 07 DIET
TABLE L3	NUTRIENT COMPOSITION OF THE NIH 07 DIET
TABLE L4	CONTAMINANT LEVELS OF THE NIH 07 DIET
APPENDIX M	ENVIRONMENTAL CONDITIONS DURING THE TWO-YEAR DERMAL STUDIES
	OF 2-CHLOROETHANOL
TABLE M1	TEMPERATURE RECORD FOR THE TWO-YEAR DERMAL STUDIES OF
	2-CHLOROETHANOL
TABLE M2	RELATIVE HUMIDITY RECORD FOR THE TWO-YEAR DERMAL STUDIES
	OF 2-CHLOROETHANOL
APPENDIX N	DATA AUDIT SUMMARY

PAGE

Cl-CH₂-CH₂-OH 2-CHLOROETHANOL

CAS NO. 107-07-3

Synonyms: Ethylene Chlorohydrin; Chloroethanol; Glycol Chlorohydrin; β-Chloroethanol

C₂H₅ClO Molecular Weight: 80.51

ABSTRACT

Toxicology and carcinogenesis studies of 2-chloroethanol (99% pure), an industrial chemical and an intermediate in the synthesis of ethylene oxide, were conducted by dermal application of 2-chloroethanol dissolved in 70% ethanol:30% water (v/v) solutions to groups of 50 F344/N rats of each sex at doses of 0, 50, or 100 mg/kg for 103 weeks or to groups of 50 Swiss CD-1 mice of each sex at doses of 0, 7.5, or 15 mg per animal for 104 weeks (0, 253, or 630 mg/kg at week 1; 0, 180, or 411 mg/kg at week 100). The control groups received skin applications of the vehicle; the mouse studies also included untreated control groups of 50 males and 50 females.

2-Chloroethanol solutions were applied to the clipped interscapular area of the animals once daily, 5 days per week for the test period. Rats received a volume of 0.18-0.22 ml of solution; mice received 0.10 ml of solution. In the 13-week studies, mortality was observed in male and female rats receiving 250 mg/kg per day and higher and in male and female mice receiving 20 mg per day and higher. In the 104-week studies, the survival and body weights of dosed rats were unaffected by 2-chloroethanol. The survival of high dose male mice was lower (P<0.05) than that of the vehicle controls (vehicle control, 26/50; 7.5 mg, 16/50; 15 mg, 12/50). Body weights of dosed mice were unaffected by 2-chloroethanol. The survival and body weight gain data suggest that the male and female rats and female mice could have tolerated a higher dose of 2-chloroethanol. Male mice probably could not have tolerated a higher dose than was applied to the skin. Seven high dose male mice died within 3 days of the start of dosing; all of these had inflammation at the site of dermal application. Five also had ulceration at the site of dermal application, or hemorrhage.

Marginal increases were found in the incidence of lymphomas or leukemias (combined) as well as in the incidence of alveolar/bronchiolar adenomas or carcinomas (combined) in low dose male mice. Since there was no dose-related trend for these tumor incidences and because the increases were observed in only one sex, the increases were not considered to be related to the dermal application of 2chloroethanol.

2-Chloroethanol was mutagenic in Salmonella typhimurium strains TA100 and TA1535 (but not TA1537 or TA98) in either the presence or the absence of Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9. 2-Chloroethanol did not induce sex-linked recessive lethal mutations in Drosophila melanogaster.

An audit of the experimental data was conducted for these 2-year studies. No data discrepancies were found that influenced the final interpretations.

Under the conditions of these 2-year dermal studies, there was *no evidence of carcinogenicity** of 2chloroethanol for male and female F344/N rats given 50 or 100 mg/kg per day or for male and female Swiss CD-1 mice given 7.5 or 15 mg per animal per day.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of 2-Chloroethanol is based on the 13-week studies in rats which began in January 1978 and ended in April 1978, the 13-week studies in mice which began in June 1977 and ended in September 1977, and the 2-year studies that began in January 1980 and ended in January 1982 at Litton Bionetics, Inc.

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

Dexter S. Goldman, Ph.D.,* Chemical Manager

Gary A. Boorman, D.V.M., Ph.D. Rajendra S. Chhabra, Ph.D. David M. DeMarini, Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D. C.W. Jameson, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. Bernard A. Schwetz, D.V.M., Ph.D. Raymond W. Tennant, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report on 10/26/82)

Scot L. Eustis, D.V.M., Ph.D. (Chair) NTP Gary A. Boorman, D.V.M., Ph.D. NTP Paul K. Hildebrandt, D.V.M. Tracor Jitco, Inc. Hendricus A. Solleveld, D.V.M., Ph.D. NTP

Principal Contributors at Litton Bionetics, Inc. (Conducted Studies and Evaluated Tissues)

Richard H. Cardy, D.V.M. Pathologist (Rat Studies) Jerry Fitzgerald, Ph.D. Chemist Carter D. Johnson, Ph.D. Principal Investigator Alan G. Manus, D.V.M. Principal Investigator James Moe, D.V.M., Ph.D. Pathologist (Mouse Studies)

Principal Contributors at Experimental Pathology Laboratory (Provided Pathology Quality Assurance)

Deborah A. Banas, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Project Manager Abigail C. Jacobs, Ph.D. Senior Scientist John Warner, M.S. Chemist/Statistician

^{*}Present address: Office of Compliance Monitoring (EN342), U.S. Environmental Protection Agency, Washington, DC 20460

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on 2-chloroethanol on July 27, 1984, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Jerry B. Hook, Ph.D. (Chair)* Vice President, Preclinical Research and Development Smith Kline & French Laboratories Philadelphia, Pennsylvania

Curtis Harper, Ph.D. (Acting Chair) Associate Professor of Pharmacology School of Medicine University of North Carolina Chapel Hill, North Carolina James Swenberg, D.V.M., Ph.D.* Chief of Pathology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Ad Hoc Subcommittee Panel of Experts

Louis S. Beliczky, M.S., M.P.H. (Principal Reviewer) Director, Department of Industrial Hygiene United Rubber Workers International Union Akron, Ohio

Devra L. Davis, Ph.D. Board on Toxicology and Environmental Health Hazards National Academy of Sciences Washington, D.C.

Seymour L. Friess, Ph.D. Arlington, Virginia

Thomas C. Jones, D.V.M. Professor, Comparative Pathology New England Regional Primate Research Center Harvard Medical School Southborough, Massachusetts

Richard J. Kociba, D.V. M., Ph.D. (Principal Reviewer) Dow Chemical USA Midland, Michigan David Kotelchuck, Ph.D. (Principal Reviewer) Research Department United Electrical, Radio and Machine Workers of America New York, New York

Tom Slaga, Ph.D.* Science Park, Research Division University of Texas System Cancer Center Smithville, Texas

Steven R. Tannenbaum, Ph.D. Professor, Department of Nutrition and Food Science Massachusetts Institute of Technology Cambridge, Massachusetts

Bruce W. Turnbull, Ph.D. Professor and Associate Director College of Engineering Cornell University Ithaca, New York

John R. Van Ryzin, Ph.D. Division of Biostatistics School of Public Health Columbia University New York, New York

*Unable to attend meeting

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF 2-CHLOROETHANOL

On July 27, 1984, the draft Technical Report on the toxicology and carcinogenesis studies of 2-chloroethanol received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting began at 9:00 a.m. in the Conference Center, Building 101, South Campus, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

Mr. Beliczky, a principal reviewer, agreed with the conclusions. He commented that for this chemical the inhalation or gavage route of exposure may have been more appropriate, since inhalation would be the primary expected route of exposure in the industrial setting. Dermal application would be more meaningful if the degree of absorption and metabolism could be be better characterized. Dr. D. Goldman, NTP, stated that workers are exposed dermally. Mr. Beliczky added that examining urine from workers exposed to 2-chloroethanol may have practical value.

As a second principal reviewer, Dr. Kociba agreed with the conclusions. He commented on the apparent dose-related incidence of acute inflammation and ulceration of the skin in male mice and said that this incidence may have a possible relationship in the high dose group to 2-chloroethanol application. He also asked that the data for pancreatic acinar cell atrophy in male rats be evaluated to determine whether any degenerative change in the pancreatic acini during the 2-year study was compound related. [See p. 59.]

As a third principal reviewer, Dr. Kotelchuck did not fully agree with the conclusion for female rats. He believed that there was equivocal evidence of carcinogenicity of 2-chloroethanol for adenomas of the pituitary gland in female rats for the following reasons: (1) the differences between high dose and vehicle control groups were significant by the life table and Fisher exact tests; (2) two of the three trend tests showed a statistically significant increase; (3) in an earlier study by Mason and coworkers, the incidence of adenomas of the pituitary gland in female F344 rats exposed to 2-chloroethanol was increased; and (4) it is biologically plausible for there to be a sex-influenced effect of this chemical on an endocrine gland (the incidence in male rats was not increased). Dr. Kotelchuck proposed modifying the conclusions to reflect the marginal increase in adenomas of the pituitary gland in female rats.

Dr. J. Haseman, NIEHS, noted that for adenomas of the pituitary gland the appropriateness of the life table test instead of the incidental tumor test, which was not statistically significant, depends on whether the eight tumors occurring in the high dose group before the end of the study were related to the cause of death. Dr. E. McConnell, NTP, said that tumors of the pituitary gland are not generally thought of as being lethal. Dr. Kociba commented that there is a continuum of lesions in the pituitary gland from hyperplasias through adenomas to carcinomas. Dr. G. Boorman, NTP, agreed and said that other factors used to downgrade the importance of the adenomas in this study were that no increases were seen for hyperplasias and there was a decrease in the incidences of carcinomas of the pituitary gland from vehicle control to dosed groups. Dr. J. Huff, NTP, added that the findings in the study by Mason and coworkers were of borderline significance and that the incidences from different dose groups had to be combined to show an increase.

Dr. Harper asked for a vote on the conclusion of equivocal evidence of carcinogenicity for describing the marginal increase of adenomas of the pituitary gland in female rats. There was one affirmative vote. Dr. Kociba moved that the Technical Report on the toxicology and carcinogenesis studies of 2chloroethanol be accepted with the conclusions as written. Dr. Friess seconded the motion, and the Technical Report was approved unanimously by the Peer Review Panel.

2-Chloroethanol, NTP TR 275

14

,

I. INTRODUCTION

Use and Production Environmental Occurrence Toxicity Chronic Toxicity and Carcinogenicity Genetic Toxicology Teratogenicity and Fetotoxicity Environmental Fate of 2-Chloroethanol Tissue Distribution and Metabolism Other Sources of 2-Chloroethanol Toxicology of Ethylene Oxide Regulatory Status of 2-Chloroethanol Study Rationale

Cl-CH₂-CH₂-OH 2-CHLOROETHANOL

CAS NO. 107-07-3

Synonyms: Ethylene Chlorohydrin; Chloroethanol; Glycol Chlorohydrin; β-Chloroethanol

C₂H₅ClO Molecular Weight: 80.51

Use and Production

ion or, commercially, with hydrochloric acid or magnesium chloride (Blackford, 1976).

2-Chloroethanol is an intermediate in the synthesis of ethylene oxide and ethylene glycol and in the production of indigo, dichloroethyl formal (an intermediate for the production of polysulfide elastomers), and thiodiethylene glycol (used in textile printing); it is also an industrial solvent, a pre-emergent plant growth stimulator, an extractant in the dewaxing of mineral oil, and an antioxidant for textile printing dyes. The principal use of 2-chloroethanol was formerly in the production of ethylene oxide (Schultze, 1965). In this procedure, 2-chloroethanol is produced by reacting ethylene with hypochlorous acid; the 2-chloroethanol is dehydrochlorinated with slaked lime to form ethylene oxide:

 $CH_1 = CH_2 + HOCI - CICH_2CH_2OH$

2-Chloroethanol is an intermediate and is not isolated in this process. Before 1972, as much as 500 million pounds of ethylene oxide was prepared annually from 1,000 million pounds of 2chloroethanol by this process (Blackford, 1976). Current production of ethylene oxide does not use this procedure. 2-Chloroethanol is no longer produced commercially in the United States (Riesser, 1979). 2-Chloroethanol is also prepared by reacting ethylene oxide with chloride

Environmental Occurrence

The principal sources of 2-chloroethanol emissions are probably liquid wastes and still residues from manufacturing plants. 2-Chloroethanol poses no shipping hazards other than those caused by accidental spills or tank ruptures. The magnitude of vapor losses during transfer from transport to storage containers is unknown.

Toxicity

2-Chloroethanol is toxic when administered to laboratory animals at the concentrations and by the routes shown in Table 1. 2-Chloroethanol is highly irritating to mucous membranes but produces little if any reaction upon contact with rabbit skin. It is not a sensitizer in the guinea pig test. Toxic amounts can be absorbed through the skin without causing dermal irritation (Gleason et al., 1969). Toxic reactions in humans exposed to 2-chloroethanol dermally or by inhalation were first reported by Koelsch (1927). Human fatalities have resulted from ingestion, inhalation, or dermal contact with 2chloroethanol (Goldblatt and Chiesman, 1944; Bush et al., 1949; Ballotta et al., 1953; Saitanov and Konanova, 1976). In all cases, neurotoxic symptoms were described. Death was attributed to cardiac and respiratory collapse.

Guess (1970), in a study of the response of rabbit tissues, showed that mucosal tissue was more sensitive to 2-chloroethanol than to ethanol; edema and erythema were produced by both. Of particular interest in this study were tissues that might come in contact with ethylene oxidesterilized plastic devices used in medical or

Species	Strain	Route	LD ₅₀ /LC ₅₀	Reference
Mouse		Inhalation	117 ppm	NIOSH (1975)
Mouse		Intraperitoneal	81 mg/kg	NIOSH (1975)
Mouse	Swiss	Intraperitoneal	98.3 mg/kg	Lawrence et al. (1971)
Mouse	Swiss	Oral	81 mg/kg	Lawrence et al. (1971)
Rat		Subcutaneous	84 mg/kg	NIOSH (1975)
Rat		Inhalation	32 ppm	Carpenter et al. (1949)
Rat	Sprague-Dawley	Intraperitoneal	64 mg/kg	Lawrence et al. (1971)
Guinea pig		Dermal	285 mg/kg	Wahlberg and Boman (1978)
Guinea pig	Huntley	Intraperitoneal	86 mg/kg	Lawrence et al. (1971)
Guinea pig	•	Inhalation	918 ppm	NIOSH (1977)
Rabbit	New Zealand	Intraperitoneal	85 mg/kg	Lawrence et al. (1971)
Rabbit	New Zealand	Dermal	68 mg/kg	Lawrence et al. (1971)

TABLE 1. ACUTE TOXICITY OF 2-CHLOROETHANOL

surgical procedures, devices that might contain residues of 2-chloroethanol. On intracutaneous administration. 2-chloroethanol was more toxic than ethanol: a 1:10 dilution caused hemorrhagic reactions within 15 minutes, and affected areas became necrotic within 24 hours. Histologic examination showed localized edema, cellular destruction, and infiltration by polymorphonuclear leukocytes and lymphocytes. Kronevi et al. (1979) studied the effects of several industrial solvents on the skin of guinea pigs. Exposure of guinea pig skin to 2-chloroethanol produced pyknosis of the basal cell nuclei: severity progressively increased and all epidermal layers were affected. Perinuclear edema was progressive, and cytoplasmic vacuolization occurred after 16 hours' exposure. The livers of animals administered 2-chloroethanol showed centrilobular hydropic changes characterized by large, clear spaces in the cytoplasm. Similar but less severe skin changes were induced by carbon tetrachloride, hexane, or toluene.

Chronic Toxicity and Carcinogenicity

Homburger (1968) studied the effects of 2-chloroethanol on the incidence of alveolar/bronchiolar adenomas in female CF₁ mice; a single intravenous dose of 1.2 mg 2-chloroethanol had no effect on the incidence of these tumors over a 12month period. When the same dose was administered once per month for 7 months, the incidence of adenomas was increased in dosed animals (control, 2/18; dosed, 5/18). Oral administration of 2-chloroethanol (0.01%-1.28% in the diet) to rats produced toxic effects at low doses (0.12%) and fatalities at higher doses (0.32% and higher) (Ambrose, 1950). 2-Chloroethanol was fatal to rats by inhalation (two 1-hour exposures at 4 ppm, exposures separated by a 2-hour interval), to rats by dermal application (0.12 ml per animal), to rabbits by dermal application (three applications of 0.5 ml per animal) (Ambrose, 1950; Strusevich and Ekshtat, 1973), and to FDRL rats by gavage (67.5 mg/kg per day for 21 days) (Oser et al., 1975).

Mason et al. (1971) found an increased incidence of pituitary gland adenomas in female F344 rats dosed with 2-chloroethanol. The dosed rats received subcutaneous injections of 2-chloroethanol (in saline) at levels of 0.3-10 mg/kg two times per week for 52 weeks followed by observation for an additional 26 weeks. The reported incidence of pituitary gland adenomas in the dosed female rats (all dose groups combined) was 7/100; the control rate was 1/50.

2-Chloroethanol and 2-bromoethanol were not found to be carcinogenic when administered by subcutaneous injection to female NMRI mice for approximately 70 weeks at doses of 0.3, 1.0, or 3.0 mg per week (Dunkelberg, 1983).

Genetic Toxicology

The genetic toxicity of 2-chloroethanol has been investigated in a wide variety of short-term

studies, and the results are summarized in Table 2. 2-Chloroethanol is a weak base-pair substitution mutagen in bacteria but is essentially negative in a variety of other systems, including fungi, Drosophila, mammalian cell cultures, and rodents. Of 17 studies in Salmonella, 14 show that 2-chloroethanol is a direct-acting base-pair substitution mutagen in Salmonella typhimurium strains TA1530, TA1535, and TA100 (Rosenkranz et al., 1974; Rosenkranz and Wlodkowski, 1974; Bartsch et al., 1975; Malaveille et al., 1975; McCann et al., 1975; Rannug et al., 1976; Lofroth, 1978; Nakamura et al., 1979; Rannug and Beije, 1979; Bignami et al., 1980a,b; Pfeiffer and Dunkelberg, 1980; Stolzenberg and Hine, 1980; NTP, Appendix F). Confirmatory results have been obtained in other bacteria, including Klebsiella pneumoniae (Voogd and van der Vet, 1969; Voogd et al., 1972; Voogd, 1973) and Escherichia coli (Norpoth et al., 1980); however, this chemical was negative in the bacterium Streptomyces coelicolor (Bignami et al., 1980a,b). The addition of rat liver S9 enhanced the mutagenicity of 2chloroethanol in Salmonella, suggesting that 2chloroethanol is metabolized to an additional mutagenic form.

2-Chloroethanol induced DNA damage in E. coli (Rosenkranz et al., 1974; Rosenkranz and Wlodkowski, 1974) but not in Bacillus subtilis (Elmore et al., 1976; Laumbach et al., 1977). 2-Chloroethanol was not mutagenic in yeast (Loprieno et al., 1977; Barale et al., 1979) and did not induce mitotic gene conversion in yeast (Loprieno et al., 1977); however, it was mutagenic in the fungus Aspergillus nidulans (Bignami et al., 1980a,b). 2-Chloroethanol did not induce sex-linked recessive-lethal mutations in Drosophila (Knaap et al., 1982; NTP, Appendix F), and it did not cause somatic crossing over in soybeans (Vig, 1975). However, it was reported to induce abnormal metaphase chromosomes in onion root tips (Barthelmess and Elkabarity, 1962).

In mammalian cells in vitro, 2-chloroethanol was not mutagenic (Huberman et al., 1975; Knaap et al., 1982) and did not inhibit DNA synthesis (Painter and Howard, 1982). However, it did induce DNA repair in human fibroblasts in vitro (Stich et al., 1976). Isakova et al. (1971) reported that 2-chloroethanol increased the frequency of chromosomal aberrations in rat bone marrow after the animals were exposed by inhalation; however, detailed data were not provided. Neither chromosomal aberrations nor micronuclei were found in mouse bone marrow cells after exposure to 2-chloroethanol by either the oral or intraperitoneal injection routes (Conan et al., 1979). In addition, 2-chloroethanol did not induce dominant-lethal mutations (Epstein et al., 1972) or heritable translocations in the mouse (Sheu et al., 1983).

Teratogenicity and Fetotoxicity

Malformations and high rates of embryo mortality occurred when chick embryos were administered 2-chloroethanol at doses of 50 or 100 mg/kg (egg weight) at 0 or 96 hours of incubation (Verrett, 1974). Fetotoxicity and maternal toxicity were produced when the compound was administered by gavage to pregnant Swiss CD-1 mice on days 4-12 of gestation (RTI, 1983a). No effect on the mother or offspring occurred when 2-chloroethanol was administered in drinking water to Swiss CD-1 mice on days 6-16 of gestation. No teratogenic effects were noted in New Zealand white rabbits administered 2-chloroethanol intravenously at doses (36 mg/kg per day) that produced significant levels of fetotoxicity or maternal toxicity (RTI, 1983b).

Environmental Fate of 2-Chloroethanol

Brominated 2- and 3-carbon compounds can be dehalogenated by a soil Flavobacterium (Castro and Bartnicki, 1968); 2-chloroethanol and 2bromoethanol are probably dehalogenated to ethylene glycol by this system.

2-Chloroethanol is oxidized in an aqueous environment through 2-chloroacetaldehyde to 2chloroacetic acid. 2-Chloroethanol is soluble in all proportions in water and can be expected to leach from soil and be transported by soil water. Neely et al. (1974) suggested that bioconcentration of water-soluble substances is unlikely.

Test System	Endpoint	Result	References
Bacterial Systems			
Salmonella typhimurium	Gene mutation	+ + + + + + + + + +	Rosenkranz et al., 1974 Rosenkranz and Wlodkowski, 1974 Bartsch et al., 1975 Malaveille et al., 1975 McCann et al., 1975 Rannug et al., 1976 Lofroth, 1978 Nakamura et al., 1979 Rannug and Beije, 1979 Bignami et al., 1980a,b Pfeiffer and Dunkelberg, 1980 Stolzenberg and Hine, 1980 NTP, Appendix F Elmore et al., 1976 Laumbach et al., 1977
Klebsiella pneumoniae	Gene mutation	- + +	Norpoth et al., 1980 Voogd and van der Vet, 1969 Voogd et al., 1972
		+ +	Voogd, 1973 Knapp et al., 1982
Streptomyces coelicolor	Gene mutation	-	Bignami et al., 1980a,b
Escherichia coli	Gene mutation	+	Norpoth et al., 1980
E. coli	DNA damage	+ +	Rosenkranz et al., 1974 Rosenkranz and Wlodkowski, 1974
Bacillus subtilis	DNA damage	Ξ	Elmore et al., 1976 Laumbach et al., 1977
Nonmammalian Eukaryotes			
Schizosaccharomyces pombe	Gene mutation	-	Loprieno et al., 1977 Barale et al., 1979
Aspergillus nidulans	Gene mutation	+	Bignami et al., 1980a,b
Drosophila melanogaster	Gene mutation	-	Knaap et al., 1982 NTP, Appendix F
Saccharomyces cerevisiae	Chromosomal aberrations	-	Loprieno et al., 1977
Allium	Chromosomal aberrations	+	Barthelmess and Elkabarity, 1962
Glycine max	Chromosomal aberrations	— .	Vig, 1975

TABLE 2. SUMMARY OF THE GENETIC TOXICOLOGY OF 2-CHLOROETHANOL

Test System	Endpoint	Result	References
Mammalian Cells (in vitro)		9.999994 6.99999 to 2010 and 2010 to 2010	
Mouse lymphoma	Gene mutation	-	Knaap et al., 1982
Chinese hamster (V79)		-	Huberman et al., 1975
Human (HeLa)	DNA damage	-	Painter and Howard, 1982
Human fibroblasts	-	+	Stich et al., 1976
lammals (in vivo)			
Rat (bone marow)	Chromosomal aberrations	+	Isakova et al., 1971
Mouse		-	Conan et al., 1979
	Micronucleus	-	Conan et al., 1979
	Heritable translocations	_	Sheu et al., 1983
	Dominant lethal	-	Epstein et al., 1972

TABLE 2. SUMMARY OF THE GENETIC TOXICOLOGY OF 2-CHLOROETHANOL (Continued)

Tissue Distribution and Metabolism

No reports were found on the kinetics of the dermal absorption of 2-chloroethanol or on the tissue distribution of 2-chloroethanol following dermal absorption. After a single oral dose of an aqueous solution of [1,2-14C]-2-chloroethanol (5 or 50 mg/kg) was administered to adult male Wistar rats, 77%-80% of the administered radioactivity was recovered in the urine within 24 hours (Grunow and Altmann, 1982). In the same time period, another 3%-5% was recovered in the feces and expired air. No unchanged 2chloroethanol was recovered in either feces or urine; expired ^{14}C was all in the form of $^{14}CO_2$. Peak levels of radioactivity were found in blood 1 hour after administration; these levels were reduced by 50% after approximately 4 hours. About 90% of the radioactivity in the urine was in the form of thiodiacetic acid and thionyldiacetic acid, the latter probably formed by the oxidation of the former metabolite.

Johnson (1965) suggested that the toxicity of 2chloroethanol was due to the formation of chloroacetaldehyde by the test animal in amounts greater than could be detoxified by glutathione (GSH). 2-Chloroethanol is known to be a substrate for the purified cytoplasmic alcohol dehydrogenase of human liver (Blair and Vallee, 1966), rat liver, or yeast (Johnson, 1967). Johnson (1967) demonstrated the in vivo and in vitro formation of S-carboxymethyl-GSH in livers of rats dosed with 2-chloroethanol (I). S-Carboxymethyl-GSH (IV) is presumably formed from GSH and chloroacetaldehyde (II), the dehydrogenation product of 2-chloroethanol (I); S-formylmethyl-GSH (III) is the presumed intermediate.

Grunow and Altmann (1982) reported finding thiodiacetic acid (VI) and thionyldiacetic acid (VII) in the urine of rats given an oral dose of 2chloroethanol; both (VI) and (VII) are derivable from S-carboxymethylcysteine (V), the hydrolysis and deamination product of S-carboxymethyl-GSH (IV).

Thiodiacetic acid has been shown to be a metabolite of compounds that have the general property of being converted to chloroacetaldehyde; these compounds include vinyl chloride (Green and Hathway, 1975, 1977; Watanabe et al., 1976), 1,2-dichloroethanol (Yllner, 1971), and vinylidene chloride (Jones and Hathway, 1978).

Other Sources of 2-Chloroethanol

Ethylene oxide can react with chloride ions in aqueous systems to produce 2-chloroethanol:

The original report by Wesley et al. (1965) showing 2-chloroethanol residues (1-1,000 ppm) in foods sterilized by ethylene oxide was confirmed and extended by Ragelis et al. (1966, 1968). This work has been reviewed (Fishbein, 1969, 1976; Balazs, 1976; USEPA, 1978; FDA, 1978). Ethylene oxide and 2-chloroethanol residues (1-10 ppm) were found following ethylene oxide sterilization of pharmaceuticals (Adler, 1965; Holmgren and Diding, 1969) as well as in materials commonly used in surgical implants and medical procedures (Gunther, 1974a,b; Kozlenchkov and Medvedev, 1975; Brown, 1970; McGunnigle et al., 1975; O'Leary and Guess, 1968). Low-level exposure to 2-chloroethanol may be widespread because of the worldwide use of ethylene oxide as a sterilant. Current annual U.S. production of ethylene oxide is approximately 6.7 billion pounds (OSHA, 1982).

Ethylene oxide is both toxic and carcinogenic (IARC, 1976, 1984; USEPA, 1978; OSHA, 1982; NIOSH, 1983; Generoso et al., 1981; Glaser, 1979). Ethylene oxide is currently under test by the NTP in 2-year inhalation studies at concentrations of 0, 50, or 100 ppm in mice.

Toxicology of Ethylene Oxide

The available studies of humans exposed occupationally to ethylene oxide were considered to be inadequate to evaluate the carcinogenic potential (IARC, 1976). No notable health problems were found in a group of current and former chemical plant employees exposed to ethylene oxide (Joyner, 1964); however, a 15-fold increase in the incidence of leukemia was observed in a group of 89 Swedish workers exposed to ethylene oxide at concentrations of 10-30 ppm for 4-10 years (expected number, 0.2; actual number, 3.0). Examination of workers exposed full time, part time, or not at all revealed significant increases in mortality in general and increases in death from stomach cancer or leukemia in workers with a history of exposure to ethylene oxide. Ethylene oxide exposure was estimated to range from 6 ppm in the 1970's to about 30 ppm in the 1950's and 1960's, and up to 700 ppm in the 1940's; however, these workers were also exposed to other chemicals (Hogstedt et al., 1979a,b). The Occupational Safety and Health Administration has proposed a reduction in the permissible exposure limit to ethylene oxide from 50 to 1 ppm averaged over an 8-hour workday (OSHA, 1983). The U.S. Environmental Protection Agency (USEPA,1984) recently published new labeling requirements for ethylene oxide containers to assure that workers using ethylene oxide would not be exposed

at concentrations greater than those proposed by OSHA.

Administration of ethylene oxide (75 or 150 mg/kg) to pregnant New Zealand rabbits at four different 2-day postfertilization periods (days 4-6, 6-8, 8-10, 10-12) of gestation produced no teratogenic effects, although maternal toxicity was dose related. A lowering of fetal body weight and average litter size and increases in maternal toxicity and structural malformations in pups occurred in a dose-related fashion when ethylene oxide (75 or 150 mg/kg) was administered to pregnant Swiss CD-1 mice at days 4-6, 6-8, 8-10, or 10-12 of gestation (Kimmel and LaBorde, 1979; LaBorde and Kimmel, 1980). Weanling F344 male and female rats were exposed to ethylene oxide (0, 10, 33, or 100 ppm) for 6 hours per day, 5 days per week for 12 weeks before being mated. The pregnant female rats in the 100-ppm dose group had longer gestation periods, reduced fertility index, and fewer pups per litter (Snellings et al., 1982).

Metabolism of vinyl chloride monomer may provide another source of exposure to 2-chloroethanol. Monochloroacetic acid was found in the urine of workers exposed to vinyl chloride monomer (Grigorescu and Toba, 1966). Chloroacetaldehyde, chloroethylene oxide, and 2chloroethanol are likely intermediates in the metabolism of vinyl chloride (Green and Hathway, 1977; Watanabe et al., 1976). 2-Chloroethanol may be a metabolic intermediate common to both ethylene oxide and vinyl chloride monomer--two industrial chemicals produced worldwide in large amounts.

Regulatory Status of 2-Chloroethanol

The Food and Drug Administration (FDA, 1978) has proposed maximum residue limits and 30day maximum exposure levels for ethylene oxide (30 µg/kg per day), 2-chloroethanol (15 µg/kg per day), and ethylene glycol (2.5 mg/kg per day). The U.S. Environmental Protection Agency (USEPA, 1978) proposed revoking all registrations and continuing registrations of pesticide products containing ethylene oxide.

Study Rationale

2-Chloroethanol was selected for testing because of its metabolic and chemical relationship to ethylene oxide and vinyl chloride monomer, its potential widespread exposure via ethylene oxide residues, and the lack of adequate carcinogenicity testing. Dermal application was selected because it is one of the two usual routes of exposure in humans, the other major route being inhalation. The F344/N rat and the Swiss mouse were chosen as the test animals.

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF 2-CHLOROETHANOL PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES DERMAL APPLICATION SINGLE-ADMINISTRATION STUDIES FOURTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Study Design Source and Specifications of Test Animals Animal Maintenance Clinical Examinations and Pathology Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF 2-CHLOROETHANOL

2-Chloroethanol was obtained in two batches. The first batch was obtained from Eastman Kodak Co. (lot no. A3X) and was identified as 2chloroethanol by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. All spectra were consistent with those expected for the structure of the chemical and with the available literature spectra (Appendix G). Cumulative data indicated that this batch of 2chloroethanol was greater than 99% pure This conclusion is based on (Appendix G). elemental analyses in agreement with theoretical values, a value of 0.090% water as determined by Karl Fischer titration, and three gas chromatographic systems that indicated a single homogenous peak by one system and impurities totaling 0.20% and 0.39% by the other two systems.

The second batch of test chemical (lot no. C742) was obtained from Fischer Scientific Co. and was identified as 2-chloroethanol by spectroscopy, which produced results similiar to those for the first batch (Appendix G). This batch was estimated to be approximately 99% pure; the results of elemental analyses for carbon and hydrogen agreed with theoretical values, but values for chlorine were slightly higher than theoretical. A value of 0.082% water was obtained by Karl Fischer titration. The major impurity in this batch was identified as 2-(2-chloroethoxy)ethanol and quantitated at 0.9%.

2-Chloroethanol was stored in the dark at 5° C in its original container. Results of periodic reanalyses of the bulk chemical by infrared spectroscopy and gas chromatography indicated no notable degradation of the chemical throughout the study (Appendix G).

PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES

2-Chloroethanol and 80% (single-administration, 14-day, and 13-week studies) or 70% (2year studies) ethanol in water were mixed to yield the desired solution (Appendix H). Solutions of 2-chloroethanol (7.9% and 9.4% w/v) in 70% (v/v) ethanol/water were shown by the testing laboratory to be stable for 21 days when stored at room temperature. For these studies, formulated mixtures of 2-chloroethanol were stored at room temperature for no longer than 2 weeks.

Dose mixtures were analyzed at the testing laboratory every 8 weeks during the 2-year studies (Appendix I). In addition, referee samples were analyzed by the analytical laboratory approximately every 6 months as a quality assurance measure to check the mixing and analysis procedures at the testing laboratory (Appendix I). The concentrations of 3 of the 55 mixtures (5.5%)analyzed at the testing laboratory differed from the target concentration by more than 10% (Table 3; Appendix J, Table J1). Two of these three mixtures were not administered to the animals but were remixed and reanalyzed before dosing. The third, which was found to be 110.9% of the target concentration, was administered to the animals.

TABLE 3. CONCENTRATIONS OF 2-CHLORO-
ETHANOL IN DOSE MIXTURES IN THE
TWO-YEAR DERMAL STUDIES

	Percent of Target Concentration	
Mean	101.0	
Standard deviation	7.90	
Coefficient of variation (percent	t) 7.82	
Number of samples	55	

DERMAL APPLICATION

For all animals, the interscapular skin was prepared by removing the hair with an electric clipper (No. 40 head). An area of about 3×3 cm was clipped on the mice and an area of about $6 \times$ 6 cm on the rats. For all studies except the single-administration studies, the backs of the animals were clipped two times per week for the first 2 weeks of the studies and weekly thereafter.

SINGLE-ADMINISTRATION STUDIES

Male and female F344/N rats were obtained from Frederick Cancer Research Center, and male and female Swiss Webster mice were obtained from Charles River Breeding Laboratories. Rats were observed for 1 week and mice were observed for 3 weeks before the studies began. Rats were housed two per cage, and mice were housed five per cage. All animals received water and feed ad libitum during the observation period. Details of animal maintenance are given in Table 4.

Groups of two to eight male and two to nine female rats were given single dermal applications of 2-chloroethanol (7.5, 15, 20, 30, 40, 60, 80, 100, 119 [males only], 239, or 479 mg). Groups of five mice of each sex were given 10, 14.7, 21.5, 31.6, 46.4, or 68.1 mg. The 2-chloroethanol was applied either undiluted or in 80% ethanol/water depending on dose. There were no vehicle control animals. Animals were observed for 14 days for mortality. Body weights were recorded on the day of dosing and then on days 7 or 8 and 14. Necropsies were performed on all animals.

FOURTEEN-DAY STUDIES

Male and female F344/N rats and Swiss Webster mice were obtained from Charles River Breeding Laboratories and were held for 4 weeks before the studies began.

Groups of five males and five females of each species were given dermal applications of 2chloroethanol in 80% ethanol in water for 14 consecutive days. Each day, rats received 0, 20, 30, 40, 60, or 80 mg per animal, and mice received 0, 2.5, 5, 10, 20, 30, 45, or 60 mg per animal. The 45-mg and 60-mg groups of mice were tested (without concurrent vehicle controls) after completion of the rest of the studies.

Animals were housed five per cage and received water and feed ad libitum. Details of animal maintenance are presented in Table 4. The rats and mice were observed twice per day and were weighed on days 0, 7, and 14 (rats) or days 1, 7, and 15 (mice). Necropsies were performed on all animals. Tissues examined are listed in Table 4.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxicity of 2-chloroethanol and to determine the doses to be used in the 2year studies.

Four-week-old male and female F344/N rats were obtained from Harlan Industries, Indianapolis, Indiana, and 3-week-old male and female Swiss CD-1 mice were received from Charles River Breeding Laboratories, Portage, Michigan. Rats and mice were observed for 3 weeks before the studies began. Rats and mice were housed five per cage in polycarbonate cages. Diets consisting of Purina Lab Chow[®] and water (acidified with hydrochloric acid to pH 2.5 for bacterial control) were available ad libitum. Further experimental details are summarized in Table 4.

Groups of 10 rats of each sex were given dermal applications of 2-chloroethanol (0, 62, 125, 250, 500, or 1,000 mg/kg) in 80% ethanol in water, 5 days per week for 13 weeks. Groups of 10 mice of each sex received 0, 5, 10, 20, 30, or 45 mg per animal on the same schedule.

Rats were checked two times per day, and mice were checked once per day; moribund animals were killed. Clinical examinations were performed and animal weights recorded once per week.

At the end of the 13-week studies, survivors were killed. Necropsies were performed on all animals, except those excessively autolyzed or cannibalized. Tissues and groups examined are listed in Table 4.

TWO-YEAR STUDIES

Study Design

Groups of 50 rats of each sex were administered 0, 50, or 100 mg/kg 2-chloroethanol in 70% ethanol in water by dermal application, 5 days per week for 103 weeks. Groups of 50 mice of each sex were administered 0, 7.5, or 15 mg 2chloroethanol in 70% ethanol in water by dermal application, 5 days per week for 104 weeks. Additional groups of 50 untreated mice of each sex were also included.

Single	-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPE	RIMENTAL DESIGN		<u></u>	
Testin	g Laboratory			
	Litton Bionetics, Inc.	Litton Bionetics, Inc.	Litton Bionetics, Inc.	Litton Bionetics, Inc.
Size of	f Test Groups			
	Rats2-8 males, 2-9 females; mice5 of each sex	5 of each sex and species	10 of each sex and species	50 of each sex and species
Doses				
	Rats7.5, 15, 20, 30, 40, 60, 80, 100, 119 (males only), 239, or 479 mg; mice10, 14.7, 21.5, 31.6, 46.4, or 68.1 mg 2-chloroethanol (undiluted or in 80% ethanol in water) by dermal application; dose vol: rats0.05- 0.4 ml; mice0.1 ml	Rats0, 20, 30, 40, 60, or 80 mg; mice0, 2.5, 5, 10, 20, 30, 45, or 60 mg 2-chloroethanol in 80% ethanol in water by dermal application; dose vol: 0.1 ml	Rats0, 62, 125, 250, 500, or 1,000 mg/kg; mice0, 5, 10, 20, 30, or 45 mg 2-chloroethanol in 80% ethanol in water by dermal application; dose vol: rats0.2 ml; mice0.1 ml; inter- scapular dosing area was clipped weekly	Rats0, 50, or 100 mg/kg; mice0, 7.5, or 15 mg 2-chloroethanol in 70% ethanol in water by dermal application; dose vol: male rats0.22 ml; female rats0.18 ml; mice0.10 ml; interscapular dosing area was clipped weekly
Date o	f First Dose			
	Rats7/21-7/29/77; mice2/14-2/16/77	Rats11/1/77; mice 3/23/77, 3/29/77 (60 mg), 4/5/77 (45 mg)	Rats1/9/78; mice6/21/77	Rats2/8/80; mice1/29/80
Date o	of Last Dose			
	N/A	Rats11/14/77; mice 4/5/77, 4/18/77 (45 mg)	Rats4/7/ 78; mice9/16/77	Rats1/29/82; mice1/25/82
Durat	ion of Dosing			
	Single dose	14 consecutive days	5d/wk for 13 wk	Rats5 d/wk for 103 wk; mice5 d/wk for 104 wk
Type a	and Frequency of Observa	ation		
	Rats-observed 1-2 h and 4 h after dosing on d 1 and 1 × d there- after; weighed on d 1, 7, and 14; miceweighed on d 1, 8, and 14	Observed 2 × d; rats weighed on d 0, 7, 14; mice weighed on d 1, 7, and 15	Ratsclinically examined 1 × wk; body weight measured 1 × wk; mice observed 2 × d; body weight measured 1 × wk; observed 1-2 h and 4 h after dosing on d 1, and 1 × d thereafter	Observed 2 \times d; clinical exam, palpation 1 \times mo; weighed 1 \times wk for 13 wk, then 1 \times mo thereafter
Necro	psy and Histologic Exami	nation		
	Necropsy performed on all animals	Necropsy performed on all animals; the following tissues were examined grossly; gross lesions; skin; mandibular lymph node; mammary gland; salivary gland; thigh muscle;	Necropsy performed on all animals; the following tissues were examined for vehicle control and 1,000 mg/kg group rats, and vehicle control, 20, 30, and 45 mg group mice,	Necropsy performed on all animals; histopath exam performed on the following tissues of all animals: gross lesions and tissue masses; blood smear; mandibular and

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE DERMAL STUDIESOF 2-CHLOROETHANOL

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE DERMAL STUDIES OF 2-CHLOROETHANOL (Continued)

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Necropsy and Histologic Exam	ination (Continued)		
	sciatic nerve; sternebrae, (including marrow); costochondral junction (rib); thymus; larynx; trachea; lungs and bronchi; tissue masses; adrenal glands; urinary bladder; regional lymph nodes; ileum; colon; cecum; rectum; mesenteric lymph node; liver; pancreas; spleen; kidneys; seminal vesicles/prostate/ testes or ovaries/uterus; no histopath exam	and all animals that died before the end of the study: gross lesions and tissue masses; mesenteric and cervical lymph nodes; salivary gland; sternebrae (including marrow); thyroid gland; parathyroids; small intestine; colon; liver; prostate/testes or ovaries/uterus; lungs and mainstem bronchi; mam- mary gland; heart; esoph- ague; stomach; brain; thymus; trachea; pancreas; spleen; kidneys; adrenal glands; skin; urinary bladder; pituitary gland; gallbladder (mice only); in addition, pancreas, lungs, and large intestine were examined histopathologically in all groups of dosed rats	mesenteric lymph nodes; salivary gland; sternebrae (including marrow); thyroid gland; parathyroids; colon; liver; urinary bladder; prostate/testes/seminal vesicles or ovaries/uterus; lungs and mainstem bronchi; skin (dosed and undosed sites); cecum; thigh muscle; brain; costochondral junc- tion, rib; larynz; nasal cavi- ty; heart; esophagus; stomach; thymus; trachea; pancreas; spleen; kidneys; adrenal glands; pituitary gland; mammary gland; duodenum; ileum; jejunum; sciatic nerve; rectum; gall- bladder (mice); spinal cord (if neurologic signs were present); eyes (if grossly abnormal)
ANIMALS AND ANIMAL MA	INTENANCE		
Species			
F344/N rats; Swiss Webster mice	Same as single-administra- tion studies	F344/N rats; Swiss CD-1 mice	Same as 13-week studies
Animal Source			
RatsFrederick Cancer Research Center (Frederick, MD); miceCharles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories (Portage, MI)	RatsHarlan Industries (Indianapolis, IN); miceCharles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories (Portage, MI)
Time Held Before Start of Test			
Rats1 wk; mice3 wk	4 wk	Rats20 d; mice3 wk	Rats2 wk; mice3 wk
Age When Placed on Study			
Rats6-9 wk; mice6 wk	Rats8 wk; mice7 wk	Rats7 wk; mice6 wk	Rats7 wk; mice6 wk
Age When Killed			
Rats8-11 wk; mice8 wk	Rats10 wk; mice9 wk	Rats20 wk; mice20 wk	Rats112 wk; mice111 wk
Necropsy Dates			
Rats8/4-8 /12/77; mice2/28/77	Rats11/15/77; mice4/6/77, 4/19/77	Rats4/10-4/11/78; mice9/19/77	Rats2/8-2/11/82; mice2/1-2/3/82

OF 2-CHLOROETHANOL (Continued) Single-Administration Studies Fourteen-Day Studies **Thirteen-Week Studies Two-Year Studies** ANIMALS AND ANIMAL MAINTENANCE (Continued) **Method of Distribution** Same as single-administra-Assigned to cages according So that average cage Same as single-administration studies tion studies to a table of random weights were approxinumbers; then cages mately equal assigned to groups accord-ing to another table of random numbers Feed

	Purina Lab Chow [®] (Ralston Purina Co., St. Louis, MO); ad libitum	Same as single-administra- tion studies	Same as single-administra- tion studies	NIH 07 Open Formula Rat and Mouse Ration Pellets (Ziegler Bros., Gardners, PA); ad libitum
Beddir	ng			

Same as single-administra-Ab-sorb-Dri® Ab-sorb-Dri® Same as single-administra-(Williams Feed and Bedding, (Williams Feed and tion studies tion studies Bedding, Gaithersburg,) Gaithersburg, MD) before 9/23/81; Sani-chips (P.J. MD) Murphy Forest Products, Rochelle Pk, NJ) thereafter Water

Tap water acidified with hydrochloric acid to pH 2.5, provided ad libitum	Same as single-administra- tion studies	Same as single-administra- tion studies	Same as single-administra- tion studies
au noncum			

Cages

	Polycarbonate (Lab Products, Inc., Garfield and Rochelle Pk, NJ, and Hazelton Systems, Aberdeen, MD)	Same as single-administra- tion studies	Same as single-administra- tion studies	Same as single-administra- tion studies
Cage F	ilters			
	Nonwoven polyester (Snow Filtration, Cincinnati, OH)	Same as single-administra- tion studies	Same as single-administra- tion studies	Same as single-administra- tion studies
Anima	is per Cage			
	Rats2; mice5	5	5	5
Cage R	otation			
	None	None	None	None

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE DERMAL STUDIES

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE DERMAL STUDIES OF 2-CHLOROETHANOL (Continued)

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIMAL MA	INTENANCE (Continued)		·
Animal Room Environment			
Ratsfluorescent light 12 h/d; temp23°±2°C; hum30%-70%; mice fluorescent light 8 h/d; temp22°±1°C; hum30%-70%; 12-15 room air changes/h	Fluorescent light 12 h/d; temp: 23° ± 2° C; hum30%-70%; room air changes not reported	Fluorescent light 12 h/d; hum30%-70%; air changes not stated; temp23°± 2°C;	Fluorescent light 12 h/d; temp23°±1°C; hum30%-70% (Appendix M); 12-15 room air changes/h
Other Chemicals on Test in Sam	e Room		
Ratsno record; micenone	None	Ratsno record; micenone	None
CHEMISTRY			
Lot Numbers Used			
A3X	A3X	A3X	A3X, C742
Date of Initial Use of Subsequer	nt Lots		
N/A	N/A	N/A	December 1980
Supplier			
Eastman Kodak (Rochester, NY)	Same as single-administra- tion studies	Same as single-administra- tion studies	Eastman Kodak (Rochester, NY); Fisher Scientific Co. (St. Louis, MO)
CHEMICAL/VEHICLE			
Preparation			
Chemical was dissolved in 80% ethanol; solu- tions were mixed in screwcapped test tubes and hand shaken	Same as single-administra- tion studies	Same as single-administra- tion studies	Appropriate amounts of 2-chloroethanol were added to prelabeled, clean, and dry 100-ml graduated cylinders with stoppers; solutions were adjusted with 70% ethanol to final volumes of 75 ml and mixed by inversion until uniform
Maximum Storage Time			
2 d	2 wk	Rats1 wk; mice2 wk	2 wk
Storage Conditions			
Room temp within dosing hood in animal room	Same as single-administra- tion studies	Same as single-administra- tion studies	Room temp

Source and Specifications of Test Animals

The male and female F344/N rats used in these studies were produced under strict barrier conditions at Charles River Breeding Laboratories (Portage, Michigan) under a contract to the Carcinogenesis Program. Breeding starts for the foundation colony at the production facility originated at the National Institutes of Health Repository. Animals shipped for testing were progeny of defined microflora-associated parents that were transferred from isolators to barriermaintained rooms. The male and female Crl:CD®-1(ICR)BR Swiss mice used in these studies were obtained from Charles River Breeding Laboratories, Portage, Michigan, from their cesarean-originated, barrier-sustained production colony. Rats were shipped to the testing laboratory at 5 weeks of age, and mice at 3 weeks. The rats were quarantined at the testing facility for 2 weeks, and the mice for 3 weeks. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rats were placed on study at 7 weeks of age, and the mice at 6 weeks. The health of the animals was monitored during the course of the study according to the protocols of the NTP Sentinel Animal Program (Appendix **K**).

Animal Maintenance

Rats and mice were housed five per cage in polycarbonate cages. Feed and water (acidified with hydrochloric acid to pH 2.5 for bacterial control) were available ad libitum. Details of animal maintenance are summarized in Table 4.

Clinical Examinations and Pathology

All animals were observed two times. Clinical signs were recorded once per month. Body weights by cage were recorded once per week for the first 13 weeks of the study and once per month thereafter. Mean body weights were calculated for each group. Moribund animals were killed, as were animals that survived to the end of the study. Necropsies were performed on all animals, including those found dead unless they were excessively autolyzed or cannibalized. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to number of animals that were placed on study in each group.

Examinations for grossly visible lesions were performed on major tissues or organs. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues examined microscopically are listed in Table 4.

When the pathology examination was completed, the slides, individual animal data records, and summary tables were sent to an independent quality assurance laboratory. Individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assurance pathologist. Slides of all target tissues and those about which the original and quality assurance pathologists disagreed were submitted to the Chairperson of the Pathology Working Group (PWG) for evaluation. Representative coded slides selected by the Chairperson were reviewed by PWG pathologists, who reached a consensus and compared their findings with the original and quality assurance diagnoses. When diagnostic differences were found, the PWG sent the appropriate slides and comments to the original pathologist for review. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group.

Nonneoplastic lesions are not examined routinely by the quality assurance pathologist or the PWG. Certain nonneoplastic findings are reviewed by the quality assurance pathologist and the PWG if they are considered part of the toxic response to a chemical or if they are deemed of special interest.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which necropsies were performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data. The two that adjust for intercurrent mortality employ the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high dose and low dose groups with vehicle controls and tests for overall dose-response trends.

For studies in which compound administration has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. All reported P values for tumor analyses are one-sided.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumor-bearing animals in the dosed and vehicle control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975).

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and vehicle control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals on which necropsies were actually performed during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Unadjusted Analyses--Primarily, survival-adjusted methods are used to evaluate tumor incidence. In addition, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendix containing the analyses of primary tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

2-Chloroethanol, NTP TR 275

32

III. RESULTS

RATS

SINGLE-ADMINISTRATION STUDIES FOURTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

SINGLE-ADMINISTRATION STUDIES FOURTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

SINGLE-ADMINISTRATION STUDIES

All male rats that received 80 mg or more and all female rats that received 239 mg or more were dead within 4 hours (Table 5). All deaths in other groups also occurred within 4 hours of dosing. For female rats, the LD_{50} value (14-day) was estimated to be 58.6 mg/rat (probit analysis;

Finney, 1964). For male rats, the steepness of the dose-response curve did not permit a formal LD_{50} value (14-day) estimate; the value is between 60 mg/rat (no deaths) and 80 mg/rat (100% mortality).

TABLE 5.	SURVIVAL A	ND MEAN	BODY	WEIGHTS	OF	RATS	IN 7	гне	SINGLE-ADMINISTRATION
		DER	MAL S	TUDIES OF	° 2-0	CHLOR	OET	[HA]	NOL

Dose		Survival	Me	15)	
mg mg/kg(a)		$\frac{mg/kg(a)}{mg/kg(a)}$		Day 14	Change
MALE					
7.5	38	2/2	198	240	+ 42
15	96	2/2	156	200	+ 44
20	118	5/5	170	183	+ 13
30	180	2/2	167	212	+ 45
40	235	5/5	170	178	+ 8
60	331	8/8	181	190	+ 9
80	473	0/5	169		
100	588	0/5	170		
119	856	0/2	139		
239	1,552	0/2	154		
479	2,957	0/2	162		••
FEMALE	•				
7.5	55	2/2	136	158	+ 22
15	103	2/2	145	167	+ 22
20	13 9	5/5	144	157	+ 13
30	222	2/2	135	160	+ 25
40	284	2/5	141	154	+ 13
60	426	5/9	141	154	+ 13
80	563	2/5	142	130	- 12
100	704	1/5	142	167	+ 25
239	1,853	0/2	129		
479	3,713	0/2	129		

(a) Day 1 dose based on initial group mean body weight

(b) Number surviving/number initially in the group. All deaths occurred within 4 hours of dosing.
FOURTEEN-DAY STUDIES

Three rats died: a male that received 80 mg and two females that received 60 mg (Table 6). One of the females that died had cranial blood clots. In both the male and female rat studies, body weights for vehicle control and dosed animals were comparable at the end of the 14-day dosing period. Doses for the 13-week studies were set on the basis of mortality observed in the singleadministration and 14-day studies. For the 13week studies, doses were based on milligrams per kilogram (Table 7) rather than on milligrams per animal; the doses shown in Tables 5 and 6 are shown both as milligrams per animal (actual doses) and as milligrams per kilogram for comparative purposes.

TABLE 6. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY DERMALSTUDIES OF 2-CHLOROETHANOL

D	lose	Survival	Mea	n Body Weight	s(grams)	Relative Weight	Relative Weight Change
mg	mg/kg (a)	(b)	Initial (c)	Final	Change	(percent)	(percent)
MALE							
(d) 0	0	5/5	172.6 ± 6.8	215.2 ± 8.4	$+42.6 \pm 4.0$		
20	114	5/5	175.2 ± 5.8	216.4 ± 5.9	$+41.2 \pm 4.3$	100.5	96.7
30	172	5/5	173.8 ± 7.8	216.2 ± 9.7	$+42.4 \pm 12.2$	100.5	99.5
40	226	5/5	177.2 ± 11.0	213.2 ± 9.8	$+36.0 \pm 6.6$	99.1	84.5
60	339	5/5	177.2 ± 10.4	217.4 ± 10.3	$+40.2 \pm 7.7$	100.9	94.4
80	442	(e) 4/5	181.0 ± 6.0	221.3 ± 11.5	$+40.3 \pm 5.5$	102.8	94.6
FEMAL	E						
(f) 0	0	5/5	127.8 ± 2.5	145.8 ± 4.8	$+18.0 \pm 7.0$		
20	147	5/5	136.6 ± 6.6	149.6 ± 5.4	$+14.0 \pm 4.4$	102.7	77.8
30	222	5/5	135.0 ± 5.5	145.2 ± 2.9	$+10.2 \pm 3.0$	99.3	56.7
40	313	5/5	127.6 ± 4.6	144.2 ± 3.8	$+16.6 \pm 4.5$	98.6	92.2
60	451	(f) 3/5	133.4 ± 4.5	144.0 ± 4.6	$+10.6 \pm 4.2$	98.6	58.9
80	611	5/5	131.2 ± 4.0	144.6 ± 4.0	$+13.4 \pm 1.5$	99.3	74.4
80	611	5/5	133.4 ± 4.5 131.2 ± 4.0	144.0 ± 4.0 144.6 ± 4.0	$+10.6 \pm 4.2$ +13.4 ± 1.5	99.3	7 4.4

(a) Day 1 dose based on initial mean body weight

(b) Number surviving/number per group

(c) Initial body weight based on all animals in group. Subsequent calculations are based on those animals surviving to the end of the study.

(d) Vehicle control

(e) Day of death: 1

(f) Day of death: 1,3

THIRTEEN-WEEK STUDIES

All rats of each sex that received 1,000 mg/kg died (Table 7). One male and three female rats that received 250 mg/kg and 8/10 males and 8/10 females that received 500 mg/kg also died. Most of the compound-related deaths occurred during the first week of dosing. There were no doserelated trends in body weight changes during the studies.

The incidences of pancreatic acinar cell vacuolar

change and pulmonary congestion were dose related (Table 8). Pulmonary congestion and edema occurred exclusively in animals that died or that were killed when moribund.

Dose Selection Rationale: Based on mortality as well as on the incidences of pancreatic changes in the 250-1,000 mg/kg groups, the doses selected for the rats for the 2-year studies were 50 and 100 mg/kg.

TABLE 7. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK DERMAL STUDIES OF 2-CHLOROETHANOL

		Mea	an Body Weights	Final Weight Relative		
Dose mg/kg)	Survival (a)	Initial	Final	Change	to Vehicle Controls (percent)	
MALE				······································		
(b) 0	10/10	139	287	148	·	
62	10/10	138	291	153	101.4	
125	10/10	139	282	143	98.3	
250	(c) 9/10	138	300	162	104.5	
500	(d) 2/10	139	265	126	92.3	
1,000	(e) 0/10	136				
EMALE						
(b) 0	10/10	105	172	67		
62	10/10	106	172	66	100	
125	10/10	106	169	63	98.3	
250	(f) 7/10	106	173	67	100.6	
500	(f) 2/10	105	171	66	99.4	
1.000	(f) 0/10	105			•-	

(a) Number surviving/number in group

(b) Vehicle control

(c) Week of death: 1

(d) Week of death: 1, 1, 1, 1, 1, 4, 5, 10

(e) Week of death: 1, 1, 1, 1, 1, 1, 1, 3, 3,4

(f) Week of death for all: 1

Dose (mg/kg)	Acinar Cell Change	Pulmonary Congestion
MALE		***
0	0/10	0/10
82	0/10	0/10
125	0/10	0/10
250	1/10	1/10
500	8/10	7/10
1,000	8/10	7/10
FEMALE		
0	0/10	0/10
62	0/10	0/10
125	1/10	0/10
250	2/10	1/10
500	7/10	7/10
1,000	9/10	7/10

TABLE 8. INCIDENCES OF PANCREATIC ACINAR CELL VACUOLAR CHANGE AND PULMONARY CONGESTION IN RATS IN THE THIRTEEN-WEEK DERMAL STUDIES OF 2-CHLOROETHANOL

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Throughout the studies, mean body weights of dosed and vehicle control rats of each sex were comparable (Table 9 and Figure 1). An unexplained deviation from the anticipated growth pattern occurred in all groups of male rats from approximately week 30 to week 45. Examination of original weight data, balance calibration records, clinical observation records, and murine virus antibody patterns provided no adequate explanation of this weight gain pattern. No compound-related clinical signs were observed.

Serologic analysis of blood samples from the sentinel animals showed evidence of Sendai virus infection (Appendix K). Animal room environment records (temperature and relative humidity) during the 2-year studies are summarized in Appendix M.

Weeks	Vehic	le Control		50 mg/kg	l No of	A W/4	100 mg/k	g No. of
on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams) of	Wt. (percent veh controls	NO. OF) Survivors	(grams) of	veh controls) Survivors
MALE								
0123456789011236048260482604826048899011123604826048260488990104	$\begin{array}{c} 170\\ 209\\ 243\\ 260\\ 298\\ 306\\ 332\\ 333\\ 353\\ 357\\ 380\\ 335\\ 367\\ 837\\ 380\\ 421\\ 469\\ 473\\ 477\\ 476\\ 469\\ 477\\ 476\\ 469\\ 469\\ 469\\ 469\\ 469\\ 469\\ 469\\ 46$	55000000000000000000000000000000000000	171 199 212 2366 2294 3223 3229 3229 3229 3229 3229 3229	101 100 101 97 98 97 99 99 99 99 99 99 99 99 99 99 100 101 101	50000000000000000000000000000000000000	$\begin{array}{c} 169\\ 196\\ 207\\ 224\\ 241\\ 2251\\ 277\\ 2902\\ 3109\\ 3335\\ 378\\ 378\\ 378\\ 378\\ 377\\ 3610\\ 415\\ 4456\\ 471\\ 477\\ 482\\ 477\\ 481\\ 477\\ 481\\ 463\\ 457\\ \end{array}$	99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 99	50 500 500 500 500 500 500 500 500 500
FEMALE								
0 1 2 3 4 5 6 7 8 9 0 11 2 3 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 6 0 4 5 6 7 8 9 0 11 2 3 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 8 9 0 11 2 3 6 0 4 8 2 8 2 6 0 4 8 2 8 2 6 0 4 8 2 8 2 6 0 4 8 2 8 2 6 0 4 8 2 6 0 4 8 2 8 2 6 0 4 8 2 8 2 6 0 4 8 2 8 2 6 0 4 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8	$\begin{array}{c} 118\\ 133\\ 143\\ 159\\ 170\\ 174\\ 184\\ 188\\ 195\\ 200\\ 216\\ 2226\\ 235\\ 243\\ 247\\ 2260\\ 266\\ 266\\ 266\\ 266\\ 266\\ 266\\ 26$	50000000000000000000000000000000000000	$\begin{array}{c} 121\\ 136\\ 144\\ 165\\ 171\\ 179\\ 183\\ 190\\ 192\\ 203\\ 213\\ 213\\ 213\\ 227\\ 233\\ 244\\ 246\\ 259\\ 263\\ 277\\ 280\\ 299\\ 316\\ 318\\ 325\\ 326\\ 3318\\ 325\\ 327\\ 9\end{array}$	$\begin{array}{c} 103\\ 102\\ 94\\ 104\\ 101\\ 102\\ 105\\ 103\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102\\ 101\\ 102\\ 100\\ 100$	50000000000000000000000000000000000000	$\begin{array}{c} 122\\ 139\\ 1564\\ 1665\\ 1751\\ 18854\\ 1991\\ 1994\\ 2004\\ 219\\ 22392\\ 2446\\ 2257\\ 22659\\ 22887\\ 3010\\ 33265\\ 332$	103 105 101 103 103 103 103 103 103 103 103 103	50 500 500 500 500 500 500 500 500 500

TABLE 9. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR DERMAL STUDIESOF 2-CHLOROETHANOL

FIGURE 1. GROWTH CURVES FOR RATS ADMINISTERED 2-CHLOROETHANOL BY DERMAL APPLICATION FOR TWO YEARS

Survival

Estimates of the probabilities of the survival of male and female rats administered 2-chloroethanol at the doses of these studies and those of the vehicle controls are shown by the Kaplan and Meier curves in Figure 2. No significant differences in survival were observed between any groups of either sex (Table 10).

Pathology and Statistical Analyses of Results

This section describes significant or noteworthy changes in the incidences of rats with neoplastic

or nonneoplastic lesions of skin, pituitary gland, and eye. Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables A1 and A2); Appendix A (Tables A3 and A4) also gives the survival and tumor status for individual male and female rats. Findings on nonneoplastic lesions are summarized in Appendix C (Tables C1 and C2). Appendix E (Tables E1 and E2) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).

TABLE 10. SURVIVAL OF RATS IN THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

	Vehicle Control	50 mg/kg	100 mg/kg	
MALE (a)				
Animals initially in study	50	50	50	
Nonaccidental deaths before termination (b)	16	13	13	
Killed at termination	33	37	36	
Died during termination period	1	0	1	
Survival P values (c)	0.555	0.694	0.626	
FEMALE (a)				
Animals initially in study	50	50	50	
Nonaccidental deaths before termination (b)	8	11	11	
Killed at termination	42	39	38	
Died during termination period	ō	0	1	
Survival P values (c)	0.494	0.583	0.548	

(a) Terminal kill period: weeks 104-105

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

FIGURE 2. KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED 2-CHLOROETHANOL BY DERMAL APPLICATION FOR TWO YEARS

Skin: The incidence of male rats with papillomas (squamous cell or unspecified) of the skin was significant by the trend tests, but the incidences in the dosed groups were not significantly greater than that in the vehicle controls, and the combined incidence of male rats with either papillomas or carcinomas was not statistically significant (Table 11). None of these papillomas appeared at the site of dermal application. Papillomas were not diagnosed in female rats. These papillomas were not life threatening; all the affected animals survived at least until week 102 of the studies. The earliest time to tumor in the high dose male rat group was for a nasal skin lesion noted at month 15. This lesion later was diagnosed as a papilloma.

TABLE 11.	ANALYSIS OF	SKIN TUMORS	IN MALE	RATS IN 7	THE TWO	-YEAR	DERMAL	STUDY	OF
		2-0	CHLOROE	THANOL (1	a)				

	Vehicle Control	50 mg/kg	100 mg/kg
Papilloma		·····	
Overall Rates	1/50 (2%)	0/50 (0%)	6/50 (12%)
Adjusted Rates	2.9%	0.0%	15.8%
Terminal Rates	1/34 (3%)	0/37 (0%)	5/37 (14%)
Life Table Tests	P=0.020	P = 0.483N	P=0.073
Incidental Tumor Tests	P=0.022	P = 0.483N	P = 0.077
Carcinoma			
Overall Rates	2/50 (4%)	1/50 (2%)	0/50 (0%)
Papilloma or Carcinoma			
Overall Rates	3/50 (6%)	1/50 (2%)	6/50 (12%)
Adjusted Rates	8.3%	2.7%	15.8%
Terminal Rates	2/34 (6%)	1/37 (3%)	5/37 (14%)
Life Table Tests	P = 0.184	P = 0.287N	P=0.283
Incidental Tumor Tests	P=0.196	P=0.303N	P=0.297

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).

Pituitary Gland: Adenomas and adenomas or carcinomas (combined) of the pituitary gland occurred in female rats with significant positive trends by life table analysis (Table 12). The incidence of adenomas in the high dose group was significantly greater than that in the vehicle controls (life table analysis); the incidence of adenomas or carcinomas (combined) in the dosed groups was not significantly greater than that in the vehicle controls. The majority of these adenomas and carcinomas were found at terminal kill. All but one of the vehicle control animals in which these tumors were found lived to terminal kill: the earliest time to tumor in the dosed animals was reduced (low dose, 69 weeks; high dose, 71 weeks).

NTP has no adequate historical control animal

tumor data base for F344/N rats receiving a test compound by dermal application. For all laboratories in the NTP, as of March 1983, the following historical data are available for pituitary gland adenomas in female F344/N rats:

Corn oil gavage controls: 382/1,042 (37%); range: 17%-55% Untreated controls: 995/2,262 (44%); range: 18%-70%

At Litton Bionetics, Inc., the historical incidence of this tumor was the following:

Corn oil gavage controls: 66/149 (44%); range: 36%-50% Untreated controls: 111/245 (45%); range: 42%-52%

	Vehicle Control	50 mg/kg	100 mg/kg
Focal Hyperplasia			
Overall Rates	7/50 (14%)	5/49 (10%)	7/50 (14%)
Adenoma			
Overall Rates	19/50 (38%)	24/49 (49%)	29/50 (58%)
Adjusted Rates	44.2%	52.9%	61.4%
Terminal Rates	18/42 (43%)	18/39 (46%)	21/39 (54%)
Life Table Tests	P = 0.022	P = 0.148	P = 0.025
Incidental Tumor Tests	P = 0.084	P = 0.416	P = 0.103
Carcinoma			
Overall Rates	4/50 (8%)	1/49 (2%)	1/50 (2%)
Adjusted Rates	9.5%	2.3%	2.6%
Terminal Rates	4/42 (10%)	0/39 (0%)	1/39 (3%)
Life Table Tests	P = 0.117N	P = 0.200N	P = 0.202N
Incidental Tumor Tests	P = 0.104N	P = 0.158N	P = 0.202N
Adenoma or Carcinoma (a)			
Overall Rates	22/50 (44%)	25/49 (51%)	30/50 (60%)
Adjusted Rates	51.2%	54.0%	63.6%
Terminal Rates	21/42 (50%)	18/39 (46%)	22/39 (56%)
Life Table Tests	P = 0.049	P = 0.252	P = 0.052
Incidental Tumor Testa	P = 0.167	P = 0.565N	P = 0.188

 TABLE 12. ANALYSIS OF PITUITARY GLAND LESIONS IN FEMALE RATS IN THE TWO-YEAR

 DERMAL STUDY OF 2-CHLOROETHANOL

(a) In the male rats, the corresponding overall rates for vehicle control and dosed animals were: 15/50 (30%), 13/48 (26%), 16/49 (33%).

III. RESULTS: RATS

Eye: The incidences of cataracts and atrophy in vehicle control male and female rats were notably greater than those in the dosed groups (Table 13). Both the male and female vehicle

controls were on the top two rows of the rack for the entire test period. Light intensity in the study room was not measured.

TABLE 13. ANALYSIS OF OCULAR LESIONS IN RATS IN THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

	Vehicle Control	50 mg/kg	100 mg/kg
MALE			
Cataracts Atrophy	15/50(39%) 21/50(42%)	2/50 (4%) 3/50 (6%)	2/50 (4%) 5/50 (10%)
FEMALE			
Cataracts Atrophy	13/50(26%) 17/50(34%)	2/50 (4%) 3/50 (6%)	3/50 (6%) 3/50 (6%)

SINGLE-ADMINISTRATION STUDIES

All mice that received 68.1 mg died. Other deaths are tabulated in Table 14. The LD₅₀ (14day) value was estimated to be 33.1 mg for males and 41.3 mg for females by probit analysis (Finney, 1964). There was a dose-related reduction in body weight gains for both male and female mice.

TABLE 14. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE SINGLE-ADMINISTRATION **DERMAL STUDIES OF 2-CHLOROETHANOL**

Dose		Survival	Survival Mean Body Weights (grams)		
mg	mg/kg (a)	(b)	Initial	Day 14	Change
MALE					
10.0	410	5/5	24.4	29.0	+4.6
14.7	544	5/5	27.0	29.0	+2.0
21.5	808	5/5	26.6	28.4	+1.8
31.6	1.239	(c) 2/5	25.5	27.5	+ 2.0
46.4	1.785	(d) 1/5	26.0	27.0	+1.0
68.1		(e) 0/5	**	••	**
FEMAL	E				
10.0	439	5/5	22.8	25.0	+2.2
14.7	634	5/5	23.2	25.6	+2.4
21.5	995	5/5	21.6	23.4	+1.8
31.6	1.417	(f) 3/5	22.3	24.0	+1.7
46.4	2.178	(g) 3/5	21.3	22.7	+1.4
68.1	-,	(e) 0/5			

(a) Day 1 dose based on initial group average body weight
(b) Number surviving/number initially in the group

(c) Day of death: 1, 1, 2

(d) Day of death: 1, 1, 1, 2 (e) Day of death of all: 1

(f) Day of death: 1, 4 (g) Day of death: 1, 3

FOURTEEN-DAY STUDIES

All the mice that received 60 mg died (Table 15). Three of five males and 3/5 females that received 45 mg also died. All deaths occurred during the first 2 days of dosing. Final mean body weights of dosed and vehicle control mice were comparable; however, the male mice that received 45 mg lost weight. No compound-related effects were observed at necropsy.

TABLE 15. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY DERMAL STUDIES OF 2-CHLOROETHANOL

	Dose Survival Mean Body Weights (grams)			rams)	Final Weight Relative	
mg	mg/kg (a)	(b)	Initial (c)	Final	Change	to Vehicle Controls (percent)
MALE	/ # ./// h ¹ /					
(d) 0	0	5/5	27.5 ± 1.9	29.5 ± 2.5	$+2.0 \pm 0.7$	
2.5	92	5/5	27.1 ± 2.0	28.1 ± 2.2	$+1.0 \pm 0.6$	95.3
5.0	174	5/5	28.6 ± 2.0	31.1 ± 2.1	$+2.5 \pm 1.0$	105.4
10	377	5/5	26.5 ± 1.2	29.0 ± 1.7	$+2.5 \pm 0.7$	98.3
20	741	5/5	27.0 ± 1.5	29.3 ± 1.1	$+2.3 \pm 0.4$	99.3
30	1,095	5/5	27.4 ± 1.9	30.0 ± 1.6	$+2.6 \pm 1.2$	101.7
(e) 45	1,411	(f) 2/5	31.9 ± 3.9	30.6 ± 1.4	-1.3 ± 1.2	
(e) 60		(g) 0/5	27.5 ± 2.1			
FEMALE						
(d) 0	0	5/5	22.8 ± 2.3	23.4 ± 2.1	$+0.6 \pm 0.5$	
2.5	109	5/5	22.9 ± 1.4	23.2 ± 2.0	$+0.3 \pm 1.1$	99.1
5.0	225	5/5	22.2 ± 1.4	23.2 ± 1.3	$+1.0 \pm 0.4$	99.1
10	435	5/5	23.0 ± 2.7	23.6 ± 2.9	$+0.6 \pm 0.5$	100.9
20	847	5/5	23.6 ± 0.8	23.6 ± 1.2	0.0 ± 1.2	100.9
30	1.376	5/5	21.8 ± 1.7	23.9 ± 1.9	$+2.1 \pm 0.6$	102.1
(e) 45	1.875	(h) 2/5	23.7 ± 3.3	24.3 ± 0.2	$+0.6 \pm 2.5$	103.8
(e) 60		(g) 0/5	22.2 ± 1.8			

(a) Day 1 dose based on initial average body weight

(b) Number surviving/number per group

(c) Based on all animals initially in the group. Subsequent calculations are based on those animals surviving to the end of the study.

(d) Vehicle control

(e) Groups tested without matched controls after studies with lower dose groups were completed.

(f) Day of death: 1, 2, 2

(g) Day of death for all: 1

(h) Day of death: 2, 2, 2

THIRTEEN-WEEK STUDIES

All the male mice that received 30 or 45 mg and 1/10 male mice that received 20 mg died (Table 16). Nine of 10 female mice that received 30 or 45 mg and 3/10 that received 20 mg died. All these mice died within 3 days of the start of the studies. Mean body weights of dosed mice were greater than those of the vehicle controls.

Acute nephrosis was diagnosed in 1/1 male and 1/3 female mice examined in the 30-mg groups and in 1/9 males in the 20-mg group. Pancreatic acinar cell necrosis was diagnosed in 2/3 female mice that received 30 mg. Hepatocellular fatty change was diagnosed in 1/1 male and in 2/3 female mice that received 30 mg.

Dose Selection Rationale: Based on mortality in the 30- and 45-mg groups and on the incidences of kidney, pancreatic, and liver lesions found in the 20- and 30-mg groups, doses selected for mice for the 2-year studies were 7.5 and 15 mg per application per mouse.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of dosed male and female mice were somewhat lower than those of the vehicle controls throughout most of the study (Tables 17 and 18 and Figure 3). No compoundrelated clinical signs were observed.

Serologic analysis of blood samples from the sentinel animals showed evidence of Sendai virus, minute virus of mice (MVM), and mouse hepatitis virus (MHV) (Appendix K). Animal room environment records (temperature and relative humidity) during the 2-year studies are summarized in Appendix M.

			Mea	n Body Weight	Final Weight Relativ		
D	ose	Survival	Initial	Final	Change	to Vehicle Controls	
mg	mg/kg (a)	ng/kg (a) (b)			(percent)		
MALE							
(c) 0		10/10	26	35	+ 9		
5	192	10/10	26	37	+11	105.7	
10	385	10/10	26	38	+12	108.6	
20	769	(d) 9/10	26	34	+ 8	97.1	
30	1,154	(d) 0/10					
45	1,731	(d) 0/10					
FEMAI	LE						
(c) 0		10/10	22	28	+ 6		
5	227	10/10	22	28	+ 6	0	
10	455	10/10	22	29	+ 7	103.6	
20	909	(d) 7/10	22	30	+ 8	107.1	
30	1.304	(d) 1/10	23	31	+ 8	110.7	
45	1.957	(d) 1/10	23	40	+17	142.9	

TABLE 16. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK DERMAL STUDIES OF 2-CHLOROETHANOL

(a) Based on initial mean body weight

(b) Number surviving/number in group

(c) Vehicle control

(d) Week of death: 1

Weeks on Study	Av. Wt. (grams)	Control No. of Survivors	Av. Wt. (grams)	7.5 mg Wt. (percent of controls) (a)	No. of Survivors	Av. Wt. (grams)	15 mg Wt. (percent of controls) (a)	No. of Survivors
		UNTREATED			·		····	·
•	00.0	F 0	00.7	100		00.0	101	
1	20.0	50 50	30.6	103	50	29.2	98	43
2	32.6	50	31.5	97	50	29.4	90	43
3	34.1	50	32.9	96	50	33.1	97	43
4	34.7 95.4	50	33.0	97 97	50	33.6	97	43
6	36.2	50	35.0	97	50	35.3	98	43
7	36.5	50	35.4	97	50	35.8	98	43
8	36.7	50	35.8	98	50	36.0	98	43
10	38.5	50	37.4	97	50	37.7	98	43
11	39.0	50	38.1	98	50	38.2	98	43
12	38.7	49	37.8	98	50	38.1	98	43
13	39.4	49	39.0 39.4	99	50	39.2 39.6	99	43
20	41.6	49	41.4	100	49	40.8	98	43
24	43.3	49	42.3	98	49	42.3	98	43
28	43.2	49	41.7	97	49	41.5	96	43
32	43.9	49	42.0	95	49	42.0	96	42
40	44.9	49	43.6	97	47	43,8	98	42
44	45.1	49	43.7	97	47	42.7	95	40
48 52	42.9	49	43.2	99	46	41,7	100	40
56	44.7	40	44.0	98	45	45.2	101	38
60	43.0	45	43.7	102	45	45.3	105	38
64	44.5	44	44.1	99	45	45.0	101	38
68 72	45.0 45.3	40	45.8	101	43	45.7	100	36
76	46.8	36	45.9	98	35	45.3	97	32
80	47.3	35	45.6	96	33	46.1	97	30
84	46.8	31	45.4	97	32	43.5	93	28
92	45.9	28	44.7	97	25	44.3	97	25
96	45.0	27	43.5	97	23	43.2	96	21
100	44.3	25	43.3	98	20	41.5	94	20
104	44.0	24	43.3	28	16	42.0	90	12
	1	VEHICLE						
0	29.2	50	29.7	102	50	29.2	100	50
1	30.3	50	30.6	101	50	30.0	99	43
2	31.3	50	31.5	101	50	29.4	94 105	43 43
4	33.5	50	33.6	100	50	33.6	100	43
5	34.5	50	34.3	99	50	34.5	100	43
6	35.5	50	35.0	99	50	35.3	99	43
8	36.4	50	35.8	98	50	36.0	99	43
9	36.9	50	36.5	99	50	37.5	102	43
10	37.9	50	37.4	99	50	37.7	99	43
11	38.4	50 50	38.1	99	50 50	38.2	99	43 43
13	39.5	50	39.0	99	50	39.2	99	43
16	40.5	50	39.4	97	50	39.6	98	43
20	42.1	50	41.4	98 97	49	40.8	97	43
28	43.2	50	41.7	97	49	41.5	96	43
32	44.3	50	42.0	95	49	42.6	96	42
36 40	44.6 45.3	50 50	42.7	96 96	49	43.0	96 97	42 42
44	46.8	49	43.7	93	47	42.7	91	40
48	44.2	48	43.2	98	46	41.7	94	40
52 58	46.7 45 s	48 48	45.0 44.0	96 98	46 45	45.4 45.9	97 99	38 38
60	45.5	47	43.7	96	45	45.3	100	38
64	45.9	47	44.1	96	45	45.0	98	38
68	46.7	46	45.0	96	43	45.7	98	37
78	47.5	40 44	40.8 45.9	97	41 35	45.0	95	30 32
80	47.4	41	45.6	96	33	46.1	97	30
84	47.5	38	45.4	96	32	43.5	92	28
88 92	46.5 45 9	37 99	45.3 44 7	97 97	30 25	45.4	98 97	27 25
96	44.3	32	43.5	98	23	43.2	98	21
100	43.6	31	43.3	99	20	41.5	95	20
104	43.6	28	43.3	99	16	42.0	36	12

TABLE 17. MEAN BODY WEIGHTS AND SURVIVAL OF MALE MICE IN THE TWO-YEAR DERMALSTUDY OF 2-CHLOROETHANOL

(a) Mean body weights of dosed groups are compared with untreated control or vehicle control mice.

Study Av. W. No. of (grams) of controls (id) Av. W. Wt. (percent (grams) of controls (id) Av. M. Av. M.	Weeks or	ı (Control		7.5 mg			15 mg		
URTREATED UNTREATED UNTREATED O 23.0 90 50 1 24.4 50 23.3 101 50 23.5 9 50 2 25.7 50 24.5 97 50 24.5 84 40 3 27.6 50 24.0 97 50 23.5 84 40 4 27.6 50 26.0 106 100 25.6 84 40 5 27.6 50 26.0 85 50 28.7 84 44 6 35.1 80 28.9 84 30 28.7 84 44 10 35.4 80 28.9 84 30 28.7 84 44 11 35.4 87 40 32.7 84 44 20 35.0 35.3 84 40 32.7 84 44 12 35.0 35.3 84	Study	Av. Wt.	No. of	Av. Wt.	Wt. (percent	No. of	Av. Wt.	Wt. (percent	No. of	
UNTREATED UNTREATED 0 24.0 50 23.3 101 50 23.7 97 40 1 24.4 50 23.8 97 50 24.5 97 40 4 27.0 50 24.5 97 50 24.5 85 40 5 27.6 50 30.0 106 50 26.7 84 40 5 27.6 50 20.0 25.0 20.0 26.0		(grams)	Survivors	(grams)	of controls) (a)	Survivors	(grams)	of controls) (a)	Survivors	
UNTREATED 1 24.4 50 23.8 96 50 1 24.4 50 23.8 97 50 24.5 2 27.5 50 24.1 97 50 24.5 27.4 5 27.8 50 30.0 106 50 28.5 96 40 6 22.5 50 77.5 98 30 28.1 96 44 6 22.5 50 77.5 98 30 28.1 96 44 6 20.5 72.6 97 50 28.7 96 44 11 31.6 50 28.5 97 50 28.7 96 44 12 31.6 50 33.3 97 50 32.7 97 44 13 31.6 50 33.3 97 50 32.7 97 44 13 33.3 97 50							- <u></u>		·····	
0 24.0 50 23.3 101 50 23.8 99 50 1 24.4 50 23.5 95 40 1 24.4 50 23.5 95 40 1 24.4 50 23.5 95 40 1 24.6 50 26.1 97 50 23.5 95 40 1 25.5 50 25.0 95 50 23.6 96 40 1 31.4 50 28.5 95 50 28.6 96 28.7 86 46 10 31.4 50 28.5 96 40 28.7 86 46 11 31.4 50 28.5 97 40 28.7 86 46 12 31.0 50 31.4 98 46 31.7 67 46 13 32.7 50 33.3 98 46 <td< td=""><td></td><td>1</td><td>UNTREATED</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		1	UNTREATED							
1 24.4 50 33.7 37 37 49 2 23.5 34.5 34.7 37 59 49 3 27.0 50 23.5 35 54 49 5 27.4 30 0.00 106 50 22.6 95 49 5 27.7 39 30 22.6 95 44 8 25.5 50 22.6 95 44 9 30.1 50 28.9 97 80 28.4 44 111 31.0 50 28.9 97 40 28.7 96 44 123 31.0 50 28.9 96 50 28.7 96 44 133 31.0 50 38.9 97 46 38.7 96 46 24 38.3 30 38.7 98 46 38.7 96 46 24 38.4 81 81 44 38.6 97 46 33.7 <t< td=""><td>0</td><td>24.0</td><td>50</td><td>24.3</td><td>101</td><td>50</td><td>23.8</td><td>99</td><td>50</td><td></td></t<>	0	24.0	50	24.3	101	50	23.8	99	50	
3 25/6 30 24.7 96 30 25.5 95 49 4 270 50 26.1 97 50 26.7 96 49 5 27.8 50 30.0 106 50 26.7 96 49 7 23.5 50 27.6 96 44 9 30.1 50 28.6 96 50 28.4 96 44 113 31.6 50 28.6 96 50 28.7 96 44 130 31.6 50 28.7 96 44 131 31.6 50 33.7 50 31.7 77 44 28 35.7 50 33.7 51 46 34.0 64 44.2 28 35.7 50 33.7 51 46 34.2 67 47 38 36.7 50 33.7 51 46	1	24.4	50	23.8	98	50	23.7	97	49	
4 97.0 50 28.6 98 49 5 27.7 80 30.0 10.8 50 24.0 98 40 6 28.3 80 27.5 80 50 24.0 98 40 6 20.5 50 27.5 80 50 24.0 98 40 10 30.0 52.8 96 50 28.3 94 40 110 31.0 90 35.9 96 50 28.3 94 40 113 31.8 50 35.5 50 31.0 97 44 124 36.5 50 31.0 97 44 33.0 92 47 13 31.8 50 33.3 93 48 33.0 92 47 34 35.7 50 33.3 93 48 33.0 92 47 34 35.7 50 33.3	2	25.7	50	24.9 25.7	97 96	50	24.8	95	49	
5 27.8 30 30.0 108 50 28.7 94 94 7 28.4 50 27.8 94 50 28.0 94 44 9 50.1 50 28.2 95 50 28.2 94 44 10 30.4 30 29.5 94 50 28.5 94 44 113 31.0 50 29.5 94 50 28.5 96 44 123 31.0 50 31.7 94 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 34.6 97 47 44 38.6 47 44 38.6 47 44 38.6 47 44 38.6 47 44 38.6 47 44 38.6 47 44 38.6 47 44 38.6 47	4	27.0	50	26.1	97	50	25.6	95	49	
6 22.2 30 27.5 88 80 88.0 98 44 1 30.1 30 22.5 96 50 22.3 94 44 10 30.6 30 22.6 96 50 22.3 94 44 110 30.6 30 23.6 95 50 22.5 94 44 13 31.6 50 33.7 77 40 32.7 74 44 24 35.7 50 33.3 97 40 32.7 77 44 38 35.7 50 33.3 93 44 33.0 92 47 38 35.7 50 33.3 93 44 33.0 92 47 38 30.6 48 33.1 92 44 33.4 93 46 44 39.0 43.1 84 84 84 45 44	5	27.8	50	30.0	108	50	26.7	96	49	
6 253 50 253 50 253 90 44 10 30.6 50 25.6 97 50 28.5 94 44 112 31.6 50 25.5 97 50 28.5 94 44 113 31.6 50 25.5 50 31.0 97 44 12 31.6 50 31.6 97 40 31.7 97 44 20 35.0 50 33.3 93 49 33.0 94 44 21 35.0 50 33.3 93 49 35.0 92 47 32 37.7 50 34.3 91 44 36.5 92 47 36 38.1 50 46 31.4 92 45 38.3 93 46 36 38.1 40 35.1 92 45 38.5 94 46 37.1 95 44 36.5 93 47 45 38.5 93	6	28.2	50	27.5	98	50	28.0	99	49	
9 30.1 50 28.9 96 50 28.3 94 44 10 30.0 50 28.6 97 50 28.7 96 44 113 31.6 50 28.5 86 80 28.7 96 44 124 32.7 50 31.8 97 60 31.7 97 44 20 35.7 50 33.8 97 40 33.0 97 44 21 35.7 50 33.3 93 44 33.0 91 47 36 38.1 50 34.3 91 48 33.2 92 47 40 39.0 44 35.5 91 44 36.5 91 47 41 39.0 44 35.1 93 45 35.5 94 46 52 41.0 47 37.8 92 43 38.5 93 42 54 44.1 45 38.1 93 43 40 43	8	29.5	50	28.0	95	50	29,2	99	48	
10 30.6 50 28.5 87 50 28.5 98 48 113 31.6 50 28.5 86 51.0 97 48 13 31.6 50 30.5 55 50 31.0 97 48 14 33.3 50 33.3 83 49 33.0 92 47 28 35.7 50 34.3 91 48 33.6 92 47 32 37.7 50 34.3 91 48 33.6 92 47 38 38.1 50 34.3 91 48 35.6 92 47 38 40 35.1 92 45 38.3 93 45 44 38.4 46 35.1 92 45 38.5 93 45 52 41.0 47 37.3 92 43 38.5 93 42 44 45 38.4 92 42 38.5 93 42 77	9	30.1	50	28.9	96	50	28.3	94	48	
113 31.0 00 25.9 98 00 31.7 97 48 13 31.8 50 31.6 97 40 31.7 97 48 14 32.7 50 31.6 97 40 31.7 97 44 15 35.7 50 33.3 93 46 33.0 97 44 16 35.7 50 33.3 93 46 33.0 97 44 32 37.7 50 34.3 91 44 35.5 91 47 44 39.0 44 35.4 91 46 35.5 94 46 52 41.0 47 37.8 92 45 38.5 93 42 56 44.1 45 38.1 92 42 38.5 93 42 56 44.1 45 38.1 92 42 38.5 93 42 57 44.5 38.2 92 42 38.5 93 42	10	30.6	50	29.6	97	50	29.5	96	48	
13 31.6 97 40 32.7 50 31.7 97 44 20 35.0 50 33.9 97 40 32.7 94 44 20 35.0 50 33.3 93 44 33.0 94 44 23 35.7 50 33.3 93 44 33.0 92 47 32 37.7 50 33.4 91 46 38.2 92 47 40 38.0 44 93.4 92 45 38.3 93 45 41 43.8 93.0 44 93.4 93.4 93.4 94 45 43 93.0 43 92 45 38.3 93 45 44 43.8 92 45 38.3 93 45 93 46 44 43 33.0 92 44 38.5 94 46 46 46 46 46 46 46 46 46 46 46 46 46 </td <td>12</td> <td>31.0</td> <td>50</td> <td>29.9</td> <td>96</td> <td>50</td> <td>29.7</td> <td>96</td> <td>48</td> <td></td>	12	31.0	50	29.9	96	50	29.7	96	48	
16 37 50 31.7 97 48 20 35.0 30 33.3 93 49 33.0 97 44 21 35.0 33.3 93 49 33.0 97 44 22 35.7 50 33.3 93 44 33.0 97 44 360 49 35.5 91 48 35.4 92 47 36.5 92 47 44 39.6 48 36.4 92 45 36.5 94 46 45 36.1 93 45 38.4 94 45 66 41.0 45 38.1 93 45 38.4 94 45 66 41.0 44 39.7 90 41 36.5 97 36 77 44.0 44 39.7 90 41 36.5 97 22 84 45.9 45 36.3 94 94 33 36 94 33 95	13	31.8	50	30.3	95	50	31.0	97	48	
34.3 30 34.7 95 46 34.0 94 46 28 35.7 50 33.3 93 46 34.0 94 47 32 37.7 50 34.3 91 46 35.2 92 47 40 35.0 44.6 35.4 92 46 35.4 92 47 44 35.0 44.6 35.4 92 45 35.5 94 46 56 41.1 45 35.0 92 45 35.4 94 45 60 41.0 45 35.1 93 40 35.4 94 45 61 41.5 43.4 92 42 38.5 94 42 61 43.9 43.1 93 43.9 84.5 42 35 36.0 92 37 61 43.9 43.1 93 33 93 94 94 94 <td>16</td> <td>32.7</td> <td>50</td> <td>31.6</td> <td>97</td> <td>50</td> <td>31.7</td> <td>97</td> <td>48</td> <td></td>	16	32.7	50	31.6	97	50	31.7	97	48	
128 35.7 50 33.3 93 40 33.0 92 47 38 33.1 50 34.6 91 46 33.2 92 47 44 39.0 46 35.1 91 46 35.2 92 47 44 39.0 46 37.1 95 46 37.3 95 47 44 39.0 46 37.1 95 46 37.3 95 47 44 39.0 47 37.8 92 45 38.5 94 46 56 41.1 45 38.1 92 45 38.4 94 45 66 41.5 45 38.1 92 43 38.7 93 46 67 44.0 44 38.7 93 46 46 38.8 93 46 76 44.3 32 38.3 87 32 38.3 88 93 93 93 93 94 94 94 94 94	20	35.0	50	33.9	93	49	34.0	94	48	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	35.7	50	33.3	93	49	38.0	92	47	
38.3 33.1 50 34.6 91 48 33.2 36.6 92 47 44 35.0 46 37.1 92 45 38.5 94 46 52 41.0 47 37.8 92 45 38.5 94 46 56 41.1 45 38.1 93 45 38.4 94 45 66 41.0 45 38.1 92 43 38.4 93 45 66 41.0 45 38.1 92 43 38.4 93 45 64 41.0 45 38.4 92 42 38.4 93 45 77 44.3 44 38.7 92 43 38.4 93 45 84 43.8 43 44 92 36 38.8 93 30 84 43.3 38.9 88 32 39.9 90 31 94 44 30 37.2 86 21 33.3 88	32	37.7	50	34.3	91	48	34.3	91	47	
368 46 384 52 47 386 52 47 44 350 44 371 95 46 373 96 46 52 41.0 47 37.8 92 45 38.3 93 45 56 41.1 45 38.1 93 45 38.4 94 45 64 41.5 44 38.7 90 41 40.5 92 37 60 42.9 43 397 90 41 40.5 92 37 60 43.9 43 40.0 91 38 40.0 91 34 64 43.8 332 38.8 32 38.9 91 31 64 43.8 332 38.8 32 38.8 92 35.7 22 100 24.4 100	36	38.1	50	34.6	91 91	45	35.2	92	47	
46 38.0 46 37.1 95 46 37.3 96 46 55 41.0 45 38.0 92 45 38.5 94 46 56 41.1 45 38.1 92 45 38.4 94 45 66 41.0 44 38.1 92 45 38.4 94 45 66 41.0 44 38.7 92 44 38.4 94 45 77 44.0 44 39.7 90 41 40.5 92 37 76 44.0 44 39.7 90 41 40.5 92 37 76 44.3 33 38.0 88 32 39.3 90 31 84 43.8 33 38.0 88 32 39.3 90 31 92 43.8 32 36.5 86 31 36.5 86 30 10 41.3 225 36.4 86 20 36.1 87 22 10 41.5 50 24.6 21 86.5 99 49 2 23.5 50 24.6 100 50 22.7 99 49 2 23.5 50 24.6 100 50 22.7 99 49 10 24.5 50 27.5 99 50 28.6 99 49 2 27.7 50 27.5 99 </td <td>44</td> <td>39.6</td> <td>48</td> <td>36.4</td> <td>92</td> <td>47</td> <td>36.6</td> <td>92</td> <td>47</td> <td></td>	44	39.6	48	36.4	92	47	36.6	92	47	
52 41.0 47 37.8 92 45 38.3 94 45 56 41.1 45 38.1 92 45 38.4 94 45 60 41.3 45 38.4 92 42 38.5 93 45 64 41.3 45 39.4 92 42 38.5 94 45 64 43.9 43 40.0 91 35 40 92 35 39.5 91 35 64 43.8 38 40.4 92 35 39.5 91 35 86 44.3 33 38.0 87 31 39.0 88 30 366 43.4 30 37.2 86 26 36.5 89 36 100 41.3 25 36.4 82 26 36.5 89 46 101 41.3 30 37.2 88 26 27 96 46 102 25.0 50 28.5 100	48	39.0	48	37.1	95	46	37.3	96	46	
36 41.1 45 38.1 92 45 38.1 95 45 64 41.5 45 38.4 92 45 38.5 95 45 75 42.5 45 38.4 92 42 38.7 95 440 76 44.0 44 38.7 90 41 40.5 92 37 80 43.9 43 40.0 91 38 40.0 91 34 84 43.8 38 40.4 92 36 38.9 90 31 92 43.6 32 38.0 88 32 38.3 88 26 104 41.3 32 38.4 82 20 38.1 87 20 104 24.1 50 24.3 101 50 23.7 99 49 2 25.6 50 24.7 100 50 23.7 99 49 2 25.6 50 24.7 100 50 23.7 99	52	41.0	47	37.8	92	45	38.5	94	46	
4 41.5 45 38.3 92 43 38.8 93 45 68 41.9 45 38.4 92 42 38.8 93 42 72 42.5 45 39.2 92 42 39.8 93 40 76 44.0 43.9 43 40.0 91 38 40.0 91 34 64 43.8 38 84 43.8 38.8 98 91 33 86 44.4 33 38.9 87 33 39.8 93 93 30 94 44.3 30 37.2 96 28 38.5 87 22 100 42.0 30 35.3 84 21 38.5 87 22 100 41.3 23 36.4 88 100 50 23.5 99 50 1 23.9 50 24.3 101 50 23.5 99 49 1 23.9 50 24.3 100	56 60	41.1	40 45	38.0	92 93	40 45	38.3	93	45 45	
6841.94538.4924238.893427244.04439.7904140.592378043.94340.0913840.0913840.0918443.83840.4923639.891318444.83235.0873338.099309544.83235.0873338.099309444.33235.2878338.388369544.33035.2842136.5872210441.32536.4882036.1872010441.32536.4882036.1872010441.32536.4882036.1872010441.32536.4882036.1872010441.32536.4882036.1872010441.32536.4882036.1872010523.81005023.89949491023.95024.91005023.899491123.95027.6395028.1101461627.78027.63950	64	41.5	45	38.3	92	43	38.8	93	45	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	41.9	45	38.4	92	42	38.8	93	42	
	72 76	42.5	45	39.2 39.7	92	42 41	39.7	93 92	40 37	
84 43.8 38 40.4 92 36 39.8 91 33 92 43.6 32 38.0 97 31 39.0 89 30 95 43.4 30 37.2 38.6 28 38.3 88 26 100 42.0 30 35.3 84 21 38.5 87 22 100 42.0 30 35.3 84 21 38.5 87 22 100 42.0 30 35.3 84 21 38.5 87 22 101 43 35 36.4 31 101 50 23.8 96 50 11 23.9 50 23.8 100 50 23.5 96 49 3 25.8 50 26.7 101 50 23.5 96 49 3 25.8 50 26.0 97 50 28.7 96 49 3 27.7 50 27.7 90 28.0 101	80	43.9	43	40.0	91	38	40.0	91	34	
88 44.3 33 38.9 88 32 38.9 89 30 31 96 45.4 30 37.2 86 25 38.3 86 26 100 42.0 30 35.3 84 21 38.5 87 22 104 41.3 25 38.4 88 20 38.1 87 22 VEHICLE 0 24.1 50 24.3 101 50 23.8 99 50 1 22.0 50 24.3 100 50 23.5 39.4 49 4 25.6 50 26.1 100 50 23.5 39.4 49 4 25.8 50 26.1 101 50 28.6 39.4 49 5 27.0 50 27.5 39.9 50 28.1 101 46 5 27.7 50 27.5 39.9 50 28.3 100 46 6 27.7 50 27.5 </td <td>84</td> <td>43.8</td> <td>38</td> <td>40.4</td> <td>92</td> <td>36</td> <td>39.8</td> <td>91</td> <td>33</td> <td></td>	84	43.8	38	40.4	92	36	39.8	91	33	
36 42.3 30 37.3 36 25 36.3 36.5 96 100 42.0 30 35.3 84 20 36.1 67 20 VEHICLE 0 24.1 50 24.3 101 50 23.8 99 49 2 25.0 50 24.8 99 49 2 25.0 50 24.1 101 50 25.5 99 49 4 25.8 50 26.1 101 50 26.7 99 49 4 25.8 50 26.1 101 50 26.7 99 49 6 27.7 50 27.5 99 50 28.1 101 46 3 28.4 50 28.0 99 50 28.1 101 46 10 29.6 29.6 100 50 29.3 199 46	88	44.3	33	38.9	88 97	32	39.9	90 89	31 30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	96	43.4	30	37.2	86	28	38.3	88	26	
104 41.3 25 36.4 88 20 36.1 87 20 VEHICLE 0 24.1 50 24.8 101 50 23.8 99 40 2 25.0 50 24.8 100 50 23.7 99 49 4 25.8 50 26.1 101 50 26.5 99 49 4 25.8 50 26.1 101 50 28.6 99 49 6 27.7 50 27.5 99 50 28.1 101 48 8 28.4 50 28.0 99 50 28.3 199 45 10 29.6 50 29.5 100 50 29.7 99 46 11 29.6 50 29.5 99 50 29.7 99 46 12 30.2 50 29.5 50 29.7	100	42.0	30	35.3	84	21	36.5	87	22	
VEHICLE 0 24.1 50 24.3 101 50 23.8 99 50 1 23.9 50 23.8 100 50 23.7 99 49 3 25.8 50 25.7 100 50 23.5 99 49 4 25.8 50 26.7 100 50 28.6 99 49 5 27.0 50 27.6 99 50 28.0 101 49 7 27.8 50 28.9 101 50 28.3 99 48 9 28.5 50 28.9 101 50 28.3 100 48 10 29.5 99 50 28.7 199 48 11 29.9 99 50 28.7 100 48 13 31.1 50 38.9 101 49 32.7 98 48 20	104	41.3	25	36.4	88	20	36.1	87	20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	VEHICLE							
0 24.1 50 24.3 101 50 23.8 99 50 1 22.95 50 24.9 100 50 24.8 99 49 2 25.6 50 25.7 100 50 25.5 99 49 4 25.8 50 26.1 101 50 25.5 99 49 5 27.0 50 26.1 101 50 26.7 99 49 6 27.7 50 27.5 99 50 28.0 101 49 7 27.8 50 27.6 99 50 28.1 101 48 8 28.4 50 28.9 101 50 28.3 99 48 10 29.6 50 29.9 99 50 29.7 99 48 11 29.9 50 29.7 99 48 12 30.2 50 29.5 99 50 29.7 99 48 13 31.1 50 33.9 101 49 32.7 98 48 20 33.4 50 33.9 101 49 32.7 98 48 24 33.4 46 33.3 97 49 34.0 96 47 32 35.7 47 34.8 90 48 35.2 92 47 46 38.4 47 34.6 90 48 35.2 92 47 <										
122.35023.81005023.75024.89949325.85025.71005025.59949425.85026.11015025.69949527.05030.01115028.69049627.75027.6995028.110149727.85027.6995028.39948928.55028.91015028.399481029.61005029.5100481129.95029.9995029.799481230.25029.9995029.799481331.15030.3975031.0100481431.85031.6995031.7100482033.45033.91014932.795462435.44933.7954934.096473235.74734.6904835.292474038.24735.5934836.495474438.44637.1974635.597465039.44337.8954538.597 </td <td>0</td> <td>24.1</td> <td>50</td> <td>24.3</td> <td>101</td> <td>50</td> <td>23.8</td> <td>99</td> <td>50</td> <td></td>	0	24.1	50	24.3	101	50	23.8	99	50	
325.85025.71005025.59949425.85026.11015025.69949527.05030.01115025.69949627.75027.5995028.010149727.85027.6995028.110148828.45028.91015028.399481029.65029.61005029.799481129.85029.5995029.799481230.25029.9995031.7100481331.15030.3975031.7100482033.45033.91014932.798482130.241.6995031.7100482435.44933.7954933.096473233.45033.9964835.292474038.24736.6904835.597465238.44637.1974635.597455438.44637.1974635.597455638.44338.69447454538.5<	2	25.0	50	23.6	100	50	24.8	99	49	
425.85026.11015025.69949527.05030.01115028.79949627.75027.6995028.010149727.85027.6995028.110146828.45028.0995028.210348928.55029.61005029.5100481129.95029.799461230.25029.9995029.798481331.15030.3975031.7100481631.85031.6995031.7100482033.45033.91014932.798482435.44933.7954933.096473235.74734.3964834.396473338.44734.6904835.292474038.24735.5334836.495474438.64736.4944738.694474838.44637.1974635.292474438.64337.8954538.4964556<	3	25.8	50	25.7	100	50	25.5	99	49	
5 27.0 50 30.0 111 50 26.7 99 46 7 27.8 50 27.6 99 50 28.0 101 49 7 27.8 50 27.6 99 50 28.1 101 46 9 28.5 50 28.9 101 50 28.3 99 46 10 29.6 50 29.2 103 46 11 29.9 50 29.6 100 50 29.5 100 48 11 29.9 50 29.5 99 50 29.7 99 48 12 30.2 50 29.9 99 50 29.7 98 48 13 31.1 50 30.3 97 50 31.0 100 48 16 31.8 50 31.6 99 50 31.7 100 48 20 33.4 50 33.9 95 49 34.0 96 47 23 35.4 49 33.7 95 49 34.0 96 47 24 35.4 48 33.3 96 47 36.3 96 47 32 35.7 47 34.6 90 48 35.2 92 47 40 38.2 47 36.6 94 47 46 37.3 97 46 52 39.8 43 37.8 95 45 38.5 97 46 </td <td>4</td> <td>25.8</td> <td>50</td> <td>26.1</td> <td>101</td> <td>50</td> <td>25.6</td> <td>99</td> <td>49</td> <td></td>	4	25.8	50	26.1	101	50	25.6	99	49	
3 27.6 30 27.6 99 50 28.1 101 48 8 28.4 50 26.0 99 50 29.2 103 48 10 29.6 50 22.6 100 50 22.3 99 48 10 29.6 50 22.6 100 50 29.5 100 48 11 29.6 50 29.5 99 50 29.7 99 48 12 30.2 50 29.9 99 50 23.7 98 48 13 31.1 50 30.3 97 50 31.0 100 48 20 33.4 50 33.9 101 49 32.7 98 48 20 33.4 50 33.9 101 49 32.7 98 48 24 35.4 49 33.7 95 49 33.0 96 47 32 35.7 47 34.8 96 48 34.3 96 47 36 38.4 47 38.6 90 48 35.2 92 47 40 38.2 47 35.5 93 48 36.4 95 47 44 38.8 47 38.4 46 37.3 97 46 52 39.8 43 37.8 95 45 38.5 97 45 60 40.1 43 38.1	5	27.0	50 50	30.0 27 5	111	50 50	26.7	99 101	49	
828.45028.0995029.210348928.55028.91015028.399481029.65029.5995029.799481129.95029.9995029.799481230.25029.9995029.798481331.15030.3975031.0100482033.45033.91014932.798482135.44933.7954934.096482435.44933.3974933.096473235.74734.3964834.396473638.44736.6904635.292474038.24736.4944736.694474838.44637.1974637.397465049.44736.69447454538.496455639.44338.0964538.397454538.496456040.14338.1954538.89645454645454538.496456640.54338.3<	7	27.8	50	27.6	99	50	28.1	101	48	
928.55028.91015028.399481029.65029.51005029.799481129.95029.7995029.798481230.25029.9995029.798481331.15030.3975031.0100481631.85031.6995031.7100482033.45033.91014932.798482435.44933.7954934.096473235.74734.3964635.292473638.44734.6904635.292474438.64736.69447474638.44637.1974637.397465639.44337.8954538.597465639.44338.0964538.397455639.44338.0964538.496455639.44338.0964538.496455639.44338.0964538.496455639.44338.3954338.89645<	8	28.4	50	28.0	99	50	29.2	103	48	
1020.00020.0461031.85031.6995031.710046462033.45033.7954934.096462033.45033.7954934.096462135.74734.6904635.292473235.74734.6904635.292474038.24735.5934536.495474438.84736.4944736.694474438.84736.4954538.597465239.84337.8954538.597465639.44338.0964538.397456040.14338.3954338.896456440.5 <td>9</td> <td>28.5</td> <td>50 50</td> <td>28.9</td> <td>101</td> <td>50</td> <td>28.3 29.5</td> <td>99 100</td> <td>48 48</td> <td></td>	9	28.5	50 50	28.9	101	50	28.3 29.5	99 100	48 48	
12 30.2 50 29.9 99 50 28.7 98 48 13 31.1 50 30.3 97 50 31.0 100 48 16 31.8 50 31.6 99 50 31.7 100 48 20 33.4 50 33.9 101 49 32.7 98 48 24 35.4 49 33.7 95 49 34.0 96 46 28 34.4 48 33.3 97 49 33.0 96 47 32 35.7 47 34.6 90 48 34.3 96 47 36 38.4 47 36.6 90 48 36.4 95 47 40 38.2 47 35.5 98 48 36.4 95 47 44 38.8 47 36.4 94 47 36.6 94 47 45 39.8 43 37.8 95 45 38.5 97 46 56 39.4 43 38.0 96 45 38.3 97 45 60 40.1 43 38.1 95 45 38.8 96 45 64 40.5 43 38.3 95 43 38.8 96 45 66 41.6 40 38.4 92 42 39.7 96 40 72 41.5 39 39.2 94 42	11	29.9	50	29.5	99	50	29.7	99	48	
1331.15030.3975031.0100481631.85033.6995031.7100482033.45033.91014932.798482435.44933.7954934.096482834.44833.3974933.096473235.74734.3964834.396473638.44736.6904835.292474038.24735.5934836.495474438.84736.4944736.694474538.44637.1974637.397465239.84337.8954538.597465639.44338.0964538.397456040.14338.1954538.496456440.54338.3954338.896456841.64038.4924239.796407241.53939.7834140.594378042.53740.0943840.094348642.13538.99239.839.893<	12	30.2	50	29.9	99	50	29.7	98	48	
1031.031.03031.03031.03031.0402033.45033.91014932.798482435.44933.3974933.096473235.74734.3964834.396473638.44734.6904835.292474038.24735.5934836.694474438.84736.4944736.694474838.44637.1974637.397465239.84337.8954538.597465639.44338.0964538.397456040.14338.1954538.496456440.54338.3954338.896456841.64038.4924238.796407642.93939.7934140.594378042.53740.0943840.094348442.83540.4943639.893339241.23338.0923139.095319241.23338.0923139.0<	13	31.1	50 KO	30.3	97	50	31.0 31.7	100	48	
24 35.4 49 33.7 95 49 34.0 96 48 28 34.4 48 33.3 97 49 33.0 96 47 32 35.7 47 34.3 96 48 34.3 96 47 36 38.4 47 34.6 90 48 35.2 92 47 40 38.2 47 35.5 93 48 36.4 95 47 44 38.8 47 36.4 94 47 36.6 94 47 44 38.8 47 36.4 94 47 36.6 94 47 48 38.4 46 37.1 97 46 37.3 97 46 52 39.8 43 37.8 95 45 38.4 96 45 56 39.4 43 38.0 96 45 38.4 96 45 60 40.1 43 38.3 95 43 38.8 96 45 68 41.6 40 38.4 92 42 38.8 96 45 68 41.6 40 38.4 92 42 38.8 96 45 68 41.6 40.0 38.4 92 32 39.9 95 31 68 41.6 40.0 94 38 40.0 94 34 84 42.8 35 40.4 38	20	33.4	50	33.9	101	49	32.7	98	48	
28 34.4 48 33.3 97 49 33.0 96 47 32 35.7 47 34.3 96 48 34.3 96 47 36 38.4 47 34.6 90 48 35.2 92 47 40 38.2 47 35.5 93 48 36.4 95 47 44 38.8 47 36.4 94 47 36.6 94 47 44 38.8 47 36.4 94 47 36.6 94 47 48 38.4 46 37.1 97 46 37.3 97 46 52 39.8 43 37.8 95 45 38.5 97 46 56 39.4 43 38.0 96 45 38.4 96 45 60 40.1 43 38.3 95 43 38.8 96 45 64 40.5 43 38.3 95 43 38.8 96 45 68 41.6 40 38.4 92 42 38.7 96 40 72 41.5 39 39.2 94 42 38.7 96 40 72 41.5 39 39.2 94 42 38.7 96 40 76 42.9 39 39.7 38 41 40.5 94 34 84 42.8 35 40.4 </td <td>24</td> <td>35.4</td> <td>49</td> <td>33.7</td> <td>95</td> <td>49</td> <td>34.0</td> <td>96</td> <td>48</td> <td></td>	24	35.4	49	33.7	95	49	34.0	96	48	
32 35.7 47 34.3 370 46 34.3 570 47 36 38.4 47 34.6 90 46 35.2 92 47 40 38.2 47 35.5 93 48 36.4 95 47 44 38.8 47 36.4 94 47 36.6 94 47 48 38.4 46 37.1 97 46 37.3 97 46 52 39.8 43 37.8 95 45 38.5 97 46 56 39.4 43 38.0 96 45 38.3 97 45 60 40.1 43 38.1 95 45 38.4 96 45 64 40.5 43 38.3 95 43 38.8 96 45 68 41.6 40 38.4 92 42 39.7 96 40 72 41.5 39 39.2 94 42 39.7 96 40 76 42.9 39 39.7 33 41 40.5 94 37 80 42.5 37 40.0 94 38 40.0 94 34 84 42.8 35 40.4 94 38 39.9 95 31 92 41.2 33 38.0 92 32 39.9 95 31 92 41.2 33 38.0	28	34.4	48	33.3	97	49	33.0	96	47	
4038.24735.5934836.495474438.84736.4944736.694474838.44637.1974637.397465239.84337.8954538.597465639.44338.0964538.397456040.14338.1954538.496456440.54338.3954338.896456841.64038.4924239.796407241.53939.2944239.796407642.93939.7934140.594378042.53740.0943840.094348442.83540.4943639.893339241.23338.0923139.095319241.23338.0923139.095309640.03137.2932638.3962610039.32935.3902136.5932210437.92636.4962036.19520	32 36	35.7	47	34.3	90	48	35.2	92	47	
4438.84736.4944736.694474838.44637.1974637.397465239.84337.8954538.597465639.44338.0964538.397456040.14338.1954538.496456440.54338.3954338.896456841.64038.4924239.796407241.53939.2944239.796407642.93939.7934140.594378042.53740.0943840.094348442.83540.4943639.893339241.23338.0923139.095319241.23338.0923139.095309640.03137.2932838.3962610039.32935.3902136.5932210437.92636.4962036.19520	40	38.2	47	35.5	98	48	36.4	95	47	
4538.446037.13746037.3374605239.84337.8954538.597465639.44338.0964538.397456040.14338.1954538.496456440.54338.3954338.896456841.64038.4924238.898427241.53939.7934140.594377642.9393939.7934140.594348042.53740.0943840.094348442.83540.4943639.893339241.23338.0923139.095319241.23338.0923139.095309640.03137.2932838.3962610039.32935.3902136.5932210437.92636.4962036.19520	44	38.8	47	36.4	94	47	36.6	94	47	
56 39.4 43 38.0 96 45 38.3 97 45 60 40.1 43 38.1 95 45 38.4 96 45 64 40.5 43 38.3 95 43 38.8 96 45 68 41.6 40 38.4 92 42 38.8 96 45 72 41.5 39 39.2 94 42 39.7 96 40 76 42.9 39 39.7 93 41 40.5 94 37 80 42.5 37 40.0 94 38 40.0 94 34 84 42.8 35 40.4 94 36 39.8 93 33 92 41.2 33 38.0 92 31 39.0 95 31 96 40.0 31 37.2 93 28 38.3 96 26 100 39.3 29 35.3 90 21 36.5 93 22 104 37.9 26 36.4 96 20 36.1 95 20	48 52	38.4	40 43	37.1 37.8	97 95	-5 45	37.3	97	46	
60 40.1 43 38.1 95 45 38.4 96 45 64 40.5 43 38.3 95 43 38.8 96 45 68 41.6 40 38.4 92 42 38.8 96 45 72 41.5 39 39.2 94 42 39.7 96 40 76 42.9 39 39.7 93 41 40.5 94 37 80 42.5 37 40.0 94 38 40.0 94 34 84 42.8 35 40.4 94 36 39.8 93 33 86 42.1 35 38.9 92 32 39.9 95 31 92 41.2 33 38.0 92 31 39.0 95 30 96 40.0 31 37.2 93 28 38.3 96 26 100 39.3 29 35.3 90 21 36.5 93 22 104 37.9 26 36.4 96 20 36.1 95 20	56	39.4	43	38.0	96	45	38.3	97	45	
or w0.5 w3 35.3 35 4.3 35.5 90 4.5 68 41.6 40 38.4 92 42 38.8 93 42 72 41.5 39 39.2 94 42 39.7 96 40 76 42.9 39 39.7 93 41 40.5 94 34 80 42.5 37 40.0 94 38 40.0 94 34 84 42.8 35 40.4 94 36 39.8 93 33 92 41.2 33 38.9 92 32 39.9 95 31 92 41.2 33 38.0 92 31 39.0 95 30 96 40.0 31 37.2 93 28 38.3 96 26 100 39.3 29 35.3 90 21 36.5 93 22 104 37.9 26 36.4 96 20 36.1 95	60	40.1	43	38.1	95	45	38.4	96 04	45	
72 41.5 39 39.2 94 42 39.7 96 40 76 42.9 39 39.7 93 41 40.5 94 37 80 42.5 37 40.0 94 38 40.0 94 34 84 42.8 35 40.4 94 36 39.8 93 33 86 42.1 35 38.9 92 32 39.9 95 31 92 41.2 33 38.0 92 31 39.0 95 30 96 40.0 31 37.2 93 28 38.3 96 26 100 39.3 29 35.3 90 21 36.5 93 22 104 37.9 26 36.4 96 20 36.1 95 20	68	40.5 41.6	40 40	38.4	92	42	38.8	93	42	
76 42.9 39 39.7 93 41 40.5 94 37 80 42.5 37 40.0 94 38 40.0 94 34 84 42.8 35 40.4 94 36 39.8 93 33 86 42.1 35 38.9 92 32 39.9 95 31 92 41.2 33 38.0 92 31 39.0 95 30 96 40.0 31 37.2 93 28 38.3 96 26 100 39.3 29 35.3 90 21 36.5 93 22 104 37.9 26 36.4 96 20 36.1 95 20	72	41.5	39	39.2	94	42	39.7	96	40	
80 42.5 37 40.0 94 38 40.0 94 38 84 42.8 35 40.4 94 36 39.8 93 33 86 42.1 35 38.9 92 32 39.9 95 31 92 41.2 33 38.0 92 31 39.0 95 30 96 40.0 31 37.2 93 28 38.3 96 26 100 39.3 29 35.3 90 21 36.5 93 22 104 37.9 26 36.4 96 20 36.1 95 20	76	42.9	39	39.7	93	41	40.5	94	37	
86 42.1 35 38.9 92 32 39.9 95 31 92 41.2 33 38.0 92 31 39.0 95 30 96 40.0 31 37.2 93 28 38.3 96 26 100 39.3 29 35.3 90 21 36.5 93 22 104 37.9 26 36.4 96 20 36.1 95 20	80 84	42,5 42,8	37 35	40.0 40.4	94 94	35 36	40.0 39.8	93	33	
92 41.2 33 38.0 92 31 39.0 95 30 96 40.0 31 37.2 93 28 38.3 96 26 100 39.3 29 35.3 90 21 36.5 93 22 104 37.9 26 36.4 96 20 36.1 95 20	88	42.1	35	38.9	92	32	39.9	95	31	
96 40.0 31 37.2 93 28 38.3 96 26 100 39.3 29 35.3 90 21 36.5 93 22 104 37.9 26 36.4 96 20 36.1 95 20	92	41.2	33	38.0	92	31	39.0	95	30	
104 37.9 26 36.4 96 20 36.1 95 20	96 100	40.0	31 29	37.2	93 90	28 21	38,3 36,5	93	20	
	104	37.9	26	36.4	96	20	36.1	95	20	

TABLE 18. MEAN BODY WEIGHTS AND SURVIVAL OF FEMALE MICE IN THE TWO-YEAR DERMAL
STUDY OF 2-CHLOROETHANOL

(a) Mean body weights of dosed groups are compared with untreated control or vehicle control mice.

FIGURE 3. GROWTH CURVES FOR MICE ADMINISTERED 2-CHLOROETHANOL BY DERMAL APPLICATION FOR TWO YEARS

Survival

Estimates of the probabilities of survival of male and female mice administered 2-chloroethanol by dermal application at the doses of these studies are shown by the Kaplan and Meier curves in Figures 4 and 5. The survival of the low dose group of male mice was marginally lower than that of the vehicle controls (P=0.062). The survival of the high dose group of male mice was significantly lower than that of the vehicle controls (P = 0.002; P = 0.023 if seven high dose male mice that died in week 1 are censored) (Table 19). Figure 5 shows the estimates of the probabilities of survival of male mice (Kaplan and Meier curves) if these early-death animals are censored. All seven of these high dose male mice had inflammation at the site of dermal application; five also had ulceration at the site of dermal application, and five had lung congestion, inflammation, or hemorrhage. As this was a toxic response and the early-death animals were not at risk, only the 43 survivors following week 1

have been used for the statistical analysis of lesions in the high dose male mice.

Pathology and Statistical Analyses of Results

This section describes significant or noteworthy changes in the incidences of mice with neoplastic or nonneoplastic lesions in lung, hematopoietic system, integumentary system, and adrenal cortex. Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables B1 and B2); Appendix B (Tables B3 and B4) also gives the survival and tumor status for individual male and female mice. Findings on nonneoplastic lesions are summarized in Appendix D (Tables D1 and D2). Appendix E (Tables E3 and E4) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in the vehicle controls or in either dosed group. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).

treated	W/a histo		
	venicie	7.5 mg	15 mg
50	50	50	50
25	24	32	38
1	0	2	0
24	26	16	12
	0.022	0.062	0.023
50	50	50	50
26	24	30	30
24	26	20	20
	0.302	0.397	0.356
	50 25 1 24 50 26 24 	50 50 25 24 1 0 24 26 0.022 50 50 26 24 24 26 0.302	50 50 50 25 24 32 1 0 2 24 26 16 0.022 0.062 50 50 50 26 24 30 24 26 20 0.302 0.397

TIDEM IN DERVITED OF MICH IN THE INCLUMENT DERVICE OF FORMOUTHAND	TABLE 19.	SURVIVAL OF	MICE IN THE	TWO-YEAR DERMAL	STUDIES OF 2-CHLOR	OETHANOL
---	-----------	-------------	-------------	------------------------	--------------------	----------

(a) Terminal kill period: week 105

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise

comparisons with the vehicle controls are in the dosed columns. The P values given for male mice were obtained with the seven high dose deaths in week 1 censored.

FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED 2-CHLOROETHANOL BY DERMAL APPLICATION FOR TWO YEARS

FIGURE 5. KAPLAN-MEIER SURVIVAL CURVES FOR MALE MICE ADMINISTERED 2-CHLOROETHANOL BY DERMAL APPLICATION FOR TWO YEARS WITH WEEK-ONE DEATHS CENSORED

Lung: The incidence of low dose male mice with either alveolar/bronchiolar adenomas or carcinomas (combined) was significantly greater than that of the vehicle controls by the life table test; the incidence of these lesions was not dose related (Table 20). Dosing of female mice with 2-chloroethanol did not significantly alter the incidence of animals with alveolar/bronchiolar adenomas or carcinomas (combined). Ten of the 18 low dose males with these neoplasms were animals that died before the end of the study. The remainder of the neoplasms were found at terminal kill.

TABLE 20	. ANALYSIS	OF	LUNG	LESIONS	IN	MICE	IN	THE	TWO-YEAR	DERMAL	STUDIES	OF
				2-0	CHI	LOROE	TH	ANO	L (a)			

	Untreated Control	Vehicle Control	7.5 mg	15 mg
MALE			4 8.	·····
Alveolar Epithelial Hyperplasia	L			
Overall Rates	2/50 (4%)	4/50 (8%)	1/50 (2%)	2/43 (5%)
Alveolar/Bronchiolar Adenoma				
Overall Rates	6/50 (12%)	8/50 (16%)	10/50 (20%)	9/43 (21%)
Adjusted Rates	25.0%	26.0%	43.0%	46.0%
Terminal Rates	6/24 (25%)	4/26 (15%)	4/16 (25%)	4/12 (33%)
Life Table Tests		P = 0.062	P = 0.105	P = 0.078
Incidental Tumor Tests		P = 0.282	P=0.294	P = 0.279
Alveolar/Bronchiolar Carcinom	8			
Overall Rates	4/50 (8%)	6/50 (12%)	9/50 (18%)	3/43 (7%)
Adjusted Rates	13.7%	18.1%	38.1%	16.6%
Terminal Rates	2/24 (8%)	3/26 (12%)	4/16 (25%)	1/12 (8%)
Life Table Tests		P = 0.501	P = 0.095	P = 0.587 N
Incidental Tumor Tests		P = 0.383 N	P = 0.249	P = 0.355N
Alveolar/Bronchiolar Adenoma	or Carcinoma			
Overall Rates	10/50 (20%)	14/50 (28%)	18/50 (36%)	11/43 (26%)
Adjusted Rates	37.2%	40.9%	67.1%	55.7%
Terminal Rates	8/24 (33%)	7/26 (27%)	8/16 (50%)	5/12 (42%)
Life Table Tests		P = 0.132	P = 0.029	P = 0.196
Incidental Tumor Tests		P = 0.528	P = 0.155	P=0.579N
FEMALE				
Alveolar/Bronchiolar Adenoma	or Carcinoma			
Overall Rates	10/50 (20%)	9/50 (18%)	10/49 (20%)	9/50 (18%)

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).

Hematopoietic System: The incidences of low dose male mice with either lymphomas or with lymphomas or leukemia (combined) were significantly greater than those of the vehicle controls by life table analysis (Table 21); these increases were not dose related. The incidences

of dosed female mice with lymphomas or leukemia (combined) were not significantly increased. With one exception, the lymphomas or leukemias were found in vehicle control and low dose animals that died or were killed before the terminal kill.

TABLE 21. ANALYSIS OF HEMATOPOIETIC SYSTEM TUMORS IN MICE IN THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

	Untreated Control	Vehicle Control	7.5 mg	15 mg
MALE				
Lymphoma				
Overall Rates	3/50 (6%)	4/50 (8%)	10/50 (20%)	2/43 (5%)
Adjusted Rates	6.6%	11.2%	24.7%	5.0%
Terminal Rates	0/24 (0%)	1/26 (4%)	0/16 (0%)	0/12 (0%)
Life Table Tests		P = 0.525N	P = 0.044	P = 0.538N
Incidental Tumor Tests		P = 0.104N	P=0.233	P = 0.153N
Leukemia				
Overall Rates	3/50 (6%)	2/50 (4%)	4/50 (8%)	2/43 (5%)
Lymphoma or Leukemia				
Overall Rates	6/50 (12%)	6/50 (12%)	14/50 (28%)	4/43 (9%)
Adjusted Rates	14.0%	14.9%	34.9%	9.9%
Terminal Rates	0/24 (0%)	1/26 (4%)	()/16(0%)	0/12(0%)
Life Table Tests		P = 0.505	P = 0.022	P = 0.583N
Incidental Tumor Tests		P = 0.086N	P = 0.196	P = 0.121N
FEMALE		·		
L ymphoma or Leukemia Overall Rates	12/50 (24%)	9/50 (18%)	15/50 (30%)	13/50 (26%)

Integumentary System: Fibromas, fibrosarcomas, or neurofibrosarcomas (combined) in male mice (vehicle control, 3/50; low dose, 0/50; high dose, 0/43) occurred with a significant negative trend (P=0.027, incidental tumor test); but the incidences in the dosed groups were not significantly different from that in the vehicle controls in pairwise comparisons. For the purpose of these analyses, "skin" is considered to be a combination of samples taken at the site at which 2-chloroethanol was administered and from other locations on the same animal.

In male mice, dose-related increases were observed in the incidences of inflammation at the site of dermal application (vehicle control, 7/50; low dose, 12/50; high dose, 18/50). The incidence of ulceration also increased in dosed male mice (vehicle control, 1/50; low dose, 3/50; high dose, 8/50); all these ulcers occurred in male mice with inflammation at the site of dermal application. All seven males that died in the 1st week of the study had inflammation at the site of application, and five also had ulceration.

Adrenal Cortex: Adrenal cortical adenomas in male mice occurred with a significant positive trend; the incidence in the high dose group was significantly greater than that in the vehicle controls (Table 22) but was similar to that observed in the untreated controls. An adrenal cortical adenoma was observed in 1/49 untreated female mice; none was seen in any other group of female mice. All adrenal cortical neoplasms were found at terminal kill.

 TABLE 22. ANALYSIS OF ADRENAL CORTICAL LESIONS IN MALE MICE IN THE TWO-YEAR

 DERMAL STUDY OF 2-CHLOROETHANOL

	Untreated Control	Vehicle Control	7.5 mg	15 mg
Hyperplasia				
Overall Rates	4/48 (8%)	2/48 (4%)	3/49 (6%)	2/43 (4%)
Adenoma				
Overall Rates	4/48 (8%)	0/48 (0%)	2/49 (4%)	3/43 (7%)
Adjusted Rates	8.3%	0.0%	12.5%	25.0%
Terminal Rates	4/24 (17%)	0/26 (0%)	2/16 (13%)	3/12 (25%)
Life Table Tests		P = 0.013	P=0.138	P = 0.024
Incidental Tumor Tests		P = 0.013	P=0.138	P = 0.024

IV. DISCUSSION AND CONCLUSIONS

Genetic Toxicology Toxicity and Carcinogenicity Conclusions The toxicologic and carcinogenic potential of 2chloroethanol was studied in F344/N rats and Swiss CD-1 mice by dermal application of the test chemical under the following conditions: (1) single-administration studies (14 days' observation): rats, 38-3,713 mg/kg; mice, 410-2,178 mg/kg; (2) 14-day studies: rats, 0-611 mg/kg; mice, 0-1,875 mg/kg; (3) 13-week studies (five doses per week): rats, 0, 62-1,000 mg/kg; mice, 0, 5-45 mg per animal (192-1,957 mg/kg at week 1); (4) 2-year studies (five doses per week): rats, 0, 50, or 100 mg/kg; mice, 0, 7.5, or 15 mg per animal (253-630 mg/kg at week 1, 188-411 mg/kg at week 100).

In all studies, dose-related mortality usually occurred within the 1st week. In the 2-year studies, survival of dosed and vehicle control rats and of dosed and vehicle control female mice were comparable. The survival of high dose male mice was significantly (P<0.005) lower than that of the vehicle controls; 7/50 (14%) of these animals died during the first 3 days on study. All seven of these male mice had inflammation at the site of dermal application; five also had ulcers at the site of dermal application, and five had lung congestion, inflammation, or hemorrhage. When the animals that died during week 1 are censored from the analysis, the survival of the high dose group of male mice remains significantly (P < 0.05) lower than that of the vehicle controls (Figures 4 and 5).

Body weights of rats in the 13-week and 2-year studies and of mice in the 13-week studies were not affected by administration of 2-chloroethanol. Mean body weights of dosed male and female mice were somewhat lower than those of the vehicle controls throughout most of the 2year studies.

The survival and weight gain data suggest that both male and female F344/N rats could have tolerated a higher dose of 2-chloroethanol in the 2-year studies. The dose-related increased mortality in male mice suggests that the maximum effective dose was probably administered; female mice might have tolerated a higher dose of 2-chloroethanol. Overall survival in all groups of mice was poor (Table 19). The lethal effects of 2-chloroethanol may be associated with a reduction from the steadystate concentration of hepatic glutathione (GSH) resulting from the conjugation of GSH with 2chloroacetaldehyde, the enzymatic oxidation product of 2-chloroethanol. A single nonlethal (50% of the LD₅₀ value) dose of 2-chloroethanol lowered the GSH content of female rat liver by about 80% after 2 hours (Johnson, 1965).

Genetic Toxicology

2-Chloroacetaldehyde alkylates DNA (Oesch and Doerjer, 1982), causes errors during in vitro DNA synthesis (Hall et al., 1981), and is mutagenic in bacterial virus (Garro and Phillips, 1980) and bacterial DNA transformation systems (Phillips et al., 1980). 2-Chloroacetaldehyde is weakly mutagenic and recombinogenic in yeast (Loprieno et al., 1977), is mutagenic in the fungus Aspergillus nidulans (Bignami et al., 1980a,b) as well as in mammalian cell cultures (Huberman et al., 1975), and inhibits interferon induction when mouse embryo fibroblasts are challenged with Newcastle disease virus (Sonnenfeld et al., 1980). 2-Chloroacetaldehyde is more mutagenic in Salmonella than is the parent compound, 2-chloroethanol. The addition of liver S9 reduces the mutagenicity of 2-chloroacetaldehyde, possibly by oxidation to chloroacetic acid, which is not mutagenic in Salmonella (McCann et al., 1975; Bartsch et al., 1980; Bignami et al., 1980b), E. coli (Mamber et al., 1983), or mammalian cells (Huberman et al., 1975). Amacher and Turner (1982) reported, however, that chloroacetic acid may be weakly mutagenic in the mouse lymphoma assay in the presence of liver S9.

In vivo studies in rats (Green and Hathway, 1977; Rannug and Beije, 1979) showed that 2chloroacetaldehyde is conjugated with glutathione by a glutathione S-epoxide transferase to produce a series of S-containing metabolites that are not mutagenic in Salmonella. Taken together, these results suggest that 2-chloroethanol is a weak mutagen that is metabolized to 2-chloroacetaldehyde, a potent mutagen and alkylating agent. This metabolite then can be converted to 2-chloroacetic acid, which is not mutagenic, or conjugated to glutathione to form a series of nonmutagenic S-conjugates. The detoxification of 2-chloroacetaldehyde could prevent the realization of any carcinogenic potential of 2-chloroethanol. The short-term test results for 2-chloroethanol (i.e., positive in bacteria but negative in a variety of eukaryotes, including fungi, Drosophila, mammalian cells, and rodents) support this view.

Toxicity and Carcinogenicity

No compound-related signs of skin irritation were noted at the site of dermal application in rats or mice in the short-term studies. In the 2year studies, there were dose-related increases in the incidences of inflammation and ulceration at the site of application in male mice; all the ulcers were accompanied by inflammation. No similar effects were noted at the site of application in female mice or in male and female rats. and no significant differences in incidences of neoplastic lesions were noted at the site of application for rats or mice. Although the sensitivity of mouse skin to carcinogens varies with the stage of the hair growth cycle (Andreasen and Engelbreth-Holm, 1953; Berenblum et al., 1958; Borum, 1954), no information was found concerning the permeability of the skin to chemicals as a function of the hair cycle. Species differences in the dermal absorption of chemicals have been discussed by Bock (1963, 1983).

Male and female rats in the 13-week studies showed dose-related pancreatic acinar cell vacuolar changes at doses above 250 mg/kg; similar changes were seen in female mice that survived to the end of the 13-week studies. Acute nephrosis and hepatocellular fatty changes were noted in dosed male and female mice surviving to the end of the 13-week studies. Possible effects on the pancreas in rats and on the pancreas, kidney, and liver in mice were considered when doses for the 2-year studies were set. None of these sites was affected in rats or mice in the 2-year studies.

Mason et al. (1971) had reported an increased incidence of pituitary gland adenomas (7/100 across all dose groups vs 1/50 for control animals) in female Fischer 344 rats given 2chloroethanol (0.3-10 mg/kg) by subcutaneous

injection. In the present studies, pituitary gland adenomas occurred at an increased incidence in high dose female rats (Table 12). When adenomas and carcinomas were combined, a marginally significant (P=0.049) trend remained, and the incidence in the high dose group showed a borderline (P=0.052) increase when compared with the vehicle controls by life table analysis. Although results in this report lend support to the conclusion of Mason et al. that 2chloroethanol may affect the female F344 rat pituitary gland, the results in themselves are considered to be inconclusive for the following reasons: (1) No dose-related pituitary gland hyperplastic response was seen (Appendix C. Table C2); (b) these tumors are considered to be a continuum of neoplastic lesions from adenomas to carcinomas and are therefore properly combined for interpretation purposes; and (c) these tumors are not considered as life threatening and the use of the incidental tumor test is accordingly more appropriate than the life table test. No other increase in neoplasms was observed in rats.

The incidence of alveolar/bronchiolar adenomas or carcinomas (combined) was significantly increased (P=0.029), life table test only) in low dose male mice. Considered separately, the incidences of either alveolar/bronchiolar adenomas or carcinomas were not significantly increased. Doses employed in the present study (7.5 and 15)mg per animal, dermal, 5 days per week) were considerably higher than those used by Homburger (1968) (1.2 mg per animal, by intravenous injection, one time per month for 7 months); Homburger reported an increase in the incidence of alveolar/bronchiolar adenomas in female CF-1 mice (5/18 vs a control rate of 2/18). The incidence of alveolar/bronchiolar adenomas or carcinomas (separate or combined) in male mice was similar in the high dose, vehicle control, and untreated control animals. In all groups of male mice, these tumors were found in both early-death animals and in terminal-kill animals.

Lymphomas occurred with a marginally increased incidence in low dose (but not high dose) male mice when compared with vehicle (P=0.044) or untreated (P=0.048) controls by the life table test. The high dose animals had fewer lymphomas or leukemias than did the vehicle and untreated controls. Almost all lymphomas and leukemias were found in animals of all groups that died during the course of the 2-year studies (Table 20).

Adrenal cortical adenomas appeared in high dose male mice with a significantly increased incidence when compared with the vehicle controls (0/48 vs 3/43) but not when compared with the untreated controls (4/48 vs 3/43).

There were no statistically significant differences in tumor incidence between the vehicle and untreated control groups for male mice or for female mice. Consequently, these control groups were combined by sex and additional analyses carried out. When statistical comparisons were made relative to the pooled control groups, (1) the increased incidences of alveolar/bronchiolar tumors and of malignant lymphoma in low dose male mice remained significant (P < 0.05), whereas both of the corresponding high dose effects remained not significant; (2) the increased incidence of cortical adenoma of the adrenal gland in high dose male mice was no longer significant; and (3) combining the control groups revealed no other effects that influenced the overall interpretation of the data.

The increased incidences of alveolar/bronchiolar tumors and malignant lymphoma in low dose male mice are suggestive of a possible response to dermal application of 2-chloroethanol; however, there was no dose-related trend for these tumor incidences (the low dose effects were significant only by a life table test), and supporting evidence was not seen in female mice or in male and female rats. Thus, these increases were not considered to be compound related.

Conclusions: Under the conditions of these 2year dermal studies, there was no evidence of carcinogenicity⁺ of 2-chloroethanol for male and female F344/N rats given 50 or 100 mg/kg per day or for male and female Swiss CD-1 mice given 7.5 or 15 mg per animal per day.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

V. REFERENCES

2-Chloroethanol, NTP TR 275

1. Abrahamson, S.; Lewis, E. (1971) The detection of mutations in *Drosophila melanogaster*. Hollaender, A., Ed.: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 2. New York: Plenum Press, pp. 461-487.

2. Adler, N. (1965) Residual ethylene oxide and ethylene glycol in ethylene oxide sterilized pharmaceuticals. J. Pharm. Sci. 54:735-742.

3. Amacher, D.; Turner, G. (1982) Mutagenic evaluation of carcinogens and non-carcinogens in the L5178Y/TK assay utilizing postmitochondrial fractions (S9) from normal rat liver. Mutat. Res. 97:49-65.

4. Ambrose, A. (1950) Toxicological studies of compounds investigated for use as inhibitors of biological processes. II. Toxicity of ethylene chlorohydrin. Arch. Ind. Hyg. Occup. Med. 2:591-597.

5. Andreasen, E.; Engelbreth-Holm, J. (1953) On the significance of the mouse hair cycle in experimental carcinogenesis. Acta Pathol. Scand. 32:165-169.

6. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

7. Balazs, T. (1976) Toxicity of ethylene oxide and chloroethanol. FDA By-Lines 7:150-155.

8. Ballotta, F.; Bertagni, P.; Troisi, F. (1953) Acute poisoning caused by ingestion of ethylene chlorohydrin. Br. J. Ind. Med. 10:161-163.

9. Barale, R.; Presciuttini, S.; Rossi, A. (1979) Schizosaccharomyces pombe--mutazione genica in avanti. Environ. Mutagen Meth. Anal. 1:105-121.

10. Barthelmess, A.; Elkabarity, A. (1962) Chemisch Induzieite Multipolare Mitosen, III. Protoplasma 54:455-475.

11. Bartsch, H.; Malaveille, C.; Montesano, R. (1975) Human, rat and mouse liver-mediated mutagenicity of vinyl chloride in S. typhimurium strains. Int. J. Cancer 15:429-437. 12. Bartsch, H.; Malaveille, C.; Camus, A.-M.; Martel-Planche, G.; Brun, G.; Hautefeuille, A.; Sabadie, N.; Barbin, A.; Kuroki, T.; Drevon, C.; Piccoli, C.; Montesano, R. (1980) Validation and comparative studies on 180 chemicals with S. typhimurium strains and V79 Chinese hamster cells in the presence of various metabolizing systems. Mutat. Res. 76:1-50.

13. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

14. Berenblum, I.; Haran-Ghera, N.; Trainin, N. (1958) An experimental analysis of the "hair cycle effect" in mouse skin carcinogenesis. Br. J. Cancer 12:402-413.

15. Bignami, M.; Conti, G.; Conti, L.; Crebelli, R.; Misuraca, F.; Puglia, A.; Randazzo, R.; Sciandrello, G.; Carere, A. (1980a) Mutagenicity of halogenated aliphatic hydrocarbons in Salmonella typhimurium, Streptomyces coelicolor and Aspergillus nidulans. Chem. Biol. Interact. 30:9-23.

16. Bignami, M.; Crebelli, R.; Conti, G.; Conti, L.; Misuraca, F.; Puglia, A.; Randazzo, R.; Sciandrello, G.; Carere, A. (1980b) *In vitro* mutagenicity studies with halogenated aliphatic hydrocarbons. Mutat. Res. 200:73-74.

17. Blackford, J. (1976) Ethylene oxide. Chemical Economics Handbook. Menlo Park, CA: Stanford Research Institute.

18. Blair, A.; Vallee, B. (1966) Some catalytic properties of human liver alcohol dehydrogenase. Biochemistry 5:2026-2034.

19. Bock, F. (1963) Species difference in penetration and absorption of chemical carcinogens. Natl. Cancer Inst. Monogr. 10:361-375.

20. Bock, F. (1983) Comparative anatomy and function of skin as related to experimental carcinogenesis. Homburger, F., Ed.: Progress in Experimental Tumor Research. Basel: S. Karker, pp. 5-17. 21. Boorman, G.; Montgomery, C., Jr.; Hardisty, J.; Eustis, S.; Wolfe, M., McConnell, E. (1985) Quality assurance in pathology for rodent toxicology and carcinogenicity tests. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications.

22. Borum, K. (1954) The role of the mouse hair cycle in epidermal carcinogenesis. Acta Pathol. Scand. 34:542-552.

23. Brown, D. (1970) Determination of ethylene oxide and ethylene chlorohydrin in plastic and rubber surgical equipment sterilized with ethylene oxide. J. Assoc. Off. Anal. Chem. 53:263-267.

24. Bush, A.; Abrams, H., Brown, H. (1949) Fatality and illness caused by ethylene chlorohydrin in an agricultural operation. J. Ind. Hyg. Toxicol. 31:352-358.

25. Carpenter, C.; Smyth, H.; Pozzani, U. (1949) The assay of acute vapor toxicity, and the grading and interpretation of results on 96 chemical compounds. J. Ind. Hyg. Toxicol. 31:343-346.

26. Castro, C.; Bartnicki, E. (1968) Biodehalogenation. Epoxidation of halohydrins, epoxide opening, and transhalogenation by a *Flavobacterium* sp. Biochemistry 7:3213-3218.

27. Conan, L.; Foucault, B.; Siou, G.; Chaigneau, M.; Le Moan, G. (1979) Contribution a la recherche d'une action mutagene des residus d'oxyde d'ethylene, d'ethylene glycol et de chloro-2-ethanol dans le materiel plastique sterilise par l'oxide d'ethylene. Ann. Fals. Exp. Chim. 773:141-151.

28. Cox, D. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

29. Dunkelberg, H. (1983) Carcinogenic activity of ethylene oxide and its reaction products 2chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. II. Testing of 2-chloroethanol and 2-bromoethanol for carcinogenicity. Zbl. Bakt. Hyg., I. Abt. Orig. B 177:269-281. 30. Elmore, J.; Wong, J.; Laumbach, A.; Streips, U. (1976) Vinyl chloride mutagenicity via the metabolites chlorooxirane and chloroacetaldehyde monomer hydrate. Biochim. Biophys. Acta 442:405-419.

31. Epstein, S.; Arnold, E.; Andrea, J.; Bass, W.; Bishop, Y. (1972) Detection of chemical mutagens by the dominant lethal assay in the mouse. Toxicol. Appl. Pharmacol. 23:288-325.

32. Finney, D. (1964) Statistical Methods in Biological Assay. New York: Hadner Publishing Co., pp. 451-500.

33. Fishbein, L. (1969) Degradation and residues of alkylating agents. Ann. N.Y. Acad. Sci. 163:869-894.

34. Fishbein, L. (1976) Potential hazards of fumigant residues. Environ. Health Perspect. 14:39-45.

35. Food and Drug Administration (FDA) (1978) Ethylene oxide, ethylene chlorohydrin and ethylene glycol. Fed. Reg. 43:27474-27483.

36. Garro, A.; Phillips, R. (1980) Detection of mutagen-induced lesions in isolated DNA by marker rescue of Bacillus subtilis phage PH105. Mutat. Res. 73:1-13.

37. Gart, J.; Chu, K.; Tarone, R. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62(4):957-974.

38. Generoso, W.; Cain, K.; Krishna, M.; Sheu, C.; Gryder, R. (1981) Heritable translocation and dominant lethal mutation induced with ethylene oxide in mice. Mutat. Res. 73:133-142.

39. Glaser, Z. (1979) Ethylene oxide--Toxicology review and field study results of hospital use. J. Environ. Pathol. Toxicol. 2:173-208.

40. Gleason, M.; Gosselin, R.; Hodge, H.; Smith, R. (1969) Clinical Toxicology of Commercial Products. Baltimore: Williams and Wilkins, p. 66. 41. Goldblatt, M.; Chiesman, W. (1944) Toxic effects of ethylene chlorohydrin. Part I. Clinical. Br. J. Ind. Med. 1:207-223.

42. Green, T.; Hathway, D. (1975) The biological fate in rats of vinyl chloride in relation to its on-conogenicity. Chem. Biol. Interact. 11:545-562.

43. Green, T.; Hathway, D. (1977) The chemistry and biogenesis of the S-containing metabolites of vinyl chloride in rats. Chem. Biol. Interact. 17:137-150.

44. Grigorescu, I.; Toba, G. (1966) Clorura divinil. Aspecte de toxicologie industriala. Rev. Chim. Rem. 17:499-501.

45. Grunow, W.; Altmann, H.-J. (1982) Toxicokinetics of chloroethanol in the rat after single oral administration. Arch. Toxicol. 49:275-284.

46. Guess, W. (1970) Tissue reactions to 2chloroethanol in rabbits. Toxicol. Appl. Pharmacol. 16:382-390.

47. Gunther, D. (1974a) Safety of ethylene oxide gas residuals. Part i. Am. J. Hosp. Pharmacol. 31:558-561.

48. Gunther, D. (1974b) Safety of ethylene oxide gas residuals. Part ii. Am. J. Hosp. Pharmacol. 31:684-686.

49. Hall, J.; Saffhill, R.; Green, T.; Hathway, D. (1981) The induction of errors during in vitro DNA synthesis following chloroacetaldehydetreatment of poly(dA-dT) and poly(dC-dG) templates. Carcinogenesis (London) 2:141-146.

50. Haseman, J. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

51. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. Suppl. 1:3-142.

52. Hogstedt, C.; Malmqvist, N.; Wadman, B. (1979a) Leukemia in workers exposed to ethylene oxide. J. Am. Med. Assoc. 241:1132-1133. 53. Hogstedt, C.; Rohlen, O.; Berndtsson, B.; Axelson, O.; Ehrenberg, L. (1979b) A cohort study of mortality and cancer incidence in ethylene oxide production workers. Br. J. Ind. Med. 36:276-280.

54. Holmgren, A.; Diding, N. (1969) Ethylene oxide treatment of crude drugs. Part V. Formation of ethylene chlorohydrin. Acta Pharm. Succica 6:33-36.

55. Homburger, F. (1968) Final Report. Contract PH-43-67-677, Project C-173. Springfield, VA: National Technical Information Service.

56. Huberman, E.; Bartsch, H.; Sachs, L. (1975) Mutation induction in Chinese hamster V79 cells by two vinyl chloride metabolites, chloroethylene oxide and 2-chloroacetaldehyde. Int. J. Cancer 16:639-644.

57. International Agency for Research on Cancer (IARC) (1976) Ethylene oxide. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, Vol. 11. Lyon, France: IARC, World Health Organization, pp. 157-167.

58. International Agency for Research on Cancer (IARC) (1984) Some Allyl Compounds, Aldehydes, Epoxides, and Peroxides. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Vol. 36. Lyon, France: IARC, World Health Organization (in press).

59. Isakova, G.; Ekshtat, B.; Kerkis, Y. (1971) On studies of the mutagenic properties of chemical substances in the establishment of hygienic standards. Hyg. Sanit. (USSR) 36:178-184. Translated from Gig. Sanit. 36:9-13, 1971.

60. Johnson, M. (1965) The influence of some aliphatic compounds on rat liver glutathione levels. Biochem. Pharmacol. 14:1383-1385.

61. Johnson, M. (1967) Metabolism of chloroethanol in the rat. Biochem. Pharmacol. 16:185-199.

62. Jones, B.; Hathway, D. (1978) The biological fate of vinylidene chloride in rats. Chem. Biol. Interact. 20:27-41.

63. Joyner, R. (1964) Chronic toxicity of ethylene oxide. Arch. Environ. Health 8:700-710.

64. Kaplan, E.; Meier, P. (1958) Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53:457-481.

65. Kimmel, C.; LaBorde, J. (1979) Teratogenic potential of ethylene oxide. Teratology 19:34A-35A.

66. Knaap, A.; Voogd, C.; Kramers, P. (1982) Comparison of the mutagenic potency of 2chloroethanol, 2-bromoethanol, 1,2-epoxybutane, epichlorohydrin and glycidaldehyde in *Klebsiella pneumoniae*, *Drosophila melanogaster* and L5178Y mouse lymphoma cells. Mutat. Res. 101:199-208.

67. Koelsch, F. (1927) Die Giftigkeit des Aethylenchlorohydrins. Zentralbl. Gewerbehyg. 4:312-316.

68. Kozlenchkov, Y.; Medvedev, O. (1975) Early diagnosis and treatment of glycol poisoning. Voen. Med. Zh. 10:30-40.

69. Kronevi, T.; Wahlberg, J.; Holmberg, B. (1979) Histopathology of skin, liver, and kidney after epicutaneous administration of five industrial solvents to guinea pigs. Environ. Res. 19:56-69.

70. LaBorde, J.; Kimmel, C. (1980) The teratogenicity of ethylene oxide administered intravenously to mice. Toxicol. Appl. Pharmacol. 56:16-22.

71. Laumbach, A.; Lee, S.; Wong, J.; Streips, U. (1977) Studies on the Mutagenicity of Vinyl Chloride Metabolites and Related Chemicals. Proceedings of the Third International Symposium on Detection and Prevention of Cancer, Vol. 1, pp. 155-170.

72. Lawrence, W.; Turner, J.; Autian, J. (1971) Toxicity of ethylene chlorohydrin. I. Acute toxicity studies. J. Pharm. Sci. 60:568-571. 73. Linhart, M.; Cooper, J.; Martin, R.; Page, N.; Peters, J. (1974): Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248.

74. Lofroth, G. (1978) The mutagenicity of dichloroacetaldehyde. Z. Naturforsch. 33:783-785.

75. Loprieno, N.; Barale, R.; Baroncelli, S.; Bartsch, H.; Bronzetti, G.; Cammellini, A.; Corsi, C.; Frezza, D.; Nieri, R.; Leporini, C.; Rosellini, D.; Rossi, A. (1977) Induction of gene mutations and gene conversions by vinyl chloride metabolites in yeast. Cancer Res. 36:253-257.

76. Malaveille, C.; Bartsch, H.; Barbin, A.; Camus, A.; Montesano, R.; Croisy, A.; Jacquignon, P. (1975) Mutagenicity of vinyl chloride, chloroethylene oxide, chloroaceldehyde and chloroethanol. Biochem. Biophys. Res. Com. 63:363-370.

77. Mamber, S.; Bryson, V.; Katz, S. (1983) The *Escherichia coli* WP2/WP100 rec assay for detection of potential carcinogens. Mutat. Res. 119:135-144.

78. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

79. Maronpot, R.; Boorman, G. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

80. Mason, M.; Cate, C.; Baker, J. (1971) Toxicology and carcinogenesis of various chemicals used in the preparation of vaccines. Clin. Toxicol. 4:185-204.

81. McCann, J.; Simmon, V.; Streitwieser, D.; Ames, B. (1975) Mutagenicity of chloroacetaldehyde, a possible metabolic product of 1,2-dichloroethane (ethylene dichloride), chloroethanol (ethylene chlorohydrin), vinyl chloride, and cyclophosphamide. Proc. Natl. Acad. Sci. 72:3190-3193. 82. McGunnigle, R.; Renner, J.; Remano, S.; Abodeely, R., Jr. (1975) Residual ethylene oxide--Levels in medical grade tubing and effects on an *in vitro* biologic system. J. Biomed. Mater. Res. 9:273-283.

83. Merck Index (1968) Stecher, P., Ed. Rahway, NJ: Merck and Company, Inc., p. 434.

84. Nakamura, A.; Tateno, N.; Kojima, S.; Kaniwa, M.; Kawamura, T. (1979) The mutagenicity of halogenated alkanols and their phosphoric acid esters for Salmonella typhimurium. Mutat. Res. 66:373-380.

85. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Carcinogenesis Technical Report Series No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health.

86. National Institute for Occupational Safety and Health (NIOSH) (1975)

87. National Institute for Occupational Safety and Health (NIOSH) (1977) NIOSH Registry of Toxic Effects of Chemical Substances, Vol. II. U.S. Department of Health, Education, and Welfare, National Institute for Occupational Safety and Health, Rockville, MD.

88. National Institute for Occupational Safety and Health (NIOSH) (1983) Study. Preliminary results presented by T. Lewis at the Subcommittee on Environmental Mutagenesis, Bethesda, MD.

89. National Institutes of Health (NIH) (1978) NIH Specification, NIH-11-133f, November 1.

90. Neely, W.; Branson, D.; Blau, G. (1974) Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ. Sci. Technol. 8:1113-1115.

91. Norpoth, K.; Reisch, A.; Heinecke, A. (1980) Biostatistics of Ames test data. Norpoth, K.; Garner, R., Eds: Short-Term Test Systems for Detecting Carcinogens. New York: Springer-Verlag, pp. 312-322. 92. Occupational Safety and Health Administration (OSHA) (1982) Occupational exposure to ethylene oxide. Fed. Reg. 47:3566-3570.

93. Occupational Safety and Health Administration (OSHA) (1983) Occupational exposure to ethylene oxide. Fed. Reg. 48:17284-17319.

94. Oesch, F.; Doerjer, G. (1982) Detection of N^2 ,3-ethenoguanine in DNA after treatment with chloroacetaldehyde in vitro. Carcinogenesis (London) 3:663-665.

95. O'Leary, R.; Guess, W. (1968) The toxicogenic potential of medical plastics sterilized with ethylene oxide vapors. J. Biomed. Mater. Res. 2:297-311.

96. Oser, B.; Morgareidge, K.; Cox, G.; Carson, S. (1975) Short-term toxicity of ethylene chlorohydrin (ECH) in rats, dogs and monkeys. Food Cosmet. Toxicol. 13:313-315.

97. Painter, R.; Howard, R. (1982) The HeLa DNA-synthesis inhibition test as a rapid screen for mutagenic carcinogens. Mutat. Res. 92:427-437.

98. Pfeiffer, E.; Dunkelberg, H. (1980) Mutagenicity of ethylene oxide and propylene oxide and of the glycols and halohydrins formed from them during the fumigation of foodstuffs. Food Cosmet. Toxicol. 18:115-118.

99. Phillips, R.; Zahler, S.; Garro, A. (1980) Detection of mutagen-induced lesions in isolated DNA using a new Bacillus subtilis transformation-based assay. Mutat. Res. 74:267-281.

100. Ragelis, E.; Fisher, B.; Klimeck, B. (1966) Note on determination of chlorohydrins in foods fumigated with ethylene oxide and with propylene oxide. J. Assoc. Off. Anal. Chem. 49:963-965.

101. Ragelis, E.; Fisher, B.; Klimeck, B.; Johnson, C. (1968) Isolation and determination of chlorohydrins in foods fumigated with ethylene oxide or with propylene oxide. J. Assoc. Off. Anal. Chem. 51:709-715.

102. Rannug, U.; Beije, B. (1979) The mutagenic effect of 1,2-dichloroethane on Salmonella typhimurium. II. Activation by the isolated perfused rat liver. Chem.-Biol. Interact. 24:265-285.

103. Rannug, U.; Goethe, R.; Wachtneister, C. (1976) The mutagenicity of chloroethylene oxide, chloroacetaldehyde, 2-chloroethanol, and chloroacetic acid, conceivable metabolites of vinyl chloride. Chem.-Biol. Interact. 12:251-263.

104. Research Triangle Institute (RTI) (1983a) Teratologic Evaluation of Ethylene Chlorohyrin (CAS No. 107-07-3) in CD-1 Mice. Final Report, Contract No. NO1-ES-6-2127, National Institute of Environmental Health Sciences.

105. Research Triangle Institute (RTI) (1983b) Teratologic Evaluation of Ethylene Chlorohyrin (CAS No. 107-07-3) in New Zealand White Rabbits. Final Report, Contract No. NO1-ES-6-2127, National Institute of Environmental Health Sciences.

106. Riesser, G. (1979) Chlorohydrins. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. New York: John Wiley and Sons. 6:848-864.

107. Rosenkranz, H.; Wlodkowski, T. (1974) Mutagenicity of ethylene chlorohydrin. A degradation product present in foodstuffs exposed to ethylene oxide. J. Agr. Food Chem. 22:407-409.

108. Rosenkranz, S.; Carr, H.; Rosenkranz, H. (1974) 2-Haloethanols--Mutagenicity and reactivity with DNA. Mutat. Res. 26:367-370.

109. Sadtler Standard Spectra, IR No. 73, NMR No. 10320. Philadelphia: Sadtler Research Laboratories.

110. Saitanov, A.; Konanova, A. (1976) Acute ethylene chlorohydrin poisoning. Gig. Tr. Prof. Zabol., pp. 49-50.

111. Schultze, H. (1965) Ethylene oxide. Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. New York: John Wiley and Sons. 8:253-558. 112. Sheu, C.; Cain, K.; Gryder, R.; Generoso, W. (1983) Heritable translocations test with ethylene chlorohydrin in male mice. J. Am. Col. Toxicol. 2:221-223.

113. Snellings, W.; Zelenak, J.; Weil, C. (1982) Effects on reproduction in Fischer 344 rats exposed to ethylene oxide by inhalation for one generation. Toxicol. Appl. Pharmacol. 63:382-388.

114. Sonnenfeld, G.; Barnes, M.; Schooler, J.; Streips, U. (1980) Inhibition of interferon induction as a screen for the carcinogenic potential of chemicals. Khan, A.; Hill, N.; Dorn, G., Eds.: Interferon: Properties and Clinical Uses. Proceedings of the International Symposium on Interferon, Wadley Institute of Molecular Biology, Dallas, TX, 1979. Dallas: Leland Fisk Foundation Press, pp. 589-596.

115. Stich, H.; San, R.; Lam, P.; Koropatnick, D. (1976) The Detection of Naturally Occurring and Man-made Carcinogens and Mutagens by the DNA Repair Assay. Second Joint U.S./USSR Symposium on the Comprehensive Analysis of the Environment, pp. 85-88.

116. Stolzenberg, S.; Hine, C. (1980) Mutagenicity of 2- and 3-carbon halogenated compounds in the Salmonella/mammalian-microsome test. Environ. Mutagenesis 2:59-66.

117. Strusevich, E.; Ekshtat, B. (1973) Effect of ethylene chlorohydrin on liver and pancreatic enzymes in a subacute experiment. Uch. Zap-Mosk. Nauchno-Issled Inst. Gig. 20:71-74.

118. Tarone, R. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

119. U.S. Environmental Protection Agency (USEPA) (1978) Notice of rebuttable presumption against registration and continued registration of pesticide products containing ethylene oxide. Fed. Reg. 43:3801-3812. 120. U.S. Environmental Protection Agency (USEPA) (1984) Ethylene oxide; revised labeling for pesticide products containing ethylene oxide which are registered for the sterilization of equipment and supplies in hospitals and health care facilities. Fed. Reg. 49:15268-15273.

121. Verrett, M. (1974) Investigation of the toxic teratogenic effects of 2-chloroethanol to the developing chick embryo. Memorandum to L. Friedman, Food and Drug Administration, 8 pp. Cited in Fed. Reg. 43:3812.

122. Vig, B. (1975) Soybean (*Glycine max*): A new test system for study of genetic parameters as affected by environmental mutagens. Mutat. Res. 31:49-56.

123. Voogd, C. (1973) Mutagenic action of epoxy compounds and several alcohols. Mutat. Res. 21:52-53.

124. Voogd, C.; van der Vet, P. (1969) Mutagenic action of ethylene halogenhydrins. Experientia 25:85-86. 125. Voogd, C.; Jacobs, J.; van der Stel, J. (1972) On the mutagenic action of dichlorvos. Mutat. Res. 16:413-416.

126. Wahlberg, J.; Boman, A. (1978) 2-Chloroethanol--Percutaneous toxicity of a solvent. Dermatologica 156:299-302.

127. Watanabe, P.; McGowan, G.; Gehring, P. (1976) Fate of [14C] vinyl chloride after single oral administration in rats. Toxicol. Appl. Pharmacol. 36:339-352.

128. Wesley, F.; Rourke, B.; Darbishire, O. (1965) The formation of persistent toxic chlorohydrins in foodstuffs by fumigation with ethylene oxide and with propylene oxide. J. Food Sci. 30:1037-1042.

129. Yllner, S. (1971) Metabolism of 1,2dichloroethane-14C in the mouse. Acta Pharmacol. Toxicol. 30:257-265.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

	CONTRO)L (VEH)	LOW	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	Y 50		50		50	
INTEGUMENTARY SYSTEM				_		
#SKIN PAINT SITE	(48)		(49)		(49)	
SQUAMOUS CELL CARCINOMA	1	(2%)				
KERATOACANTHOMA					1	(2%)
*SKIN	(50)		(50)		(50)	
PAPILLOMA, NOS	1	(2%)			4	(8%)
SQUAMOUS CELL PAPILLOMA		(00)	•	(90)	Z	(49)
SQUAMOUS CELL CARCINOMA	1	(2%)	1	(2%)		
KERATOACANTHOMA	1	(270) (904)	9	(696)	1	(29)
+SUBCUT TISSUE	(50)	(270)	(50)	(070)	(50)	(2.10)
FIBROMA	(00)	(496)	(00)	(1296)	(00)	(296)
FIBROSARCOMA	1	(2%)	2	(4%)	•	(2,0)
						<u> </u>
RESPIRATORY SYSTEM					(~~	
#LUNG	(49)		(50)		(50)	
SQUAMOUS CELL CARCINOMA, METASTA	A 1	(2%)				
ALVEOLAR/BRONCHIOLAR ADENOMA	1	(2%)		(0~)		(00)
ALVEOLAR/BRONCHIOLAR CARCINOMA		(0.07.)	4	(8%)	1	(2%)
CARCINOSARCOMA, METASTATIC	1	(2%)				
HEMATOPOIETIC SYSTEM *MULTIPLE ORGANS MALIG. LYMPHOMA, LYMPHOCYTIC TYP LEUKEMIA,MONONUCLEAR CELL #SPLEEN SARCOMA, NOS #MANDIBULAR L. NODE CARCINOSARCOMA, METASTATIC	(50) E 1 11 (50) (49) 1	(2%) (22%) (2%)	(50) 7 (50) 2 (50)	(14%) (4%)	(50) 12 (50) (49)	(24%)
CIRCULATORY SYSTEM	(ED)		(EA)		(50)	
PULMUNARI ARIERI C CELL CADCINICMA METASTATIC	(00)		(00)	(90)	(50)	
#SALIVARY GLAND	(50)		(49)	(270)	(50)	
ANGIOSARCOMA	1	(2%)	(10)			
DIGESTIVE SYSTEM	(50)		(50)		(50)	
FLIVER NEODIASTIC NODILLE	(00)		(00)	(694.)	(00)	(696)
NEUPLASTIC NUDULE DUFOCUDOMOCYTOMA METASTATIC	1	(9aL)	J	(0%)	Ŭ	
#DUODENIIM	(50)	(270)	(47)		(49)	
ADENOCARCINOMA NOS	(00)		(41)		1	(2%)
#JEJUNUM	(50)		(47)		(49)	(=,
LEIOMYOSARCOMA	1	(2%)				
	·					
#URINARY BLADDER	(49)		(50)		(48)	
TRANSITIONAL-CELL CARCINOMA	()		1	(2%)		

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEARDERMAL STUDY OF 2-CHLOROETHANOL
ENDOCRINE SYSTEM #PITUITARY (50) (44) (45) (45) (46) (45) (46) (46) (46) (47) (48) (48) (48) (48) (48) (48) (48) (48		CONTRO	DL (VEH)	LOW	DOSE	HIGH	DOSE
#PTUUTARY (50) (43) (49) CARCINOMA,NOS 3 (6%) 2 (4%) 1 (2%) 1 (3%) ADENOMA,NOS 12 (24%) 11 (23%) 15 (31%) 5 (50) #ADEENAL (50) (50) 5 (50) 5 (50) #ADEENAL (50) (50) 5 (35%) 9 (15%) #PHEOCHROMOCYTOMA 1 (2%) 1 (2%) 2 (4%) 1 (2%) #ADRENALMEDULLA, MALIGNANT 1 (2%) 2 (4%) 1 (2%) 1 (2%) #PHEOCHROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) 1 (2%) POLLICULAR-CELL ADENOMA 6 (12%) 4 (8%) 3 (6%) 3 (6%) C-CELL ADENOMA 6 (12%) 4 (8%) 1 (2%) 1 (2%) 1 (2%) C-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) REPRODUCTIVE SYSTEM ** ** 1 (2%) 1 (2%) 1 (2%) 1 (2%) *PREPUTIL GLAND (50) (50) (50) (50) (50) (50) C-	ENDOCRINE SYSTEM						
CARCINOMA, NOS 3 (6%) 2 (4%) 1 (2%) ADENOMA, NOS 12 (24%) 11 (23%) 15 (31%) ADRENAL (50) (50) (50) CORTICAL ADENOMA 1 (2%) 3 (6%) 1 (2%) PHEOCHROMOCYTOMA, MALIGNANT 1 (2%) 9 (18%) PHEOCHROMOCYTOMA, MALIGNANT 1 (2%) 2 (4%) 1 (2%) PHEOCHROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) PHEOCHROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) POLLICULAR-CELL ADENOMA (49) (49) (49) POLLICULAR-CELL CARCINOMA 2 (4%) 1 (2%) 1 (2%) POLLICULAR-CELL CARCINOMA 2 (4%) 1 (2%) 1 (2%) CCELL ADENOMA 6 (12%) 4 (6%) 3 (6%) SUET-CELL ADENOMA 1 (2%) 1 (2%) 1 (2%) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) PAPICIARY CLARD (50) (50) (50) TEREPODUCTIVE SYSTEM	#PITUITARY	(50)		(48)		(49)	
ADENOMA, NOS 12 (24%) 11 (23%) 15 (31%) #ADRENAL (50) (50) (50) (50) CORTICAL ADENOMA 1 (3%) 3 (6%) 1 (2%) 2 (4%) PHEOCHROMOCYTOMA, MALIGNANT 1 (2%) 2 (4%) 1 (2%) 2 (4%) #ADRENAL MEDULLAN (10%) (60) (60) (60) #THYROD (49) (49) (49) (2%) 1 (2%) 2 (4%) FOLLICULAR-CELL ADENOMA 2 (4%) 1 (2%) <td>CARCINOMA, NOS</td> <td>3</td> <td>(6%)</td> <td>2</td> <td>(4%)</td> <td>1</td> <td>(2%)</td>	CARCINOMA, NOS	3	(6%)	2	(4%)	1	(2%)
# ADRENAL (50) (50) (50) CORTICAL ADENOMA 1 (2%) 3 (6%) 1 (2%) PHEOCHROMOCYTOMA, MALIGNANT 1 (2%) 1 (2%) 9 (18%) PHEOCHROMOCYTOMA, MALIGNANT 1 (2%) 2 (4%) 1 (2%) PHEOCHROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) PHEOCHROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) PADRENAL MEDULLA (50) (50) (50) PHEOCHROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) PHEOCHROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) POLLICULAR-CELL CARCINOMA 2 (4%) 1 (2%) 1 (2%) C-CELL CARCINOMA 6 (12%) 4 (8%) 3 (6%) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) PREPUTIL CALARY ADENOMA 1 (2%) 1 (2%) 1 (2%) PREPUTIL CALARY ADENOMA 1 (2%) 1 (2%) 1 (2%) PREPUTIL CALARY ADENOMA 1 (2%) 1 (2%) 1 (2%) PREPUTIL AGLARY ADENOMA 1 (2%) 1 (2%) 1 (2%) <td>ADENOMA, NOS</td> <td>12</td> <td>(24%)</td> <td>11</td> <td>(23%)</td> <td>15</td> <td>(31%)</td>	ADENOMA, NOS	12	(24%)	11	(23%)	15	(31%)
CORTICAL ADENOMA 1 (2%) 3 (3%) 1 (2%) 2 (4%) PHEOCHROMOCYTOMA, MALIGNANT 1 (2%) 2 (4%) 2 (4%) 2 (4%) # ADRENAL MEDULLAN (40) (40) (40) (40) (40) # THYROD (49) (49) (40) (40) (40) (40) POLLICULAR-CELL ADENOMA 2 (4%) 1 (2%) 1 (2%) 1 (2%) (40) CCELL ADENOMA 2 (4%) 1 (2%) 1 (2%) 1 (2%) (40) CCELL CARCINOMA 2 (4%) 1 (2%) 1 (2%) 1 (2%) (40) CCELL CARCINOMA 3 (5%) 3 (5%) 3 (5%) 1 (2%) 1 (2%) REPRODUCTIVE SYSTEM **MAMARY GLAND 1 (2%) 1 (2%) 1 (2%) 1 (2%) *MAMMARY GLAND (50) (50) (50) (50) (50) (50) PAPILLARY ADENOMA 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) ADENOMA, NOS 2 (4%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) <	#ADRENAL	(50)	(===,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(50)	((50)	
PHEOCHROMOCYTOMA 7 (14%) 11 (22%) 9 (18%) PHEOCHROMOCYTOMA, MALIGNANT 1 (3%) (60) (50) PARCORROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) PHEOCHROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) POLLICULAR-CELL ADENOMA (49) (49) (49) POLLICULAR-CELL ADENOMA 2 (4%) 1 (2%) 1 (2%) CCELL ADENOMA 6 (12%) 4 (6%) 3 (6%) C-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) #PANCREATIC ISLETS (50) (50) (60) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) PREPRODUCTIVE SYSTEM * (50) (50) (50) FIBROADENOMA 1 (2%) 1 (2%) 1 (2%) 1 (2%) PREPROTUCTIVE SYSTEM * (49) (48) 1 (2%) *PREPUTAL GLAND (50) (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 4 (48) 1 (2%) *PREPUTAL GLAND (50)<	CORTICAL ADENOMA	1	(2%)	3	(6%)	1	(2%)
PHEOCHROMOCYTOMA MALIGNANT 1 (2%) 1 2 (4%) 50 <t< td=""><td>PHEOCHROMOCYTOMA</td><td>7</td><td>(14%)</td><td>11</td><td>(22%)</td><td>9</td><td>(18%)</td></t<>	PHEOCHROMOCYTOMA	7	(14%)	11	(22%)	9	(18%)
#ADRENAL MEDULLA (50) (50) PHEBOCHROMOCYTOMA 1 (2%) 2 (4%) 1 (2%) #THYROID (49) (49) (49) FOLLICULAR-CELL ADENOMA 2 (4%) 1 (2%) 1 (2%) POLLICULAR-CELL CARCINOMA 2 (4%) 1 (2%) 1 (2%) C-CELL CARCINOMA 6 (12%) 4 (8%) 3 (6%) C-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) #PANCREATIC ISLETS (50) (50) (60) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) #PANCREATIC ISLETS (50) (50) (50) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) #PREPOTUTIVE SYSTEM * 1 (2%) 1 (2%) *PREPOTUAL GLAND (50) (50) (60) CARCINOMA, NOS 2 (4%) 1 (2%) 2 (4%) ADENOMA, NOS 1 (2%) (49) (48) ADENOMA, NOS 1 (2%) (50) (50) VEREVOUS SYSTEM (50) (50)	PHEOCHROMOCYTOMA, MALIGNANT	i	(2%)		(/	2	(4%)
PHEOCHRONOCYTOMA 1 (2%) 2 (4%) 1 (2%) #THYROID (49) (49) (49) (49) POLLICULAR-CELL ADENOMA 2 (4%) 1 (2%) 1 (2%) 1 (2%) POLLICULAR-CELL CARCINOMA 2 (4%) 1 (2%) 1 (2%) 1 (2%) C-CELL ADENOMA 6 (12%) 4 (6%) 3 (6%) 3 (6%) C-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) #PANCREATIC ISLETS (50) (50) (49) ISLET-CELL ADENOMA 3 (6%) 3 (6%) 3 (6%) ISLET-CELL ADENOMA 1 (2%) 1 (2%) 1 (2%) #PANCREATIC ISLETS (50) (50) (50) #MAMMARY GLAND (50) (50) (50) ADENOMA, NOS 1 (2%) 1 (2%) 1 (2%) ADENOMA, NOS 2 (4%) 2 (4%) 1 (2%) ADENOMA, NOS 1 (2%) (40) (48) ADENOMA, NOS 1 (2%) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%)	#ADRENAL MEDULLA	(50)		(50)		(50)	
#THYROID (49) (49) (49) FOLLICULAR-CELL ADENOMA 2 (48) 1 (2%) 1 (2%) FOLLICULAR-CELL CARCINOMA 2 (48) 1 (2%) 1 (2%) C-CELL ADENOMA 6 (12%) 4 (8%) 3 (6%) C-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) #PANCREATIC ISLETS (50) (50) (49) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) *MAMMARY GLAND (50) (50) (60) PAPICILARY ADENOMA 1 (2%) 1 (2%) 1 (2%) *PREPUTIAL GLAND (50) (50) (60) CARCINOMA, NOS 1 (2%) 1 (2%) 2 (4%) ADENOMA, NOS 1 (2%) 2 (4%) 1 (2%) #PROSTATE (49) (49) (48) ADENOMA, NOS 1 (2%) (49) (48) ADENOMA, NOS 1 (2%) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) <t< td=""><td>PHEOCHROMOCYTOMA</td><td>ĺ</td><td>(2%)</td><td>2</td><td>(4%)</td><td>1</td><td>(2%)</td></t<>	PHEOCHROMOCYTOMA	ĺ	(2%)	2	(4%)	1	(2%)
FOLLICULAR-CELL CARCINOMA 1 <td>#THYROID</td> <td>(49)</td> <td>(,</td> <td>(49)</td> <td></td> <td>(49)</td> <td></td>	#THYROID	(49)	(,	(49)		(49)	
POLLICULAR.CELL CARCINOMA 2 (4%) 1 (2%) 1 (2%) C-CELL ADENOMA 6 (12%) 4 (8%) 3 (6%) C-CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) #PANCREATIC ISLETS (50) (50) (49) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) REPRODUCTIVE SYSTEM ** **MAMMARY GLAND (50) (50) PARILLARY ADENOMA 1 (2%) 1 (2%) *MAMMARY GLAND (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) PARILARY ADENOMA 1 (2%) 1 (2%) CARCINOMA, NOS 1 (2%) 2 (4%) ADENOMA, NOS 1 (2%) 2 (4%) ADENOMA, NOS 1 (2%) (48) ADENOMA, NOS 1 (2%) (48) ADENOMA, NOS 1 (2%) (50) *PRESTITAL CELL TUMOR (50) (50) VERVOUS SYSTEM (50) (50) NORE (50)	FOLLICULAR-CELL ADENOMA	(10)		1	(2%)	(
C-CELL ADENOMA 6 (12%) 4 (8%) 3 (6%) C-CELL ADENOMA 1 (2%) 1 (2%) 1 (2%) #PANCREATIC ISLETS (50) (50) (49) ISLET-CELL ADENOMA 1 (2%) 1 (2%) ISLET-CELL ADENOMA 1 (2%) 1 (2%) *MAMMARY GLAND (50) (50) *MAMMARY GLAND (50) (50) *MAMARY GLAND (50) (50) *PREPUTAL GLAND (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) *PREPUTAL GLAND (50) (50) CARCINOMA, NOS 2 (4%) 2 (4%) ADENOMA, NOS 1 (2%) (48) #PREPUTAL GLAND (50) (50) (ARCINOMA, NOS 1 (2%) (48) #TESTIS (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) NONE (50) (50) WERVOUS SYSTEM (50) (50) NONE (50) (50) MUSCULOSKELETAL SYSTEM	FOLLICULAR-CELL CARCINOMA	2	(4%)	ĩ	(2%)	1	(2%)
C.CELL CARCINOMA 1 (2%) 1 (2%) 1 (2%) #PANCREATIC ISLETS (50) (50) (49) ISLET-CELL ADENOMA 3 (6%) 3 (6%) (49) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) (49) *MAMMARY GLAND (50) (50) (50) PAPILLARY ADENOMA 1 (2%) 1 (2%) 1 (2%) *PREPUTIAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 2 (4%) ADENOMA, NOS 2 (4%) 2 (4%) 1 (2%) #PREPTITAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 2 (4%) 1 (2%) #DENOMA, NOS 1 (2%) (4%) (48) #DENOMA, NOS 1 (2%) (48) (48) MUSCULOS SYSTEM (50) (50) (50) NONE (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50)	C-CELL ADENOMA	6	(12%)	4	(8%)	3	(6%)
#PANCREATICISLETS (50) (50) (49) ISLET-CELL ADENOMA 3 (6%) 3 (6%) 3 (6%) ISLET-CELL ADENOMA 1 (2%) 1 (2%) 1 *MAMMARY GLAND (50) (50) (50) PAPTLLARY ADENOMA 1 (2%) 1 (2%) 1 (2%) *PREPUTAT CLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 1 (2%) *PREPUTAT CLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 2 (4%) 1 (2%) *PREPUTATE CLAND (50) (50) (50) (50) CARCINOMA, NOS 1 (2%) 2 (4%) 1 (2%) 4(4%) #PRESTATE (49) (49) (48) 1 (2%) ADENOMA, NOS 1 (2%) (50) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) 44 (88%) NORE	C-CELL CARCINOMA	-	(1	(2%)		(2%)
ISLET-CELL ADENOMA 3 (6%) 3 (6%) ISLET-CELL CARCINOMA 1 (2%) 1 (2%) *MAMMARY GLAND (50) (50) (50) *MAMMARY ADENOMA 1 (2%) 1 (2%) *PIBROADENOMA 1 (2%) 1 (2%) 1 (2%) *PREPUTIAL GLAND (50) (60) (60) (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 2 (4%) ADENOMA, NOS 2 (4%) 2 (4%) 1 (2%) #TESTIS (49) (49) (48) (48) (48) ADENOMA, NOS 1 (2%) 44 (88%) MUSCULOS SYSTEM (50) (50) (50) (50) NERVOUS SYSTEM (50) (50) (50) (50) CARCINOBA, NOS 1 (2%) 1 (2%) *ZYMBAL GLAND (50) (50) (50)	#PANCREATIC ISLETS	(50)		(50)	(=,	(49)	(=,
ISLET-CELL CARCINOMA 1 (2%) 1 (2%) REPRODUCTIVE SYSTEM (50) (50) (50) *MAMMARY GLAND (50) (50) (50) PAPILLARY ADENOMA 1 (2%) 1 (2%) 1 (2%) *PREPUTIAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 2 (4%) ADENOMA, NOS 1 (2%) 1 (2%) 2 (4%) ADENOMA, NOS 1 (2%) 2 (4%) 1 (3%) #PROSTATE (49) (49) (48) ADENOMA, NOS 1 (2%) (50) (50) INTERSTIS (50) (50) (50) INTERSTIS (50) (50) (50) VERVOUS SYSTEM NONE (50) (50) (50) SPECIAL SENSE ORGANS *EAR CANAL (50) (50) (50) (50) CARCINOBA, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM NONE 1 (2%) 1 (2%) BODY CAVITIES <	ISLET-CELL ADENOMA	3	(6%)	3	(6%)	(10)	
REPRODUCTIVE SYSTEM *MAMMARY GLAND (50) (50) (50) PAPILLARY ADENOMA 1 (2%) 1 (2%) 1 (2%) *PREPUTIAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 2 (4%) ADENOMA, NOS 2 (4%) 2 (4%) 1 (2%) #PROSTATE (49) (49) (48) ADENOMA, NOS 1 (2%) 7 7 #TESTIS (50) (50) (50) #TERSTIS (50) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) 44 (88%) NERVOUS SYSTEM NONE (50) (50) (50) SPECIAL SENSE ORGANS * * 2(%) 1 (2%) VONE (50) (50) (50) (50) MUSCULOSARCOMA 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) <	ISLET-CELL CARCINOMA	1	(2%)	1	(2%)		
*MAMARY GLAND (50) (50) (50) *PAPILLARY ADENOMA 1 (2%) 1 (2%) 1 (2%) *PREPUTIAL GLAND (50) (50) (50) *CARCINOMA, NOS 1 (2%) 1 (2%) 2 (4%) ADENOMA, NOS 2 (4%) 2 (4%) 2 (4%) ADENOMA, NOS 2 (4%) 2 (4%) 1 (2%) #PROSTATE (49) (49) (48) ADENOMA, NOS 1 (2%) (48) 1 (2%) #PROSTATE (49) (49) (48) ADENOMA, NOS 1 (2%) (50) (50) #TESTIS (50) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) 44 (88%) NONE	REPRODUCTIVE SYSTEM						
PAPILLARY ADENOMA 1 (2%) (60) (60) FIBROADENOMA 1 (2%) 1 (2%) 1 (2%) PREFUTIAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 2 (4%) 2 (4%) ADENOMA, NOS 2 (4%) 2 (4%) 1 (2%) #PROSTATE (49) (48) (49) ADENOMA, NOS 1 (2%) (50) (50) #TESTIS (50) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) 44 (88%) NERVOUS SYSTEM (50) (50) (50) NONE	*MAMMARY GLAND	(50)		(50)		(50)	
FIBROADENOMA 1 (2%) 1 (2%) 1 (2%) *PREPUTIAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 2 (4%) 1 (2%) ADENOMA, NOS 2 (4%) 2 (4%) 1 (2%) #PROSTATE (49) (49) (48) ADENOMA, NOS 1 (2%) 44(8) #PROSTATE (49) (49) (48) ADENOMA, NOS 1 (2%) (50) (50) #TESTIS (50) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) 44 (88%) NERVOUS SYSTEM NONE (50) (50) (50) SPECIAL SENSE ORGANS *EAR CANAL (50) (50) (50) CARCINOSARCOMA 1 (2%) 1 (2%) 1 (2%) *ZYMBAL GLAND (50) (50) (50) (50) CARCINOSA, NOS 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM NONE 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) MESOTHELIOMA, MALIGNANT 1 (2%) <	PAPILLARY ADENOMA	(00)		1	(296)	(00)	
*PREPUTIAL GLAND (50) (49) (49) (48) ADENOMA, NOS 1 (276) (49) (49) (48) ADENOMA, NOS 1 (276) (50) <	FIBROADENOMA	1	(296)	i	(296)	1	(2%)
CARCINOMA, NOS 1 (2%) 2 (4%) ADENOMA, NOS 2 (4%) 2 (4%) ADENOMA, NOS 2 (4%) 1 (2%) #PROSTATE (49) (49) ADENOMA, NOS 1 (2%) (49) #DENOMA, NOS 1 (2%) (49) #TESTIS (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) NERVOUS SYSTEM NONE SPECIAL SENSE ORGANS (50) *EAR CANAL (50) CARCINOSARCOMA 1 (2%) *ZYMBAL GLAND (50) CARCINOMA, NOS 1 (2%) MUSCULOSKELETAL SYSTEM 1 (2%) MUSCULOSKELETAL SYSTEM (50) NONE (50) (50) MUSCULOSKELETAL SYSTEM (50) NONE (50) (50) #MESOTHELIOMA, MALIGNANT 1 (2%) *MESOTHELIOMA, NOS 1 (2%) *MESOTHELIOMA, NOS 1 (2%) *MESOTHELIOMA, NOS 1 (2%) *UNICA VAGINALIS (50) (50) MESOTHELIOMA, NOS 1 (2%) <td>*PREPUTIAL GLAND</td> <td>(50)</td> <td>(2,0)</td> <td>(50)</td> <td></td> <td>(50)</td> <td></td>	*PREPUTIAL GLAND	(50)	(2,0)	(50)		(50)	
ADENOMA, NOS 2 (4%) 2 (4%) 1 (2%) #PROSTATE (49) (49) (48) ADENOMA, NOS 1 (2%) (49) (48) ADENOMA, NOS 1 (2%) (49) (48) #TESTIS (50) (50) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) 44 (88%) NERVOUS SYSTEM NONE (50) (50) (50) SPECIAL SENSE ORGANS *EAR CANAL (50) (50) (50) CARCINOSARCOMA 1 (2%) (50) (50) (50) CARCINOSARCOMA 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) 1 (2%) MUSCULOSKELETAL SYSTEM NONE 1 (2%) 1 (2%) 1 (2%) #MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50)	CARCINOMA, NOS	1	(2%)	ĺ	(2%)	2	(4%)
#PROSTATE (49) (49) (49) (49) ADENOMA, NOS 1 (2%) (49) (49) (49) #TESTIS (50) (50) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) 44 (88%) NERVOUS SYSTEM (50) (50) (50) NONE SPECIAL SENSE ORGANS (50) (50) (50) CARCINOSARCOMA 1 (2%) (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSSCULOSKELETAL SYSTEM (50) (50)	ADENOMA, NOS	2	(4%)	2	(4%)	ī	(2%)
ADENOMA, NOS 1 (2%) (60) (60) #TESTIS (50) (50) (50) INTERSTITIAL-CELL TUMOR 45 (90%) 41 (82%) 44 (88%) NERVOUS SYSTEM NONE (50) (50) (50) SPECIAL SENSE ORGANS *EAR CANAL (50) (50) (50) CARCINOSARCOMA 1 (2%) (50) (50) (50) *ZYMBAL GLAND (50) (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) MONE	#PROSTATE	(49)	(1,4)	(49)	(,	(48)	(=,
INDERVOUS SYSTEM (50) (50) (50) (50) NERVOUS SYSTEM VALUE (50) (50) (50) (50) SPECIAL SENSE ORGANS *EAR CANAL (50) (50) (50) (50) SPECIAL SENSE ORGANS *EAR CANAL (50) (50) (50) (50) CARCINOSARCOMA 1 (2%) *ZYMBAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM NONE 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) (50) (50)	ADENOMA NOS	1	(996)	(40)		(10)	
INTERSTITIAL-CELL TUMOR (60) (60) (60) (60) (60) (60) (60) (60) (60) (60) (60) (60) (44 (88%) (44 (88%) (44 (88%) (44 (88%) (60) (41) (82%) (44 (88%) (60) (60) (60) (41) (82%) (44 (88%) (60) (60) (60) (60) (50)	#TESTIS	(50)	(2~~)	(50)		(50)	
NERVOUS SYSTEM NONE SPECIAL SENSE ORGANS *EAR CANAL (50) (50) (50) CARCINOSARCOMA 1 (2%) *ZYMBAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM NONE 1 (2%) 1 (2%) BODY CAVITIES *PERITONEUM (50) (50) (50) *MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSCULOSKELETAL SYSTEM NONE 1 (2%) *MESOTHELIOMA, MALIGNANT 1 (2%) *UNICA VAGINALIS (50) (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) 1 (2%) 1 (2%)	INTERSTITIAL-CELL TUMOR	45	(90%)	41	(82%)	44	(88%)
SPECIAL SENSE ORGANS *EAR CANAL (50) (50) (50) CARCINOSARCOMA 1 (2%) (50) (50) (50) *ZYMBAL GLAND (50) (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 1 (2%) ADENOMA, NOS 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM 50) (50) (50) MESOTHELIOMA, MALIGNANT 1 (2%) 50) (50) *MESOTHELIOMA, NOS 1 (2%) 50) (50) (50) *TUNICA VAGINALIS (50) (50) (50) 1 (2%)	NERVOUS SYSTEM NONE						
*EAR CANAL (50) (50) (50) CARCINOSARCOMA 1 (2%) (50) (50) *ZYMBAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) 1 (2%) ADENOMA, NOS 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM NONE 1 (2%) 1 (2%) BODY CAVITIES *PERITONEUM (50) (50) (50) *PERITONEUM (50) (50) (50) (50) MESOTHELIOMA, MALIGNANT 1 (2%) *MESOTHELIOMA, NOS 1 (2%) *TUNICA VAGINALIS (50) (50) (50) (50) *ESOTHELIOMA, NOS 1 (2%) 1 (2%) 1 (2%)	SPECIAL SENSE ORGANS						
CARCINOSARCOMA 1 (2%) *ZYMBAL GLAND (50) CARCINOMA, NOS 1 (2%) ADENOMA, NOS 1 (2%) MUSCULOSKELETAL SYSTEM NONE BODY CAVITIES *PERITONEUM MESOTHELIOMA, MALIGNANT 1 (2%) *MESOTHELIOMA, NOS 1 (2%) *TUNICA VAGINALIS (50) (50) (50) (50) (50) *TUNICA VAGINALIS (50) (50) (50) (50) (50) (50) (50) *TUNICA VAGINALIS (50) (50) (50) (50) (50) (50)	*EAR CANAL	(50)		(50)		(50)	
*ZYMBAL GLAND (50) (50) (50) CARCINOMA, NOS 1 (2%) 1 (2%) ADENOMA, NOS 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM 1 (2%) MUSCULOSKELETAL SYSTEM 50) (50) BODY CAVITIES *PERITONEUM (50) (50) *PERITONEUM (50) (50) (50) *MESOTHELIOMA, MALIGNANT 1 (2%) (50) (50) *MESOTHELIOMA, NOS 1 (2%) (50) (50) *TUNICA VAGINALIS (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) 1 (2%) 1 (2%)	CARCINOSARCOMA	1	(2%)				
CARCINOMA, NOS 1 (2%) ADENOMA, NOS 1 (2%) MUSCULOSKELETAL SYSTEM NONE BODY CAVITIES *PERITONEUM (50) (50) MESOTHELIOMA, MALIGNANT 1 (2%) *MESOTHELIOMA, NOS 1 (2%) *TUNICA VAGINALIS (50) (50) MESOTHELIOMA, NOS 1 (2%)	*ZYMBAL GLAND	(50)		(50)		(50)	
ADENOMA, NOS 1 (2%) MUSCULOSKELETAL SYSTEM	CARCINOMA, NOS	1	(2%)			1	(2%)
MUSCULOSKELETAL SYSTEM NONE BODY CAVITIES *PERITONEUM (50) (50) (50) MESOTHELIOMA, MALIGNANT 1 (2%) *MESENTERY (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) * *TUNICA VAGINALIS (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) * 1 (2%)	ADENOMA, NOS			_		1	(2%)
BODY CAVITIES (50) (50) (50) *PERITONEUM (50) (50) (50) MESOTHELIOMA, MALIGNANT 1 (2%) (50) (50) *MESOTHELIOMA, NOS 1 (2%) (50) (50) *TUNICA VAGINALIS (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) 1	MUSCULOSKELETAL SYSTEM NONE						
*PERITONEUM (50) (50) (50) MESOTHELIOMA, MALIGNANT 1 (2%) * *MESENTERY (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) * *TUNICA VAGINALIS (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) 1	BODY CAVITIES	. <u></u>				······	
MESOTHELIOMA, MALIGNANT 1 (2%) (50) (50) (50) *MESENTERY (50) (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) (50) (50) (50) *TUNICA VAGINALIS (50) (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) 1 (2%) 1 (2%)	*PERITONEUM	(50)		(50)		(50)	
*MESENTERY (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) (50) (50) *TUNICA VAGINALIS (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) 1 (2%) 1 (2%)	MESOTHELIOMA, MALIGNANT	1	(2%)	(00)		(00)	
MESOTHELIOMA, NOS 1 (2%) (50) (50) *TUNICA VAGINALIS (50) (50) (50) MESOTHELIOMA, NOS 1 (2%) 1 (2%)	*MESENTERY	(50)		(50)		(50)	
*TUNICA VAGINALIS (50) (50) (50) MESOTHELIOMA NOS 1 (2%) 1 (2%)	MESOTHELIOMA, NOS	1	(2%)	(00)		(00)	
MESOTHELIOMA NOS 1 (2%)	*TUNICA VAGINALIS	(50)		(50)		(50)	
	MESOTHELIOMA NOS	1	(2%)			1	(2%)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

C	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS *MULTIPLE ORGANS MESOTHELIOMA, NOS	(50)		(50) (50) 1 (2%)
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH	2	4	2
MORIBUND SACRIFICE	15	9	12
SCHEDULED SACRIFICE			
TERMINAL SACRIFICE	33	37	36
DOSING ACCIDENT			
ACCIDENTALLY KILLED, NDA			
ACCIDENTALLY KILLED, NOS			
ANIMAL MISSING			
ANIMAL MISSEXED OTHER CASES			
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	50	49	48
TOTAL PRIMARY TUMORS	115	115	112
TOTAL ANIMALS WITH BENIGN TUMORS	49	48	48
TOTAL BENIGN TUMORS	85	89	85
TOTAL ANIMALS WITH MALIGNANT TUMOR	5 23	21	20
TOTAL MALIGNANT TUMORS	28	23	22
TOTAL ANIMALS WITH SECONDARY TUMOR	5## 3	1	
TOTAL SECONDARY TUMORS	5	1	
TOTAL ANIMALS WITH TUMORS UNCERTAIN	-		
BENIGN OR MALIGNANT	1	3	4
TOTAL UNCERTAIN TUMORS	2	3	5
TOTAL ANIMALS WITH TUMORS UNCERTAIN	-		
PRIMARY OR METASTATIC			
TOTAL UNCERTAIN TUMORS			

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

NUMBER OF ANIMALS NECROPSIED
 PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS
 NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
 SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE A2.	SUMMARY	OF TH	IE INCI	DENCE	OF	NEOP	LASMS	IN	FEMALE	RATS I	IN THE	TWO-YEAR	
			DERM	IAL ST	UDY	OF 2-	CHLOR	loe'	THANOL				

	CONTRO)L (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50			
INTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)	(90)	(50)	
KERATOACANTHOMA	1	(99)	1	(2%)		
*SUBCUT TISSUE	(50)	(2 10)	(50)		(50)	
SARCOMA, NOS	(00)		1	(2%)		
FIBROMA				-	2	(4%)
RESPIRATORY SYSTEM						
#LUNG	(50)		(50)		(48)	
ALVEOLAR/BRONCHIOLAR CARCINOMA	1	(2%)	1	(2%)		
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
LEUKEMIA, MONONUCLEAR CELL	7	(14%)	7	(14%)	6	(12%)
#SPLEEN	(50)	(90)	(48)		(50)	
	1	(270)				
CIRCULATORY SYSTEM						
*MULTIPLE ORGANS	(50)		(50)	(07)	(50)	
ANGIOSARCOMA			1	(2%)		
DIGESTIVE SYSTEM						
*TONGUE	(50)		(50)	(00)	(50)	
SQUAMOUS CELL CARCINOMA	(50)		1 (50)	(2%)	(50)	
NEOPLASTIC NODULE	(50)	(2%)	2	(4%)	(50)	
URINARY SYSTEM NONE		<u></u>				
ENDOCRINE SYSTEM						
#PITUITARY	(50)	(904)	(49)	(906)	(50)	(90)
ADENOMA NOS	19	(38%)	24	(270)	29	(270) (58%)
#ADRENAL	(49)		(50)	(40 %)	(50)	
CORTICAL ADENOMA	1	(2%)	2	(4%)	2	(4%)
PHEOCHROMOCYTOMA	3	(6%)	3	(6%)	3	(6%)
PHEOCHROMOCYTOMA, MALIGNANT			1	(2%)	1	(2%)
PHEOCHROMOCYTOMA, METASTATIC				(0.0)	1	(2%)
	(40)			(2%)	(40)	
FOLLICIILAR.CELLADENOMA	(47)		(00)	(296)	(43)	
FOLLICULAR-CELL CARCINOMA			1	(2%)		
C-CELL ADENOMA	2	(4%)	3	(6%)	4	(8%)
C-CELL CARCINOMA	1	(2%)	•		1	(2%)
#PANCREATIC ISLETS	(49)		(49)		(50)	
ISLET-CELL ADENOMA	1	(2%)	3	(6%)	1	(2%)
ISLET-UELL UARUINUMA					1	(2%)

	CONTRO	L (VEH)	LOWI	DOSE	HIGH	DOSE
REPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(50)		(50)	
ADENOCARCINOMA, NOS			2	(4%)		
PAPILLARY ADENOMA		(A - 4)			1	(2%)
CYSTADENOMA, NOS	3	(6%)	3	(6%)	3 11	(6%) (000)
	13	(20%)	(50)	(1470)	(50)	(2270)
CARCINOMA NOS	(00)	(296)	(00)		(00)	
ADENOMA, NOS	•				1	(2%)
JUTERUS	(50)		(50)		(50)	_ ~~ <i>t</i>
ENDOMETRIAL STROMAL POLYP	7	(14%)	4	(8%)	7	(14%)
ENDOMETRIAL STROMAL SARCOMA	i	(2%)	-		1	(2%)
#CERVIX UTERI	(50)	••	(50)		(50)	
FIBROMA	1	(2%)				
#UTERUS/ENDOMETRIUM	(50)		(50)		(50)	
CARCINOMA, NOS			1	(2%)		
#OVARY	(49)		(50)		(50)	
GRANULOSA-CELL TUMOR					1	(2%)
NERVOUS SYSTEM						
#BRAIN	(49)		(50)		(50)	
CARCINOMA, NOS, INVASIVE			1	(2%)		
ASTROCYTOMA	1	(2%)			, 	
SPECIAL SENSE ORGANS						
*ZYMBAL GLAND	(50)		(50)		(50)	
CARCINOMA, NOS	1	(2%)				
ADENOMA, NOS			1	(2%)		
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES NONE						
ALL OTHER SYSTEMS		<u></u>	. <u></u>			
*MULTIPLE ORGANS	(50)		(50)		(50)	
PHEOCHROMOCYTOMA, METASTATIC			1	(2%)		
ANIMAL DISPOSITION SUMMARY						
ANIMALS INITIALLY IN STUDY	50		50		50	
NATURAL DEATH	1		3		2	
MORIBUND SACRIFICE	7		8		10	
SUMEDULED SAUKIFICE	40		20		90	
I ERMINAL BAURIFIUE	42		38		30	
LUGING AUGIDEN I ACCIDENTALI V VILLED NDA						
ACCIDENTALLY KILLED, NDA						
ANIMAL MISSING						
ANIMAL MISSEXED						

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

C	ONTROL (VEH)	LOW DOSE	HIGH DOSE
TUMORSUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	38	43	43
TOTAL PRIMARY TUMORS	70	72	76
TOTAL ANIMALS WITH BENIGN TUMORS	32	35	40
TOTAL BENIGN TUMORS	51	53	64
TOTAL ANIMALS WITH MALIGNANT TUMORS	16	16	10
TOTAL MALIGNANT TUMORS	18	17	11
TOTAL ANIMALS WITH SECONDARY TUMORS	##	2	1
TOTAL SECONDARY TUMORS		2	1
TOTAL ANIMALS WITH TUMORS UNCERTAIN	•		
BENIGN OR MALIGNANT	1	2	1
TOTAL UNCERTAIN TUMORS	1	2	1
TOTAL ANIMALS WITH TUMORS UNCERTAIN	,		
PRIMARY OR METASTATIC			
TOTAL UNCERTAIN TUMORS			

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR **DERMAL STUDY OF 2-CHLOROETHANOL (Continued)**

NUMBER OF ANIMALS NECROPSIED

** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE AS.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR DE	RMAL
	STUDY OF 2-CHLOROETHANOL: VEHICLE CONTROL	

ANIMAL NUMBER	0 2 1	0 0 5	004	006	0 1 6	0 1 0	0 8 0	040	0 4 3	0 1 9	0 3 2	0 1 1	0 1 5	800	0 8 6	04	0 0 1	00%	0 0 5	007	008	009	12	0 1 3	0 1 4
weeks on Study	076	077	0 7 9	0 7 9	0 8 9	8	8	9 1	0 9 1	99	9 9	100	100	1 0 1	102	102	04	104	104	104	104	104	104	04	1 0 4
INTEGUMENTARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	~	+	+	+	+	+	+	+	+	+	+	+	+
Squamous cell carcinoma Skin Papilloma, NOS	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Sections of Cartabona Basal out tumor Keratoacanthoma Subcutaneous tissue Fibrosa Fibrosa coma	× +	+	+	+	+	+	+	+	+	÷	÷	+	+	+	+	+ x	+	+	+	+ X	+	+	+	X +	+
RESPIRATORY SYSTEM Lungs and broachi Squamous cell carcinoma, metastatic Alveolar/bronchiolar adenoma Pheochromocytoma, metastatic	+	+	+	+	+	+ x	+	+	+	+	+	*	+	+	+	+	+	+	+	+		+	+	+	+
Carcinosarcoma, metastatic Trachea	+	+	X +	+	+	-	+	+	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spisen Lymph nodes Carcinocescome, metastatic Thymus	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ +++ *	++++	+++++++++++++++++++++++++++++++++++++++	+++ +	+++ +	+++ +	+++++++++++++++++++++++++++++++++++++++	+++ +	 + + + +	+++ -	+++	+++ +	+++ +	+++ +	+++ +	+++++++++++++++++++++++++++++++++++++++	+++++++	+++ +	++-++++++++++++++++++++++++++++++++++++	+++ +	-++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Angiosarcoma Liver	++++	+++	+++	+ + +	+++	+ +	+++	++	+++	+++	+ +	+++	++	+	+++	+++	+++	+ +	+++	++	+ x +	++	+++	+++	+++
Phochromocytoma, metastatic Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Leiomyosarcoma	+N++++ +	+2++++ +	+N++++	+2+1++ +	+ + + + + Z +	X+N++++ +	+2+++++++++++++++++	+2++++ +	+2++++ +	+2++++ +	+ 2 + + + + +	+z++++ +	+ + + + + X +	+2++++ +	+2++++ +	+2++++++++++++++++	+2++++ +	+2++++ +	+2++++ +	+2++++ +	+2++++ +	+2++++ +	+z+1+z+	+ + + + + Z +	+2++++ +
URINARY SYSTEM	-													- -					<u> </u>		<u>_</u>		<u> </u>	<u> </u>	<u> </u>
Urinary bladder	+	+	+	+	+	÷	+	÷	÷	+	+	÷	÷	÷	÷	÷	+	÷	÷	+	÷	÷	÷	+	÷
Pituitary Carcinoma, NOS Adenoma, NOS Adrenai Cortical adenoma Phascheminovitema	+ X+ +	+	+ +	+ X +	+ X +	+ X +	+ x+	+	+	+ +	+	+	+ X+	+ x+ x	+	+ +	+ +	+ X + X	+	+ +	+ X +	+	+ X+	+ +	++
Phoechromocytoms, malignant Thyroid Folioniar cell carcinoma	+	+	;+	+	*	X	+	+	+	+	÷	÷	÷	+	+	+	+	+	*	+	+	+	+	+	+
Parathyroid Panethyroid Iaiot cell adapona Iaist cell carcinoma	‡	++	++	+ +	++	÷	++	++	+ + x	++	+ +	++	++	++	Ŧ	+	+++	[+ +	+	÷ +	+ +	+ +	Ŧ	++	+
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	N	N	+	+	+
Testis Interstitial cell tumor Prostate		* × +	+ + +	+	++	+ x +	* *	+ x +	++	+ x +	+ X +	+x +	¥ +	+x +	+x +	+ × +	+ x +	+ +	** *	× –	+x +	+ x +	+ x +	+ x ±	*
Adenoma, NOS Preputia/olitoral gland Carvinoma, NOS Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Ear Carvinosarooma Zymbal gland Carvinoma, NOS	N N	N N	+ w N	N N	N N	N N	N N	N N	+ NX	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N
BODY CAVITIES Peritongum Mesothelioma, malignant Tunica vaginalis Mesothelioma, NOS	N +	N +	N +	N +	N +	N +	N +	N X	N +	N +	N×+	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +
Mesentery Mesothelioma, NOS	N	N	N	N	N	N	N	Ň	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Leukemia, monosuclear cell	N X	N X	N	N	N	N	N	N	N X	N X	N	N X	N	N X	N X	N	N	N	N	N X	N	N	N X	N	N

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOG	¥ 01	F MALE RATS:	VEHICLE	CONTROL
--	------	--------------	---------	---------

(Continued)

ANIMAL NUMBER	0 1 7	0 1 8	022	0 2 3	0 2 4	0 2 5	0 2 0	0 2 7	0 2 8	0 3 0	0 3 1	0 3 3	0 3 4	0 3 5	0 8 7	0 3 8	39	0 4 1	042	4	0 4 6	0 4 7	0 4 8	049	0 5 0	TOTAL
weeks on Study	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	105	105	105	1 0 5	105	105	105	1 0 5	1 0 5	1 0 5	100	1 0 5	105	105	1 0 5	1 0 5	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Skin paint site Squamous cell carvinoma	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	*	+	48
Sin Papilloma, NOS Squamous cell carvinoma Basal cell tumor Keratoscanthoma Subotaneous tissue Fibroma Fibroma Fibrosarcoma	+	+	+ *	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+ +	+	+	+	+	*50 1 1 1 *50 2 1
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma, metastatic Alveolar/bronchiolar adenoma Pheochromocytoma, metastatic Carcinosarcoma, metastatic Traches	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1 1 1 1
HEMATOPOLITIC SYSTEM													+			т —										
Bone marrow Spieen	++	++	++	++	++	++	++	+++	+	+++	++	++	+	++	+	++	++	++	+	+	+++	++	+++	++	+++	49 50
Lymph nodes Carcinosarcoma, metastatic Thymus	+++	+++	++	++	++	++	+	.+ +	++	+	+	+	+++	+	+++	+++	+++	+	+	++	+	+	++	+	++	49 1 87
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Selivery gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Anglossercoma Liver Pheochromocytoma, metastatic	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Bile duct Galibladder & common bile duct	N N	Ň.	N N	N N	ň	Ň	Ň	ň,	+ N	Ň	N N	N N	Ň.	* N	Ň	ň.	Ň	ň,	* N	Ň	Ň	+ N	+ N	Ň	N +	50 •50
Esophagus	÷	÷	÷	÷	÷	÷	Ŧ	÷	Ŧ	÷	Ŧ	÷	Ŧ	÷	Ŧ	Ŧ	÷	Ŧ	Ŧ	+	÷	Ŧ	÷	÷	÷	48
Stomach Small intestine Leiomyotarcoma	+	+	+ * X	++	+	+	÷	÷	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	+	50. 1
Large intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·+	50
URINARY SYSTEM Kidaey Urisary bladder	++	++	++	+++	++	++	++	+++	++	++	+ +	++	+ +	++	++	+ +	+ +	+	++	++	‡	++	++	++	+	50 49
ENDOCRINE SYSTEM Pituitary Cardinoma, NOS	+	+	+	+	+	+	ż	+	+	+	+	+	+	÷	+	+	+	ż	+	+	ż	÷	+	+	+	50 3
Adrenal Cortical adenoma Pheechromocytoma	+	X +	+	+	X +	+ X	÷	+	+	+	+	+	+ X	+ X	+	+ X	+	+	*	+	+	+	+ X	+ X	+	50 1 8
Pheochromocytoma, malignant Thyroid Followian cell comissions	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	49
C-cell adenoma Basteliaria	X	т					-			Ŧ		_	X		*		<u> </u>	_	_	X	_		X			8
Fancreatio islets Islet cell adenoma Islet cell carcinoma	Ŧ	Ŧ	+	-+ #	+	Ť.	÷	+	÷	÷	+	+	÷	÷	÷	÷	+	+	÷	×	+	¥	+	+	+	50 3 1
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ż	+	+	+	+	+	N	*50
Testis Interstitial cell tumor Proștate	×+	* * +	ŧ,	** *	* *	×+	*	**	ŧ,	* x +	× +	×+	*	ŧ.	+	×.	¥.	ŧ.	ŧ.	+x +	× +	×+	¥.	×+	ŤX +	50 45 49
Adenome, NOS Preputa/olitoral gland Cardinoma, NOS Adenoma, NOS	N X	N	N	N	N	N	N	N	N	N X	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	*50 1 2
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS	N	N	N		N	N	N	N	N	N	N	N	N	N	N		N	N	N	N	N	N	N	N		
Carcinosarcoma Zymbai giand Carcinoma NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Peritoneum	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
Mesothelioma, malignant Tunica vaginalis	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	÷	+	•50
Mesottelioma, NOS Mesottelioma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Leukamia, monoauclear cell	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N X	N	N	N	N	N	N	N	N	N	N	N	*50 1 11

* Animals necropsied

.

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL: LOW DOSE

ANIMAL NUMBER	14	0 9 0	983	005	0 3 4	0 1 7	49	0 1 6	012	004	000	0 3 1	043	0	003	0	0	08	009	0 1 0	0 1 1	0 1 3	0 1 5	0 1 8	0 1 9
weeks on Study	0 6 3	070	80	083	8	8	8	8	000	0.05	000	000	10	104	104	104	104	104	104	104	104	104	104	105	05
INTEGUMENTARY STSTEM Skin paint site Sin Squamous cell carcinoma Karatoscanthoma Subcutaneous tissus Fibroma Fibroma Fibrosarooma	+++++	+ +	++++	++ + *	++ + x	++ ×+	++ +	++ x+x	+++	++	+ + +	++++	+	++ + X+	++++	+++	‡ +	+++	++ # +	++	+++	+++	+++	+	÷ +
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	+ +	++	++	++	++	++	+++	+++	+++	++	++	++	++	+++	+++	+++	++	+++	++	+	++	++	+++	* *	+ x +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Sarcoma, NOS Lymph nodes Thymus	+ + + +	++ +-	-+ +-	++ ++ ++	++ ++	++W++	++ +-	++ ++	++ ++	* * *	++ +1	++W++	++ ++	++ ++	++ +-	++ + +	++ +=	++ +-	+++++	+ + + +	++ + + +	++ ++	+++++++	++ +-	++ ++
CLRCULATORY SYSTEM Heart Blood vessels C-cell carcinoma, metastatic	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	* N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N X	* N	+ N
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	++ +2+++++	++ +2++++	1+ +z+++1+	++ +Z+++++	++ +Z+++++	++ +2+++++	++ +z++++	++ +2++++	++ +2++++	++ +2++++	++ +2++++	++ +Z+++++	++ +2+++++	++ +2+++++	++ +2++++	++ +z++++	++ +2+++++	++ +z+++++	++ +z++++	++ +Z++++	++ +Z+++++	++ +z++++	++ +2+++++	++#+Z+++++	++ +z+++++
URINARY SYSTEM Kidney Urinary bladder Transitional cell carvinoma	+++	+++	+++	+++	+++	++++	++++	+++	+++	+++	+++	+++	++	++	+++	+++	+++	++++	+++	+ +	+++	+++	+++	+++	+ +
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adaeoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular cell adenoma Follicular cell carcinoma C-cell denoma C-cell carcinoma C-cell carcinoma	+ +	+ X + X +	- + +	+ + ×+	+++++	++++	+ x + +	+ x + +	++++	+ + X+	- + +	++++	+x + +x	+ * *	+ + *	+ * *	+ + X+	+++++	++++	+ x + +	+ + X+ X	+++++	+ x+ +	+++++	++++++
Panetatyroid Panetatic isleta Islet cell adenoma Islet cell carcinoma	÷	Ŧ	÷	Ŧ	÷	+	Ŧ	+ + x	+	+	+	+	÷	÷	+	+	÷	÷	Ŧ	Ŧ	Ŧ	+	÷	+	Ŧ
REPRODUCTIVE SYSTEM Mammary gland Papillary adenoma Fibroadenoma Testis Interstitial cell tumor Prostate Proputial/clitoral gland Carcinoma, NOS Adenoma, NOS	+ + N	+ + N	+ + + + N + N	+ + N	+ + x + N	N +N+N	+ + ***N	+ + # + N	+ + + + + N	+ x+x+N	+ + + + + N	+ + + + + N	+ + *N	+ +x+n	N + N + N	+ +***N *	+ + + + N + N N	+ + + + + N	+ + H +N	N + N + N	+ +x+N	+ + X + N	+ +×+N	+ +x+N	+ + X N
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemis, mononuclear cell	N X	N	N X	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N

ANIMAL. NUMBER	8	0 2 1	988	084	0 10 0	027	8	0 4 0	9	0 3 9	0 3 3	0 3 5	000	0 3 7	0 3 8	39	040	0 4 1	049	044	045	0 4 6	047	04	0 5 0	TOTAL:
weeks on Study	1 0 5	105	1 0 5	105	1 0 5	1 0 5	1 0 5	105	105	105	105	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	105	1 0 5	105	1 0 5	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin paint site Skin Satianona call carrinoma	- -	‡	++	+++	+ N	+	++	‡	+ +	++	+	+	++	+++	+++	+ +	+	+++	+ N	+	+	++	++	+++	‡	49 *50
Keratoacanthoma Subutaneous tisue Fibroma Fibroma	x	+	+	+	N	+	+	*	*	+	+	+	+	+	+	+	+	+ X	N	+	+	+	+	+	+	3 *50 6 2
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	- ++++++++++++++++++++++++++++++++	++	+ +	++	++	+ + +	++	++	++	++	++	* X +	+ +	++	++	++	++	++	+x +	+++	++	++	++	++	+ +	50 4 50
REMATOPOIETIC SYSTEM Bone marrow Spieen Sercoma, ÑOS	-	+ +	+ +	+++	+ +	+ +	+++	+ +	++++	+++	+	++	+ +	+++	+	‡	+++	+++	+ +	+ +	+++	+++	+ +	+++	+	49 50 2
Lymph nodes Thymus	±	+++	+++	<u>+</u>	+++	+++	++	++	+ +	+ +	+++	+++	++	+ +	+ +	<u>+</u>	+ +	+ -	++	+	+++	+	+	+ +	+ +	50 33
CIRCULATORY SYSTEM Heart Blood vessels C-cell carcinoma, metastatic	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	* N	50 *50 1
DIGESTIVE SYSTEM Selivary gland Liver Neoplastic nodule	++++	++	+ +	+++	+++	++	+++	+++	+++	+++	+++	+++	++++	+++	+++	++**	+++	++	++++	+++	+ + X	+++	++	+++	++	49 50 3
Gallbladder & common bile duct Pancreas Escohagus	+N ++	+ N + +	+ N + +	+ N + +	+ N + +	+ N + +	+ N + +	+ N + +	+ 2 + +	+ N + +	+ N + +	+ N + +	+ N + +	+ 12 + +	+ N + +	+ N + +	+ + Z +	+ + X +	+ N + +	+ N + +	+ N + +	+ N + + +	+ X + -	+ H + +	+ N + +	*50 50
Stomach Small intestine Large intestine	++++++	++++	+ + +	++++	+++++	+ + +	+ + +	+ + +	+++	+++	++++	+ - +	+ + +	+++	++++	+ + +	+++	+ + +	++++	++++	+ + +	+ + +	+++	++++	+ + +	50 47 50
URINARY SYSTEM Kidney Urinary bladder Transitional cell carvinoma	+	+++	+++	++++	+++	+ +	+++	+++	++++	+++	++	+ +	+++	++++	+++	+++	++++	+++	+++	+ + X	+ +	+ +	+++	+++	+ +	50 50 1
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	48
Adrenal Cortical adenoma	+	+	+	+	+	+	л + Х	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	50 3
Pheochromosytoma Thyroid Follicular cell adanoma Follicular cell carcinoma C.cell adanoma	+	+	X + X	+	X +	+	+	+	Х +	х +	Х +	+ x	+	+	+	+	+ x	+	+	+	+	+	+	ж +	X +	13 49 1 1
C-cell carrinoma Parathyroid Pancreatic islets Lielt cell carcinoma Islet cell carcinoma	+	+ +	 +	+	- +	++	+++	+ +	+ +	+ +	+ +	++ X	+ +	+	+ +	+ +	+++	+ +	- +	+ +	+ +	+ +	- +	+ +	‡	1 39 50 3 1
REPRODUCTIVE SYSTEM Mammary gland Papillary sdenome Fibroadenoma	+	N	+	+	N	+	+	N	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	*50 1 1
Testis Interstitial cell tumor Prostate Preputia/citoral giand Carcinoma, NOS Adenoma, NOS	+X + N	+ X + N	+ X + N	+X +N	+ X + N	+ X + N	+ + N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N	+ + N	+ + N X	+ + N	+ x + n	4 X + X	+ + N	+x + N	+x - N	+ X + N	+ X + N	+ X + N	4 × + ×	+ X + N	50 41 49 *50 1 2
NERVOUS SYSTEM Brain	·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N X	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	NX	•50 7

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

TABLE AS. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL: HIGH DOSE

ANICIAL	TO	0	OF.	O	0	0	D	OI.	0	0	DF	Ø	01	OF	0	Ø	0	01	OF.	0	0	01	-or	D	0
NUMBER	20	1	0	0	1 7	32	3 6	50	28	24	27	4	16	Ŏ 2	0	04	05	0	07	09	Ĭ	815	ĩ	12	1 4
weeks on Study	0 3 7	0 7 7	0 8 6	89	0 0 0	9 1	099	9 5	0 9 7	9	100	1 0 0	102	104	104	104	104	104	104	104	104	104	1 0 5	1 0 5	1 0 5
INTEGUMENTARY SYSTEM Skin paint site Keratoscenthoma	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Skin Papilloma, NOS Squamous cell papilloma	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	.+	+	±	+	+
Subcutabeous tiasue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	÷	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolarbronchiolar carcinoma Traches	+++	+ +	+ +	++	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ -	++	+ +	+ +	++	+ -	+ +	+ +	++	+ +	+ +	++	+ +	+ +
HEMATOPOIETIC SYSTEM Bone marrow Splean Lymph nodes Thymus	++++	++++	-++-	++++-	++++	++++	+++-	++++	++++	++++	++++	+++++	++++	+++-	+++-	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neglestic adult	++	++	++	++++	++	+ +	++	+++	++++	+++	++	+	+++	+++	+++	++++	+++	+++	++++	++	++++	+	++	+++	+
Bis duct Gallbladder & common bils duct Pancreas	+ N +	+ N +	+ N +	+ N +	+ N + +	+ N +	+ N +	+ N +	+ N +	+ N +	+ X +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+N+	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +
Esophagus Stomach Small intestine Adenocarcinome, NOS	++++++	++++	+++	++++++	-	++++	+++++	++++	+ + + X +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ 4	+++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
URINARY SYSTEM Kidney Urinary bladder	++++	++	+	+++	+	++	++++	++++	+	+	++	++	+++	+	+	+++	++++	+	+++	+	+	++	+	+	++
ENDOCRINE SYSTEM Pituitary Carvinoma, NOS	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+
Adrenal Cortical adenoma Pheochromocytoma	+	А +	+	+	*	х + Х	+	+	+	+	+	+ X	A +	+	+	+ X	*	× +	+	+ X	+	+	+	* +	* +
Pheochromocytoma, malignant Thyroid Folkcular cell carvinoma C-cell adenoma C-cell adenoma	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	X +	+	+	+	X +	+	+	+
Parathyroid	+	-	+	+	+	+	+	+	+	-	+	+	+	+	-	+	+	+	<u> </u>	-	+	-	-	-	-
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testia	N	+	+	+	+	+	+	+	N	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+
Interstitial cell tumor Prostate	Ļ	+	X.	X.	X	+	×	X,	X	X.	×.	×	×	×	X +	Ĭ.	Ť.	x	×	×.	X	X.	X.	+	×
Preputial/elitoral gland Carcinoma, NOS Adanoma, NOS	N	N	N	N	N	N	N	Ń	N X	N	Ń	Ń	Ň	N	Ń	Ń	N	N	N X	Ń	N	Ń	Ń	Ń	Ň
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinome, NOS Adenome, NOS	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N
BODY CAVITIES Tunica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multipie organs, NOS Mesotheioma, NOS Leukemia, mononuclear ceil	N	N X	N X	N	N	N X	N X	N	N	N	N X	N X	N X	N	N	N	N	N	N X	N	N	N	N X	N	N X

+: Tissue examined microscopically -: Required tissue not examined microscopically X: Tumor incidence N: Necropsy, no autolysis, no microscopic examination S: Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

ANIMAL NUMBER	0 1 5	0 1 8	0 1 9	0 2 1	022	0 2 3	026	0 2 9	0 3 0	0 3 1	0 9 3	0 3 4	0 3 5	0 3 7	0 3 8	000	040	0 4 1	042	0 4 3	044	0 4 5	046	0 4 7	0 4 9	TOTAL
weeks on Study	105	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	TISSUES						
INTEGUMENTARY SYSTEM Skin paint site Keratoacanthoma	+	+	+	+	+	+	+	+	, t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
Skin Papilloma, NOS Squamous cell papilloma Karatoacanthoma Subartaacaa	+	+	+	+	*x	+	+	+	+	+	+	*	+	+	+	+	+	+	±	+	+	+ X	+	+	+	*50 4 2 1
Fibroma				· ·						-			T		T								+	· ·	<u> </u>	1
Lungs and bronchi Alveolar/bronchiolar carrinoma Trachea	++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ X +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	50 1 47
HEMATOPOIETIC SYSTEM Bone marrow Spleen	+	+++	++++	++	++++	+	++	++++	 + +	++++	+++	++	+	+	+	+++	+++	++++	+	++	+	+	+	+++	+	49 50
Lymph nodes Thymus	+	++	+	+++	++	++	++	++	+++	++	+	++	++	+++	Ŧ	++	++	++++	+++	++	+++	++	++++	++++	+	49 43
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Nacolastic nodula	++++	+++	+++	+++	++	+ +	+++	+++	+++	+ +	++++	+++	+++	+++	+++	+ +	++++	++++	+++	+++	+++	+ +	+++	++++	+++	50 50
Gellbladder & common bile duct Pancreas	+ N +	+ N +	+ N +	4 + X +	+ N +	+ N + N +	+ N +	+ N + N +	+ N +	+ N	+ N +	+ N +	+ X +	4+2+	+ N +	+ N +	+ N +	4 + N +	+ X +	+ N +	+ N +	+ Z +	+ N +	+ N + N	+ N + N	50 *50 49
Esophagus Stomach	++	++++	++	+++	++	+++	+++++++++++++++++++++++++++++++++++++++	+++	++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+++	++++	+++	+++++++++++++++++++++++++++++++++++++++	+++	++++	++++	++++	+++	+++	+++	++++	+	49 49
Adenocarcinoma, NOS Large intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 49
URINARY SYSTEM Kidney Urinary bladder	++	+++	+ +	+++	+++	++	+++	++	+++	+++	+++	++	+++	+ +	+++	+++	+ +	+++	+++	+++	++++	+++	+++	+++	‡	50 48
ENDOCRINE SYSTEM Pituitary Carvinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
Adenoma, NOS Adrenai Cortical adenoma	+	+	+	+	+	x + x	+	+	ж +	+	+	+	+	ж +	+	+	+	X +	+	+	ж +	+	+	+	* +	15 50 1
Pheochromocytoma Pheochromocytoma, malignant Thyroid	X +	+	X +	х +	+	+	+	+	+	X _	+	+	+	х +	+	X +	+	+	+	+	+	+	+	+	+	10 2 49
Follicular cell carcinoma C-cell adenoma C-cell carcinoma			X		X				X			x			·											1 3 1
Parathyroid	+	+	-	+	+	+	+	+	-	-	-	Ŧ	+	+	+	+	+	+	+	+	+	-	-	+	+	35
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	÷	+	+ x	+	+	+	+	+	*50 1
Testis Interstitial cell tumor	x	Ť.	±	x	Ť.	*	Ť.	÷,	x	÷.	*	+	÷.	Ť.	÷.	×.	*	*	Ť.	*	*	Ť.	Ť.	+	x	50 44
Proputate Preputal/clitoral gland Carcinoma, NOS Adenoma, NOS	N N	Ň	ň	N N	ň	ň	ň	n N	ň	'n	Ň	Ň	n N	N X	N N	н М	Ň	n N	N N	n N	ň	N,	n N	ň	Ň	48 •50 2 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 1
BODY CAVITIES Tunica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS Leukemis, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N X	N	N	N	N X	N	N	N	N	*50 1 12

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

ANIMAL NUMBER	11	0 3 9	0 8 0	042	04	33	000	0 2 5	0 0 1	002	0 0 3	004	005	000	0 0 7	08	009	0 1 0	0 1 2	0 1 3	14	0 1 5	0 1 6	0 1 7	0 1 8
weeks on Study	0 8 3	0 8 8	000	092	099	94	9 9	103	104	104	104	104	104	104	104	104	104	104	1 0 5	105	1 0 5	1 0 5	105	105	1 0 5
INTEGUMENTARY SYSTEM Skin paint site Skin Karatoasanthoma	‡	+	++	++	+++	++	++	+	++	+	+ + X	+++	+++	+	++	+	‡	+++	++	+	+	+++	+	+	‡
RESPIRATORY SYSTEM Lungs and broachi Alveolarforachiolar carvinoma Traches	++++	++	++	++	++	++	++	++	+ +	+++	* *	++	+ +	++	++	++	++	++	+ -	+ +	++	++	++	+ +	+ +
HEMATOPOLITIC SYSTEM Bone marrow Solesn Leukemia, mononuclear cell Lymph nodes Thymus	* * *	++ ++ ++	++ ++ ++	++ ++	++ ++	++ ++	++	++ ++	-+ ++	++ ++	++ ++	++ ++	++ +-	++ ++	+++++	++ ++	++ ++	* + + + +	+++++	++ ++	++ ++	++ ++ ++	+ + +	++ ++ ++	+ + + -
CIECULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+
DIGESTIVE SYSTEM Selivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine	+++ +N++++1	·++ +x++++	++ +2++++	++ +2+1++	++ +X++++	++ +2++++	++ +x+++++	++ +2++++	++ +2++++	++ +2++++	++ +2++++	++ +2 ++++	++ +2++++	++ +2++++	++ +2++++	++ +Z++++	++ +2++++	++ +2++++	++ +2+1++	++ +Z++++	++ +2++++	++ +2++++	++ +2++++	++ +z++++	++ +2++++
Large intestine URINARY SYSTEM Kidney Urinary bladder	+++	++++	+++	+++	++++	+++	+ + +	+++	+	++	+++	+++	++++	+++	++	+++	++++	+ + +	+++	++	++	+ + +	+ + +	++	++++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adrenal Cortical adenoma Pheoenromosytoma Thyroid C-cell adenoma C-cell carcinoma Parenthyroid Parenthyroid Parenthyroid Parenthyroid	+ + + + +	+ + + +	+ - + -	+ + + -+	+ + + +	+ + + +	+ + + <u>x</u> +	+ x+ + ++	+ + + +	+ + + +	+ + + +	+ + + +	+**+ +++	+ x+ + ++	+x +x + ++	+ + + +	+ + + ++	+ x+ x+ ++	+ x+ + ++	+ X+ + ++	+ + + ++	+ + + ++	+ + + ++	+ x + + -+	+x + + + + + + + + + + + + + + + + + + +
Ialet cell adenoma REPRODUCTIVE SYSTEM Mammary gland Cystadenoma, NOS Fibroadenoma	+	+	N	+	+ X	+	+	+ X	+	+	+	+	+	+ X	+	+	+	+	+ x x	+	+ X	+	+	+	+ X
Preputial/elitoral gland Caroinoma, NOS Uterus	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +
Fibroma Endometrial stromal polyp Endometrial stromal sarooma Ovary	X +	+	+	+	+	X +	+	+	+	+	+	+	+	x +	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Astrocytoma	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+.	+	+	+
SPECIAL SENSE ORGANS Zymbel gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N - X	N	N

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL: VEHICLE CONTROL

TABLE A4.	INDIVIDUAL ANIMAL	TUMOR	PATHOLOGY	OF	FEMALE	RATS:	VEHICLE	CONTROL
			(Continued	I)				

ANIMAL NUMBER	019	020	0 2 1	022	0 2 3	024	026	0217	028	029	0 3 1	0 3 4	035	0 3 6	0 3 7	0 9 8	40	0 4 1	0 4 3	0 4 4	45	47	48	049	0 5 0	TOTAL:
weeks on Study	1 0 5	1 0 5	105	105	1 0 5	1 0 5	1 0 5	105	1 0 5	105	1 0 5	1 0 5	105	105	105	1 0 5	TUMORS									
INTEGUMENTARY SYSTEM Skin paint site Skin Keratoscanthoma	+	++	+	+++	+++	++	+++	+	++	+++	++	+	+++	++++	+++	+	+++	+++	+++	+++	+ +	+++	+++	+	+ N	49 •50 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Traches	+++	++	+++	++++	++	++	+++	++	++	++	++	+++	++	++	+++	++	+	+++++	++	++	++	++	++	+++	++	50 1 49
HEMATOPOIETIC SYSTEM Bone marrow Spieen Leukemia, mononuclear cell Lymph nodes	++++++	+ + +	+++++	++++	++++	+ + +	+++++	+++++	+++++	+ + +	++x+	+++++	+++++	+ + +	++++	++++	++++	+++++	++++	+++++	+++++	+ + +	++++	+++++	+++++	49 50 1 49
CIRCULATORY SYSTEM			+ 	+ +	+		+	+	+		+	+	++		+	+ +	+	+	+	+	+		+	+	+	50
DIGESTIVE SYSTEM Salivary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	+ +Z+++++	+ +Z++++	+ +2+++++	+ +2+++++	+ +2+++++	+ +Z+++++	+ +2+++++	+ +Z++++	+ +2+++++	+ +Z+++++	+ +2+++++	+ +Z++++	+ +2+++++	+ +2+++++	+ +2+++++	+ +2+++++	+ +2+++++	+ +2+++++	+ +2+++++	+ +2+++++	+ +2+++++	+ +2+++++	+ +Z+ ++++	+ +2+++++	+	50 1 50 49 47 50 49 50 49 50
URINARY SYSTEM Kidney Urinary bladder	+++++	+++	++	+++	++++	+++	+++	+++	++++	+	+++	+++	++	++	+++	+++	++	+++	++++	+++	+++	+ +	+++	+++	++++	50 50
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adanoma, NOS Adanoma	+ X +	+	+	+ X +	+ X +	+	+	+ x	+ X	+ X +	+	+ x	+	+	+ X +	+	+ x+	++	+ x	+ X +	+	+	+ X +	* *	++	50 4 19 49
Cortical adenoma Pheochromocytoma Thyroid C-cell adenoma C-cell carginoma	+	+	*	X +	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	X +	+	+	+	+	+	1 3 49 2 1
Parathyroid Pancreatic islets Islet cell adenoma	+++	+	+ +	+	+ +	++	+ +	+ +	+ +	+ +	+	+ +	+	+	+	+	+	+	+ + X	+ +	++	+	++	÷	+ +	38 49 1
REPRODUCTIVE SYSTEM Mammary gland Cystadenoma, NOS Fibroatenoma	+ X	+	+	+	+	+ x	+	+	+	+ X	+ x	*	N	N	+	+	+ X	+	+	+ X	+	+	+ X	*	+	*50 3 13
Preputial/clitoral gland Carcinoma, NOS Uterus	N +	N +	N +	N +	N X +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	•50 1 50						
Fibroma Endometrial stromal polyp Endometrial stromal sarroma Ovary	+	X +	+	X ~	+	+	+	+	+	+	+	+	+	+	X +	X +	+	+	+	+	+	+	+	X +	х +	1 7 1 49
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
SPECIAL SENSE ORGANS Zymbai gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	*50 7

TABLE	A4.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF FEMALE	RATS IN 7	HE TWO-YEAR
			DERMAL	STUDY	OF 1-CHLORO	ETHANOL: L	OW DOSE	

ANIMAL NUMBER	0 3 5	0 4 7	46	993	49	38	0017	30	045	41	0 3 1	0	000	03	004	005	006	007	008	000	010	1	0-19	1	14
weeks on Study	000	000	7	0 7 5	80	995	998	000	100	108	1 0 3	104	104	104	104	104	104	104	104	104	105	1 0 5	05	105	105
INTEQUMENTARY SYSTEM Skin peint site Skin	-	ж *	+++	+	+	+	+	++	+	++	+	++	+	+	+	++	++	+	++	‡	+	‡	;‡	+	+
Trichospithelioma Subcutaneous tissue Sarooma, NOS	+	N	+	+	+	ż	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolarfornchiolar cardinoma Traches	+++	++	++	++	++	++	+ +	++	+ +	++	++	++	++	++	+ +	++	+++	++	+++	+	++	++	+++	++	+
HEMATOPOLETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+ - + + + + + + + + + + + + + + + + + +	++++	++++	++++	++++	++ + + + + + + + + + + + + + + + + + + +	++++	++++	+++-	++++	++++	++++	++++	++++	++++	++++	++++	++++	+++-	++++	+++	+++-	++++	++++	+ - + +
CIRCULATORY SYSTEM Heart	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+
DIGESTIVE SYSTEM Oral cavity Squamous cell carcinoma Salivary gland Liver Neoplastic nodule Bile duct Galibiadder & common bile duct Pancreas Esophagus Stomach Stall intestine Large intestine	X ++ +X++++++	Z ++ +Z+++++	X ++ +X+++++	XM++ +X+++++	X ++ +X+++++	N ++W+N+++++	Z ++ +Z+++++	Z ++ +Z+++++	N ++ +N+++++	N ++ +N+++++	2 ++ +2+++++	2 ++ +2+++++	Z ++ +Z+++++	X ++ +X+++++	2 ++ +2+++++	X ++ +X+++++	X ++ +X+++++	Z ++ +Z+++++	Z ++ +Z+++++	X ++ +X+++++	Z ++ +Z+++++	N ++ +N+++++	N ++ +N+++++	N ++ +N+++++	X ++ +X I ++++
URINARY BYSTEM Kidasy Urinary bladder	+	‡	+	‡	+	‡	÷	+	‡	<u>+</u>	+	+	+	;	‡	+	+	‡	‡	+	;	‡	‡	‡	:
ENDOCRINE SYSTEM Pituitary Carvinoma, NOS Adrenal Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant Ganglionsuroma Thyroid	+ * *	- + X +	+ x+ +	+ * +	+++	+ * * +	+x + +	+ x+ x +	+ + +	+ x+.	++++	+ * +	+ # +	+ +	+++	+.	++++	+ # +	+++	+ # +	++++	+ + +	+ * *	+ * *	+ * *
Follistiar sell adapoma Follistiar sell sarsinoma C-sell adapoma Panstatyrsid Panstatis jaleta Ialet sell adenoma	++	-+	++	++	-+	++x	‡	‡	‡	+ + +	+	X++	+	Ŧ	Ŧ	‡	‡	++x	‡	‡	‡	Ŧ	‡	+ +	±
REPRODUCTIVE SYSTEM Mammary gland Adenogratinome, NOS Cystessenme, NOS Fibroadenome Uarus Carvinome, NOS Endometrial stromal polyp Ovary	+ + +	+ + +	* + +	N + +	+ + +	+ + +	+++++	+ * * +	+ + +	+ + +	+ + +	+ x + +	+ x +	+++++	N + +	++++	+ + + + +	+ + +	+ + +	+ + +	+ + +	+ * *	+ * * +	+	+ + ×+
NERVOUS SYSTEM Brain Caryinoma, NOS, invasive	+	+	+	+	+	÷	ż	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbei gland Adenome, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEME Multiple organs, NOS Pheochromocytoma, metastatic Angioacroma Leukemia, mononuclear cell	N	N	N	N	N X	N	N	N X	N	N	N X	N	N	N	N	N X	N	м	N	N	N	И	N	N X	N

TABLE A4.	INDIVIDUAL A	NIMAL T	TUMOR	PATHOLO	GY OI	? FEMALE RATS	LOW DOSE
•				(Contir	(beur		

ANDRAL NUMBER	0 1 5	0	0 1 7	018	0 1 9	040	081	0.00	244	245	C N C					004	900	0.87	000	040		548	944		0 5 0	TOTAL
WEEKS ON STUDY		105	105	105	105	105	105	105	105	105	105	105	105	105	108	105	105	108	105	108	105	105	100	105	1 0 5	TUMORS
INTERCONCENTARY SYSTEM Skin paint site Skin Trichospithelisma Subrutaneous tissue Saryona, NOS	+ + +	+ N N	++++	* N N	+++++	‡ +	‡ +	‡ +	+++++	+++++	+++	+++++	++H+	‡ +	‡ +	‡ +	‡ +	‡ +	‡ +	‡ +	‡ +	‡ +	* +	+++++	+ + +	40 •50 1 •50 1
RESPIRATORY SYSTEM Lunga and broachi Alveolarforoschiolar carcinoma Traches	++++	++	++	++	+	++	++	+++	++	++	++	++	++	¥.	++	++	++	++	+++	++	+++	+++	++	+++	++	50 1 48
HEMATOPOIETIC SYSTEM Bone marrow Spiesa Lymph aodes Thymus	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+++++	++++	++++	+++++	++++	++++	++++	++++	++++	+++++	++++	++++	++++	++++	++ 1+	50 48 48 44
CLECOLATORY SYSTEM Reart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGENTIVE SYSTEM Oral cavity Squamous cell carcinome Salivary gland Liver	N ++	N ++	N ++	N ++	N ++	N ++	N ++	N ++	N ++	N ++	N ++	N ++	N ++	N ++	N ++	N + +	N ++	N +	N ++	N ++	N ++	N ++	N ++	N + +	N +	*50 1 50 50
Neoplastic nodule Bile dust Gellbladder & common bile dust Pancress Esophagus Stomach Small intestine Large intestine	+N+++++	+2+++++	+2+++++	+N+++++	+2++++++	+*+++*	+2++++++	+2+++++	+2++++++	+2:+++++	+2+++++	+2+++++	+2++++++	+2+++++	+2+++++	+ 2; + + + + + + +	+ * * + + * *	+ * + + + * *	+2;+++++	+2++++++	+2;+++++	+ 11 + + + + + + +	+2++++++	X+X++++	+11+++++++	***************************************
URINARY SYSTEM Kidney Urinary bladder	++	++	++	+	+	++	++	+	‡	+	++	++	+ +	‡	+++	++	++	+	<u>+</u>	+	+	++	+	+	+	50 45
ENDOCRINE SYSTEM Pituitary Carvinoma, NOS Adrenal Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant	++	+	+ +	+ X +	+ x +	+ X + X	+ x +	+	+ X +	+ #	+ *	+	+	+ x+ x+ x	+ X +	+	+	+	+	+ X +	+	+ *	+ *	+	+ x+	40 24 50 2 3
Gengrissaeuroma Thyroid Follisular cell adenoma C-cell adenoma Parathyroid Panerestis islets Islet cell adenoma	+ ×++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ x +	+ ++	+ ++	+ ++	++x	+	+ =+	+ ∓	+ ++	* *	+ +	+ ++	+ -+	+ N++	+	4 - -+	+ +	+ ‡	50 1 87 49
REPRODUCTIVE SYSTEM Mammary gland Adenosarvisoma, NOS Cystadeacoma, NOS	+	N	+	+	+	+	+	+	+	+	+	+	+	ż	+	+	+	+	+ x	+	+	+	+	+	+	*50 9 3
Fibrosdezomá Uterus Carvinoma, NOS Endometriai stromal polyp Ovary	+++++++++++++++++++++++++++++++++++++++	+ *	*	X+++	+	X+ +	+	+	+	+	X + +	+	+	+	+	+	+ X+	+	+	+	+	+ +	+ +	+	+	50 1 4 50
NERVOUS SYSTEM Brain Carvinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
SPECIAL SENSE OEGANS Żymbal giand Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Pheochromocytoms, metastatic Angiosarcoma Leukemia, mononuclear cell	N X	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 1 7

TABLE A4.	INDIVIDUAL	ANIMAL '	TUMOR	PATHOLOGY	OF FEMALI	E RATS IN '	THE TWO-YEAR
	I)ERMAL §	STUDY (of 1-Chloro	ETHANOL:]	HIGH DOSE	;

ANIMAL NUMBER	0 1 3	048	0 3 7	0 9 2	0 1 7	0 11 0	0 4 4	040	021	000	0 1 1	0 0 1	007	005	004	005	000	0 0 7	008	009	0 1 0	0 1 2	0 1 9	0 3 8	0 1 4
Weeks on Study	71	074	74	0 7 8	79	8	88	96	1 0 1	102	1 0 3	104	1 0 4	104	104	104	104	104	104	104	104	104	1	104	1 0 5
INTERUMENTARY SYSTEM Skin paint die Subeutaneous tissue Fibroma	+	+++	++ *	+++	+++	+++	+++	+++	+++	++++	+++	++++	+++	+++	+ N	+ +	++	+++	++	++	+++	+++++	++x	++	+++
RESPIRATORY SYSTEM Lungs and broachi Traches	+	+	+	++	+++	+	Ŧ	++	<u>+</u>	+	Ŧ	 + +	+	+	+ +	++	‡	+++	+	‡	++	++	+++	++	++++
HEMATOPOLETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++++	++++	++++	++++	++++	++++	-+-+	++++	++++	++++	++11	++++	++++	++++	+++++	++++	++++	++++	++++	+++++	+++++	++++	++++	++++	+++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Livar Bile duct Gallbladder & common bile duct Prancreas Esophagus Stomach Stomach Large intestine	+++2+++++	+++2+++++	+++2+++++	+++**+++++	++++++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++X+++++	+++×++++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++
URINARY SYSTEM Kidney Urinary bladder	+	++	+	+++	`+ +	++	+++	+++	+	+++	+++	+++	+++	+	+ +	++	++	+++	++	+++	 + +	++	++	++++	++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adrenal Cortical adenoma Pheochromocytoma Pheochromocytoma Pheochromocytoma	+ X+ +	+ *	+ X +	+ X +	+ * *	+	+ +	+	+ X +	+ x + x	+ X +	+ X +	+ X +	+ X +	+	+	+	+ X +	+ X +	+ X +	+ X + X	+	+ X +	+ X +	+ + +
Pheochromocytoma, metastatic Thyroid C-cell adanoma C-cell carminoma	+	+	+	+	+	+	+	+	+	Х +	+	+	+	+	+	*	+	+	+	+	+	+	*	+	+
Parathyroid Pancreatic isleta Islet cell carvinoma Islet cell carvinoma	Ŧ	+ +	+ +	+	+ +	+ +	+++	+ +	+	+ +	Ŧ	+ +	-+,	+	+ +	- *	+ +	+	+++	+++	+	+ +	+	+ +	+ +
REPRODUCTIVE SYSTEM Mammary gland Papillary adenoma Cystadenoma Fibroadenoma	N	+	+	N	+	+	+ *	+	+	+	+	+	+	+	N	+ *	+	+	+	+	+	+	+	+ X X	+
Preputial/clitoral gland Adanoma, NOS	N	N	N	N	N	N	Ñ	N	N	N	Ñ	N	N	Ñ	N	Ñ	N	N	N	Ñ	N	N	N	N	N
Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+	++	¥	+	+	+	+	+	+	+	+	+	+	+	¥ +	+	+	+	+	+	+	+	+	+	* +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ALL OTHER SYSTEMS Multiple organs, NOS Louksmis, mononuclear cell	N	N	N	N	N	N X	NX	N X	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N

+: Tissue examined microscopically -: Required tissue not examined microscopically X: Tumor incidence N: Necropy, no autolysis, no microscopic examination S: Animal missered

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

TABLE A4.	INDIVIDUAL ANIMAI	TUMOR	PATHOLOGY	OF	FEMALE	RATS:	HIGH	DOSE
			(Continued	D)				

ANIMAL NUMBER	0	01	0 1 8	0 2 3	0 2 4	025	026	027	029	0 3 0	0 3 1	0 3 3	0 3 4	0 3 5	0 3 6	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 5 0	TOTAL
weeks on Study	105	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin paint site Subcutaneous tissue Fibroma	+	+++	++	+++	+++	+ +	+ +	+++	‡		+ +	++++	++	+++	+++	++++	+++	+++	+ +	+ +	+ +	+++	+++	+++	+++	49 *50 2
RESPIRATORY SYSTEM Lungs and bronchi Traches	++++	+++	+ +	+ +	+ +	+++	+++	+ +	+++	+ +	+ + +	+	+ +	+ +	+ +	+ +	+- +	+ +	+ + +	+	+++	+ +	+ +	++++	+++	48 47
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++ +++	+++++++++++++++++++++++++++++++++++++++	++++	++++-	+ + + + + +	++++	* + + +	++++	+ + + + + +	++++	+ + + + + +	++ ++ +	* + + + + +	+ + + + +	+++	+++ +	++++	++++++	+ + + + -	++++	÷++ ++	+++++++++++++++++++++++++++++++++++++++	* + + +	++ ++ +	+++++	49 50 45 45
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	+ + + N + + + + + + + + + + + + + + + +	+++2+++++	+++2+++++	+++z+++++	+++z+++++	+++Z+++++	+++X+++++	+++;;+++++	++++2+++++	+++2+++++	+++X+++++	+++X+++++	+++2+++++	+++2+++++	+++Z++++	+++X+++++	+++Z+++++	+++Z++++	+++z+++++	+++2+++++	+++Z++++	+++Z+++++	+++Z+++++	+++Z+++++	+++2++++++	50 50 50 50 50 50 50 50 50 50 50 50
URINARY SYSTEM Kidney Urinary bladder	+++	++	+++	+ +	+ +	+++	++	+++	+++	+++	++	+ +	<u>+</u>	+++	+++	+++	+++	+++	++++	++	+	+ +	++	+ +	* *	50 49
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenai Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant	++	+	+ X +	+ X +	+ X +	+	+ X +	+ + X	+ X +	+	+	+	+ x + x	+ X +	+ +	+	+ x + x	+ +	+ X +	+	+ x +	+ X +	* +	+	+ x+ x	50 1 29 50 2 3 1
Pheochromocytoma, metastatic Thyroid C-cell adenoma C-cell carcinoma Pancreathyroid Pancreati saleta Islet cell adenoma	+ -+ +	+ - +	+ -+	+ + +	+ _• +	+ ++	+ - +	+ +	+x ++	* + +	+ - +	≁ +	+ -+	* * +	↓ ++	+ X++	+ ++	+ +	+ + +	+ + +	• + + +	- - +	+ ++ +	+ -+	+ +	1 49 4 27 50 1
Islet cell carcinoma REPRODUCTIVE SYSTEM Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	× +	+	+	•50
rapilary adenoma Cystadenoma, NOS Fibroadesooma Preputial/elitoral gland Adenoma NOS	XN	N	N	XNX	X N	N	N	N	N	N	N	N	N	X N	N	N	N	X N	N	X	N	N	X N	N	X N	3 11 *50 1
Uterus Endometriai stromai polyp Endometriai stromai sarcoma Ovary	+	+ +	+	-+ +	+	++	+ X +	* *	+	* *	+ *	÷	+ +	+ ≁	+ +	* *	* *	*	+ +	* +	+	+ +	+	+ +	+ +	50 7 1 50
Granulosa cell tumor NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	*50 6

* Animals necropsied

. .

2-Chloroethanol, NTP TR 275

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

C	CONTRO	L (UNTR)	CONTR	OL (VEH)	LOW	V DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY					50	1	50	
ANIMALS NECROPSIED	50		50		50		50	
ANIMALS EXAMINED HISTOPATH	50		50		50		50	
INTEGUMENTARY SYSTEM								
#SKIN PAINT SITE	(44)		(50)		(49)		(50)	
FIBROMA			1	(2%)				
*SUBCUT TISSUE	(50)		(50)		(50)		(50)	
SARCOMA, NOS	-		4	(8%)	4	(8%)	1	(2%)
FIBROSARCOMA	2	(4%)	1	(2%)				
NEUROFIBROSARCOMA			1	(296)				
RESPIRATORY SYSTEM								
#LUNG	(50)		(50)		(50)		(50)	
ALVEOLAR/BRONCHIOLAR ADEN	6	(12%)	8	(16%)	10	(20%)	9	(18%)
ALVEOLAR/BRONCHIOLAR CARCIN	N 4	(8%)	6	(12%)	9	(18%)	3	(6%)
HEMATOPOIETIC SYSTEM								
*MULTIPLE ORGANS	(50)		(50)		(50)		(50)	
MALIGNANT LYMPHOMA, NOS	3	(6%)	3	(6%)	10	(20%)	2	(4%)
MALIG. LYMPHOMA, HISTIOCYTIC	TYPE		1	(2%)				
GRANULOCYTIC LEUKEMIA	3	(6%)	2	(4%)	. 4	(8%)	2	(4%)
#AXILLARY LYMPH NODE	(27)		(32)		(37)		(35)	
FIBROSARCOMA, METASTATIC	1	(4%)						
CIRCULATORY SYSTEM								
#SPLEEN	(44)		(49)		(50)		(50)	
HEMANGIOSARCOMA			1	(2%)				
#LIVER	(50)		(49)	(07)	(50)		(50)	
HEMANGIOSARCOMA	-		1	(2%) 				
DIGESTIVE SYSTEM								
#LIVER	(50)		(49)		(50)		(50)	
BILE DUCT CARCINOMA			1	(2%)				
HEPATOCELLULAR ADENOMA	1	(2%)	2	(4%)	3	(6%)	1	(2%)
HEPATOCELLULAR CARCINOMA	6	(12%)	9	(18%)	6	(12%)	4	(8%)
MEPATUBLASTUMA	(40)		(40)		(20)		1	(2%)
Francisad off L Carcinoma	(40)		(47)		(00)	(94)	(50)	
#STOMACH	(45)		(50)		(49)	(2,70)	(49)	
ADENOCARCINOMA, NOS	(40)		1	(2%)	1	(2%)	(40)	
ADENOMATOUS POLYP, NOS			-	(=)	-		1	(2%)
*ANUS	(50)		(50)		(50)		(50)	• • •
LEIOMYOSARCOMA					1	(2%)		
URINARY SYSTEM								
#KIDNEY	(50)		(50)		(50)		(50)	
TUBULAR-CELL ADENOCARCINOM	IA (LL)		(20)		1	(2%)	1	(2%)
#URINARY BLADDER	(44)		(50)		(50)	· •	(47)	
TRANSITIONAL-CELL CARCINOMA					1	(2%)		

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR DERMAL STUDY OF **3**-CHLOROETHANOL

e

	CONTROL (UNTR)	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM #ADRENAL CORTICAL ADENOMA PHEOCHROMOCYTOMA #ADRENAL CORTEX ADENOMA, NOS #THYROID FOLLICULAR-CELL ADENOMA	(48) 3 (6%) (48) 1 (2%) (47)	(48) 1 (2%) (48) (47)	(49) 2 (4%) (49) (44) 1 (2%)	(50) 1 (2%) (50) 2 (4%) (46)
REPRODUCTIVE SYSTEM *PREPUCE PAPILLOMA, NOS *SEMINAL VESICLE CARCINOMA, NOS #TESTIS INTERSTITIAL-CELL TUMOR	(50) (50) (49) 1 (2%)	(50) (50) (50)	(50) (50) 1 (2%) (50)	(50) 1 (2%) (50) (50)
NERVOUS SYSTEM NONE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			<u> </u>
SPECIAL SENSE ORGANS NONE		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. <u></u>	<u>,</u>
MUSCULOSKELETAL SYSTEM *HUMERUS OSTEOSARCOMA	(50)	(50)	(50) 1 (2%)	(50)
BODY CAVITIES *ABDOMINAL CAVITY SARCOMA, NOS	(50)	(50)	(50)	(50) 1 (2%)
ALL OTHER SYSTEMS *MULTIPLE ORGANS BILE DUCT CARCINOMA, METAS ALVEOLAR/BRONCHIOLAR CA, II SARCOMA, NOS, UNC PRIM OR ME HEPATOBLASTOMA, METASTATI	(50) Fatic NVASIVE Eta C	(50) 1 (2%) 2 (4%)	(50)	(50) ⁻ 1 (2%) 1 (2%)
ANIMAL DISPOSITION SUMMARY ANIMALS INITIALLY IN STUDY NATURAL DEATH MORIBUND SACRIFICE SCHEDULED SACRIFICE TERMINAL SACRIFICE DOSING ACCIDENT ACCIDENTALLY KILLED, NDA ACCIDENTALLY KILLED, NOS ANIMAL MISSEXED OTHER CASES	50 19 6 24 1	50 13 11 26	50 11 21 16 2	50 19 19 12

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

.

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

CONTRO)L (UNTR)	CONTROL (VEH)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUM**	23	29	39	21
TOTAL PRIMARY TUMORS	30	43	56	31
TOTAL ANIMALS WITH BENIGN TUMORS	7	11	14	12
TOTAL BENIGN TUMORS	12	12	16	15
TOTAL ANIMALS WITH MALIGNANT TUM	17	25	32	14
TOTAL MALIGNANT TUMORS	18	31	40	15
TOTAL ANIMALS WITH SECONDARY TUM##	1	3		1
TOTAL SECONDARY TUMORS	1	3		1
TOTAL ANIMALS WITH TUMORS UNCERTAIN-	. –			
BENIGN OR MALIGNANT				
TOTAL UNCERTAIN TUMORS				
TOTAL ANIMALS WITH TUMORS UNCERTAIN-				
PRIMARY OR METASTATIC				1
TOTAL UNCERTAIN TUMORS				ĩ
				-

NUMBER OF ANIMALS NECROPSIED
 PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS
 NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
 SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

	CONTRO	L (UNTR)	CONTR	ROL (VEH)	LOV	DOSE	HIGH I	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50		50	
ANIMALS NECROPSIED	50		50		50		50	
ANIMALS EXAMINED HISTOPATH	50		50		50		50	
INTEGUMENTARY SYSTEM								
#SKIN PAINT SITE	(48)		(49)		(48)		(47)	
SARCOMA, NOS, INVASIVE							1	(2%)
*SKIN	(50)		(50)		(50)	(0.0)	(50)	
PAPILLOMA, NOS				(0/)	1	(2%)		
ACTICUTTEST	(50)		(50)	(270)	(50)		(50)	
BASAL CELL CAPCINOMA	(00)	(94)	(00)		(00)		(00)	
TDICUOFDITUFI IOMA	1	(270)						
SARCOMA NOS	1	(270)	1	(94)			9	(494)
MYYOMA	1	(270)	1	(94)			-	(4,0)
LIPOSARCOMA	1	(296)	-					
CARCINOSARCOMA	•	(2~)			1	(2%)		
RESPIRATORY SYSTEM								
#LUNG	(50)		(50)		(49)		(50)	
ALVEOLAR/BRONCHIOLAR ADEN	7	(14%)	7	(14%)	6	(12%)	6	(12%)
ALVEOLAR/BRONCHIOLAR CARCI	N 3	(6%)	2	(4%)	5	(10%)	3	(6%)
SARCOMA, NOS, METASTATIC							1	(2%)
CARCINOSARCOMA, METASTATIC					1	(2%)		
HEMATOPOIETIC SYSTEM								
*MULTIPLE SITES	(50)		(50)		(50)		(50)	
MALIGNANT LYMPHOMA, NOS	1	(2%)						
*MULTIPLE ORGANS	(50)		(50)		(50)		(50)	
MALIGNANT LYMPHOMA, NOS	9	(18%)	8	(16%)	8	(16%)	9	(18%)
MALIG. LYMPHOMA, HISTIOCYTIC	TYPE 1	(2%)		(0.01)	2	(4%)	1	(2%)
GRANULUCITIC LEUREMIA	(47)		1	(2%)	4	(8%)	3	(0%)
MALIC I VNBUONA HISTIOCVTIC	(4 <i>1)</i> TVDF		(49)		(40)	(94)	(47)	
#MESENTERIC L. NODE	(39)		(99)		(98)		(44)	
MALIGNANT LYMPHOMA, NOS	1	(3%)	(00)		(00)		(**)	
CIRCULATORY SYSTEM								······
*SUBCUT TISSUE	(50)		(50)		(50)		(50)	
HEMANGIOSARCOMA, METASTATI	C				1	(2%)		
#SPLEEN	(47)		(49)		(48)		(49)	
HEMANGIOSARCOMA					2	(4%)		
#HEART	(50)		(50)		(50)		(50)	
HEMANGIOSARCOMA, METASTATI	C				1	(2%)	(20)	
#UTERUS	(50)		(49)	(00)	(49)		(80)	
HEMANGIOMA HEMANGIORA DOOMA			1	(270)	1	(94)		
#OVARY	(50)		(50)		(49)	(470)	(49)	
HEMANGIOMA	1	(2%)	2	(4%)	2	(4%)	(40)	
DIGESTIVE SYSTEM		<u> </u>		<u> </u>				
#LIVER	(50)		(50)		(49)		(50)	
ADENOCARCINOMA, NOS, META	1	(2%)						
HEPATOCELLULAR ADENOMA	1	(2%)	2	(4%)				
HEPATOCELLULAR CARCINOMA			1	(2%)			1	(2%)
"GALLBLADDER	(50)		(50)		(50)		(50)	
Papillary Adenuma							1	(2%)

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL

	CONTRO	OL (UNTR)	CONTR	OL (VEH)	LOW	DOSE	HIGH I	OSE
URINARY SYSTEM		* <u></u>	<u></u>					
#KIDNEY	(50)	r	(50)		(50)		(50)	
SARCOMA, NOS, UNC PRIM OR MET	A 1	(2%)			(,		~~~~	
ENDOCRINE SYSTEM								
#PITUITARY	(46)		(48)		(49)		(47)	
CHROMOPHOBE ADENOMA	4	(9%)	2	(4%)	2	(4%)	3	(6%)
ACIDOPHIL ADENOMA	1	(2%)						
#ADRENAL	(49)	•= • • •	(50)		(50)		(49)	
CORTICAL ADENOMA	1	(2%)						
PHEOCHROMOCYTOMA	1	(2%)						
#ADRENAL/CAPSULE	(49)		(50)		(50)	•	(49)	
ADENOMA, NOS					1	(2%)		
#PANCREATIC ISLETS	(48)		(50)		(47)		(50)	
ISLET-CELL ADENOMA					1	(2%)		
REPRODUCTIVE SYSTEM								
•MAMMARY GLAND	(50)		(50)		(50)		(50)	
ADENOMA, NOS					1	(2%)		
ADENOCARCINOMA, NOS	4	(8%)	2	(4%)	2	(4%)	5	(10%)
ADENOSQUAMOUS CARCINOMA		• •			1	(2%)		
CARCINOSARCOMA					1	(2%)	2	(4%)
#UTERUS	(50)		(49)		(49)		(50)	
LEIOMYOMA			1	(2%)	1	(2%)	2	(4%)
LEIOMYOSARCOMA	1	(2%)	2	(4%)	1	(2%)	1	(2%)
ENDOMETRIAL STROMAL POLYP	2	(4%)						
ENDOMETRIAL STROMAL SARCOM	A				1	(2%)		
#UTERUS/ENDOMETRIUM	(50)		(49)		(49)		(50)	
CARCINOMA, NOS							1	(2%)
#OVARY	(50)		(50)		(49)		(48)	
CYSTADENOMA, NOS			1	(2%)				
PAPILLARY CYSTADENOMA, NOS			ī	(2%)				
LUTEOMA	1	(2%)	ī	(2%)				
GRANULOSA-CELL TUMOR	-	(= ,;)	-	(2.0)	1	(2%)		
NERVOUS SYSTEM					<u> </u>			
#BRAIN	(50)		(50)		(50)		(50)	
ASTROCYTOMA	1	(2%)	(00)					
SPECIAL SENSE ORGANS NONE								
MUSCULOSKELETAL SYSTEM								
*SKELETAL MUSCLE LEIOMYOSARCOMA, INVASIVE	(50)		(50)		(50)		(50) 1	(2%)
BODY CAVITIES NONE	· · · ·		- <u>-</u>					

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

TABLE B2.	SUMMARY	OF THE	INCIDENCE	OF	NEOPLASMS IN	FEMALE	MICE IN	THE	TWO-YEAR
		DERM	AL STUDY O)F 2	-CHLOROETHAN	OL (Conti	nued)		

	CONTROL (UNTR)	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS				
*MULTIPLE ORGANS	(50)	(50)	(50)	(50)
ADENOCARCINOMA, NOS, META				1 (2%)
ALVEOLANDBRONCHIOLAR CA, IN CARCINOSARCOMA, METASTATIC	ASIVE 1 (2%)		1 (2%)	
ANIMAL DISPOSITION SUMMARY				
ANIMALS INITIALLY IN STUDY	50	50	50	50
NATURAL DEATH	12	12	5	10
MORIBUND SACRIFICE	14	12	25	20
SCHEDULED SACRIFICE				
TERMINAL SACRIFICE	24	26	20	20
DOSING ACCIDENT				
ACCIDENTALLY KILLED, NDA				
ACCIDENTALLY KILLED, NOS				
ANIMAL MISSING				
ANIMAL MISSEXED OTHER CASES				
				·····
TUMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUM	** 36	27	32	32
TOTAL PRIMARY TUMORS	45	37	46	40
TOTAL ANIMALS WITH BENIGN TUMO	RS 19	15	11	10
TOTAL BENIGN TUMORS	20	20	15	12
TOTAL ANIMALS WITH MALIGNANT T	UM 22	16	26	25
TOTAL MALIGNANT TUMORS	24	17	30	28
TOTAL ANIMALS WITH SEC TUM##	2		4	4
TOTAL SECONDARY TUMORS	Z		4	4
TUTAL ANIMALS WITH TUM UNCERTA DENICH OD MALICNANT	1 1N•		1	
TOTAL LINCEPTAIN TIMOPS			1	
TOTAL ANIMALS WITH TUM UNCERTA	IN.		•	
PRIMARY OR METASTATIC	1			
TOTAL UNCERTAIN TUMORS	i			
	-			

* NUMBER OF ANIMALS NECROPSIED ** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE B3.	INDIVIDUAL A	NIMAL TUMOI	R PATHOLOGY	OF MALE M	ICE IN THE	TWO-YEAR	DERMAL
	STU	DY OF 3-CHLO	ROETHANOL:	UNTREATE	D CONTROL		

ANIMAL NUMBER	007	0 2 9	0 3 1	0 0 3	0 1 6	0 1 8	0 2 8	0 3 5	020	005	0 4 8	004	040	0 1 4	8	002	009	0 1 2	0 2 7	0	0 4 9	0 1 3	0 1 5	0 0 1	0 1 9
weeks on Study	0 1 1	0 4 9	055	0 5 7	0 5 9	0 6 4	0 6 4	064	065	0 6 6	0 6 9	0 7 3	075	076	0 7 7	082	0 8 2	0 8 3	0 8 4	0 8 6	89	000	94	0 9 8	999
INTEGUMENTARY SYSTEM Skin paint file Suboutaneous tissue Fibrosarcoma	 +	+++	-	+++	+++	Ŧ	+++	++	- +	+	+++	+ +	- +	++*x	++ *	++	+++	++	++	+++	+	+++	++	+++	+++
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Traches	+	++	+	+	+	+	+	+	+	++	++	+	++	+	+	+ *	++	+ X +	+	+	+	+	+	++	++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Fibrosarcoma, metastatic Thymus	+ - + + +	+ -	++++++	+++ -	+++++++++++++++++++++++++++++++++++++++		- - +	= +	++-++++++++++++++++++++++++++++++++++++	+++ -	++++++	++1 1	-+++++	+++*	++	+++++++++++++++++++++++++++++++++++++++	++++ -	+++ +	+++ +	+++++++++++++++++++++++++++++++++++++++	+++ -	+++++++++++++++++++++++++++++++++++++++	++	+++ -	++
CIECULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Livar Hepatocellular adenoma Hepatocellular carcinoma Bile duct	+++++	+++++	+++++	++++	+++++	+++++	++++++	- + +	+++++	- +	+++++	+++++	+ + +	+++++	÷	+++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++	++++++	++ ++ ×+	+ + +	++	+++++++++++++++++++++++++++++++++++++++	+++++
Gallbladder & common bile duct Fancreas Esophagus Stomach Small intestine Large intestine	N +	2 + - + - +	2++++++	+++++	X++++	N +	X ++ -	Z +	+++++	2+++++	+++++	X+++++	++-++	Z + + + + +	+++++	z++++	2+++++	+++++	2+++1	X + + + +	+++++	+++++	+++++	++++	+++++
URINARY SYSTEM Kidney Urinary bladder	+	++	+++	++	++	+ +	+	+	+	+	+++	+ +	+ +	++	+++	+	++	+++	+	+++	+++	+ +	+++	+ +	++
ENDOCRINE SYSTEM Pituitary Adrenal Adrenal Cortical adenoma Thyroid	-	;+ ;+ +	 +	+++++	++++++	=	, + + +	++	+++++	+ + +	+++++		- + +	++ ' +	‡ +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	 + +	- + +	++ +
Parathyroid REPRODUCTIVE SYSTEM	-	-	-	-		-	-	_	-	_		-	+	-	-	-	+	_	_	-	-	-	_	-	
Mammary gland Testis Lites restitial cell tumor Prostate	א + +	N + +	N + +	N + +	N + +	N + +	N + +	N + -	N + +	++++++	N + +	N + +	N + +	N - +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Granulocytic leukemia	N	N	N X	N X	N	N X	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N X	N	N	N	N

.

TABLE B3.	INDIVIDUAL ANIMAL TUMO	R PATHOLOGY OF	MALE MICE:	UNTREATED	CONTROL
		(Continued)			

ANIMAL NUMBER	0 1 7	006	0 1 0	0 1 1	0 2 1	0 2 2	0 2 3	024	0 2 5	026	0 3 0	0 3 2	0 3 4	36	0 8 7	0 3 8	0 3 9	0 4 1	042	43	044	045	46	04 7	0 5 0	TOTAL
weeks on Study	1 0 3	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Skin paint site Subrutaneous tissue Fibrosarcoma	++	++	+++	+++	+++	+++	+	++	+++	‡ ‡	++++	+++	+++	++	+++	+++	- +	+++	+++	++++	+ +	+++	+++	++	+ +	44 *50 2
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+ X	* *	+	+	* *	+	+ x	+	* -	+	+	+	* *	+	* -	+	+	+	+	* -	50 6 4 23
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Fibrosarcoma, metastatic Thymus	++++	-++ +++	++-++-++	+++++++++++++++++++++++++++++++++++++++	++- +	-++++++++++++++++++++++++++++++++++++++	+++	+ 1		++	+++++++++++++++++++++++++++++++++++++++	+++-+++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	+++ -	+++-+++++++++++++++++++++++++++++++++++	+++ -	+++++++++++++++++++++++++++++++++++++++	++	+++++++++++++++++++++++++++++++++++++++	++-++++++++++++++++++++++++++++++++++++	++	+ + + +	++-++++++++++++++++++++++++++++++++++++	43 44 27 1 30
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Hepatocellular adenoma Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus	++ M++++	++ ++++-	++ ++++	++ ++++	++ ++++	++ ++++	++ +++1-	++ ++++	++ ++++	++ x+z++.	++ ++++	++ ++++	++	++ ++++	++ ×++++	++ +++1-	++ ++++	++ ++++	++ ++++	++ +++1.	++ ++++	++ +z++-	++ x+++++	++ ++++	++ X ++++	47 50 1 6 50 *50 48 46 46
Stomacn Small intestine Large intestine	+++++	+ + +	++++	+++	++++	++++	++++	+ + +	++++	+ + +	++++	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	45 39 44
URINARY SYSTEM Kidney Urinary bladder	++++	‡	+++	+ +	+ +	++++	<u>+</u>	++++	+++	++	+++	‡	+	+++	+	+	+	+++	+++	++++	+++	+	+	+	‡	50 44
ENDOCRINE SYSTEM Pituitary Adrenal Adrenal Cortical adenoma Thyroid Parathyroid	•+ + +	-+++	++ ++	++++-	++ ++	++++-	++ x+-	++ x++	++ + -	++ x++	++++-	+ + +	++ +-	++ + +-	-+ + ++	++++-	++++-	++++-	+++++	++x +-	++ +1	+++++	+ + +	++ ++	++ ++ ++	41 48 1 3 47 12
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tamor Prostate	X + +	N + +	N + +	N + +	N + + +	N + +	N + +	N + + +	N + +	N + +	N + +	N + + +	N + +	N + +	N + +	N + +	N + +	N + +	N + + +	N + X +	N + +	+ + +	N + +	N + +	N + +	*50 49 1 49
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphome, NOS Granulocytic leukemia	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 3 3

ANIMAL. NUMBER	0 4 7	009	0 1 2	0 2 8	002	008	036	0 1 5	097	022	0 1 8	020	200	0 8 5	0 3 7	040	0 3 8	9	1	005	0 1 1	0 1 9	042	0 4 3	0 0 1
weeks on Study	0411	0 4 4	0 5 8	0 6 4	0 7 5	0 7 5	0 7 7	0 7 8	0 7 8	0 8 1	0 8 3	0 8 4	0 8 5	080	090	000	9 9	0 9 5	000	1 0 3	1 0 3	1 0 3	104	104	1 0 5
INTEGUMENTARY SYSTEM Bits paint site Fibroma Subsutaneous tissue Barroma, NOS Fibrosarroma Neurofibrosarcoma	+++	++	+	+ +	+ +	++	+	++	++	++	+	+ +	+	++	+ +	+ +	+ +	+ +	+ .+	+ +	+ +	++	+x + x	+ + * * *	+ +
REPTRATURY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+ X +	+ X	+	+	+	+	+	+	+	+	+	*	+	+	+	*	+ x	+	* *	ŧx –	++
HEMATOPOLETIC SYSTEM Bone marrow Spieen Hemangiosarcoma Lymph nodes Thymus	+++++	+ + + + -	+ + + +	- + +	+ + -	+ + + + +	· · · · · · · · · · · · · · · · · · ·	+ + + +	+ + +	+ + + + + +	* + + + +	+++++	+++++	++ ++ ++	++ -+	+++++	++ -+	++ -+	++++-	++ -+	++++-	++ ++ ++	++ +-	-+ + +	+++++++++++++++++++++++++++++++++++++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+
DickSTIVE SYSTEM Salivery gland Liver Bile duot sercinoma Kepatoseliular adenoma Repatoseliular carcinoma	++	++	+++	<u>+</u>	+++	+++	+	+ +	+ + X	+	+ +	+++	+ +	+++	‡	+++	+	+ + X	+ + x	+++	+	+ +	‡	+++	+++
Activity of the second	+2+++ ++	+2+++	+2++++++	1N1++ 11	++++ ++	+2+++ +	+++++ ++	++++ ++	+++++ ++	+2+++ - 1	+++++ ++	+2+++ 11	+++++ ++	+++++ ++	+2+++ +	+++++ ++	+++++ ++	+2+++ ++	+z+1+ ++	+++++ ++	(++++ ++	+2+++ ++	+++++ ++	+++++ ++	+++++ ++
URINARY SYSTEM Kidasy Uriaary bladder	:	*	+	÷	÷	+	‡	‡	;	‡	+ +	÷	÷	++	‡	+ +	‡	‡	‡	++	+	‡	‡	‡	++
ENDOCEINE SYSTEM Pituitary Adrenal Pheochromocytoma Thyroid Parathyroid	+++	-+ -:	++-	+ + + -	++++-	++ ++ ++	+ +	+ + + -	+++++	++	++++-	++	++ ++ +-	++ +-	++ + +	++ +-	+- ++	+ + + -	++++-	++ +-	++ +=	++ +-	++ ++	++++-	++ ++
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + + +	N + +	N + +	N + +	N + +	N ++ +	N + +	N + +	N + +	N + +	N + + +	N + +	N + + +	N + + +	N + +	N + +
NERVOUS SYSTEM Brain	+	+	+	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Bile duct carrinoma, metastatic Alveolarforoachiolar carcinoma, invasive Malignant lymphoma, NOS Malignant tymphoma, historytic type Granulocytic leukemia	N X	N	N X	N X	N X	N R	N	N	N	N	N	N	N X	N	N	N	N	N X	N	N X	N	N	N	N	N X

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL: VEHICLE CONTROL

TABLE B3.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	MICE:	VEHICLE	CONTROL
				(Continued	i)				

ANIMAL NUMBER	0	004	006	0 1 0	0 1 4	0 1 7	0 1 8	0 2 1	0 2 3	0 2 4	025	026	0 10	0 3 0	0 3 1	032	33	39	0 4 1	44	0 4 5	046	0 4 8	049	0 5 0	-
WEEKS ON STUDY	105	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Fibroma Subcutaneous tissue Sarcoma, NOS Fibrosarcoma Neurofibrosarcoma	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+X	+	+	+	+	+ X	+	+	+	+	1 *50 4 1 1
RESPIRATORY SYSTEM Lungs and bronch: Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+ X	+	+	+	+ X	+	+	+	+	*	+	+	+	*	+ X	+	*	+	+	+	+	+	*	+	50 8 6
Trachea	-	+	+	-	-	+	+	-	-	-	-	+	-	-	-	-	+	-	-	-	+	+	+	-	-	17
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangnosarcoma	++	+++	+++	+++	+++	++	+++	++ *	+++	+ +	+++	++	+++	+++	+ +	+++	+	++	+ +	+++	+++	+ +	+++	+++	++++	47 49 1
Lymph nodes Thymus	+++	+++	+ +	+	+	Ŧ	+	Ŧ	+	Ŧ	+ +	+++	+ +	+++	Ŧ	++++	Ŧ	+	+ +	‡	Ŧ	Ŧ	+ +	+	+ +	32 43
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM																										
Salivary gland Liver Bile duct carcinoma Hepatocsllular adesoma Hepatocsllular carcinoma	++	++	+ + x	+ +	+ +	+ + X	+ +	+ +	+ +	++	+ + X	+ +	+ +	++	+ +	++	+ + X	+ +	+ +	+ +	+ + X	++	+++	+ + +	+ + X	50 49 1 2 9
Hemangiosarcoma		-		т	L.			L	-		-		T	-	ъ	т	-			L	-	+		-	-	i
Gallbladder & common bile duct	Ŧ	÷	÷	÷	+	÷	Ŧ	÷	÷	Ň	Ň	÷	Ŧ	Ŧ	÷	Ň	÷	÷	÷	Ŧ	÷	÷	÷	Ŧ	÷	•50
Fancreas Esophagus	‡	++	++	+	++	+	÷	1	+	÷	÷	+	+	++	+	÷	+	+	<u>+</u>	÷	+	÷	÷	÷	+	44
Stomach	+	÷	÷	÷	+	÷	÷	+	÷	÷	÷	÷	÷	÷	+	+	÷	÷	+	÷	÷	+	÷	÷	÷	50
Adenocarcinoma, NOS Small intestine Large intestine	++++	A + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	Ŧ	+ +	‡	+ +	+ +	+ +	+ +	+ +	+ +	42 46
URINARY SYSTEM	-																						·····			
Kidney Urinary bladder	+	+ +	+ +	++	++	++	++	++	++	++	++	+	++	++	+	++	++	++	+	++	+	+ +	++	+	++	50 50
ENDOCRINE SYSTEM Pitutary Adrenal	+++	+	++++	+++	÷	+	+++	‡	+	‡	+	+	++	‡	++++	++	++	+++	+++	+++	+ +	+++	++++	‡	++	47 48
Pheochromocytoma Thyroid Parathyroid	+++	+	+ +	+ -	+	+ +	<u>+</u> -	<u>+</u>	<u>+</u>	+	+ +	<u>+</u>	<u>+</u>	<u>+</u>	+ +	X + ~	+ +	+ -	+ -	+ +	+ +	<u>+</u>	+ +	<u>+</u>	+ +	1 47 15
REPHODUCTIVE SYSTEM Mammary gland Testis	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	*50
Protava	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	<u> </u>	+	+	+	+	+	+	
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Bile duct carcunoma, metastatic Alveolar/bronchiolar carcinoma, invasi Malignant lymphoma, NOS Malignant lymphoma, histiocytic type Granulocytic leukemia	N	N	И	И	N	N	И	N	N	N	N	N	N	И	N	N	N	N	N	N	N	N	N	N	N	*50 1 2 3 1 2

TABLE BS.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN	N THE	TWO-YEAR	DERMAL
•	STUDY OF 3-CHLOROETHANOL: LOW DOSE	ł		

ANIMAL NUMBER	84	8	017	005	0 1 0	97	009	080	040	949	1	14	004	8	248	048	007	0 8 0	0 3 5	046	080	0	000	0 1 3	222
weeks on Study	19	8	89	848	058	004	0	89	071	078	914	0 7 5	076	076	07	077	78	80	0 8 7	0 8 7	0 8 8	090	9 1	9	0 9 1
INTERUMENTARY SYSTEM Skie paint site Subortaneous tissue Sarcoma, NOS	Ŧ	++ #	+ +	+++	+++	+	+++	++	*	+++	+++	+++	+++	+	+++	+++	+++	+++	+ +	+++	++* *	+++	+	+++	++
RESPIRATORY SYSTEM Lungs and broachi Alveolar/broachiolar edenoma Alveolar/broachiolar carcinoma Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	++	++	+	+	+ *	+ X +	* *	++	+	++
HEMATOPOIETIC SYSTEM Bone marrow Spisen Lymph nodes Thymus	++++	++++	++++	++++	++++	++++	+++++	-+++	+++-	+++++	++++	++-++-++	+++++	+++-	+++ -	+++-	++++	++++	++++	++	+++++	-+++	++++	++++	-+++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adezoma Hepatocellular carcinoma	+	+++	++	++++	+++	+++	*	+ +	+++	+ +	++	+ +	++	+ +	++++	++	++	+ +	+++	+++	+++	+ +	,‡	+++	+ +
Bile duct Gallbladder & common bile duct Pancrass Acinar cell carcinoms Esophagus	+ N + -	+++ +	+++ +	+++++++++++++++++++++++++++++++++++++++	+ N + +	+++ +	+++ +	+ 1 + 2 +	+2++	+++ +	+++++++++++++++++++++++++++++++++++++++	+N+ +	+++ +	+++ +	+++ +	+++ +	+++++++++++++++++++++++++++++++++++++++	+N+ +	+++++++++++++++++++++++++++++++++++++++	*** +	+++++++++++++++++++++++++++++++++++++++	+++ +	+++ +	+++ -	+ + + + +
Stomach Adenocarcinoma, NOS Small intestine Large intestine Rectum Laiomyosarcoma	+ ++ N	+ -+N	+ ++X	+ ++z	+ + + + N	+ ++N	+ ++z	- + N	+ ++N	+ ++z	+ ++x	+ -+N N	+ ++ N	+ ++ N	+ ++N	+ + + N	+ + N	+ -+N	+ -+N	+ ++N	+ ++N	+ ++ N	+ ++N	+ ++ M++	+ ++N
URINARY SYSTEM Kidnsy Tubular cell adenocarcinoma Urinary bladder Transitional cell carcinoma	+++	+ +	++	+ +	+ +	+ +	++	+ +	+ +	++	++	+ +	+ +	+ +	++	+ +	++	+ +	+++	+ +	++	+ +	+++	++	+++
ENDOCRINE SYSTEM Pituitary Adrenai Cortical adenoma Thyroid Follicular cell adenoma Parathyroid	++++++	+++++		+ + + + +	+++++++++++++++++++++++++++++++++++++++	++++	++ + -	+++++	+++++	++ + -	++++	+++	+++++	++	+++++	++ + -	+ + + +	+++	++	++	-+ + +	+++-	++ ++ +	* + +	+++++++++++++++++++++++++++++++++++++++
REPRODUCTIVE SYSTEM Mammary gland Testia Prostate Seminal vesicle Cardinema, NOS	N + + N	N++N	N++N	N++N	N+++	N++N	X++X	N + + N	N + + N	X++X	N + + N	X+++	X++X	X++X	Z++Z	X + + X	N + + N	Z++Z	N+++	X++X	N+++	N++N	N++++	N++N	N + + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NUSCULOSKELETAL SYSTEM Bone Osteosarooma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N
ALL OFHER SYSTEMS Multiple organs, NOS Meligaant lymphoma, NOS Granulocytic leukemia	N	N	N	N X	NX	N	N X	N X	N X	N X	N X	N	N	N	N	N X	N X	N	N	N	N	N	N	N X	NX

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

ANIMAL NUMBER	9	994	0	0 8 9	23	0 4 1	04 7	990	008	0	0	0 1 1	012	0	0	0 8 0	28	2020	0 3 1	0 3 3	3	04	04	045	0 5 0	
WEEKS ON STUDY	9	9	9	9	00	100	100	101	108	1 0 5	1 0 5	105	105	105	10	105	105	1 0 5	105	105	105	105	105	105	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin paint site Suboutaneous tissue Sarooma, NOS	+	++	++x	+	‡	++	++	+	‡	+++	+++	+ +	+	+++	+++	++	+++	+++	+++	+ + * *	+++	+++	+++	+++	+ +	49 •50 4
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar edenoma Alveolar/bronchiolar carcinoma Traches	++++	*	* -	* -	+**	+	+ x+	*	+	+	+ x +	+	+	* -	+	+ x	+ x	+	+	+ X +	+	+	* *	* *	*	50 10 9 35
HEMATOPOIETIC SYSTEM Bone marrow Spisen Lymph nodes Thymus	++++	++++	-+++++++	++++	++++	++++	++++	-+	++++	++++	+++++++++++++++++++++++++++++++++++++++	++	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++ 1 1	+++++++++++++++++++++++++++++++++++++++	+++1	++++	++ ~+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	45 50 37 38
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adanoma	+	+++	++	++++	+ +	++*x	+ +	++	++	++	+++	+ + * *	+++	++	++	++	+ +	++	+ + X	+++	+ +	+ +	+ +	+++	+	50 50 3
Asing real carcinoma Bile duct Gallbladder & common bile duct Pancreas Asing real carcinoma	+++++++++++++++++++++++++++++++++++++++	+++	4+X+	+ X +	+++	+ + + +	+ + + X	+ z +	A + + +	X + + +	+++	+++	A + + +	+ X +	+++	+2+	+++	+++	++++	* + + +	+ X +	+++	+++	+++	X + + + +	50 *50 50 1
Esophagus Stomach Adenocarcinoma, NOS Small intestine Large intestine Rectum Laiomyosarcoma	++ ++N	++ ++z	7+ + + X	++ + I Z	++ ++X	++×++N	++ ++z	++ +++ x	Z++ ++	Z++ ++	1+ ++Z	++ ++2	1+ ++2	++ ++z	Z++ ++	Z++ ++	++ ++2	Z++ ++	++ ++z	Z++ ++	Z++ ++	++ ++z	++ ++z	++ ++z	++ ++z	48 49 1 44 49 *50 1
URINARY SYSTEM Kidney Tubular cell adenocarcinoma Urinary bladder Transitional cell carcinoma	++++	+ +	++	+	+ +	++	++	++	+ *	++	++	++	+ +	++	+	++	+ +	++	+ +	+ +	++	* x +	++	++	+++	50 1 50 1
ENDOCRINE SYSTEM Pituitary Adrenal Cortigal adenome	+	++	+++	+++	+++	+++	++	+++	+++	+++	+++	÷	++	++	+++	+++	+++	+++	+++	++	++++	+ + x	+ + x	+++	+ +	47 49 2
Thyroid Folligular cell adenoma Parathyroid	-	-	+ -	++	+ x -	+ 	+ -	+	+ -	+	++	+ -	+ +	++	+	++	+ -	+	+	+	+ +	+	+	+ ~	+ -	44 1 14
REPRODUCTIVE SYSTEM Mammary gland Testis Protate Seminal vesicle Carcinoma, NOS	X++X	N + + N	Z++Z	N + + +	N + + + +	N+++W	N++N	X++X	N + + + +	N+++	+++N	N+++	N++N	X++X	N+++	X+++	N++N	Z++Z	X++X	N + + +	N + + +	+++N	X +++	N++N	N + + N	*50 50 50 *50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
MUSCULOSNELETAL SYSTEM Bons Ostoosercome	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Granulocytic leukemia	X	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 10 4

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL: HIGH DOSE

ANDRAL NUMBER	04	0 1 6	040	0 2 4	035	04	0 4 8	0	0 1 2	021	0 4 7	044	0 2 7	0 1 7	0 2 2	0 4 9	007	034	0 1 4	0 2 3	0 1 9	0 4 5	0 1 5	0 4 3	0 0 8
weeks on Study	000	000	000	000	0	000	000	0 3 1	040	042	049	050	0 6 7	0 7 1	074	074	076	076	0 7 7	0 7 8	082	083	0 8 6	0 8 9	9 9 0
INTEGUMENTARY SYSTEM Skin paint site Subcutaneous tissue Sarcoma, NOS	+	++	+++	+++	++	+++	++	++	+	++	+++	+++	+++	+++	+++	++++	+++	+++	+++	+++	+++	++	+++	+++	+ +
RESPIRATORY SYSTEM Lungs and bronch Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Traches	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	++	+ X +	+	+ X X +	++	* *	+	+
HEMATOPOLITIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	++++	+++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++-	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++-	++++-	++++-	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	++	++++	++++	+++-	-+++	++++	+++++
CIECULATURY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	++++	+	++	+	+	+++	++++	+++	++	++	++	+++	+++	++++	++++	+++	++++	++++	+ + x	++++	++++	++++	++	++++	++
Hepazoniaszoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Adenomatous polyp, NOS Small intestine Large intestine	+2+++ ++	+2,+++ ++	+++++ ++	+2+++++++	+2+++	+N++++++	+N+++ -+	+N++++++	+N+++ -+	+++++ ++	+2++= ++	+++++ ++	+++++×++	+++++ +-	+++++ +-	+++++ ++	+++++ ++	+2,+++ ++	+++++ +-	++++ ++	A+N+++ ++	+++++ ++	+2++++++++	+++++ ++	++++ ++
URINARY SYSTEM Kidney Tubular cell adenocarcinoma Urinary bladder	++++	++	+++	+++	+++	+++	++	+++	+++	+++	+	++	++	+++	+++	* *	+++	++	+++	+	++	+++	+++	++	+ + +
ENDOCRINE SYSTEM Pituitary Adranai Adranoma, NOS Cortical adranoma Thyroid Parathyroid	+++++++++++++++++++++++++++++++++++++++	++ ++	+++	-+ + +	+ + +		+++++	+	+ + + +	+	++	+++++	++++	+ + +	+++	++++-	++ ++ ++	+ + +	+	++++	+++++	+++++++++++++++++++++++++++++++++++++++	++ +)	++ +1	++++
REPRODUCTIVE SYSTEM Mammary gland Testia Prostate Penns Papilloma, NOS	N + + N	N + + N	N + + N	N + + N	N++N	N + + N	N + + N	N++N	N + + N	N++N	N + + N	N + + N	N + + N	N + + N	N++N	N + + N	N + + N X	N ++ N	N + + N	N + + N	N + + N	N++N	N + + N	N + + N	N + + N
NEEVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
BODY CAVITIES Peritoneum Sercome, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Sercoma, NOS, unclear primery or metastatic Hepetoblastoma, metastatic Malignant lymphoma, NOS Granulocytic leukemia	N	N	N	N	N	N	N	N X	N	N	N X	N	N	N	N X	N	N	N	N	N	N X	N	N	N	N

+: Tissue examined microscopically -: Required tissue not examined microscopically X: Tumor incidence N: Necropsy, no autolysis, no microscopic examination S: Animal missexed

No tissue information submitted C: Necropsy, no histology due to protocol A: Autolyns M: Annual missing B: No necropsy performed

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

ANIMAL NUMBER	0 3 7	0 3 8	0 1 3	028	005	0 0 1	036	0 3 4	002	026	0 3 1	0 3 3	0 1 0	003	009	0 1 1	0 1 8	0 2 2	025	0 3 0	0 3 9	040	042	040	0 5 0	
weeks on Study	0 9 3	0 9 8	0 9 4	095	0 9 8	100	100	1 0 1	108	102	102	1 0 2	1 0 3	105	1 0 5	105	1 0 5	105	1 0 5	1 0 5	105	1 0 5	105	105	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin paint site Subsutaneous tissue Saroome, NOS	‡	+++	+++	‡	+++	++++	+ +	+++	+ +	‡	+ +	+++	+ + x	+ +	÷	‡	+++	+	+++	+++	+++	+ +	+++	+++	+ +	50 •50 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar sdenoma Alveolar/bronchiolar carcinoma Traches	+	+	++	+	* *	+	+	+	++	* *	++	+ X	+	* -	+ X +	+	+	+	+	* *	+	* *	* -	+	+	50 9 3 22
HEMATOPOIETIC SYSTEM Bone marrow Spiesa Lymph nodes Thymus	++++-	+++-	++	++++	++++	++++	++++-	++++	++-+	+++-	++++	++++	++++	++ -+ ++ -+ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	+++++++++++++++++++++++++++++++++++++++	++-+	++++	++-+	++ + + + + + + + + + + + + + + + + + + +	++++	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	++++	++-+	++++	+++++++++++++++++++++++++++++++++++++++	49 50 35 39
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hepatocellular carcinoma	+++++++++++++++++++++++++++++++++++++++	++	+ + x	+++	++++	+++	+++	+++	+++	+ * x	+ +	+++	+++	+++	+++	+ + X	+++	+++	+ +	+ + X	+++	+++	+++	+++	+ +	49 50 1 4
Bile duct Galibladder & common bile duct Fancreas Esophagus Stomach Adanomatous polyp, NOS	++++++	++++	++++	++++	+N+++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+2+++	++++	+++ +	++++	++++	++++	50 *50 50 49 49 1
Small intestine Large intestine	+	+	+	++	+	+	++	+	++	++	++	+++	+	+	+	++	+	+	++	++	++	++	++	++	+	45 46
UKINAKI SISIEM Kidney Tubular cell adenocarcinoma Urinary bladder	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ +	50 1 47
ENDOCRINE SYSTEM Pituitary Adrenal Adrenal Cortical adenoma Thurmid	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	+	++	++	++	+	++ x+	+++	++	++	++	++	+ * *	+++++++++++++++++++++++++++++++++++++++	++x+	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	47 50 2 1 48
Parathyroid	<u> </u>	-	+	<u> </u>	-	-	<u> </u>	-	+	÷	+	+	÷	-	+	<u>.</u>	<u> </u>	-	-	÷	<u> </u>	-	÷	+	÷	19
Mammary gind Testis Protis Penis Papillome, NOS	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + N	N + + + N	N + + N	N + + N	+ + + N	N + + N	n + + n	N + + N	N + + N	N + + N	N + - N	N + + N	N + + N	*50 50 48 *50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
BODY CAVITIES Peritoneum Sarcoma, NOS	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS, unclear primary or meta Hepatoblastoma, metastatic Malignant lymphoma, NOS Granulocytic leukemia	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N .	N	N	N	N	N	*50 1 1 2 2

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL: UNTREATED CONTROL

ANIMAL NUMBER	34	040	043	0 1 3	0 3 9	003	0 3 1	042	0 2 3	0 4 8	0 1 7	019	0 2 1	008	0 2 8	840	43	050	0 % 5	007	005	002	000	0 1 1	0 2 2
weeks on Study	0 3 8	040	0 5 1	0 5 2	054	0 7 6	0 7 9	80	82	082	0 8 3	0 8 3	0 8 4	0 8 5	8	0 8 7	0 8 8	0 8 9	0 9 2	9	1 0 1	1 0 3	1 0 3	1 0 3	04
INTEGUMENTARY SYSTEM Skin paint site Subcutaneous tissue Basal cell carvinoma Trichospithelioma Sarooma, NOS Liposarooma	+++	+++	+	+++	- +	+	÷	+	+ * X	++++	++++	‡	++++	+++	+ +	+++	+++	‡ +	+++	+++++++++++++++++++++++++++++++++++++++	+ + X X	+	+++	+++	+++
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar careinoma Trachea	+	++	+	+	+	+	+	+	+	+ X +	+	+	+	* * +	+	++	+	x	+	*	+	+	+ x+	++	+
HEMATOPOLITIC SYSTEM Bons marrow Spisen Lymph nodes Malignant lymphoms, NOS Thymus	+++++++++++++++++++++++++++++++++++++++	+	+ + + +	++++++	+ - + -	++++ ++++	+++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ -	++++++	++++++	+++++++++++++++++++++++++++++++++++++++	++++ -	+++++++++++++++++++++++++++++++++++++++	+++ +	+++++++	+++ -	+++ -	+++++++++++++++++++++++++++++++++++++++	+++ -	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++
CIECULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Adenocarcinoma, NOS, metastatic Hepatocellular adenoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	++ +++++	++ +2++	++ +2 ++ 1 1	++ ++++++	++ +z ++ + 1	++ +++++++	++ +z+++1	++ ++++++	++ +Z+++++	++ +2+++++	++ +++++++	++ ++++++	++ ++++++	++ +N+++++	++ +z+++1	++ ++++++	++ +++++++	++ +++++++	++ +++++++	++ +++++++	++ ++++++	++~~+++++++++++++++++++++++++++++++++++	++ ++++++	++ ++++++	++ +Z+++++
URINARY SYSTEM Kidney Sarcome, NOS, unclear primery or metastatic Urinary bladder	++++	++	+	++	+	++	++	++	++	+++	+ +	++	+++	++	+	+++	++	+	++	++	++	+++	+++	++++	 + 1+
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Acudophi adenoma Adrenal Cortical adenoma Pheochromocytoma Thyroid Parathyroid	++++	- + -:	+ + =	+++	- + +	+ + +	+ - ++	+ + +	+ + + -	+ + +	+ + ++	++++	+ + -	+ + ++	++++	+++	+x + + + + + -	++++	++++	+++	+ + +	- + +	+++++	++++	- + +
REPRODUCTIVE SYSTEM Mammary gland Adesocardisome, NOS Uterus Leiomyosaroome Endometrial stromal polyp Ovary Luteoma Hemangioma	++++++	N + +	+++++	+++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+X+++	+ + +	+ + +	+ + +	+ X + +	+ X + + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ x + +	+ + + X	+ + +	+ + +
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Alveolarforonchiolar carcinoma, invasive Malignant lymphoma, NOS Malignant lymphoma, histiocytic type	N X	N	N X	N	N	N X	N	N X	N	NX	N	N X	N	N X	N	N	N	N X	N	N X	N	N	N X	N	N X

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: UNTREATED CONTROL (Continued)

ANIMAL NUMBER	0 4 5	0 0 1	004	009	0 1 0	0 1 2	0 1 4	0 1 5	0 1 6	0 1 8	0 2 0	024	0 2 2	0 2 6	027	0 8 0	082	0 3 3	036	0 3 7	0 3 8	0 4 1	044	047	0 4 9	TOTAL
weeks on Study	104	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	1 0 5	105	105	1 0 5	1 0 5	1 0 5	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Skin paint ate Subcutaneous tissue Basal cell carcinoma Trichospithalioma Serroma, NOS	+	++++	++	+++	+++	+++	+	+++	+++	+++	+	+++	++	+ +	++++	+	+++	+	++	+++	+++	+ N	+++	+	+ +	48 *50 1 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolarbronchiolar adenoma Alveolarbronchiolar carcinome Traches	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+	+ x -	+	+ x	+	+	+	Ť.	* *	+	+	+	+	+	+	×	+	50 7 3 22
HEMATOPOIETIC SYSTEM Boas marrow Spisen Lymph nodes Malignant lymphoma, NOS Thymus	++++	+++++++++++++++++++++++++++++++++++++++	+++-++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++-++++++++++++++++++++++++++++++++++++	+++	++- +	+++++++++++++++++++++++++++++++++++++++	+++ +	+++++++++++++++++++++++++++++++++++++++	++-++-+	++	++-++-+++-+++++++++++++++++++++++++++++	++-++++++++++++++++++++++++++++++++++++	+ + + + +	+++ -	+++K+	++++++++	++-++-+++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++-++++++++++++++++++++++++++++++++++++	+ + + +	50 47 38 1 39
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salvary gland Liver Adenocarcinoma, NOS, metastatic Hepatocellular adenoma Bile duct	++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++++++++++++++++++++++++++++++++++++	- + +	+ + +	+ + +	++++++	+ + +	++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+ + +	48 50 1 1 50
Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	N+++++	++++++	++++++	+++++	++++++	++++++	++++++	+++++	++++++	+++++	++++++	++++++	+++++	+++++	++-++	++++++	+++++	+++++	++++++	+++++	+++++	+++++	+++++	+++++	+++++	*50 48 48 47 44 43
URINARY SYSTEM Kidney Sarcoma, NOS, unclear primary or meta Urinary bladder	+++	+ +	++	++	+++	++	++	+++	+ x +	++	+++	++	++	++	++	++	++	+ +	++	+++	+ +	++	++	++	+ +	50 1 46
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Acidophil adenoma Adrenal	+	+	+ X +	+	+	* *	+	+	+	+	+	++	+	+	+	+	+	+	+	+	* +	+	* *	+	+++	46 4 1 49
Photochan accounts Thyroid Parathyroid	+ +	<u>+</u>	+ +	<u>+</u>	+ 	+ +	+	+ +	+ -	+	+ -	<u>+</u>	+ +	* + +	<u>+</u>	-	+ +	X + -	Ξ	+-	+ -	+ -	+ +	+ -	+ +	1 45 17
REPHODUCTIVE SYSTEM Mammary gland Adesocarnnoma, NOS Utarus	+	+++	+	+++	+++	+	+++	++++	+++	+++	+++	+	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++	+++	+	*50 4 50
Lenomyosarcoma Endometrial stromal polyp Ovary Luteoma Hemangnoma	+	X +	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+ x	+	+	+	1 2 50 1 1
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
ALL OTHER SYSTEMS Multiple organs, NOS Alveolar/brouchiolar carcinoma, invasi Malignant lymphoma, NOS Malig. lymphoma, histocytic type	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 10 1

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF S-CHLOROFTHANOL: VEHICLE CONTROL

ANIMAL NUMBER	018	040	949	000	047	240	548	899	604	13	949	035	943	543		640	017	14	0 20	16	0	0410	834	0 1 1	0 0 3
WEEKS ON Study	8	040	30	4	4	9	9 29	000	007	8	000	777	78	8	8	8	000	93	200	98	100	100	100	104	1 0 5
INTEGUMENTARY SISTEM Skin paint site Skin Trichospithelioma Subrutaneous tissue Servema NOS	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+++++	++++++	++++	+++++	++++++	+ N N	+ + +		+ + +	+ + +	++++	++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+ + +	+ + +	+++++	+ + +	+ + +
Nyzoma RESPIRATORY SYSTEM Lungs and broachi Alveolarbroachiolar edenoma Alveolarbroachiolar carcinoma	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+ X	+	+	+	+	+	+x	×	+	*	+
HEMATOPOIETIC SYSTEM Bose marrow Spiese Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++-	++++	+++++		++++	+++++	++++	++++	++++	+ + + + + + + + + + + + + + + + + + + +	++++	++++	++	- ++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	- ++++	+ + + + + + + + + + + + + + + + + + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Repatocellular adenoma Repatocellular carcinoma Bile dust Galibledias & common bile dust	++++N	++ +2	++ +2	++ +2	++ +2	++ ++	++++	++++	++ + + N	++ ++	++++	++ +2	++++	++++	++++2	++++2	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++x ++	++++	++ +>	‡ ±	++ ++	+++++	÷ + +
Generations of a control of the date of th	*++++	2++++	5+++	5+++-+	2+++-+	+++++	+++++	+++++	2++++	+++++	+++++	2++++	+++++	+++++	2+++++	2+++-+	++-+++	+++++	+++++	+++++	5+++-+	+++++	+++++	++++=	* + + + + + + + + + + + + + + + + + + +
URINARY SYSTEM Kidney Urinary bladder	‡	+	‡	+ +	+	+	‡	+	+ +	+	+	‡	+	+	‡	+	+++	‡	+	+	‡	++	++	‡	;
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Thyroid Parathyroid	+ + + -	+ ++-	- ++-	+ ++++	+ ++ =	- ++-	+ ++	+ ++=	+ +++	+ ++	+ +++	+ + + + + + + + + + + + + + + + + + + +	+ +++	+ ++	+ ++=	+ ++=	+ +==	+ +++	+ +++	+ + + + + -	+ ++	+ ++-	·+ ++ +	+ ++=	+ + + + + + + + + + + + + + + + + + + +
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Laiomyona Laiomyona Laiomyona	++	++	++	++	N +	+ +	++	++	++	++	N +	N +	++	+x +	++	+ X +	++	+ +	++	++	++	+	+++	+++	+++++++++++++++++++++++++++++++++++++++
Ovary Cystadenoma, NOS Papillary cystadenoma, NOS Luiseme Hemangiama	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Granulocytic leukemia	N	N	N	N	N	N X	N	NX	N X	N X	N	N	N	N	N	NX	NX	N	N	N	NX	N X	N	N	N
TABLE B4.	INDIVIDUAL ANIMAL	TUMOR	PATHOLOGY	OF	FEMALE	MICE:	VEHICLE	CONTROL																	
-----------	-------------------	-------	------------	----	--------	-------	---------	---------																	
			(Continued	i)																					

ANDRAL NUMBER	005	006	007	009	010	012	0 1 5	019	80	0 9 1	0 4 9	24	98	0 % 0	0 3 1	0 3 2	0 3 3	0 3 5	0 3 6	0 3 8	0 3 9	04	045	0 4 7	0 4 8	-
weeks on Study	105	105	105	105	1 0 5	105	1 0 5	105	105	1 0 5	105	105	1 0 5	105	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin paint site Skin Trichospithelioma Subcutaneous tissue Sarooma, NOS Myzoma	++x+	‡ +	+++++	+ + +	+ + +	++ + +	‡ +	+ + +	+++++	++ ++ +	+ + +	‡ +	+++++	++++	+ + + x	‡ +	+ + +	++ +	+ + +	+ + +	+ + +	+ +	+++++	+ + +	+ + +	49 *50 1 *50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolarforoschiolar adenoma Alveolarforoschiolar carcinoma Trachea	+	++	+	+	+	+	* +	++	++	+	+ X +	* *	++	+	* -	+	* *	+	+	++	+	+	+	+	++	50 7 2 26
HEMATOPOIETIC SYSTEM Bone marrow Spisen Lymph nodes Thymus	+++++	++-+	++-+	++-+	+++++	++++	++++	++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	++-+	++++	++-+	++++	+++-	+++++++++++++++++++++++++++++++++++++++	++++	++	++++	+++-	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	49 49 33 42
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	++	+	+++	+++	+++	+ +	+++	+ +	+++	++	+ + x	+++	+++	+++	++++	+ + x	+++	+++	+++	+++	+++	+++	+ +	++++	++	50 50 2 1
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	++++++	++++++	+2+++++	++++++	++++++	++++++	++++++	++++++	++++++	+++ +++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	+z++++	++++++	++++++	+++++++	+++-++	50 *50 50 47 50 45 48
URINARY SYSTEM Kidney Urinary bladder	++	+	++++	+	+++	++++	++	+++	+ +	+ +	++	+	+++	+ +	* *	+	+ +	++	+++	+	+ +	+ +	+	+ +	+	50 49
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Thyroid Parathyroid	+ +++	+ +++	+ ++++	+ +++	+ ++++	+ +++	+ ++ -	+ ++++	+ ++-	+ ++-	+ X +++	+ +++	+ + = =	+ ++++	+ +++-	+ ++++	+++-	++++-	+ + + + -	+ +++	+ +++	+ ++-	+ ++++	+ ++-	++++	48 2 50 48 19
REPRODUCTIVE SYSTEM Mammary gland Adanocarcinoma, NOS Uterus Leiomyoma Leiomyoma	+ +	+ +	++	+ +	++	+ +	+ +	+ +	++	N +	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +	+ + X	++	+ +	+ *	+ + X	*50 2 49 1 2
Hemangioma Ovary Cystadenoma, NOS Papillary cystadenoma, NOS Luteoma Hemangioma	×	+	+	+	+ X	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+ X	+	1 50 1 1 1 2
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoms, NOS Granulocytic leukemia	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 8 1

* Animals necropsied

,

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL: LOW DOSE

ANIMAL NUMBER	000	1	0 4 1	4	0 1 3	0 3 4	007	35	8	19	0 3 7	2	8	39	040	040	4	14	023	0 0 5	010	0	0 9 7	80	177
weeks on Study	010	0 % 0	040	047	000	0 6 1	0	8	07-6	077	0 7 7	080	0 8 1	990	8	000	0 8 7	0 8 8	091	8	993	000	97	999	999
INTEGUMENTÄRY SYSTEM Skin paint site Skin	Ī	+	+ N	+++	+	+++	-+	+	÷	+	++++	+	+	++	+	++++	+	+	+	+	+	+	+	+	+
Papilloma, NOS Suboutaneous tissue Carcinosercoma Hemangiosarcoma, metastatic	N	+	N	+	+	+	+	+	+	+	+	+	+'	+	+	+	+	+	÷.	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchiolar adanoma Alveolarbronchiolar adanoma Alveolarbronchiolar caroinoma	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+ X	+	+ x	+	+	+	+
Carcinosarcoma, metastatic Trachea	-	-	***		-		-	÷	-		+	-	X +	+	+	+	-	+	-	+	+	-	+	~	-
HEMATOPOIETIC SYSTEM Bone marrow Spiesz Hemangiosarooma		++	+	+ +	++	+	+++	++	- +	++	+++	++	+++	+ +	++	++	++	+ +	++	+++	++	‡	+++	++	Ŧ
Malignant lymphoma, histiocytic type Lymph nodes Thymus	‡	+	+ -	•• ••	+ +	+ +	+ +	++	+++	+	+	- +	+ +	+ +	+ +	++	+ +	+	+ +	Ŧ	‡	<u>+</u>	<u>+</u>	7 7	‡
CIRCULATORY SYSTEM Heart Hemangiosarooma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Gellbladder & common bile duct	+++ N	+++ N	+++++	+ + + + N	++++	x+++	++++	++++	+ : : +	++++	++++	++++	++++	Z+++	++++	++++	++++	+++2	++++	++++	++++	++++	++++	++++	++++
Pancreas Esophagus Stomach Small intestine Large intestine	+++-+	+++++	+++++++++++++++++++++++++++++++++++++++	;++++++++++++++++++++++++++++++++++++++	++++	1++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+++++	+++++	++++	++++	+++++	+++++	+ + + + + +	++++	+++++	. + + + + +	+++++	++++	+++++	+++++	+++++	+++++
URINARY SYSTEM Kidaey Urinary bladder	+	++	++	+	+++	++	++	++++	+	+	+++	+	+	+	+++	+	+	+	+	÷	+++	‡	+	+	+
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma	+	+		+	+	+	+	+	+	+	+	+	+	+	+	÷.	+	+	+	+	+	+	+	+	+
Adrenal Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Thyroid Parathyroid Pancreatic isleta Islet cell adezoma	+++++++++++++++++++++++++++++++++++++++	+++	+ - +	+-+	- +		++	+-+++++++++++++++++++++++++++++++++++++	+ + +	++++	+ - +	- +	+++	++++	++++	+-++	+~+	+++++	<u>+</u>	+ + + +	++++	+-+	+ + +	+	+
REPRODUCTIVE SYSTEM Mammary gland Adanocarvinoma, NOS Adanocarvinoma, NOS	N	N	N	N	+	N	+	+	+ x	+	+	+	+	N	+	+	+	+	+	+	ż	+	+	+	+
Carcinotarcoma Uterns Letomyoma Letomyoma	+	+	••	+	+	+	+	+	+	+	+	+	¥ +	+	+	+	+	+	+	+	+	÷	+	+	+
Endometriai stromal sarcoma Hemangiosarcoma Ovary Granulas cell tumor	+	+	+	+	+	+	X +	+	+	+	+	+	+	-	X +	÷	+	+	÷	+	+	+	+	+	+
Remangiona				11 g. g ud Mara																	X		X		
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Cardinosarooma, metastatis	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	NX	N	N	N	N	N	N
Malignant lymphoma, 1995 Malignant lymphoma, histiosytis type Granulosytis Isukemia		x			x	ă,		Ā	x		•			•								X			x

ANDER	0 3 1	0 1 5	0 2 8	0 4 5	0 1 1	002	003	004	006	0 0 9	0 1 8	0 1 9	0 2 0	022	0 2 4	025	0 2 6	0 3 3	0 3 6	0 4 0	0 4 2	0 4 6	0 4 7	0 4 8	0 5 0	
weeks on Study	099	1 0 0	1 0 0	1 0 0	102	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Skin Papilloma, NOS Subcutaneous tissue Carciacearcoma Hemangiosarcoma, metastatic	++++	++	+	+	+	+	+	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ x +	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	*50 1 *50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar cardinoma Cardinosaroma, metastatic	+	+	+ X X	+	+ X	+	+	*	+	+	+	*	+	+	+	+		+	+	+	+	*	+ X	+	*	49 6 5 1
Trachea	+		+	+	+	+	+	+	-	+	_	+	+	+	+	-	+	+	+	+	+	+	+	-		29
HEMATOPOLETIC SYSTEM Bone marrow Spieen Hemagricus mome	+++	+ +	+++	+	+++	+++	+	+ +	+ +	+ +	+ +	+ +	+ +	++ **	- +	+ +	+	+	+ +	++**	+	- +	+ +	+ +	+ +	44 48 2
Malig. lymphoma, histiocytic type Lymph nodes Thymus	X - +	+ +	+ +	<u>+</u>	<u>+</u>	Ŧ	+ +	-+	+ +	+ +	++	+ +	-	-	-	+	- +	+	Ŧ	+ +	+ +	+ +	+ +	<u>+</u>	- +	1 36 36
CIRCULATORY SYSTEM Heart Hemangiosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+.	+	ź	+	+	+	+	+	+	+	+	+	+	+	50 1
DIGESTIVE SYSTEM Salivary gland Liver Bile duct	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	+++	++++	+++	++++	++++	+++	++++	+++	++++	+++	+++	++++	+++++	++++	++++	++++	++++	++++	++++	++++	++++	50 49 49
Gallbladder & common bile duct Pancreas Esophagus Stomach	++++++	++++	Ň + + +	· + + + +	.+++	.+++	·++++	+ + + +	·+++	++++	·++++	++++	·++++	+++++++++++++++++++++++++++++++++++++++	.+++	++++	++++	+ + + +	· + + X	N + + +	N - + +	· + + - +	++++	.++++	·+++	*50 47 46 50
Small intestine Large intestine	+++	+++	+++	+++	+++	+++	+++	++	+++	+++	+++	+++	+ +	++	+++	++++	+++	++	+++	++++	+++	+++	+++	++++	+++	46 49
URINARY SYSTEM Kidney Urinary bladder	+++	+++	+ +	+	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+++	+ +	+ +	50 48
ENDOCRINE SYSTEM Pituitary Charmenhobe edenome	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal Adenoma, NOS	+	+	+	+	+	+	+	*	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Tayroid Parathyroid Pancreatic islets Islet cell adenoma	+ +	+++++	+ - +	+_+++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ - +	+ - +	+ + +	+-++	+ + +	+ + +	+++ + X	+ + +	+ + +	+ + +	+ + +	÷ +	+ + +	+ - +	+ +	++-	+ - +	++++	+ - +	+_ +	46 17 47 1
REPRODUCTIVE SYSTEM Mammary gland Adapome, NOS Adapome NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
Adenosquamous carvinoma Carvinosarcoma Utarus Laiomyona Laiomyona	+	+	X +	+	+	+	+	+	+	+	+	+	+ X	+	*	+	+	+	+	+	+	+	+	+	+	1 1 49 1
Endometrial stromal sarcoma Hemangiosarcoma Ovary Granulosa cell tumor Hemangioma	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	1 1 49 1 2
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	, +	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Carvinosarcoma, metastatic	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
Malignant lymphoma, NOS Malignant lymphoma, histiocytic type Granulocytic leukemia		x	X	X											X											8 2 4

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

* Animals necropsied

ANIHAL NUMBER	040	036	004	028	0 9 5	0 2 1	019	0 4 7	0 1 7	0 % 0	0 % 0	010	943	049	000	050	0 % 3	012	014	0	0 3 8	44	039	0 4 8	3 7
WEEKS ON STUDY	000	006	097	048	0 5 3	064	0 6 8	088	0 7 1	072	075	076	076	077	078	80	89	85	085	080	004	000	095	095	0 9 6
INTEGUMENTARY SYSTEM Skiroma, NOS, invasive Sarcoma, NOS	-+	- +	++	++	+ +	+ +	++	++	++	+	+ +	++	++	++	++	++	++	++	+ +	+++	++	++	++	++	++
RESPIRATORY SYSTEM Lungs and bronchi Alveolarbronchiolar adenoma Alveolarbronchiolar cardinoma Sarcoma, NOS, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+ x+	+	+	+	+	+	+	+	+	+	+ X -	+	+	* ~	+
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	++++	++++	-+++	-++-	++	++++	++++	+++-	++++	++++	++++	++++	+++-	++++	++++	+++-	++++	++++	++++	+++++	++++	+++++	++++	++++	++++
CIECULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
INGESTIVE SYSTEM Selivery gland Liver Hepatocellular carcinoma Bile duct Galiblader & common bile duct Papillery adenoma Pancreas Esophagus Stomach Small intestine Larre intestine	++ +2 +++++	++ +Z +++++	++ +2 +1+1	+ ++ + +++	++ +Z +++++	++ +N ++++1	++ +Z +++++	++ ++ +++++	++ ++ +++++	++ +2 ++++1	++ +Z +++++	++ ++ +++++	++ ++ +++++	++ ++ +++++	++ ++ +++++	++ ++ ++++++	++ ++ +++++	++ ++ +++++	++ ++ +++++	++W++ +++++	++ ++ +1+++	++ ++ +++++	++ ++ +++++	++ ++ +++++	++ ++ +++++
URINARY SYSTEM Ridney Urinary bladder	++	+++	++	+++	+	+	++	+++	++	+	+++	+	++	+++	<u>+</u>	+++	+	+	<u>+</u>	+++	+++	+	++	++	++
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Thyroid Parathyroid	++++	- ++-	+ + = =		+ +++-	+ + + + -	+ +++	-++-	+ + + + + +	+ +++	+ +++	+ + =	+ +++	+ + + + -	+ + + + + +	+ +++	+ ++	+ ++=	+ +++	+ +++	+ ++=	+ +++	+ +++	+ +++	+ +++
REPRODUCTIVE SYSTEM Mammary glaad Adenocarcinoma, NOS Carcinosarcoma Utarus Carcinoma, NOS Leiomyoma Leiomyoma Leiomyosarcoma Ovary	++++++	+++	N +	N + +	N + +	+++++	+ X + +	N + X -	++++	+ x + +	+++++	+++++	+++++	+++	+ + +	+++++	+ X +	+ + +	+ + +	++++	+ + *	+ + +	N + +	x + +	+ H + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Muscle Leiomyosarcoma, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organa, NOS Adenocarrinoma, NOS, metastatic Malignant lymphoma, NOS Malignant lymphoma, histocytic type Granulocytic leukamia	N	N	N X	N X	N	N X	N	N X	N	NX	N	N	N	N	N	N	N	N	N X	N	N	N X	N X	N X	N

TABLE 84. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL: HIGH DOSE

+: Tissue examined microscopically -: Required tissue not examined microscopically X: Tumor incidence N: Necrosy, no autolysis, no microscopic examination S: Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolymis M: Animissing B: No necropsy performed

ANTHAL NUMBER	84	1	204	1 3	007	005	004	005	008	000	15	0 1 6	18	0 10 0	024	0 00	027	0 3 1	039	0 3 3	0 3 5	4	42	045	4	TOTAL
WEEKS ON STUDY	98	100	100	1 0 3	1 0 4	105	105	1 0 5	105	105	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	105	105	1 0 5	1 0 5	105	1 0 5	1 0 5	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Skin paint site Satoona, NOS, invasive	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	47
Subcutaneous tiesue Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	*50
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar cartinoma Sarooma, NOS, metastatic Traches	+	+	+	+	+ x -	+	+	±	+	* *	+	+	+	+	+	+	+	+	+ X -	*	+	* *	+	* *	+	50 6 3 1
HERATOPOLITIC SYSTEM	<u>}</u>																·									
Bone marrow	1 -	+	+	+	ī	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymph nodes	17	Ξ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ξ.	Ŧ	Ŧ	÷	÷	Ŧ	-	Ŧ	Ŧ	Ξ	Ŧ	Ŧ	÷	Ŧ	Ŧ	Ŧ	÷	Ŧ	44
Thymus	+	-	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	41
CURCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM																				·····						
Selivery gland Liver	‡	+	+	+	+	‡	+	+	+	++	+	++	++	++	+++	+	++	++	+	+	+	+	+++	++	+	49 50
Hepatocellular carcinoma	١.																									1
Gailbladder & common bile duct	Ň	+	+	Ŧ	Ň	Ň	÷	÷	Ŧ	+	÷	+	÷	Ŧ	÷	÷	÷	Ŧ	+	Ŧ	Ŧ	Ť	÷	+	Ŧ	*50 1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷.	+	+	+	50
Esophagus	1 *	+	+	+	+	+	+	-	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	45
Stomach Small intestine	1 ±	- ‡	-	+	÷	- ‡-	- ‡-	+	+	+	÷	+	7	+	-	-	+	Ŧ		Ŧ	-	÷	÷	+	+	45
Large intestine	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	+	÷	÷	÷	÷	47
URINARY SYSTEM Kidney Urinary bladder	+	++	+	+	+	++	+	+++	+++	+	+	++	‡	++	+	+	+	+	++	++	++	+	+	+	<u>+</u>	50 45
ENDOCRINE SYSTEM	<u> </u>							·		·			<u> </u>					<u> </u>								
Chromophobe adenoma	1	Ŧ	+	Ŧ	Ŧ	+	Ŧ	+	x	Ŧ	x	Ŧ	T	Τ.	• *	T	Ŧ	Ŧ	Ŧ	x	T	Ŧ	Ŧ	Ŧ	Ŧ	3
Adrenal	1 *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Parathyroid	1	-	÷	Ξ	Ŧ	1	-	Ξ	Ξ	Ξ	Ŧ	Ξ	÷	Ξ	Ξ	Ŧ	Ŧ	Ŧ	-	÷	÷	Ŧ	-	Ξ	Ξ	21
REPRODUCTIVE SYSTEM								·										,								
Mammary gland Adenocarcinoma, NOS	+	*	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 5
Uterus Carcinome. NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leiomyome	ļ													X												2
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* +	+	+	+	48
NERVOUS SYSTEM	┝														***	· · · ·		<u> </u>								
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
MUSCULOSKELETAL SYSTEM Muscie Leiomycearcoma, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	*50 1
ALL OTHER SYSTEMS	-	24	N	N	N		N	N	N	N	N	N	N	N	N.	N	N	N	N	N	N	N	N	N	N	•50
Adenocarcinoma, NOS, metastatic		14		14	14	14	14	14	14	14	14	14	14	14	74	14	14	- 14	14	14	14	14	14	14	**	1
Malignant lymphoma, NOS Malignant lymphoma, histiocytic type Granulocytic leukemia	X		X	X									X					X								9 1 3

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHÓLOGY OF FEMALE MICE: HIGH DOSE (Continued)

.

* Animals necropsied

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

	CONTRO	DL (VEH)	LOW	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
INTEGUMENTARY SYSTEM						
#SKIN PAINT SITE	(48)		(49)		(49)	
EPIDERMAL INCLUSION CYST			1	(2%)		
EDEMA, NOS			1	(2%)		
*SKIN	(50)		(50)	(00)	(50)	
A CANTHORIS			1	(2%)	•	(90)
ACAN I NODIO ACAN I NODIO	(50)		(50)		(50)	(270)
HEMORRHAGE	(00)		(30)	(296)	(00)	
ABSCESS NOS			•	(2,2)	1	(296)
GRANULOMA, NOS					i	(2%)
RESPIRATORY SYSTEM					··········	
#TRACHEA	(46)		(50)		(47)	
INFLAMMATION, SUPPURATIVE	,,				2	(4%)
#LUNG/BRONCHUS	(49)		(50)		(50)	
LYMPHOCYTIC INFLAMMATORY INFILT	R		1	(2%)		
#LUNG	(49)		(50)		(50)	
ATELECTASIS	1	(2%)				
CONGESTION, NOS	1	(2%)	2	(4%)	2	(4%)
INFLAMMATION, INTERSTITIAL	1	(2%)			1	(2%)
PNEUMONIA, ASPIRATION		(0.7.)			1	(2%)
INFLAMMATION, ACUTE/CHRUNIC	1	(2%)	0	(00)	0	(40)
INFLAMMATION, CHRUNIC FUCAL	1	(2%)	3	(0%)	Z	(4%)
FIDRUDID, FUUAL Hyderddi Acia - Adeniow A Tolic	1	(2%)			1	(90)
HINCALVEOL	(40)	(470)	(50)		(50)	(270)
HISTIOCYTOSIS	(49)	(6%)	(00)	(2%)	2	(4%)
						<u> </u>
HEMATOPOIETIC SYSTEM						
#BONE MARROW	(49)		(49)	(0	(49)	
HYPOPLASIA, NOS			1	(2%)		(97)
n i perplasia, nus Myfi ofiddosis	1	(90)			1	(2%)
4SDLEEN	(50)	(2%)	(50)		(50)	
INFLAMMATION FOCAL GRANULOMAT	UIS UUS		(00)		1	(2%)
FIBROSIS	1	(2%)			-	(=,
FIBROSIS, FOCAL	2	(4%)	2	(4%)	4	(8%)
NECROSIS, FOCAL	1	(2%)				
HEMOSIDEROSIS	7	(14%)	4	(8%)	3	(6%)
HEMATOPOIESIS	6	(12%)	3	(6%)	1	(2%)
#MANDIBULAR L. NODE	(49)		(50)		(49)	
EDEMA, NOS			1	(2%)		
HYPERPLASIA, NOS	1	(2%)	_			
PLASMACYTOSIS	(40)		1	(2%)	(40)	
#MEDIASTINAL L. NUDE	(49)		(60)		(49)	(90)
HEMOSIDEROSIS	່າ	(496)			T	(470)
#HEPATIC LYMPH NODE	(4 9)		(50)		(49)	
INFLAMMATION, GRANULOMATOUS	(1	(2%)	(-0)	
HYPERPLASIA, NOS			1	(2%)		
#PANCREATIC L. NODE	(49)		(50)		(49)	
HEMORRHAGE			1	(2%)	• •	
#LUMBAR LYMPH NODE	(49)		(50)		(49)	
HEMOSIDEROSIS			1	(2%)		

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL

•

co	ONTRO	OL (VEH)	LOW	DOSE	HIGH	DOSE
HEMATOPOIETIC SYSTEM (Continued) #BENALLYMPH NODE	(49)		(50)		(49)	
EDEMA NOS	(47)	,	(00)		(43)	(296)
#LIVER	(50)	`	(50)		(50)	(2%)
HEMATOPOIESIS	1	(2%)	(00)		1	(2%)
#THYMUS	(37))	(33)		(43)	
HEMORRHAGE			1	(3%)		
CIRCULATORY SYSTEM					<u>, , , , , , , , , , , , , , , , , , , </u>	
#LUNG	(49))	(50)		(50)	
PERIVASCULITIS	1	(2%)	(00)		(00)	
#HEART/ATRIUM	(50))	(50)		(50)	
THROMBOSIS, NOS	1		1	(2%)	1	
#MYOCARDIUM	(50))	(50)		(50)	
DEGENERATION, NOS	39	(78%)	46	(92%)	44	(88%)
*PULMONARY ARTERY	(50))	(50)		(50)	
MINERALIZATION	7	(14%)	6	(12%)	7	(14%)
LYMPHOCYTIC INFLAMMATORY INFILTR	1	(2%)				
*PANCREATIC ARTERY	(50))	(50)		(50)	
DEGENERATION, MUCOID	1	(2%)				
*VEIN	(50))	(50)		(50)	
DILATATION, NOS			1	(2%)		
#LIVER	(50)		(50)		(50)	
THROMBOSIS, NOS	1	(2%)				
THROMBUS, ORGANIZED					1	(2%)
#ADRENAL	(50))	(50)		(50)	
THROMBOSIS, NOS			1	(2%)		
DIGESTIVE SYSTEM						
#SALIVARY GLAND	(50))	(49)		(50)	
ATROPHY, FOCAL	1	(2%)	• •			
#LIVER	(50)		(50)		(50)	
INFLAMMATION, FOCAL GRANULOMATOU	S 5	(10%)	4	(8%)	4	(8%)
DEGENERATION, CYSTIC	1	(2%)	1	(2%)	3	(6%)
DEGENERATION, HYDROPIC			1	(2%)		
NECROSIS, FOCAL			2	(4%)	1	(2%)
NECROSIS, COAGULATIVE	1	(2%)	1	(2%)	1	(2%)
LIPOIDOSIS	6	(12%)	1	(2%)	2	(4%)
BASOPHILIC CYTO CHANGE	2	(4%)	2	(4%)	1	(2%)
GROUND-GLASS CYTO CHANGE	1	(2%)	4	(8%)	3	(6%)
FOCAL CELLULAR CHANGE	1	(2%)				
CLEAR-CELL CHANGE	1	(2%)				(0~)
ANGIEUTASIS	Z	(4%)			(50)	(2%)
#PORTAL TRACT	(00)	(40)	(50)		(60)	
INFLAMMATION, CHRONIC	2	(4%)			(EQ)	
#LIVER/CENTRILUBULAR	(50)	(00)	(50)		(00)	
I IDOIDOGIG	1	(270)				
	(50)	(270)	(50)		(50)	
UVDEDDIASIA NOS	(00)	(760.)	(50)	(0.04)	(00)	(904)
#DANCRFAS	(50)	(10%)	(50)	(80%)	(49)	
ACCESSORV STRUCTURE	(00)		(00)		(48 <i>0</i>) 1	(294)
DILATATION/DUCTS	1	(29)			L	(470)
#PANCREATIC ACINIIS	(50)	(470)	(50)		(40)	
ATROPHY NOS	(00)	(1496)	10	(20%)	(48)	(31%)
ATROPHY, FOCAL	Å	(8%)	1	(2%)	3	(6%)
#ESOPHAGUS	(48)	(0.0)	(49)		(49)	
INFLAMMATION, SUPPURATIVE	(20)		(10)		1	(2%)
#GASTRIC SUBMUCOSA	(50)		(50)		(49)	/ - /
EDEMA, NOS	(00)				1	(2%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THETWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTRO)L (VEH)	LOW	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM (Continued)						
#FORESTOMACH	(50)	(- -)	(50)		(49)	
ULCER, NOS	1	(2%)				(001)
EOSINOPHILIC INFILTRATE		(00)			1	(2%)
HYPERPLASIA, BASAL CELL	1	(270)			1	(2%)
URINARY SYSTEM						
#KIDNEY	(50)		(50)		(50)	
CYST. NOS	1	(2%)	1	(2%)		
LYMPHOCYTIC INFLAMMATORY INFI	LTR				1	(2%)
ABSCESS, NOS	;				1	(2%)
NEPHROPATHY	47	(94%)	46	(92%)	48	(96%)
#KIDNEY/CORTEX	(50)		(50)		(50)	
ABSCESS, NOS					1	(2%)
FIBROSIS	1	(2%)				
#KIDNEY/TUBULE	(50)		(50)		(50)	
ABSCESS, NOS	1	(2%)			10	
PIGMENTATION, NOS	44	(88%)	47	(94%)	42	(84%)
#KIDNEY/PELVIS	(50)	(00)	(50)		(50)	
HIPERPLASIA, EPITHELIAL	(40)	(2%)	(50)		(49)	
#URINARI DLADDER	(49)	(90)	(80)		(40)	
INFLAMMATION, CHRUNIC	(50)	(270)	(50)		(50)	
INFLAMMATION, SUPPURATIVE	1	(2%)	(00)			
	<u></u>					
ENDOCRINE SYSTEM	(50)		(10)		(40)	
#PITUITARY	(50)	(00)	(48)	(60)	(49)	(ACL)
UISI, NOS HEMODDHACIC CVST	4	(370)	3	(0%)	2	(4170)
FOCAL CELLULAR CHANGE	1	(2%)				
HYPERPLASIA FOCAL	5	(10%)	9	(19%)	7	(14%)
ANGIECTASIS	Ũ	(10,0)	•	(10,0)	i	(2%)
#ADRENAL	(50)		(50)		(50)	(=)
CONGESTION, NOS	1	(2%)				
DEGENERATION, LIPOID					1	(2%)
ATROPHY, DIFFUSE			1	(2%)		
HYPERPLASIA, FOCAL			1	(2%)		
ANGIECTASIS			2	(4%)		
#ADRENAL CORTEX	(50)		(50)		(50)	
CYST, NOS					1	(2%)
DEGENERATION, LIPOID	5	(10%)	6	(12%)	1	(2%)
HYPERPLASIA, FOCAL	1	(2%)	2	(4%)	4	(8%)
ANGIECTASIS	1	(2%)			(
#ADRENAL MEDULLA	(50)		(60)	(00)	(00)	
HYPERPLASIA, NUS	•	(801)	3	(10%) (1404)		(104)
HIPERPLASIA, FUCAL	3 (40)	(070)	(40)	(1470)	(40)	(10%)
	(49)		(ቁህ) 1	(29)	(4887) 1	(24)
ATDODIN FOCAL	1	(99)	-	(470)	•	
	1		-	(100)	0	(BOL)
HVDERDIASIA COPII	A	(896)		((()))		
HYPERPLASIA, C-CELL	4 (30)	(8%)	5 (30)	(10%)	3 (35)	(070)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTRO	L (VEH)	LOW	DOSE	HIGH	DOSE
REPRODUCTIVE SYSTEM		<u></u>				
*MAMMARY GLAND	(50)		(50)		(50)	
GALACTOCELE			1	(2%)	1	(2%)
INFLAMMATION, SUPPURATIVE	1	(2%)				
INFLAMMATION, GRANULOMATOUS	1	(2%)				
LACTATION	12	(24%)	12	(24%)	11	(22%)
*MAMMARY DUCT	(50)		(50)		(50)	
HYPERPLASIA, NOS	1	(2%)	1	(2%)		
*MAMMARY LOBULE	(50)		(50)		. (50)	
HYPERPLASIA, NOS	6	(12%)	2	(4%)	(
*PREPUTIAL GLAND	(60)	(00)	(50)		(50)	
DILATATION, NOS	1	(2%)				
	1	(270)				
INFLAMMATION, SUPPORATIVE	1	(270)				
HYDERDI ACLA NOC	1	(270)				
A I FERFLADIA, NOS 4000statt	(49)	(470)	(49)		(48)	
INFLAMMATION SUDDUDATIVE	1	(94)	(48)		(40)	
INFLAMMATION, SUPPORTING	2	(496)	1	(296)	1	(296)
INFLAMMATION, CHRONIC FOCAL	1	(296)	•	(2,0)	2	(495)
INFLAMMATION, CHRONIC SUPPLICATION	VE 2	(496)			-	(4,0)
INFLAMMATION FOCAL GRANULOMAT	ous	(4,0)			1	(296)
NECROSIS, FOCAL	1	(2%)			-	(2,0)
ATROPHY, NOS	ĩ	(2%)				
HYPERPLASIA, EPITHELIAL	2	(4%)				
HYPERPLASIA, FOCAL	2	(4%)	4	(8%)	8	(17%)
#TESTIS	(50)		(50)		(50)	
MINERALIZATION	1	(2%)				
ATROPHY, NOS	4	(8%)	1	(2%)	1	(2%)
HYPERPLASIA, INTERSTITIAL CELL	1	(2%)	2	(4%)	3	(6%)
#TESTIS/TUBULE	(50)		(50)		(50)	
MINERALIZATION	1	(2%)			1	(2%)
*EPIDIDYMIS	(50)		(50)		(50)	
DILATATION, NOS	1	(2%)				
HYPERPLASIA, EPITHELIAL			1	(2%)		
NERVOUS SYSTEM						
#LATERAL VENTRICLE	(50)		(50)		(50)	
DILATATION, NOS			1	(2%)	(20)	
*CHOROID PLEXUS	(50)		(50)		(60)	(00)
LYMPHOCYTIC INFLAMMATORY INFILT	R		(50)	•	(50)	(296)
#BRAIN	(60)		(00)	(10)	(60)	
HEMORRHAGE			Z	(470)		
SPECIAL SENSE ORGANS						
*EYE	(50)		(50)		(50)	
CATARACT	15	(30%)	2	(4%)	2	(4%)
	(50)		(60)	(40)	(60)	
MINERALIZATION	•	(00)	2	(4%)	0	(404)
Metapladia, Udseuus #eve/detina	3 (RO)	(070)	(50)	(470)	(50)	(4970)
ATRODHV NOS	(00)	(4296)	(00)	(8%)	(UU) K	(10%)
+RAR	(50)		(50)		(60)	\ • ¥ /¥ /
INFLAMMATION, ACUTE/CHRONIC	1	(2%)	((00)	
MUSCILOSKELETAL SYSTEM						
*JOINT	(50)		(50)		(50)	
INFLAMMATION PROLIFERATIVE	(23)		(12)		1	(2%)
					-	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THETWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
BODY CAVITIES			
*ABDOMINAL CAVITY	(50)	(50)	(50)
NECROSIS, FAT	2 (4%)	1 (2%)	
*MESENTERY	(50)	(50)	(50)
NECROSIS, FAT	1 (2%)		
ALL OTHER SYSTEMS ADIPOSE TISSUE			
NECROSIS, FAT		3	1
SPECIAL MORPHOLOGY SUMMARY NONE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- mm (40	

1

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
• NUMBER OF ANIMALS NECROPSIED

CC	NTRO	OL (VEH)	LOW	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50		50 50		50 50	
INTEGUMENTARY SYSTEM						<u></u>
*SKIN	(50)	(0.7)	(50)		(50)	
EPIDERMAL INCLUSION CIST	I	(2%)	1	(996)		
ABSCESS, NOS			•	(2,0)	1	(2%)
FIBROSIS, FOCAL	1	(2%)			-	
*SUBCUT TISSUE ABSCESS, NOS	(50)		(50)		(50) 1	(2%)
RESPIRATORY SYSTEM					#	
*NASAL CAVITY	(50)		(50)		(50)	
INFLAMMATION, SUPPURATIVE	(50)		(50)	(2%)	(48)	
ATELECTASIS	(00)		(50)	(4%)	(48)	
CONGESTION, NOS			1	(2%)		
BRONCHOPNEUMONIA, ACUTE			1	(2%)		
INFLAMMATION, CHRONIC FOCAL	2	(4%)	1	(2%)	1	(2%)
PIGMENTATION, NOS		(97)			1	(2%)
#LUNG/ALVEOLI	(50)	(270)	(50)		(48)	
HISTIOCYTOSIS	2	(4%)	1	(2%)	1	(2%)
HEMATOPOIETIC SYSTEM						
#BONE MARROW	(49)		(50)	(0.2.)	(49)	
INFLAMMATION, FOCAL GRANULUMATOU	5 1	(994)	I	(2%)	1	(2%)
MYELOFIBROSIS	1	(2%)				
#SPLEEN	(50)	(= /0)	(48)		(50)	
INFLAMMATION, GRANULOMATOUS			1	(2%)		
GRANULOMA, NOS	-		•	(10)	1	(2%)
INFLAMMATION, FOCAL GRANULOMATOU	5 1	(994)	2	(4%)	1	(296)
HEMOSIDEROSIS	26	(52%)	21	(44%)	29	(58%)
LYMPHOID DEPLETION	1	(2%)				
HEMATOPOIESIS	10	(20%)	3	(6%)	18	(36%)
#SPLENIC CAPSULE	(50)	(9.04.)	(48)		(50)	
#LYMPH NODE	(49)	(270)	(48)		(45)	
HYPERPLASIA, LYMPHOID	1	(2%)	((
#MANDIBULAR L. NODE	(49)		(48)		(45)	
HEMOSIDEROSIS	(10)		1	(2%)		
#MEDIASTINAL L. NODE HEMOSIDEROSIS	(49)		(40)	(994)	(40)	
#LIVER	(50)		(50)		(50)	
HEMATOPOIESIS	(,		(00)		1	(2%)
#THYMUS	(40)		(44)		(45)	
CYST, NOS HYPERPL ASIA, EPITHE LIAL	1	(3%)	1	(2%)		
CIRCULATORY SYSTEM					****	
#MANDIBULAR L. NODE	(49)		(48)		(45)	
LYMPHANGIECTASIS			1	(2%)		
#LUNG DEDIVAGOUTITE	(50)	(99)	(50)		(48)	
FERIVAQUEITIQ	1	(470)				

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THETWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL

(CONTRO	L (VEH)	LOW	DOSE	HIGH	DOSE
CIRCULATORY SYSTEM (Continued)						
#MYOCARDIUM	(50)		(50)		(49)	
MINERALIZATION	(00)		1	(2%)	(10)	
DEGENERATION, NOS	28	(56%)	22	(44%)	36	(73%)
*CORONARY ARTERY	(50)		(50)	· · ·	(50)	
MINERALIZATION			1	(2%)		
*PULMONARY ARTERY	(50)		(50)		(50)	
MINERALIZATION	2	(4%)	9	(18%)	6	(12%)
*MENINGEAL ARTERY	(50)		(50)		(50)	
MINERALIZATION			1	(2%)		
DIGESTIVE SYSTEM						
#LIVER	(50)		(50)		(50)	
HEMORRHAGIC CYST	1	(2%)	(,		(00)	
INFLAMMATION, CHRONIC FOCAL	5	(10%)	2	(4%)	3	(6%)
INFLAMMATION, GRANULOMATOUS	-	(ī	(2%)	1	(2%)
INFLAMMATION, FOCAL GRANULOMATO	US 12	(24%)	10	(20%)	15	(30%)
NECROSIS, FOCAL					1	(2%)
LIPOIDOSIS	1	(2%)	3	(6%)	1	(2%)
BASOPHILIC CYTO CHANGE	4	(8%)			6	(12%)
GROUND-GLASS CYTO CHANGE	1	(2%)	2	(4%)	6	(12%)
FOCAL CELLULAR CHANGE	1	(2%)			1	(2%)
EOSINOPHILIC CYTO CHANGE			1	(2%)		
CLEAR-CELL CHANGE	1	(2%)	1	(2%)	1	(2%)
HEPATOCYTOMEGALY					1	(2%)
HYPERTROPHY, FOCAL	2	(4%)				
ANGIECTASIS					1	(2%)
#HEPATIC CAPSULE	(50)		(50)		(50)	
INFLAMMATION, CHRONIC	1	(2%)				
#PORTAL TRACT	(50)		(50)		(50)	
INFLAMMATION, ACUTE/CHRONIC			1	(2%)		
#LIVER/CENTRILOBULAR	(50)		(50)		(50)	
NECROSIS, NOS	1	(2%)				
NECROSIS, COAGULATIVE					1	(2%)
LIPOIDOSIS			1	(2%)		
#LIVER/PERIPORTAL	(50)		(50)		(50)	
LIPOIDOSIS	1	(2%)			2	(4%)
#LIVER/HEPATOCYTES	(50)		(50)		(50)	
HYPERTROPHY, FOCAL			1	(2%)	1	(2%)
#BILE DUCT	(50)		(50)		(50)	
HYPERPLASIA, NOS	12	(24%)	21	(42%)	13	(26%)
#PANCREATIC DUCT	(49)		(49)		(50)	
HYPERPLASIA, FOCAL					1	(2%)
#PANCREATIC ACINUS	(49)		(49)		(50)	
ATROPHY, NOS	11	(22%)	6	(12%)	9	(18%)
ATROPHY, FOCAL			1	(2%)	1	(2%)
ATROPHY, DIFFUSE	1	(2%)	(7.0)		(2.2.)	
#STOMACH	(50)		(60)	(0	(50)	
ULCER, NOS			1	(2%)	(
#GASTRIC MUCOSA	(60)	(A A)	(50)		(50)	
CYST, NOS	1	(2%)	(= -		(7.6)	
#GASTRIC SUBMUCOSA	(50)		(50)		(50)	
EDEMA, NOS			1	(2%)		
#FURESTUMACH	(50)	(0~)	(50)		(50)	(0.01)
INFLAMMATION, ACUTE/CHRONIC	1	(2%)	-	(0)	1	(2%)
HYPERPLASIA, BASAL CELL			1	(2%)	/= **	
#DUODENAL MUCOSA	(49)	(07)	(48)		(50)	
NECROSIS, FUCAL	1	(2%)			/ 2	
#JEJUNUM	(49)	(0.21)	(48)		(50)	
EOSINOPHILIC GRANULOMA	1	(2%)				

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE
TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

••

	CONTRO	DL (VEH)	LOW	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM (Continued)		·····				
#COLON	(50)		(50)		(50)	
PARASITISM			1	(2%)		
#COLONIC CRYPT OF LIEBERKUHN	(50)		(50)		(50)	
CYST, NOS	1	(2%)				
#CECUM	(50)		(50)		(50)	
INFLAMMATION, CHRONIC HYPERPLASIA, EPITHELIAL					1	(2%) (2%)
TIDINADY SVSTEM					q	·
#KIDNEV	(50)		(50)		(50)	
MINERALIZATION	1	(296)	(30)	(1296)	(30)	(896)
LYMPHOCYTIC INFLAMMATORY INFIL	TR		1	(296)	-	(0, k)
NEPHROPATHY	24	(48%)	28	(56%)	33	(66%)
#KIDNEY/CORTEX	(50)	(40 %)	(50)		(50)	$(\mathbf{U}\mathbf{U},\mathbf{v})$
MINERALIZATION	1	(296)	(00)			
CALCIFICATION FOCAL	1	(2%)				
#KIDNEY/TUBULE	(50)	(2,0)	(50)		(50)	
MINERALIZATION	(00)		1	(2%)	(00)	(2.96)
NEPHROSIS, NOS			2	(4%)	-	(2,0)
PIGMENTATION, NOS	48	(96%)	48	(96%)	48	(96%)
#KIDNEY/PELVIS	(50)	((50)		(50)	
CALCULUS, MICROSCOPIC EXAMINATIO	DN		(/		2	(4%)
MINERALIZATION	1	(2%)				(,
HYPERPLASIA, EPITHELIAL	1	(2%)			1	(2%)
#URINARY BLADDER	(50)		(45)		(49)	
INFLAMMATION, ACUTE/CHRONIC			1	(2%)		
HYPERPLASIA, EPITHELIAL			1	(2%)		
ENDOCRINE SYSTEM						
#PITUITARY	(50)		(49)		(50)	
CYST, NOS	15	(30%)	14	(29%)	19	(38%)
CYTOPLASMIC VACUOLIZATION		((===,	1	(2%)
HYPERPLASIA, FOCAL	7	(14%)	5	(10%)	7	(14%)
ANGIECTASIS	3	(6%)	4	(8%)	3	(6%)
#ADRENAL	(49)		(50)		(50)	
ACCESSORY STRUCTURE			1	(2%)		
CYST, NOS					1	(2%)
ANGIECTASIS			1	(2%)	1	(2%)
#ADRENAL CORTEX	(49)		(50)		(50)	
DEGENERATION, NOS	1	(2%)				
DEGENERATION, LIPOID	7	(14%)	10	(20%)	7	(14%)
FOCAL CELLULAR CHANGE			1	(2%)	1	(2%)
ATROPHY, NOS			1	(2%)		
HYPERTROPHY, FOCAL	1	(2%)				
HYPERPLASIA, FOCAL	4	(8%)	1	(2%)	2	(4%)
ANGIECTASIS			1	(2%)		
#ADRENAL MEDULLA	(49)		(50)	(0.2)	(50)	
UIST, NUS	-	(0.7)	1	(2%)		
FIBRUSIS	1	(2%)				
ATRUPHI, NUS	1	(2%)				
n i perplasia, nus	1	(2%)				(A M)
n i perplasia, fucal	2	(41%)			1	(2%)
	(49)	(100)	(50)	(100)	(49)	
HYPERPLASEA, C-CELL	6	(1296)	6	(12/96)	7	(14446)

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE
TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTRO	DL (VEH)	LOW	DOSE	HIGH	DOSE
REPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(50)		(50)	
GALACTOCELE	1	(2%)	6	(12%)	1	(2%)
CYST. NOS	-		1	(2%)	1	(2%)
INFLAMMATION, CHRONIC	1	(2%)	-		_	•••••
HYPERPLASIA, FOCAL	-	x =,	1	(2%)		
LACTATION	34	(68%)	32	(64%)	38	(76%)
*MAMMARY DUCT	(50)		(50)		(50)	•
HYPERPLASIA, NOS			2	(4%)		
HYPERPLASIA, FOCAL			2	(4%)		
*MAMMARY LOBULE	(50)		(50)		(50)	
HYPERPLASIA, NOS	1	(2%)	2	(4%)	4	(8%)
CLITORAL GLAND	(50)		(50)		(50)	
DILATATION, NOS			1	(2%)		
INFLAMMATION, ACUTE/CHRONIC	1	(2%)				
HYPERPLASIA, NOS	1	(2%)	1	(2%)		
#UTERUS/ENDOMETRIUM	(50)		(50)		(50)	
FIBROSIS			2	(4%)	3	(6%)
HYPERPLASIA, CYSTIC					1	(2%)
#OVARY	(49)		(50)		(50)	
CYST. NOS	1	(2%)	2	(4%)	2	(4%)
INFLAMMATION, CHRONIC			1	(2%)		
INFLAMMATION, GRANULOMATOUS	1	(2%)				
NERVOUS SYSTEM						
#LATERAL VENTRICLE	(49)		(50)		(50)	
DILATATION, NOS			1	(2%)		
*CHOROID PLEXUS	(50)		(50)		(50)	
MINERALIZATION			1	(2%)		
SPECIAL SENSE ORGANS						
*EYE	(50)		(50)		(50)	
CATARACT	13	(26%)	2	(4%)	3	(6%)
*SCLERA	(50)		(50)	•	(50)	
METAPLASIA, OSSEOUS	1	(2%)				
*EYE/CORNEA	(50)		(50)		(50)	
INFLAMMATION, SUPPURATIVE			1	(2%)		
*EYE/CHOROID	(50)		(50)		(50)	
INFLAMMATION, ACUTE/CHRONIC					1	(2%)
*EYE/RETINA	(50)		(50)		(50)	
ATROPHY, NOS	17	(34%)	3	(6%)	3	(6%)
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES	<u> </u>					
*ABDOMINAL CAVITY	(50)		(50)		(50)	
NECROSIS, FAT	2	(4%)	4	(8%)	1	(2%)
•PELVIC PERITONEUM	(50)	-	(50)		(50)	
NECROSIS, FAT			1	(2%)		
*PLEURA	(50)		(50)		(50)	
INFLAMMATION. CHRONIC	1	(2%)				
*MESENTERY	(50)		(50)		(50)	
NECROSIS, FAT	1	(2%)				

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THETWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS NONE		<u> </u>	<u> </u>
SPECIAL MORPHOLOGY SUMMARY NONE			

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY • NUMBER OF ANIMALS NECROPSIED

124

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL

(CONTRO	DL (UNTR)	CONTR	OL (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50		50	
ANIMALS NECROPSIED	50		50		50		50	
ANIMALS EXAMINED HISTOPATH	50		50		50		50	
INTEGUMENTARY SYSTEM								
#SKIN PAINT SITE	(44)		(50)		(49)		(50)	
EDEMA, NOS			1	(2%)	1	(2%)	_	
ULCER, NOS	1	(2%)	1	(2%)	3	(6%)	8	(16%)
INFLAMMATION, ACUTE	1	(2%)	1	(2%)	1	(2%)	8	(16%)
ULCER, ACUTE	1	(2%)						
INFLAMMATION, ACUTE FOCAL		(•		1	(2%)	-	
INFLAMMATION, ACUTE/CHRONIC	1	(2%)	3	(6%)	3	(6%)	5	(10%)
INFLAMMATION, CHRONIC		(07)	3	(6%)	7	(14%)	4	(8%)
INFLAMMATION, CHRONIC FUCAL	1	(2%)						(0.01)
INFLAMMATION, GRANULOMATUU	8						1	(2%)
SCLEROSIS		(00)				(001)	1	(2%)
HYPERKERATUSIS	1	(2%)		(00)	1	(2%)		
ACANTHUSIS	/ F A \		1	(2%)	(FO)	(41%)	(20)	
	(00)		(50)		(00)	(94)	(00)	
DILATATION/DUCIS					1	(270)		
EDEMA, NUS					1	(270)	0	(404)
INTELANMATION ACTIVE					1	(470) (904)	4	(9470)
INFLAMMATION, ACUTE FOCAL					1	(270) (994)	T	(470)
ABCORS NOS			1	(994)	1	(470)		
INFLAMMATION ACUTE/CHRONIC			2	(196)	9	(494)	1	(24)
INFLAMMATION CHRONIC	1	(296)	2	(4%)	-	(4,0)	i	(296)
ABSCESS CHRONIC	1	(2%)	4	(4,2)			•	
HYDERDI ASIA NOS	•		1	(256)				
HVDERDIAGIA EDITHELIAI.			i	(2%)				
ACANTHOSIS			-				1	(2%)
+SUBCUT TISSUE	(50)		(50)		(50)		(50)	(-,-,
EPIDERMAL INCLUSION CVST	(00)		1	(296)	(00)		(00)	
EDEMA NOS			-				1	(2%)
INFLAMMATION, GRANULOMATOU	S						i	(2%)
RESPIRATORY SYSTEM	<u></u>							
#TRACHEA	(23)		(17)		(25)		(22)	
CYST, NOS					1	(4%)		
#TRACHEAL GLAND	(23)		(17)		(25)		(22)	
DILATATION, NOS	1	(4%)	2	(12%)				
#BRONCHIAL GLAND	(50)		(50)		(50)		(50)	
DILATATION, NOS	1	(2%)			1	(2%)		
#LUNG	(50)		(50)		(50)	(* • • •	(50)	
MINERALIZATION	1	(2%)			1	(2%)		
ATELECTASIS	•	(-		1	(2%)	_	
CONGESTION, NOS	3	(6%)	2	(4%)			5	(10%)
EDEMA, NOS	•	(0.0)	1	(2%)	•	(00)	Z	(4%)
HEMORRHAGE	3	(6%)	2	(4%)	3	(6%)	1	(2%)
LYMPHOCYTIC INFLAMMATORY IN	FILTR			(00)			1	(278)
INFLAMMATION, INTERSITTIAL		(90)	1	(270)			1	(270)
PREUMUNIA, ASPIKATIUN	1	(270)					1	(904)
INDIAMATION ACTIVE							1	(294)
INTELEMENTATION, AUGINE	g						9	(494)
COVERAIS NOC	5	(94)					4	
UVDERDIAGIA AI VEAI AR FRITUFI	1 NUM 9	(477) (496)	4	(8%)	1	(296)	9	(496)
HISTICCYTOSIS	A RUTH	(84)	7	(896)	à	(1894)	7	(144)
C160110011001	4	(070)	4	(070)	8	(1070)	1	(1470)

	CONTROL (UI	NTR) CONT	CONTROL (VEH)		LOW DOSE		DOSE
HEMATOPOIETIC SYSTEM							- .
*MULTIPLE ORGANS	(50)	(50)	(50)		(50)	
LEUKEMOID REACTION	1 (2%)			1	(2%)		
PLASMACYTOSIS	1 (2%)		L (2%)				
HYPERPLASIA, LYMPHOID	2 (4%)		l (2%)	1	(2%)	1	(2%)
HEMATOPOIESIS	1 (2%)		(2%)	2	(4%)	3	(6%)
#BONE MARROW	(43)	(47)	(45)		(49)	
HYPERPLASIA GRANULOCYTIC	1 (2%)		(296)	2	(4%)	1	(2%)
#SPLEEN	(44)	(49)	(50)	()	(50)	(= /
HEMOSIDEROSIS	1 (2%)		Ś (6%)	,		1	(2%)
HYPERPLASIA LYMPHOID	- (-,-,			1	(2%)	-	
HEMATOPOIESIS	2 (596)		5 (10%)	6	(12%)	6	(12%)
#LYMPH NODE	(27)	(32)	(37)	(/-/	(35)	(,-,
INFLAMMATION. GRANULOMAT(OUS (1)		<i>,</i>	(,		1	(3%)
SCLEROSIS				1	(3%)	-	()
PLASMACYTOSIS				-	(0.07)	1	(3%)
HYPERPLASIA, LYMPHOID				1	(3%)	2	(6%)
#MANDIBULAR L. NODE	(27)	(32)	(37)		(35)	
INFLAMMATION, ACUTE	• •		(3%)				
HEMOSIDEROSIS						1	(3%)
PLASMACYTOSIS				2	(5%)		
HYPERPLASIA, LYMPHOID						1	(3%)
MASTOCYTOSIS						1	(3%)
#MEDIASTINAL L. NODE	(27)	(32)	(37)		(35)	
HEMORRHAGE	• • • •		(3%)	2	(5%)	1	(3%)
INFLAMMATION, ACUTE				1	(3%)		
#PANCREATIC L. NODE	(27)	(32)	(37)		(35)	
HYPERPLASIA, LYMPHOID				1	(3%)		
#LUMBAR LYMPH NODE	(27)	(32)	(37)		(35)	
PLASMACYTOSIS						1	(3%)
#MESENTERIC L. NODE	(27)	(32)	(37)		(35)	
EDEMA, NOS			(3%)				
HEMORRHAGE	1 (4%)		(3%)	2	(5%)	1	(3%)
INFLAMMATION, ACUTE						1	(3%)
PIGMENTATION, NOS	1 (4%)						
PLASMACYTOSIS				1	(3%)		
HYPERPLASIA, LYMPHOID						1	(3%)
HEMATOPOIESIS	1 (4%)	:	2 (6%)	1	(3%)		
#INGUINAL LYMPH NODE	(27)	(32)	(37)		(35)	
CYST. NOS	. _ · · .		(3%)			-	
HEMORRHAGE						1	(3%)
HYPERPLASIA, LYMPHOID	1 (4%)		(3%)				•••••
#KIDNEY	(50)	(50)	(50)		(50)	
HEMATOPOIESIS	•= •••		(2%)				
#THYMUS	(30)	(43)	(38)		(39)	
ACCESSORY STRUCTURE				1	(3%)		
CYST, NOS	2 (7%)	(6 (14%)	11	(29%)	9	(23%)
INFLAMMATION, CHRONIC			•	1	(3%)		
HYPERPLASIA, LYMPHOID		:	(2%)				
				(60)		(00)	
#THYMIC LYMPHOCYTES	(30)	(43)	(38)		(38)	

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTRO	DL (UNTR)	CONTR	ROL (VEH)	LOWI	DOSE	HIGH	DOSE
CIRCULATORY SYSTEM								
*MULTIPLE ORGANS	(50)		(50)		(50)		(50)	
THROMBOSIS, NOS	1	(2%)						
*SKIN	(50)		(50)		(50)		(50)	
LYMPHANGIECTASIS							1	(2%)
#INGUINAL LYMPH NODE THROMBOSIS, NOS	(27)		(32)		(37)		(35) 1	(3%)
#HEART	(50)		(49)		(50)		(49)	
THROMBOSIS, NOS	1	(2%)			3	(6%)	4	(8%)
EDEMA, NOS			1	(2%)				
INFLAMMATION, ACUTE							1	(2%)
INFLAMMATION, ACUTE/CHRONI	C 1	(2%)	1	(2%)				
INFLAMMATION, CHRONIC	1	(2%)	1	(2%)	1	(2%)		
FIBROSIS	5	(10%)	6	(12%)	12	(24%)	8	(16%)
DEGENERATION, NOS	•	,	-	(-=			1	(2%)
ATHEROSCLEROSIS			1	(2%)			_	
*BLOOD VESSEL	(50)		(50)	(= ,0)	(50)		(50)	
INFLAMMATION ACUTE/CHRONI	n (00)		1	(296)	(00)		1	(296)
+CORONARY ARTERY	(50)		(50)	(2,0)	(50)		(50)	(2,2)
INELAMMATION ACUTE/CHRONI	r (00)		(00)	(20)	(00)		(00)	
+DUI MONARY ARTERY	(50)		(50)	(470)	(50)		(50)	
MINEDALIZATION	(00)	(90)	(30)		(00)		(00)	
TUDONDOSIS NOS	1	(270)					1	(29)
THRUMBUSIS, NUS	(50)		(50)		(50)		(50)	(270)
THIMICARIERI	(50)		(00)		(00)	(90)	(00)	
INFLAMMATION, FIBRINOID			(50)		(50)	(270)	(20)	
*RENAL ARTERY	(50)	(0~)	(50)		(00)		(00)	
INFLAMMATION, FIBRINOID	1	(2%)						
#TESTIS	(49)		(50)		(50)		(50)	
THROMBOSIS, NOS	1	(2%)						
#ADRENAL MEDULLA	(48)		(48)		(49)		(50)	
THROMBOSIS, NOS					1	(2%)		
DIGESTIVE SYSTEM								
#SALIVARY GLAND	(47)		(50)		(50)		(49)	
INFLAMMATION, NECROTIZING							1	(2%)
#LIVER	(50)		(49)		(50)		(50)	
MINERALIZATION							1	(2%)
CONGESTION, NOS					1	(2%)		
LYMPHOCYTIC INFLAMMATORY I	NFILTR				1	(2%)		
INFLAMMATION. ACUTE			3	(6%)	2	(4%)	4	(8%)
INFLAMMATION ACUTE NECROT	ZING 1	(2%)	ĩ	(2%)	2	(4%)	-	
INFLAMMATION GRANULOMATO	US	<u> </u>	•	(=)	-	,	1	(2%)
CRANULOMA NOS					2	(4%)	1	(2%)
NECROSIS, NOS	1	(2%)	4	(8%)	ī	(2%)	3	(6%)
NUCLEAR-SIZE ALTERATION	-	(=,	-	(2)	1	(2%)		(,
NUCLEAR-SHAPE ALTERATION	1	(2%)				(= /- /		
CYTOPLASMIC VACUOLIZATION	1	(2%)	4	(8%)	2	(4%)	4	(8%)
BASOPHILIC CYTO CHANGE	3	(6%)	2	(4%)	1	(2%)	5	(10%)
EOSINOPHILIC CYTO CHANGE	Ū		-	/	1	(2%)	1	(2%)
CLEAR.CELL CHANGE	1	(2%)			2	(4%)	-	
HEPATOCYTOMECALV	22	(4496)	26	(53%)	24	(48%)	23	(46%)
ANGIECTASIS	24		20	(296)		(
ALIVER/CENTRI ORITAR	(50)		/401		(50)		(50)	
TEDATOVTONECAT V	(00)		(1887) (1	(696)	(00)		(00)	(296)
alefatuut tomeutali Ai tupo/kitopped art t	(50)		0 (AD)		(50)		(80)	
HYPERPLASIA, NOS	(00)		(49)	(2%)	(00)		1	(2%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

2-Chloroethanol, NTP TR 275

.

C	CONTROL (UNTR)		CONTROL (VEH)		LOW DOSE		HIGH DO	
DIGESTIVE SYSTEM (Continued)								
#LIVER/HEPATOCYTES	(50)	1	(49)		(50)		(50)	
HEPATOCYTOMEGALY	2	(4%)	(-•)		(,		(,	
*GALLBLADDER	(50)		(50)		(50)		(50)	
INFLAMMATION CHRONIC	1	(296)	(00)		(00)		(00)	
	(50)	(270)	(40)		(50)		(50)	
	(00)		(45)	(90)	(00)		(00)	
INFLAMMATION, ACUTE/CHRONIC		(90)	1	(270)				
HYPERPLASIA, NOS	1	(2%)	1	(2%)			(
#PANCKEAS	(46)		(49)		(50)	(0.0)	(50)	
EDEMA, NOS			(10)		1	(2%)		
#PANCREATIC ACINUS	(46)		(49)		(50)		(50)	
EDEMA, NOS	1	(2%)						
CYTOPLASMIC VACUOLIZATION					1	(2%)	1	(2%)
ATROPHY, NOS			1	(2%)	1	(2%)		
HYPERPLASIA, NODULAR					1	(2%)		
#STOMACH	(45)		(50)		(49)		(49)	
MINERALIZATION	5	(11%)	7	(14%)	2	(4%)	3	(6%)
CYST. NOS				•	1	(2%)		
ULCER NOS			1	(2%)	-	(= /•/		
INFLAMMATION ACUTE/CHRONIC	6	(13%)	5	(10%)	6	(1296)	5	(10%)
INFLAMMATION CHRONIC	1	(296)	v	(10,2)	1	(996)	1	(20%)
INFLAMMATION, CINCING		(2,0)			-	(270)	1	(270)
INFLAMMATION, GRANULOMATOUS) I 14	(270)	^	(100)	•	(100)	10	(070)
HIPERPLASIA, EPITHELIAL	14	(31%)	0	(1270)	9	(10%)	10	(2170)
HYPERPLASIA, ADENUMATOUS	-	(110)	1	(2%)				(0~)
ADENOMYOSIS	5	(11%)	Z	(4%)			4	(8%)
#GASTRIC MUCOSA	(45)		(50)		(49)		(49)	
DILATATION, NOS	3	(7%)	3	(6%)	1	(2%)		
#GASTRIC FUNDAL GLAND	(45)		(50)		(49)		(49)	
DILATATION, NOS	1	(2%)						
#GASTRIC SEROSA	(45)		(50)		(49)		(49)	
CYST, NOS							1	(2%)
#STOMACH WALL	(45)		(50)		(49)		(49)	
CYST. NOS							1	(2%)
#DUODENUM	(39)		(42)		(44)		(45)	,
FIBROSIS	(00)		(-=)		1	(2%)	(/	
IRINARY SYSTEM							<u> </u>	
#KIDNEY	(50)		(50)		(50)		(50)	
MINERALIZATION	6	(12%)	3	(6%)	5	(10%)	11	(22%)
HYDRONEPHROSIS	š	(69)	1	(296)	Ă	(8%)	3	(6%)
CVST NOS	Ğ	(1296)	3	(6%)	ĥ	(1296)	Ă	(896)
MILL TIDLE CVSTS	v	(12,2)	1	(994)	1	(902)	•	(0,2)
MULTIFLE CISIS		(90)	1	(160)		(40)	1	(94)
GLOMERULONEPHRIIIS, NOS	4	(8%)	õ	(10%)	10	(9,70)	10	(470)
	IL 10	(2070)	5	(10%)	12	(2470)	12	(2470)
INFLAMMATION, INTERSTITIAL	1	(2%)						(0.0)
PYELONEPHRITIS, ACUTE			1	(2%)			1	(2%)
INFLAMMATION, ACUTE/CHRONIC			1	(2%)				
INFLAMMATION, CHRONIC			· 1	(2%)				
GLOMERULONEPHRITIS, CHRONIC	1	(2%)						
GRANULOMA, NOS	1	(2%)					1	(2%)
SCLEROSIS			1	(2%)				
NEPHROSIS, NOS	11	(22%)	12	(24%)	14	(28%)	8	(16%)
INFARCT, NOS	1	(2%)	3	(6%)	2	(4%)	2	(4%)
AMYLOIDOSIS	ī	(2%)	-	-	1	(2%)	1	(2%)
PIGMENTATION NOS	1	(2%)	1	(2%)			-	,
METAPLASIA OSSEOUS	•	~- /- /	2	(496)	1	(296)		
			<u> </u>	<pre>< = / • /</pre>		< - + + + +		

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTRO	ONTROL (UNTR)		CONTROL (VEH)		DOSE	HIGH	DOSE
URINARY SYSTEM (Continued)		M.						
#KIDNEY/GLOMERULUS	(50)		(50)		(50)		(50)	
DILATATION, NOS					1	(2%)	1	(2%)
AMYLOIDOSIS							1	(2%)
#KIDNEY/TUBULE	(50)		(50)		(50)		(50)	
DILATATION, NOS							2	(4%)
#URINARY BLADDER	(44)		(50)		(50)		(47)	
CALCULUS.GROSS OBSERV ONL	Y 3	(7%)	1	(2%)			1	(2%)
MINERALIZATION					1	(2%)		
DILATATION, NOS					1	(2%)	2	(4%)
CONGESTION, NOS					1	(2%)		
HEMORRHAGE	. 1	(2%)	2	(4%)	2	(4%)	2	(4%)
INFLAMMATION, ACUTE	1	(2%)	2	(4%)	1	(2%)		
INFLAMMATION, ACUTE/CHRON	NIC						1	(2%)
#U. BLADDER/SEROSA	(44)		(50)		(50)		(47)	
INFLAMMATION, ACUTE							1	(2%)
*URETHRA	(50)		(50)		(50)		(50)	
DILATATION, NOS	1	(2%)						
IMPACTION, NOS							1	(2%)
HEMORRHAGE	2	(4%)						
ENDOCRINE SYSTEM							•	
#PITUITARY	(41)		(47)		(47)		(47)	
CYST, NOS			2	(4%)	1	(2%)	5	(11%)
FIBRÓSIS							1	(2%)
HYPERPLASIA, CHROMOPHOBE	-CELL		1	(2%)				
#ADRENAL	(48)		(48)		(49)		(50)	
FOCAL CELLULAR CHANGE	1	(2%)						
ATROPHY, BROWN	1	(2%)	2	(4%)	5	(10%)		
#ADRENAL CORTEX	(48)		(48)		(49)		(50)	
DEGENERATION, CYSTIC	1	(2%)						
CYTOPLASMIC VACUOLIZATION	1		1	(2%)	1	(2%)		
FOCAL CELLULAR CHANGE	3	(6%)	6	(13%)	5	(10%)	2	(4%)
EOSINOPHILIC CYTO CHANGE							1	(2%)
ATROPHY, NOS	1	(2%)					2	(4%)
ATROPHY, BROWN	17	(35%)	21	(44%)	19	(39%)	14	(28%)
HYPERPLASIA, NOS	4	(8%)			3	(6%)	2	(4%)
HYPERPLASIA, FOCAL			2	(4%)				
#ADRENAL MEDULLA	(48)		(48)		(49)		(50)	
HYPERPLASIA, NOS	1	(2%)	6	(13%)	5	(10%)	6	(12%)
#PERIADRENAL TISSUE	(48)		(48)		(49)		(50)	
INFLAMMATION, GRANULOMA	rous		1	(2%)				
#THYROID	(47)		(47)		(44)		(46)	
MINERALIZATION			1	(2%)				
CYST, NOS			1	(2%)		/ * • • • •		
FOLLICULAR CYST, NOS	23	(49%)	16	(34%)	16	(36%)	16	(35%)
HYPERPLASIA, ADENOMATOUS							1	(2%)
HYPERPLASIA, FOLLICULAR-CE	LL 1	(2%)	1	(2%)				
#PARATH YROID	(12)		(15)		(14)		(19)	
CYST, NOS							1	(5%)
#PANCREATIC ISLETS	(46)		(49)		(50)		(50)	
	4	100	-	(0.01)				

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTRO	OL (UNTR)	CONTR	OL (VEH)	LOWI	DOSE	HIGH	DOSE
REPRODUCTIVE SYSTEM				<u> </u>				
*PENIS	(50)		(50)		(50)		(50)	
HEMORRHAGE	,				1	(2%)	(/	
INFLAMMATION, ACUTE			1	(2%)				
*PREPUCE	(50)		(50)		(50)		(50)	
IMPACTION, NOS					1	(2%)		
INFLAMMATION, ACUTE					1	(2%)		
INFLAMMATION, ACUTE/CHRONIC	2				1	(2%)	1	(2%)
HYPERKERATOSIS					1	(2%)		
*PREPUTIAL GLAND	(50)		(50)		(50)		(50)	
DILATATION, NOS					1	(2%)	2	(4%)
DILATATION/DUCTS	6	(12%)	7	(14%)	2	(4%)	1	(2%)
IMPACTION, NOS	2	(4%)						, ,
ABSCESS, NOS			2	(4%)				
INFLAMMATION, ACUTE/CHRONIC	2		4	(8%)	1	(2%)		
#PROSTATE	(49)		(50)		(50)		(48)	
INFLAMMATION, ACUTE	3	(6%)	2	(4%)	2	(4%)	1	(2%)
INFLAMMATION, ACUTE/CHRONIC	3		1	(2%)	1	(2%)	2	(4%)
*SEMINAL VESICLE	(50)		(50)		(50)		(50)	
MINERALIZATION					1	(2%)		
DILATATION, NOS	8	(16%)	7	(14%)	13	(26%)	9	(18%)
INFLAMMATION, ACUTE	1	(2%)			3	(6%)	1	(2%)
INFLAMMATION, ACUTE/CHRONIC	3						1	(2%)
PIGMENTATION, NOS	1	(2%)						
HYPERPLASIA, EPITHELIAL					1	(2%)		
*COAGULATING GLAND	(50)		(50)		(50)		(50)	
DILATATION, NOS	2	(4%)						
#TESTIS	(49)		(50)		(50)		(50)	
MINERALIZATION	11	(22%)	12	(24%)	13	(26%)	14	(28%)
SPERMATOCELE					1	(2%)		
INFLAMMATION, ACUTE			1	(2%)				
GRANULOMA, SPERMATIC					1	(2%)		
ATROPHY, NOS	4	(8%)	6	(12%)	2	(4%)	5	(10%)
HYPERPLASIA, INTERSTITIAL CEL	L 6	(12%)	9	(18%)	8	(16%)	7	(14%)
#TESTIS/TUBULE	(49)		(50)		(50)		(50)	
DILATATION, NOS							1	(2%)
MULTINUCLEATE GIANT-CELL	1	(2%)						
HYPERPLASIA, CYSTIC			1	(2%)				
*EPIDIDYMIS	(50)		(50)		(50)		(50)	
SPERMATOCELE					1	(2%)	2	(4%)
GRANULOMA, SPERMATIC							1	(2%)
NERVOUS SYSTEM								
#BRAIN/MENINGES	(50)		(50)		(50)		(50)	
FIBROSIS	,						1	(2%)
#BRAIN	(50)		(50)		(50)		(50)	
MINERALIZATION			1	(2%)	1	(2%)	3	(6%)
EDEMA, NOS	1	(2%)					1	(2%)
HEMORRHAGE					1	(2%)		
CYTOPLASMIC VACUOLIZATION	1	(2%)						

1

CO	NTRO	L (UNTR)	CONTR	OL (VEH)	LOWI	DOSE	HIGH	DOSI
SPECIAL SENSE ORGANS								
*EYE	(50)		(50)		(50)		(50)	
MINERALIZATION	_	-	_		1	(2%)		
RETINOPATHY	3	(6%)	2	(4%)	4	(8%)	4	(8%)
CATARACT	2	(4%)			2	(4%)	3	(6%)
*EYE/CORNEA	(50)		(50)		(50)		(50)	
MINERALIZATION			1	(2%)				
ULCER, NOS			1	(2%)				
INFLAMMATION, ACUTE					1	(2%)		
*EYE/CRYSTALLINE LENS	(50)		(50)		(50)		(50)	
RUPTURE							1	(2%)
*EYELID	(50)		(50)		(50)		(50)	
INFLAMMATION, ACUTE			1	(2%)				
MUSCULOSKELETAL SYSTEM								
*SKELETAL MUSCLE	(50)		(50)		(50)		(50)	
INFLAMMATION, CHRONIC			1	(2%)			1	(2%)
BODY CAVITIES								
*MEDIASTINUM	(50)		(50)		(50)		(50)	
CVST NOS	(00)		1	(296)			(,	
UTMORPHACE			1	(296)				
ADEL VIC DEDITONEAL CAVITY	(50)		(50)	(2,10)	(50)		(50)	
OVER NOS	(00)		(00)		(00)		(00)	(24)
	(50)		(50)		(50)		(50)	(270)
	(80)		(80)		(007	(904)	(00)	
INFLAMMATION, ACUTE/CHRONIC			1	(2%)	1	(270)		
ALL OTHER SYSTEMS	(20)		(20)		(20)		(20)	
TMULTIPLE OKGANS	(00)	(07)	(00)		(00)	(00)	(00)	(07)
MINERALIZATION	1	(2%)			1	(2%)	1	(2%)
CONGESTION, NOS	. 2	(4%)		(0.00)		(000)		(00~
LYMPHOCYTIC INFLAMMATORY INFI	L 18	(36%)	32	(64%)	14	(28%)	19	(38%)
INFLAMMATION, ACUTE							1	(2%)
INFLAMMATION, GRANULOMATOUS							2	(4%)
BACTERIAL SEPTICEMIA			1	(2%)				
NECROSIS, NOS							2	(4%)
NECROSIS, ISCHEMIC					1	(2%)		
		(00)	10	(204)	6	(194)		(896)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THETWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

. '

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL

	CONTRO	DL (UNTR)	CONTR	OL (VEH)	LOW	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50		50	<u> </u>
ANIMALS NECROPSIED	50		50		50		50	
ANIMALS EXAMINED HISTOPATHOL	50		50		50		50	
INTEGUMENTARY SYSTEM								
#SKIN PAINT SITE	(48)		(49)		(48)		(47)	
INFLAMMATION, ACUTE	1	(2%)			1	(2%)	1	(2%)
INFLAMMATION, ACUTE/CHRONIC	C 2	(4%)			1	(2%)	1	(2%)
INFLAMMATION, CHRONIC			4	(8%)	2	(4%)	2	(4%)
FIBROSIS			1	(2%)			2	(4%)
ACANTHOSIS	1	(2%)	(50)		(50)		2	(4%)
TSKIN	(50)		(50)	(90)	(50)		(50)	
EDEMA, NUS			1	(2%)			1	(90)
INFLAMMATION ACUTE/CHRONI	~		1	(994)			2	(2%) (AGL)
HVDERDI ASIA NOS	5		1	(270)	1	(294)	4	(4870)
ACANTHOSIS					•	(2,0)	1	(2%)
RESPIRATORY SYSTEM								
+LARYNX	(50)		(50)		(50)		(50)	
INFLAMMATION, ACUTE	1	(2%)	(00)		(00)		(00)	
#BRONCHIAL GLAND	(50)	(=,	(50)		(49)		(50)	
DILATATION, NOS	1	(2%)	1	(2%)	1	(2%)		
#LUNG	(50)		(50)		(49)		(50)	
MINERALIZATION	1	(2%)	1	(2%)	1	(2%)		
CONGESTION, NOS	1	(2%)			1	(2%)	1	(2%)
EDEMA, NOS					1	(2%)		
HEMORRHAGE	1	(2%)	3	(6%)	3	(6%)	2	(4%)
LYMPHOCYTIC INFLAM INFILTR	1	(2%)			1	(2%)		
PNEUMONIA, ASPIRATION	1	(2%)			_			
HYPERPLASIA, ALVEOLAR EPITHI HISTIOCYTOSIS	SLIUM 1	(2%) (8%)	16	(2%) (12%)	1	(2%) (16%)	6	(12%)
HEMATOPOIETIC SYSTEM								
•MULTIPLE ORGANS	(50)	<i></i>	(50)		(50)	(0.0)	(50)	
LEUKEMOID REACTION	2	(4%)			1	(2%)	3	(6%)
PLASMACYTUSIS	•	(00)		(90)		(00)	1	(2%)
H I PERPLASIA, L I MPHOID	3	(6%)	4	(8%)	4	(8%)	2	(41%) (90%)
#BONE MARROW	(50)	(2%)	(49)		0 (AA)	(12%)	(46)	(8%)
WVFLOSCI FROSIS	(30)		(40)	(296)	(44)		(=0)	(996)
HYPERPLASIA GRANULOCYTIC			1	(2,70)	1	(296)	2	(496)
#SPLEEN	(47)		(49)		(48)		(49)	(4.0)
HEMOSIDEROSIS	9	(19%)	40)	(8%)	40)	(8%)	43)	(8%)
HYPERPLASIA, LYMPHOID	·	(10/0)	ī	(2%)	1	(2%)	-	(0.0)
HEMATOPOIESIS	12	(26%)	4	(8%)	3	(6%)	2	(4%)
#MANDIBULAR L. NODE	(38)		(33)	. ,	(36)		(44)	
HEMORRHAGE	3	(8%)	1	(3%)	•		2	(5%)
INFLAMMATION, ACUTE							1	(2%)
INFLAMMATION, GRANULOMATO	US						1	(2%)
PLASMACYTOSIS						(1	(2%)
HYPERPLASIA, LYMPHOID					1	(3%)		
#MEDIASTINAL L. NODE	(38)		(33)		(36)		(44)	
HEMUKKHAGE					5	(14%)		(0.0)
PIGMENTATION, NOS				(00)			1	(2%)
h i perpladia, l'i mphuid Aurdatic i vudu nort	(00)		(00)	(370)	(0.0)			
TOTATIO LIMEN NUDE	(38)	(90)	(33)		(30)		(44)	
HIFENFLASIA, LIMPHVID	1	(070)						

	CONTRO	L (UNTR)	CONTR	OL (VEH)	LOWI	DOSE	HIGH	DOSE
HEMATOPOIETIC SYSTEM (Continued)								
#LUMBAR LYMPH NODE	(38)		(33)		(36)		(44)	
NECROSIS, NOS	1	(3%)						
#MESENTERIC L. NODE	(38)		(33)		(36)		(44)	
HEMORRHAGE	1	(3%)	3	(9%)			3	(7%)
HYPERPLASIA, LYMPHOID	1	(3%)	1	(3%)	2	(6%)		
#RENAL LYMPH NODE	(38)		(33)		(36)		(44)	
HEMORRHAGE			1	(3%)				
PLASMACYTOSIS			1	(3%)			(70)	
	(50)	(00)	(50)		(49)		(50)	
ADEVEDS DATCH	1 (44)	(2%)	(45)		(46)		(45)	
FREIERSPATON	(44)		(40)	(90)	(40)		(40)	
ADIMITICA DV	(46)		(49)	(270)	(40)		(47)	
#PIIUIIANI UVDEDDIASIA EOSINODUIIIC	(40)		(40)		(40)	(296)	1	(296)
HITERFLAGIA, EUGINUT HILIU 4711VMHS	(20)		(49)		(36)	(2,0)	· (A1)	(270)
CVST NOS	(09) 9	(8%)	(444)	(7%)	1	(3%)	3	(796)
HEMORRHAGE	J		J 1	(2.96)	•		5	(1,10)
INFLAMMATION PYOGRANIII OM	ATOUS		1	14 14 1	1	(3%)		
NECROSIS. NOS					1	(3%)		
HYPERPLASIA, LYMPHOID	6	(15%)	8	(19%)	12	(33%)	12	(29%)
							. <u></u>	
IRCULATORY SYSTEM	(50)		(50)		(50)		(50)	
	(00)		(00)	(906)	(00)		(00)	
#MEDIASTINALL NODE	(38)		(33)	(2.10)	(36)		(44)	
THROMBOSIS NOS	(30)	(396)	(00)		(00)		(**)	
41 UNC	(50)	(0,6)	(50)		(49)		(50)	
THROMBOSIS NOS	(00)		(00)		(10)		1	(296)
#HEART	(50)		(50)		(50)		(50)	(2,0)
MINERALIZATION	2	(4%)	(00)		(00)		(00)	
THROMBOSIS, NOS	~	(10)			1	(2%)		
INFLAMMATION, CHRONIC	1	(2%)			-	(,		
FIBROSIS	5	(10%)	3	(6%)			1	(2%)
DEGENERATION, NOS	-		-		1	(2%)	2	(4%)
DEGENERATION, HYALINE			1	(2%)				
#MYOCARDIUM	(50)		(50)		(50)		(50)	
DEGENERATION, NOS	1	(2%)						
*BLOOD VESSEL	(50)		(50)		(50)		(50)	
INFLAMMATION, ACUTE/CHRONIC	3						1	(2%)
*CORONARY ARTERY	(50)		(50)		(50)		(50)	
DEGENERATION, MUCOID			1	(2%)				
*THYMIC ARTERY	(50)		(50)		(50)		(50)	
INFLAMMATION, FIBRINOID	1	(2%)			1	(2%)	2	(4%)
•UTERINE ARTERY	(50)		(50)		(50)		(50)	(00)
INFLAMMATION, FIBRINOID							1	(2%)
NECROSIS, FIBRINOID	/=				/FA1			(2%)
TUVARIAN ARTERY	(50)		(50)		(00)	(10)	(00)	(90-)
INFLAMMATION, FIBRINUID	(EA)		(40)		(40)	(4170)	/KO	(270)
TUDONDOSIS NOS	(00)		(459) 1	(294)	(47)		(00)	
INTOMOUSIS, NUS	(50)		(50)	(470)	(49)		(48)	
THROMBOSIS, NOS	(00)		(00)		1	(2%)	1	(2%)
MCFSTIVE SYSTEM				<u> </u>			·······	
4SALIVARY GLAND	(49)		(50)		(50)		(49)	
HEMORRHACE	(440)	(296)	(00)		(00)		(40)	
INFLAMMATION ACUTE	1	(210)			1	(2%)		
FIBROSIS			1	(2%)	•	(= .0)		
ATROPHY, NOS			-		1	(2%)		
ALMOPHIE, MOD				•	1			

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTR	OL (UNTR)	CONT	ROL (VEH)	LOW	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM								
#LIVER	(50))	(50)		(49)	1	(50)	
CYST. NOS		, ,	(,		1	(2%)	(,	
LYMPHOCYTIC INFLAM INFILTR					ī	(296)		
INFLAMMATION, ACUTE	2	(4%)	3	(6%)	-	(=,	1	(2%)
INFLAMMATION, ACUTE NECROT	IZING 2	(4%)	ī	(2%)	1	(2%)	-	(,
GRANULOMA, NOS	1	(2%)	4	(8%)	2	(4%)		
NECROSIS, NOS	1	(2%)	3	(6%)		• • • • •	4	(8%)
INFARCT, NOS	_	,	-	,	1	(2%)	-	
NUCLEAR-SIZE ALTERATION					1	(2%)		
CYTOPLASMIC VACUOLIZATION	6	(12%)	4	(8%)	1	(2%)	2	(4%)
FOCAL CELLULAR CHANGE		•			1	(2%)		
EOSINOPHILIC CYTO CHANGE							1	(2%)
CLEAR-CELL CHANGE	4	(8%)	2	(4%)	1	(2%)	2	(4%)
HEPATOCYTOMEGALY	2	(4%)	2	(4%)	2	(4%)	3	(6%)
ANGIECTASIS	ī	(2%)	-	()	-	(• . • .	-	(0.07
#LIVER/CAUDATE LOBE	(50)		(50)		(49)		(50)	
HEMORRHAGE	((00)		1	(2%)	()	
NECROSIS, NOS					i	(2%)		
INFARCT, NOS					-	(= /• /	1	(2%)
#LIVER/KUPFFER CELL	(50)		(50)		(49)		(50)	(= ,~,
HYPERPLASIA, NOS	(00)				2	(4%)	(00)	
*GALLBLADDER	(50)		(50)		(50)	(4.27	(50)	
HYPERPLASIA EPITHELIAI.	(00)		(00)		1	(26)	(00)	
#RILE DUCT	(50)		(50)		(49)		(50)	
HVDEPDLASIA NOS	(00)	(94)	(00)	(29)	(40)		1	(94)
ADA MODEAS	(48)	(470)	(50)	(470)	(47)		(50)	(470)
FINING NOS	(40)		(00)		(47)	(10)	(00)	(04)
NECOOSIS EAT		(90)			4	(470)		(270)
ADANODO, FAI	(48)	(270)	(50)		(47)		(50)	
FPANCREATIC ACINUS	(48)	(10)	(50)	(00)	(47)	((50)	
ATTOPLASMIC VACCOLIZATION	Z	(4170)	1	(270)	2	(470)		
ATTERNAL STUDION		(00)	1	(270)				
HYDERDIASIA NOS	1	(290)		(00)		(00)		
n i ferflaðia, nuð	(40)		3	(070)	(48)	(2%)	(48)	
PLOUFINGUS CRANULOVA NOC	(40)		(47)	(00)	(40)		(40)	
ARTOMACH	(47)		(50)	(270)	(80)		(50)	
	(4/)	(40)	(00)	(40)	(00)	(0.01)	(00)	(00)
MINERALIZATION	Z	(4.%)	Z	(470)		(8%)	3	(0%)
INFLAMMATION, ACUTE	, 1	(2%)	1	(2%)	1	(2%)	•	
INFLAMMATION, ACUTE/CHRONIC	5 5	(11%)	4	(8%)	4	(8%)	2	(4%)
INFLAMMATION, CHRONIC			2	(4%)	1	(2%)		
FIBROSIS					1	(2%)		
NECKUSIS, NUS	-	(4.6.4)			1	(2%)	-	
HYPERPLASIA, EPITHELIAL	9	(19%)	12	(24%)	9	(18%)	5	(10%)
HYPERKERATOSIS							1	(2%)
ACANTHOSIS							1	(2%)
ADENOMYOSIS			1	(2%)			1	(2%)
	<u></u> _							
RINARY SYSTEM	(60)		(80)		(80)		(50)	
MINERALIZATION	(00)	(94)	(00)	(2%)	(00)	(94)	(00)	(494)
UVNDANFDUDAGIG	1	(470)		(270)		(470) (20L)	Å	(970)
UNAL NUG	2	(1270) (00L)	1	(470)	3	(070)		(070)
Concertion Nog	3	(070) (066)						
CINEDIUN, NUD	1	(470)	-	(100)	^	(104)	0	(100)
UNDERULUNEPIKITIS, NUS		(10%)	5	(10%)	ä	(18%)	ð	(10%)
	NFILTR 5	(10%)	10	(20%)	3	(0%)	1 1	(12%)
INFLAMMATION, ACUTE/UNRONIC		(00)					1	(2%)
GLOMERULONEPHRITIS, CHRONIC	י <u>ו</u>	(2%)	-	(100)	_	(10~		(6 ~)
INEARCE NOS	8	(16%)	6	(12%)	5	(10%)	4	(8%)
INFARUT, NUS			1	(2%)		(00)	1	(2%)
AMYLUIDUSIS		(00)	-	(00)	1	(2%)	2	(4%)
FIGMENTATION, NUS	1	(Z70)	1	(270)				

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

C	ONTRO	DL (UNTR)	CONTR	ROL (VEH)	LOW	DOSE	HIGH DOSI	
#KIDNEY (Continued)	(50)		(50)		(50)		(50)	
CYTOPLASMIC VACUOLIZATION	1	(296)	(00)		(00)		(00)	
METADI ASIA OSSEOUS	-	(2.0)	9	(196)				
AKIDNEV/CI OMEDIII US	(50)		(50)	(470)	(50)		(50)	
TI ATATION NOS	(90)		(80)		(00)		(00)	(901)
AUDINADY DI ADDED	(46)		(40)		(49)		(45)	(470)
	(40)	(90)	(43)		(40)		(40)	
UNELAWAATION ACUTE/CUDONIC	1	(2%)						
INFLAMMATION, ACUTE/CHRONIC	1	(2%)						
HYPERPLASIA, EPITHELIAL	I	(2%)			(10)			
INFLAMMATION, CHRONIC	(40)		(49)		(48)	(2%)	(40)	
ENDOCRINE SYSTEM					·····			<u></u>
	(46)		(48)		(49)		(47)	
CVST NOS	(40)		(40)		1	(94)	(41)	
CONCEPTION NOS			•	(94)	-	(470)		
DICHESTION, NOS		(00)	1	(270)				
PIGMENTATION, NOS		(2%)		(0.0)	•	(00)		(0~)
HYPERPLASIA, CHROMOPHOBE-CEL	սե 2	(4%)	1	(2%)	3	(6%)	1	(2%)
ANGIECTASIS			1	(2%)				
#ADRENAL	(49)		(50)	(A M)	(50)		(49)	
ACCESSORY STRUCTURE			1	(2%)				
CONGESTION, NOS	1	(2%)	2	(4%)	1	(2%)		
ATROPHY, BROWN	1	(2%)	1	(2%)	1	(2%)	2	(4%)
ANGIECTASIS			1	(2%)				
#ADRENAL CORTEX	(49)		(50)		(50)		(49)	
ACCESSORY STRUCTURE					1	(2%)		
MINERALIZATION	1	(2%)						
DEGENERATION, BALLOONING			1	(2%)				
CYTOPLASMIC VACUOLIZATION	1	(2%)	1	(2%)	2	(4%)		
FOCAL CELLULAR CHANGE							1	(2%)
ATROPHY, BROWN	14	(29%)	18	(36%)	12	(24%)	8	(16%)
HYPERPLASIA, NOS	1	(2%)			1	(2%)	1	(2%)
HYPERPLASIA, FOCAL	-	(,	1	(2%)	-		-	
#ADRENAL MEDULLA	(49)		(50)	(=)	(50)		(49)	
HYPERPLASIA NOS	1	(296)	2	(4%)	5	(10%)	1	(296)
ANGIECTASIS	•		1	(296)	Ŭ	(10,0)	i	(296)
ATHYROID	(45)		(48)	(2,~)	(46)		(46)	
FOLLICULAR CVST NOS	15	(3394)	19	(25%)	17	(3796)	17	(3796)
I VMPHOCYTIC INFLAM INFILTP	10	(294)	14	(20%)	••		• •	
HVDERDLASIA C.CELL	-	(2 n)	1	(994)	1	(94)		
HVDFPDIAGIA FOLLICIII AP CELI	1	(99)	-	(270)	2	(270) (A96)	1	(296)
	(17)	(270)	(10)		(17)		(91)	(4,0)
HYPERPLASIA, NOS	(17)		1	(5%)			(41)	
REPRODUCTIVE SYSTEM								
*MAMMARY GLAND	(50)		(50)		(50)		(50)	
DILATATION/DUCTS	2	(4%)	1	(2%)	3	(6%)	4	(8%)
GALACTOCELE	1	(2%)						
FIBROSIS	1	(2%)						
HYPERPLASIA, NOS	6	(12%)	3	(6%)	2	(4%)	2	(4%)
LACTATION	1	(2%)	1	(2%)			1	(2%)
#UTERUS	(50)		(49)		(49)		(50)	
MINERALIZATION					1	(2%)		
HEMATOMA, NOS			1	(2%)	_			
INFLAM, FOCAL GRANULOMATOUS			-	· · · -	1	(2%)		
ADENOMYOSIS	5	(10%)	5	(10%)	2	(4%)	1	(2%)
#CERVIX UTERI	(50)	,	(49)		(49)	· · · · · ·	(50)	
MINERALIZATION	(/		1	(2%)		
FIBROUS DYSPLASIA					1	(2%)		

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTRO	DL (UNTR)	CONTR	OL (VEH)	LOWI	DOSE	HIGH	DOSI
REPRODUCTIVE SYSTEM								
#UTERUS/ENDOMETRIUM	(50)		(49)		(49)		(50)	
CYST, NOS	13	(26%)	13	(27%)	12	(24%)	22	(44%
HEMATOMA, NOS					1	(2%)		
INFLAMMATION, ACUTE	1	(2%)	1	(2%)				
INFLAMMATION, ACUTE/CHRONIC	3		1	(2%)				
HYPERPLASIA, NOS	1	(2%)	1	(2%)	1	(2%)	1	(2%)
HYPERPLASIA, EPITHELIAL			1	(2%)				
HYPERPLASIA, CYSTIC	22	(44%)	16	(33%)	16	(33%)	11	(22%)
HYPERPLASIA STROMAL		(2%)						
ANGIECTASIS	-	(2.07			3	(6%)		
#OVARV/DAROVARIAN	(50)		(50)		(49)	(0.0)	(48)	
HEMATOMA NOS	(00)		(00)		1	(296)	(14)	
INTLAWAATION COANIII OMATO	1 21	(24)			•			
AUADA	(50)	(470)	(50)		(49)		(48)	
το ταιτι Μικιρολί το Ατιώνι	(00)		(00)	(994)	(40)		(40)	
OVER NOS	20	(600)	26	(470) (790)	90	(6194)	91	(RKaL
UISI, NUS	30	(00%)	30	(1470)	30	(0170)	01	(400%)
HEMORRHAGE	2	(470)	2	(470)	1	(270)	4	(4170)
HEMATOCELE							1	(2%)
INFLAMMATION, CHRONIC	1	(2%)						
DEPOSIT, NOS	1	(2%)						
ATROPHY, NOS			2	(4%)				
ANGIECTASIS			1	(2%)	1	(2%)	2	(4%)
VERVOUS SYSTEM	<u></u>							
+CHOROID PLEYUS	(50)		(50)		(50)		(50)	
LVMPHOCYTIC INFLAM INFLUTR	(00)		(00)		1	(2%)	(,	
#RRAIN	(50)		(50)		(50)	(2,~)	(50)	
MINERALIZATION	(00)	(94)	(00)	(84)	3	(696)	1	(294)
UNDOCEDUALIE NOS	1	(270)	-	(0,0)	1	(294)	•	(270)
HIDROCEPHALUS, NUS	1	(470)	0	(401)		(2070)	9	(69)
EDEMA, NOS	3	(6%)	Z	(4%)	1	(270)	3	(070)
HEMORRHAGE	1	(2%)			1	(270)		
LYMPHOCYTIC INFLAM INFILTR	1	(2%)						(0~)
MALACIA			1	(2%)			1	(2%)
#BRAIN STEM	(50)		(50)		(50)		(50)	
MALACIA			1	(2%)				
PECIAL SENSE ORGANS								
*EYE	(50)		(50)		(50)		(50)	
MINERALIZATION	(00)		(00)		()		1	(2%)
INFLAMMATION, ACUTE							ī	(2%)
RETINOPATHY	3	(6%)	1	(2%)	8	(16%)	2	(4%)
CATARACT	v		3	(6%)	5	(10%)	-	/
+FVF/CONFA	(50)		(50)		(50)	((50)	
INFLAMMATION, CHRONIC	(00)		1	(2%)	(00)		(00)	
MIISCHI OSKELETAL SVOTEM				_				
+BUNE/DEDIOSTEIIM	(50)		(50)		(50)		(50)	
	(00) I		(00)		(00)	(00)	(00)	

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

	CONTRO	L (UNTR)	CONTR	OL (VEH)	LOWI	DOSE	HIGH	DOSE
BODY CAVITIES								
*MEDIASTINUM	(50)		(50)		(50)		(50)	
THYROGLOSSAL DUCT CYST							1	(2%)
INFLAMMATION, GRANULOMAT	ous						1	(2%)
*EPICARDIUM	(50)		(50)		(50)		(50)	
INFLAMMATION, FIBRINOUS	1	(2%)						
PIGMENTATION, NOS			1	(2%)				
ALL OTHER SYSTEMS								•
•MULTIPLE ORGANS	(50)		(50)		(50)		(50)	
CONGESTION, NOS	1	(2%)	4	(8%)			1	(2%)
EDEMA, NOS	-	(2.07	-	12,			1	(2%)
HEMORRHAGE							2	(4%)
LYMPHOCYTIC INFLAM INFILTR	25	(50%)	26	(52%)	22	(44%)	25	(50%)
INFLAMMATION. ACUTE/CHRON	IC	(,	-ī	(2%)	1	(2%)		
INFLAMMATION, GRANULOMAT	OUS 1	(2%)	Ĩ	(2%)	-		1	(2%)
INFLAMMATION, PYOGRANULO	ATOUS		_				1	(2%)
NECROSIS, NOS					1	(2%)	1	(2%)
AMYLOIDOSIS	1	(2%)	12	(24%)	6	(12%)	4	(8%)
PIGMENTATION, NOS		,					1	(2%)
HEMOSIDEROSIS	1	(2%)			1	(2%)		
CYTOPLASMIC VACUOLIZATION	-		1	(2%)				
ANGIECTASIS			-	•			1	(2%)
ADIPOSE TISSUE							_	
INFLAMMATION. ACUTE/CHRON	IC 1							
OMENTUM								
HEMORRHAGE							1	
UTERINE LIGAMENT							-	
NECROSIS, FAT			1		1			

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

SPECIAL MORPHOLOGY SUMMARY NONE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

APPENDIX E

ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

	Vehicle Control	50 mg/kg	100 mg/kg
Skin: Papilloma			
Overall Rates (a)	1/50 (2%)	0/50 (0%)	6/50 (12%)
Adjusted Rates (b)	2.9%	0.0%	15.8%
Terminal Rates (c)	1/34 (3%)	0/37 (0%)	5/37 (14%)
Life Table Tests (d)	P = 0.020	P = 0.483N	P=0.073
Incidental Tumor Tests (d)	P = 0.022	P = 0.483N	P=0.077
Cochran-Armitage Trend Test (d)	P = 0.016		
Fisher Exact Test		P = 0.500N	P = 0.056
Skin: Papilloma or Carcinoma			
Overall Rates (a)	3/50 (6%)	1/50 (2%)	6/50 (12%)
Adjusted Rates (b)	8.3%	2.7%	15.8%
Terminal Rates (c)	2/34 (6%)	1/37 (3%)	5/37 (14%)
Life Table Tests (d)	P=0.184	P=0.287N	P = 0.283
Incidental Tumor Tests (d)	P=0.196	P = 0.303N	P=0.297
Cochran-Armitage Trend Test (d)	P=0.158		
Fisher Exact Test		P=0.309N	P = 0.243
Skin: Keratoacanthoma			
Overall Rates (a)	1/50 (2%)	3/50 (6%)	2/50 (4%)
Adjusted Rates (b)	2.0%	7.1%	5.4%
Terminal Rates (c)	0/34 (0%)	1/37 (3%)	2/37 (5%)
Life Table Tests (d)	P = 0.424	P = 0.310	P = 0.517
Incidental Tumor Tests (d)	P = 0.302	P = 0.269	P = 0.441
Cochran-Armitage Trend Test (d)	P = 0.399		
Fisher Exact Test		P = 0.309	P = 0.500
Subcutaneous Tissue: Fibroma			
Overall Rates (a)	2/50 (4%)	6/50 (12%)	1/50 (2%)
Adjusted Rates (b)	5.6%	14.1%	2.7%
Terminal Rates (c)	1/34 (3%)	3/37 (8%)	1/37 (3%)
Life Table Tests (d)	P = 0.384N	P=0.158	P = 0.474N
Incidental Tumor Tests (d)	P = 0.477 N	P=0.111	P = 0.459N
Cochran-Armitage Trend Test (d)	P = 0.417N		
Fisher Exact Test		P = 0.134	P = 0.500N
Subcutaneous Tissue: Fibroma or Fibros	arcoma		
Overall Rates (a)	3/50 (6%)	8/50 (16%)	1/50 (2%)
Adjusted Rates (b)	8.5%	18.4%	2,7%
Terminal Rates (c)	2/34 (6%)	4/37 (11%)	1/37 (3%)
Life Table Tests (d)	P = 0.260 N	P = 0.127	P = 0.280N
Incidental Tumor Tests (d)	P = 0.355N	P = 0.081	P = 0.269N
Cochran-Armitage Trend Test (d)	P = 0.290N		
Fisher Exact Test		P = 0.100	P = 0.309N
Lung: Alveolar/Bronchiolar Carcinoma			
Overall Rates (a)	0/49 (0%)	4/50 (8%)	1/50 (2%)
Adjusted Rates (b)	0.0%	10.8%	2.7%
Terminal Rates (c)	0/33 (0%)	4/37 (11%)	1/37 (3%)
Life Table Tests (d)	P = 0.430	P = 0.078	P = 0.523
Incidental Tumor Tests (d)	P = 0.430	P = 0.078	P = 0.523
Cochran-Armitage Trend Test (d)	P = 0.397		
Fisher Exact Test		P = 0.061	P = 0.505
Lung: Alveolar/Bronchiolar Adenoma or	Carcinoma		
Overall Rates (a)	1/49 (2%)	4/50 (8%)	1/50 (2%)
Adjusted Rates (b)	3.0%	10.8%	2.7%
Terminal Rates (c)	1/33 (3%)	4/37 (11%)	1/37 (3%)
Life Table Tests (d)	P = 0.557N	P = 0.214	P = 0.736N
Incidental Tumor Tests (d)	P = 0.557 N	P = 0.214	P = 0.736N
Cochran-Armitage Trend Test (d)	P = 0.593N	B 0.465	
Fisher Exact Test		P=0.187	P = 0.747 N

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL

	Vehicle Control	50 mg/kg	100 mg/kg
Hematopoietic System: Mononuclear C	ell Leukemia		
Overall Rates (a)	11/50 (22%)	7/50 (14%)	12/50 (24%)
Adjusted Rates (b)	26.0%	16.1%	27.3%
Terminal Rates (c)	5/34 (15%)	3/37 (8%)	6/37 (16%)
Life Table Tests (d)	P = 0.505	P = 0.209N	P = 0.556
Incidental Tumor Tests (d)	P=0.331	P = 0.248N	P = 0.377
Cochran-Armitage Trend Test (d)	P = 0.450		
Fisher Exact Test		P=0.218N	P=0.500
Liver: Neoplastic Nodule			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	0.0%	8.1%	8.1%
Terminal Rates (c)	0/34 (0%)	3/37 (8%)	3/37 (8%)
Life Table Tests (d)	P = 0.114	P=0.136	P=0.136
Incidental Tumor Tests (d)	P = 0.114	P=0.136	P=0.136
Cochran-Armitage Trend Test (d)	P=0.101		
Fisher Exact Test		P = 0.121	P = 0.121
Pituitary: Adenoma			
Overall Rates (a)	12/50 (24%)	11/48 (23%)	15/49 (31%)
Adjusted Rates (b)	27.5%	26.7%	36.6%
Terminal Rates (c)	5/34(15%)	8/37 (22%)	11/36 (31%)
Life Table Tests (d)	P=0.342	P = 0.456N	P=0.390
Incidental Tumor Tests (d)	P=0.174	P=0.581	P = 0.202
Cochran-Armitage Trend Test (d)	P = 0.263		
Fisher Exact Test		P = 0.545N	P = 0.304
Pituitary: Carcinoma			
Overall Rates (a)	3/50 (6%)	2/48 (4%)	1/49 (2%)
Adjusted Rates (b)	8.8%	5.3%	2.4%
Terminal Rates (c)	3/34 (9%)	1/37 (3%)	0/36 (0%)
Life Table Tests (d)	P = 0.207 N	P = 0.464N	P = 0.287 N
Incidental Tumor Tests (d)	P = 0.195N	P = 0.515N	P = 0.276N
Cochran-Armitage Trend Test (d)	P = 0.229N		
Fisher Exact Test		P = 0.520 N	P = 0.316N
Pituitary: Adenoma or Carcinoma			
Overall Rates (a)	15/50 (30%)	13/48 (27%)	16/49 (33%)
Adjusted Rates (b)	35.0%	31.1%	38.2%
Terminal Rates (c)	8/34 (24%)	9/37 (24%)	11/36 (31%)
Life Table Tests (d)	P=0.518	P = 0.364N	P=0.559
Incidental Tumor Tests (d)	P = 0.344	P = 0.521 N	P = 0.374
Cochran-Armitage Trend Test (d) Fisher Exact Test	P=0.430	P = 0.462N	P=0.473
Idrenal: Cortical Adenoma			
Overall Kates (a)	1/00 (2%)	3/00 (6%)	1/00 (2%)
Adjusted Rates (D)	2.8%	8.1%	2.(190
Terminal Kates (C)	1/34 (3%) D=0 59051	3/37 (8%)	1/37 (3%) D - 0 74951
Lute 12016 Tests (d) Incidente (d)	P = 0.060 N	P=0,335	P = 0.743 N
Incidental Tumor Tests (d)	F = 0.05UN	L=0'999	P=0.743N
Cochran-Armitage Trend Test (d) Fisher Exoct Test	P = 0.610	P=0 209	P=0 753
- WIGH WARY TORY		0,000	
drenal: Pheochromocytoma	9/KO (1.000)	10/80 (000)	10/50 (000)
Uverall Rates (a)	5/0U(15%)	13/50 (26%)	10/00 (20%)
Adjusted Rates (D)	22.170	31.7%	20.370
Terminal Kates (C)	7/34 (21%)	10/37 (27%)	8/37 (22%)
Lute Table Tests (d) Insidents Tumon Tests (d)	F = U.429 D = 0.005	P=0.216	2*# 0.467
Coobran Armitana Trand Tart (1)	r = 0.380 D = 0.256	r=0.188	P = 0.451
Ochran-Armitage Irend 1est (d)	r = 0.300	D-0100	D-0.007
FIBHER LXACUIESU		F=0.103	P=0.397

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR DERMAL STUDYOF 2-CHLOROETHANOL (Continued)

	Vehicle Control	50 mg/kg	100 mg/kg	
Adrenal: Pheochromocytoma or Pheoch	romocytoma, Malignan	it		
Overall Rates (a)	9/50 (18%)	13/50 (26%)	12/50 (24%)	
Adjusted Rates (b)	24.5%	31.7%	30.4%	
Terminal Rates (c)	7/34 (21%)	10/37 (27%)	10/37 (27%)	
Life Table Tests (d)	P = 0.349	P = 0.299	P = 0.386	
Incidental Tumor Tests (d)	P = 0.290	P = 0.256	P = 0.341	
Cochran-Armitage Trend Test (d)	P = 0.275	- 0.200		
Fisher Exact Test	- 0.210	P = 0.235	P = 0.312	
Thyroid: C-Cell Adenoma				
Overall Rates (a)	6/49 (12%)	4/49 (8%)	3/49 (6%)	
Adjusted Rates (b)	17 6%	10.8%	8 9 9	
Terminal Rates (c)	6/34 (1996)	A/27/110L)	9/96 (9 <i>0</i> L)	
l ife Table Tests (d)	D-0 159N	D-0.915N	D = 0.919N	
Incidental Tumas Tests (d)	P = 0.155 N	D = 0.916N	P = 0.21214 D = 0.919N	
Cashran Armita as Trand Test (d)	P = 0.1091	F=0.31514	F = 0.212N	•
Fisher Exact Test	F=0.10/1	D-0 270N	D-0.949N	
Fisher Exact lest		F=0.37014	F = 0.24314	
Thyroid: C-Cell Adenoma or Carcinoma				
Overall Rates (a)	6/49 (12%)	5/49 (10%)	4/49 (8%)	
Adjusted Rates (b)	17.6%	13.5%	11.1%	
Terminal Rates (c)	6/34 (18%)	5/37 (14%)	4/36 (11%)	
Life Table Tests (d)	P = 0.271N	P = 0.440N	P = 0.331 N	
Incidental Tumor Tests (d)	P = 0.271N	P=0.440N	P = 0.331 N	
Cochran-Armitage Trend Test (d)	P = 0.308N	D - 0 500N	D 0 07031	
Fisher Exact Test		P=0.500N	P=0.370N	
Pancreatic Islets: Islet Cell Adenoma				
Overall Rates (a)	3/50 (6%)	3/50 (6%)	0/49 (0%)	
Adjusted Rates (b)	8.8%	7.6%	0.0%	
Terminal Rates (c)	3/34 (9%)	2/37 (5%)	0/36 (0%)	
Life Table Tests (d)	P = 0.091N	P=0.631N	P=0.111N	
Incidental Tumor Tests (d)	P = 0.108N	P = 0.649N	P=0.111N	
Cochran-Armitage Trend Test (d)	P = 0.104N			
Fisher Exact Test		P = 0.661	P = 0.125N	
Pancreatic Islets: Islet Cell Adenoma or (Carcinoma			
Overall Rates (a)	4/50 (8%)	4/50 (8%)	0/49 (0%)	
Adjusted Rates (b)	10.9%	9.5%	0.046	
Terminal Rates (c)	3/34 (9%)	2/37 (5%)	0/36 (0%)	
Life Table Tests (d)	P = 0.055N	P = 0.616N	P = 0.058N	
Incidental Tumor Tests (d)	P = 0.087N	P = 0.637	P = 0.076N	
Cochran-Armitage Trend Test (d)	P = 0.062N			
Fisher Exact Test		P=0.643	P = 0.061 N	
Proputial Clands Adapama or Carainama				
Overall Peter (a)	9/60 (60L)	9/50 (64)	2/60 (6%)	
A diversal Refer (b)	3/30 (070)	3/50 (070) 9 1 a	3/50 (070) 7 70	
Majustea Mates (0)	0.070 9/94 (0/0)	9/07/0 <i>/</i> /)	1.170 0.007 (EAL)	
1 erminai Naces (C) 1 :Co Table Table (J)	3/34 (970) D-0 549N	3/37 (8%) D=0 694N	2/37 (070) D - 0 (04N)	
	P=0.543N	P=0.024N	P = 0.624N	
Incidental Tumor Tests (d)	P=0.035N	P=0.624N	P = 0.615 N	
Cochran-Armitage Trend Test (d)	P≈0.583	D - 0 001	D - 0.001	
f isnef lixact lest		P=0.001	r=0.001	
Testis: Interstitial Cell Tumor				
Overall Rates (a)	45/50 (90%)	41/50 (82%)	44/50 (88%)	
Adjusted Rates (b)	95.7%	89.1%	93.6%	
Terminal Rates (c)	32/34 (94%)	32/37 (86%)	34/37 (92%)	
Life Table Tests (d)	P = 0.235N	P = 0.138N	P = 0.262N	
Incidental Tumor Tests (d)	P = 0.412N	P = 0.168N	P = 0.464N	
Cochran-Armitage Trend Test (d)	P = 0.442N			
Fisher Exact Test		P = 0.195N	P = 0.500N	

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)
TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

· · · ·

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

· • • .

٠

⁽c) Observed tumor incidence at terminal kill

	Vehicle Control	50 mg/kg	100 mg/kg	
Hematopoietic System: Mononuclear Cell	Leukemia		· · · · · · · · · · · · · · · · · · ·	
Overall Rates (a)	8/50 (16%)	7/50 (14%)	6/50 (12%)	
Adjusted Rates (b)	17.1%	16.7%	13.6%	
Terminal Rates (c)	4/42 (10%)	5/39 (13%)	2/39 (5%)	
Life Table Tests (d)	P = 0.392N	P = 0.548N	P = 0.443N	
Incidental Tumor Tests (d)	P = 0.439N	P = 0.579	P = 0.455N	
Cochran Armitage Trend Test (d)	P = 0.333N	1 - 0.010	1 - 0.40011	
Fisher Exact Test		P = 0.500 N	P=0.387N	
Pituitary: Adenoma				
Overall Rates (a)	19/50 (38%)	24/49 (49%)	29/50 (58%)	
Adjusted Rates (b)	44.2%	52.9%	61.4%	
Terminal Rates (c)	18/42 (43%)	18/39 (46%)	21/39 (54%)	
Life Table Tests (d)	P=0.022	P = 0.148	P=0.025	
Incidental Tumor Tests (d)	P=0.084	P = 0.416	P = 0.103	
Cochran-Armitage Trend Test (d)	P=0.029			
Fisher Exact Test		P=0.184	P = 0.036	
Pituitary: Carcinoma		·		
Overall Rates (a)	4/50 (8%)	1/49 (2%)	1/50 (2%)	
Adjusted Rates (b)	9.5%	2.3%	2.6%	
Terminal Rates (c)	4/42 (10%)	0/39 (0%)	1/39 (3%)	
Life Table Tests (d)	P = 0.117N	P = 0.200N	P = 0.202N	
Incidental Tumor Tests (d)	P = 0.104N	P = 0.158N	P = 0.202N	
Cochran-Armitage Trend Test (d)	P = 0.102N			
Fisher Exact Test		P = 0.188N	P=0.181N	
Pituitary: Adenoma or Carcinoma				· •
Overall Rates (a)	22/50 (44%)	25/49 (51%)	30/50 (60%)	
Adjusted Rates (b)	51.2%	54.0%	63.6%	
Terminal Rates (c)	21/42 (50%)	18/39 (46%)	22/39 (56%)	
Life Table Tests (d)	P = 0.049	P = 0.252	P = 0.052	
Incidental Tumor Tests (d)	P = 0.167	P = 0.565N	P=0.188	
Cochran-Armitage Trend Test (d) Fisher Exact Test	P=0.067	P = 0.309	P=0.080	
		1	1	
Adrenal: Pheochromocytoma				
Overall Rates (a)	3/49 (6%)	3/50 (6%)	3/50 (6%)	
Adjusted Rates (b)	7.1%	7.3%	7.7%	
Terminal Rates (c)	3/42 (7%)	2/39 (5%)	3/39 (8%)	
Life Table Tests (d)	P=0.547	P = 0.633	P = 0.629	
Incldental Tumor Tests (d)	P = 0.563	P = 0.640N	P=0.629	
Fisher Exact Test	P=0.574N	P=0.651N	P = 0.651 N	
Adrenal, Bhaashusmaantana an Bhaashu	moontome Meliment			
Adrenal: F neocaromocytoma of F neocaro	2/40 (cd.)	A/EO (00.)	A/80 (90)	
A director d Denter (b)	3/49 (0%)	4/00(8%)	4/00 (8%)	
Adjusted Rates (b)	(.170 9/49 (770)	9.170 9/00 (Egg)	9.970	
Terminal Rates (C)	3/42 (1%)	2/39 (5%)	3/39 (8%)	
Life Table Tests (d) Tust Junta I Tham as Tasta (J)	P = 0.392	P = 0.4/2	P = 0.402	
Incidental Tumor Tests (d)	P = 0.493	P = 0.040 N	P=0.488	
Fisher Exact Test	P=0.435	P=0.511	P=0.511	
Thyroid: C-Cell Adenoma				
Overall Rates (a)	2/49 (4%)	3/50 (6%)	4/49 (8%)	
Adjusted Rates (b)	4.9%	7.79	10.5%	
Terminal Rates (c)	2/41 (5%)	3/39 (8%)	4/38 (11%)	
Life Table Tests (d)	P = 0.233	P=0.477	P = 0.302	
Incidental Tumor Tests (d)	P = 0.233	P = 0.477	P = 0.302	
Cochran-Armitage Trend Test (d)	P = 0.263		V.UV4	
Fisher Exact Test		P=0.510	P=0.339	
I ISHCI LIAGUV I COV		1 - 0.010	1 - 0.007	

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR DERMAL STUDYOF 2-CHLOROETHANOL

	Vehicle Control	50 mg/kg	1 00 mg/kg
Thyroid: C-Cell Adenoma or Carcinoma			
Overall Rates (a)	3/49 (6%)	3/50 (6%)	5/49 (10%)
Adjusted Rates (h)	7.0%	7.7%	13.2%
Terminal Rates (c)	2/41 (5%)	3/39 (8%)	5/38 (13%)
Life Table Tests (d)	P = 0.249	P = 0.642	P = 0.318
Incidental Tumor Tests (d)	P = 0.259	P = 0.631N	P = 0.340
Cochran-Armitage Trend Test (d)	P = 0.282		
Fisher Exact Test		P=0.651N	P=0.357
ancreatic Islets: Islet Cell Adenoma			
Overall Rates (a)	1/49 (2%)	3/49 (6%)	1/50 (2%)
Adjusted Rates (b)	2.4%	7.4%	2.6%
Terminal Rates (c)	1/41 (2%)	2/38 (5%)	1/39 (3%)
Life Table Tests (d)	P = 0.592	P = 0.289	P=0.751
Incidental Tumor Tests (d)	P = 0.609 N	P = 0.345	P=0.751
Cochran-Armitage Trend Test (d)	P = 0.602N		
Fisher Exact Test		P=0.309	P=0.747N
ancreatic Islets: Islet Cell Adenoma or	Carcinoma		
Overall Rates (a)	1/49 (2%)	3/49 (6%)	2/50 (4%)
Adjusted Rates (b)	2.4%	7.4%	5.1%
Terminal Rates (c)	1/41 (2%)	2/38 (5%)	2/39 (5%)
Life Table Tests (d)	P = 0.383	P = 0.289	P = 0.483
Incidental Tumor Tests (d)	P = 0.397	P = 0.345	P = 0.483
Cochran-Armitage Trend Test (d) Fisher Exact Test	P=0.407	P=0.309	P=0.508
ammary Gland: Cystadenoma	0(50(00))	0/50 (00)	(D. D. (C.C.)
Overall Rates (a)	3/50 (6%)	3/50 (6%)	(1) 3/50 (6%)
Adjusted Rates (b)	7.1%	7,7%	1.196
Terminal Rates (c)	3/42 (7%)	3/39 (8%)	3/39 (8%)
Life Table Tests (d)	P = 0.546	P = 0.629	P = 0.629
Incidental Tumor Tests (d)	P = 0.546	P=0.629	P=0.629
Cochran-Armitage Trend Test (d) Fisher Exact Test	P=0.083	P=0.661	P=0.661
fammary Cland. Adanoma or Adanocar	cinoma		
Overall Retes (a)	3/50 (6%)	5/50 (10%)	3/50 (6%)
Adjusted Rates (b)	7 196	19 196	77%
Terminal Rates (c)	3/49 (794)	A/30 (100L)	3/39 (8%)
Life Table Tests (d)	D-0 597	D-0 300	P = 0.629
Incidental Tumor Tests (d)	P=0.539N	P = 0.020	P = 0.629
Cochran. Armitage Trend Test (d)	P = 0.576	x - viavo	1 - 1140
Fisher Exact Test	1 - 0.010	P=0.357	P=0.661
fammary Gland: Fibroadenoma			
Overall Rates (a)	13/50 (26%)	7/50 (14%)	11/50 (22%)
Adjusted Rates (b)	29.4%	17.3%	26.7%
Terminal Rates (c)	11/42 (26%)	6/39 (15%)	9/39 (23%)
Life Table Tests (d)	P = 0.431 N	P = 0.145N	P = 0.492N
Incidental Tumor Tests (d)	P = 0.438N	P = 0.135N	P = 0.496N
Cochran-Armitage Trend Test (d)	P = 0.356N		
Fisher Exact Test		P=0.106N	P=0.408N
Iterus: Endometrial Stromal Polyp			
Overall Rates (a)	7/50 (14%)	4/50 (8%)	7/50 (14%)
Adjusted Rates (b)	15.6%	10.3%	17.1%
Terminal Rates (c)	5/42 (12%)	4/39 (10%)	6/39 (15%)
Life Table Tests (d)	P = 0.508	P = 0.306N	P=0.557
Incidental Tumor Tests (d)	P=0.559	P = 0.333N	P = 0.560 N
Cochran-Armitage Trend Test (d)	P = 0.561		
-			

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR DERMAL STUDYOF 2-CHLOROETHANOL (Continued)

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR DERMAL STUDY **OF 2-CHLOROETHANOL** (Continued)

	Vehicle Control	50 mg/kg	100 mg/kg	
Uterus: Endometrial Stromal Polyp	or Sarcoma			
Overall Rates (a)	8/50 (16%)	4/50 (8%)	8/50 (16%)	
Adjusted Rates (b)	17.9%	10.3%	19.6%	
Terminal Rates (c)	6/42 (14%)	4/39 (10%)	7/39 (18%)	
Life Table Tests (d)	P = 0.502	P=0.217N	P = 0.546	
Incidental Tumor Tests (d)	P = 0.550	P = 0.237N	P=0.565N	
Cochran-Armitage Trend Test (d)	P=0.558			
Fisher Exact Test		P=0.179N	P = 0.607 N	

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis the r values corresponding to pairwise comparisons between that dosed group and the venicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N). (e) No values are presented because no tumors were observed in 50 mg/kg and vehicle control groups.

(f) One animal had a cystadenoma and a papillary adenoma.

	Untreated	Vehicle	7 5 m d	15
	Control	Control	7.5 mg	15 mg
Integumentary System: Fibroma, F	ibrosarcoma, or	Neurofibrosarcoma		
Overall Rates (a)	2/50 (4%)	3/50 (6%)	0/50 (0%)	0/43 (0%)
Adjusted Rates (b)	5.4%	10.7%	0.0%	0.0%
Terminal Rates (c)	0/24 (0%)	1/26 (4%)	0/16 (0%)	0/12 (0%)
Life Table Tests (d)		P = 0.112N	P = 0.232N	P = 0.300N
Incidental Tumor Tests (d)		P = 0.027 N	P = 0.114N	P = 0.083N
Cochran-Armitage Trend Test (d)		P = 0.044N		
Fisher Exact Test			P = 0.121 N	P = 0.151 N
Subcutaneous Tissue: Sarcomas				
Overall Rates (a)	2/50 (4%)	(e) 5/50 (10%)	4/50 (8%)	1/43 (2%)
Adjusted Rates (b)	5.4%	17.9%	15.1%	7.7%
Terminal Rates (c)	0/24 (0%)	3/26 (12%)	1/16 (6%)	0/12(0%)
Life Table Tests (d)		P = 0.304N	P = 0.531	P = 0.379N
Incidental Tumor Tests (d)		P = 0.062N	P = 0.534N	P = 0.103N
Cochran-Armitage Trend Test (d)		P = 0.111N		
Fisher Exact Test			P = 0.500 N	P = 0.140N
Lung: Alveolar/Bronchiolar Adeno	ma			
Overall Rates (a)	6/50 (12%)	8/50 (16%)	10/50 (20%)	9/43 (21%)
Adjusted Rates (b)	25.0%	26.0%	43.0%	46.0%
Terminal Rates (c)	6/24 (25%)	4/26 (15%)	4/16 (25%)	4/12 (33%)
Life Table Tests (d)		P = 0.062	P = 0.105	P=0.078
Incidental Tumor Tests (d)		P = 0.282	P = 0.294	P=0.279
Cochran-Armitage Trend Test (d)		P = 0.314		
Fisher Exact Test			P = 0.397	P = 0.364
Lung: Alveolar/Bronchiolar Carcin	oma			
Overall Rates (a)	4/50 (8%)	6/50 (12%)	9/50 (18%)	3/43 (7%)
Adjusted Rates (b)	13.7%	18.1%	38.1%	16.6%
 Terminal Rates (c) 	2/24 (8%)	3/26 (12%)	4/16 (25%)	1/12 (8%)
Life Table Tests (d)		P = 0.501	P = 0.095	P = 0.587N
Incidental Tumor Tests (d)		P = 0.383N	P = 0.249	P = 0.355N
Cochran-Armitage Trend Test (d)		P = 0.306N		
Fisher Exact Test			P=0.288	P = 0.324N
Lung: Alveolar/Bronchiolar Adeno	ma or Carcinom	a		No
Overall Rates (a)	10/50 (20%)	14/50 (28%)	18/50 (36%)	11/43 (26%)
Adjusted Rates (b)	37.2%	40.9%	67.1%	55.7%
Terminal Rates (c)	8/24 (33%)	7/26 (27%)	8/16 (50%)	5/12 (42%)
Life Table Tests (d)		P = 0.132	P = 0.029	P = 0.196
Incidental Tumor Tests (d)		P = 0.528	P = 0.155	P = 0.579N
Cochran-Armitage Trend Test (d)		P = 0.464N		
Fisher Exact Test		í.	P = 0.260	P = 0.490N
Hematopoietic System: Granulocyt	ic Leukemia			
Overall Rates (a)	3/50 (6%)	2/50 (4%)	4/50 (8%)	2/43 (5%)
Adjusted Rates (b)	7. 9%	4.2%	13.4%	5.1%
Terminal Rates (c)	0/24 (0%)	0/26 (0%)	0/16 (0%)	0/12 (0%)
Life Table Tests (d)		P=0.456	P = 0.259	P = 0.614
Incidental Tumor Tests (d)		P = 0.441 N	P=0.557	P = 0.580N
Cochran-Armitage Trend Test (d)		P=0.520		
Fisher Exact Test			P=0.339	P = 0.632N
Hematopoietic System: Lymphoma	0/00		10/20 /00	0/40 / 5~
Uverall Kates (a)	3/50 (6%)	4/50 (8%)	10/50 (20%)	2/43 (5%)
Adjusted Rates (b)	0.6%	11.2%	24.7%	5.0%
Terminal Kates (c)	0/24 (0%)	1/26 (4%)	0/16(0%)	0/12(0%)
Lue Table Tests (d)		P = 0.525N	P = 0.044	P = 0.538N
incidental Tumor Tests (d)		P = 0.104N	P = 0.233	P = 0.235 N
Cochran-Armitage Trend Test (d)		P = 0.407 N	D-0.074	D-0 (19)
LIQUEL TARCE LEST			r=0.074	r=0.413N

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR DERMAL STUDYOF 2-CHLOROETHANOL

1

	Untreated	Vehicle		
	Control	Control	7.5 mg	15 mg
Hematopoietic System: Lymphoma	or Leukemia			
Overall Rates (a)	6/50 (12%)	6/50 (12%)	14/50 (28%)	4/43 (9%)
Adjusted Rates (b)	14.0%	14.9%	34.9%	9.9%
Terminal Rates (c)	0/24 (0%)	1/26 (4%)	0/16 (0%)	0/12 (0%)
Life Table Tests (d)		P = 0.505	P = 0.022	P = 0.583N
Incidental Tumor Tests (d)		P = 0.086N	P = 0.196	P = 0.205N
Cochran-Armitage Trend Test (d)		P = 0.464N		
Fisher Exact Test			P=0.039	P=0.470N
Liver: Adenoma				
Overall Rates (a)	1/50 (2%)	2/49 (44)	3/50 (6%)	1/43 (29)
Adjusted Rates (b)	A 90L	770	1879	8 30
Terminal Pates (a)	1/0A (AQL)	9/98/94L)	9/1 <i>Q</i> (19 <i>Q</i> L)	1/19/244
Life Table Tests (d)	1/24 (470)	2/20 (070) D-0 811	$\frac{2}{10}(10,0)$	1/12 (0%) D=0.718
Line Indie Teste (d)		F=0.011	P = 0.294	P=0.716
Cookney Auguste on Thomas (C)		r=0.000	r=0.345	P=0.710
Gonran-Armitage Trend Test (d)		r=0.449N	D	D
risner Exact Test			P = 0.510	P = 0.549 N
Liver: Carcinoma	0/20/10/20	0.40.40.00		
Overall Rates (a)	6/50 (12%)	9/49 (18%)	6/50 (12%)	4/43 (9%)
Adjusted Rates (b)	22.7%	30.9%	32.5%	20.1%
Terminal Rates (c)	4/24 (17%)	7/26 (27%)	4/16 (25%)	1/12 (8%)
Life Table Tests (d)		P=0.463N	P ≈0.570	P=0.496N
Incidental Tumor Tests (d)		P = 0.206N	P=0.485N	P = 0.238N
Cochran-Armitage Trend Test (d)		P = 0.128N		
Fisher Exact Test			P = 0.274N	P = 0.173N
Liver: Carcinoma or Hepatoblaston	na			
Overall Rates (a)	6/50 (12%)	9/49 (18%)	6/50 (12%)	5/43 (12%)
Adjusted Rates (b)	22.7%	30.9%	32.5%	22.7%
Terminal Rates (c)	4/24 (17%)	7/26 (27%)	4/16 (25%)	1/12 (8%)
Life Table Tests (d)		P = 0.524	P = 0.570	P=0.604
Incidental Tumor Tests (d)		P=0.329N	P = 0.485N	P=0.380N
Cochran-Armitage Trend Test (d)		P = 0.214N	1 - AITAAN	- VIQANI
Fisher Exact Test		1 - 0.21711	P=0.274N	P=0.274N
iver: Adenome, Caroinome, or Her	natohlastoma			
Overall Rates (a)	7/80 (144)	11/49 (994)	9/50 (1944)	R/43 (1404)
Adjusted Rotes (h)	1/00 (1 170) 98 Kal	11/90(4470) 20104	A & A &	0/ TO (1 T TO) 90 70
Torminal Pates (5)	40,070 8/04/0141	00.170 0002 (9802)	40,470 6/1 <i>6</i> (00 <i>0</i> .)	47,170 9/19/19/21
Life Table Tests (d)	0/44 (4170)	9/20 (30%) P=0 474	0/10 (38%) D=0 241	2/12(1/70)
Lug Iaulo Iosus (d) Incidantal Tuma- Tarta (d)			F = V.341 D = 0 290	F = 0.00%
Cashaan Aumiters Trand Mart (4)		F=0.30114	r=0.032	r = V.J78in
Goorran-Armitage Trend Test (d) Fisher Exact Test		P=0.180N	P=0.382N	P=0.219N
Agrenal Cortex: Adenoma	A / A D / O C >	0/40 (00)	0/40 / 491	0/40 (777)
Vyerali rates (a)	4/40 (0%) 0.0%	0/463 (0%)	2/49(4%)	3/43 (7%)
Adjusted Mates (b)	5.3%	0.0%	12.5%	20.0%
Terminal Kates (c)	4/24 (17%)	0/26 (0%)	2/16 (13%)	3/12 (25%)
Life Table Tests (d)		P = 0.013	P = 0.138	P = 0.024
Incidental Tumor Tests (d)		P = 0.013	P = 0.138	P=0.024
Cochran-Armitage Trend Test (d)		P = 0.066		
Fisher Exact Test			P=0.253	P = 0.102

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR DERMAL STUDYOF 2-CHLOROETHANOL (Continued)

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(e) A skin fibroma was also present in one animal.

ì

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR DERMAL STUDYOF 2-CHLOROETHANOL

	Untreated Control	Vehicle Control	7.5 mg	15 mg
Lung: Alveolar/Bronchiolar Adeno	ma			<u></u>
Overall Rates (a)	7/50 (14%)	7/50 (14%)	6/49 (12%)	6/50 (12%)
Adjusted Rates (b)	23.9%	24.0%	26.1%	27.7%
Terminal Rates (c)	4/24 (17%)	4/26 (15%)	4/19 (21%)	5/20 (25%)
Life Table Tests (d)		P=0.497	P = 0.537	P = 0.551
Incidental Tumor Tests (d)		P = 0.536N	P = 0.543N	P = 0.611N
Cochran-Armitage Trend Test (d)		P = 0.440N		
Fisher Exact Test			P = 0.516N	P = 0.500 N
Lung: Alveolar/Bronchiolar Carcin	oma			
Overall Rates (a)	3/50 (6%)	2/50 (4%)	5/49 (10%)	3/50 (6%)
Adjusted Rates (b)	9.7%	6.4%	18.9%	12.5%
Terminal Rates (c)	1/24 (4%)	1/26 (4%)	1/19 (5%)	1/20 (5%)
Life Table Tests (d)		P = 0.328	P = 0.163	P=0.415
Incidental Tumor Tests (d)		P = 0.475	P = 0.345	P = 0.565
Cochran-Armitage Trend Test (d)		P = 0.421	- 0.0.20	- 0.000
Fisher Exact Test			P=0.210	P=0.500
Lung Alveoler/Bronchioler Adeno	ma or Carcinoma			
Overall Rates (a)	10/50 (20%)	9/50 (18%)	10/49 (20%)	9/50 (18%)
Adjusted Rates (h)	31 94	29 496	38 496	37 9%
Terminal Rates (c)	5/24 (21%)	5/26 (19%)	5/19 (26%)	6/20 (30%)
Life Table Tests (d)	0,24 (01.07	P=0.347	P = 0.298	P = 0.394
Incidental Tumor Tests (d)		P = 0.502	P = 0.547	P = 0.548
Cochran-Armitage Trend Test (d)		P = 0.551	1 - 0.041	1 -0.040
Fisher Exact Test		1 -0.001	P=0.480	P=0.603N
Hamatonoistic System Granuloavt	ia Laukamia			
Overall Rates (a)	0/50 (04L)	1/50 (994)	4/50 (8%)	3/50 (694)
Adjusted Rates (b)	0.04	2 496	11 906	7 9 %
Terminel Rates (c)	0/24 (0%)	0/26 (0%)	0/20 (0%)	0/20 (0%)
Life Table Tests (d)	0/24(0/0)	P = 0.239	P=0.180	P=0.311
Incidental Tumor Tests (d)		P = 0.325	P = 0.210	P = 0.414
Cochran-Armitage Trend Test (d)		P = 0.252	1 - 0.210	1 - 0.414
Fisher Exact Test	,	1 - 0.202	P=0.181	P=0.309
Hemetonoietia System: Malignant I	wmphome Histio	autic Turne		
Overall Retes (a)	1/50 (90L)	0/50 (094)	3/50 (60L)	1/50 (996)
Adjusted Bates (b)	2 904	0/00 (0%)	0.00	1/50 (270) A 50
Torminal Bates (a)	0,470 0/04 (00L)	0.070	3.370 0/00 (0 <i>0</i> L)	4.070 0/20 (0 <i>0</i> 4.)
Life Table Tests (d)	0/44(070)	0/20 (0%) D=0 334	D = 0.105	0/20 (0%) D-0 459
Incidental Tumor Tests (d)		P-0.354	P = 0.105 P = 0.150	P = 0.409 P = 0.597
Coobron Armitege Trend Test (d)		P-0.379	r = 0.150	r =0.027
Fisher Exact Test		1 -0.576	P=0.121	P≈0.500
Hematon eletic Sustant Tumphome	All Molignant			
Overall Retes (a)	19/50 (9496)	9/50 (169L)	11/50 (99%)	10/50 (90%)
Adjusted Pates (b)	20.24	0/00 (1070) 91 104	20 5 <i>0</i>	10/30 (20%) 39 1 <i>0</i>
Terminal Rates (c)	1/24 (496)	1/26 (4%)	1/20 (5%)	9/90 (10%)
Life Table Tests (d)		P=0.274	P=0.258	P = 0.309
Incidental Tumor Tests (d)		P = 0.472	P = 0.454	P = 0.505
Cochran. Armitege Trend Test (d)		P = 0.352	1 - 0.404	1 -0.020
Fisher Exact Test		1 - 0.002	P=0.305	P=0.397
Hematonoiatic System: I umphama	or Loukomia			
Overall Retes (c)	19/KD (944)	9/50 (194)	15/50 (204)	13/50 (26%)
Adjusted Rotes (h)	30 90L	99 AC	38 104	27 AQ
nujusieu naies (D) Terminei Retes (c)	30,370 1/9 <i>4 (AG</i> L)	43.070 1/96 (ADL)	30.470 1/90/2021	9/90/1044
Life Table Tests (2)	1/4 · · · · · · · · · · · · · · · · · · ·	D-0147	1/20 (070) D () 11 A	$D \to 0.100$
Incidentel Tumor Tests (d)		P=0.107	F V.114 D 0.905	P=0.380
Cochran. Armitara Trand Tost (4)		P = 0.020	1 - 0.200	1 - 0.000
Fisher Exact Test		1 ~ 0.400	D-0 191	D-0 995
- WHUL MAGUN 1080			r - 0.141	1 - 0.200

	Untreated Control	Vehicle Control	7.5 mg	15 mg
Circulatory System: Hamangloma		, <u> </u>		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	2/50 (4%)	0/50 (0%)
Adjusted Rates (h)	3.4%	10.5%	6.7%	0.0%
Terminal Rates (c)	0/24 (0%)	2/26 (8%)	0/20 (0%)	0/20 (0%)
Life Table Tests (d)		P = 0.120N	P = 0.567N	P = 0.166N
Incidental Tumor Tests (d)		P = 0.078N	P = 0.424N	P = 0.145N
Cochran. Armitage Trend Test (d)		P = 0.082N		
Fisher Exact Test			P = 0.500N	P = 0.122N
irculatory System: Hemangiosarc	oma			
Overall Rates (a)	0/50 (0%)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	0.0%	12.5%	0.0%
Terminal Rates (c)	0/24 (0%)	0/26 (0%)	2/20 (10%)	0/20 (0%)
Life Table Tests (d)		P = 0.584	P=0.094	(e)
Incidental Tumor Tests (d)		P = 0.635N	P = 0.125	(e)
Cochran-Armitage Trend Test (d)		P = 0.640		
Fisher Exact Test			P = 0.121	(e)
Circulatory System: Hemangioma (r Hemangiosarc	oma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	5/50 (10%)	0/50 (0%)
Adjusted Rates (b)	3.4%	10.5%	18.3%	0.0%
Terminal Rates (c)	0/24 (0%)	2/26 (8%)	2/20 (10%)	0/20 (0%)
Life Table Tests (d)		P=0.199N	P = 0.279	P = 0.166N
Incidental Tumor Tests (d)		P = 0.135N	P = 0.422	P = 0.145N
Cochran-Armitage Trand Test (d)		P = 0.133N		
Fisher Exact Test		1 -0.2001	P = 0.357	P = 0.122N
iver: Adenoma or Carcinoma				
Overall Rates (a)	1/50 (2%)	3/50 (6%)	0/49 (0%)	1/50 (2%)
Adjusted Rates (h)	3 496	10 596	0.0%	3.2%
Terminal Potes (a)	0.94 (0.04.)	2/06 (994)	0/20 (0%)	0/20 (0%)
Terminal Naves (C)	0/24(0%)	2/20(0%)	D = 0.150 N	D-0 370N
		P = 0.220N	$\Gamma = 0.100 M$	P = 0.0791
Incidental Tumor Tests (d)		P = 0.108 N $D = 0.107 N$	P = 0.124IN	P=0.291N
Fisher Exact Test		P=0.177N	P = 0.125N	P=0.309N
Pituitary Chromophohe Adenome				
Overall Rates (a)	6 4/46 (9%)	2/48 (4%)	2/49 (4%)	3/47 (6%)
Adjusted Rates (b)	15196	6 94	7796	15.0%
Terminal Rates (c)	3/94 (1396)	1/26 (496)	1/20 (5%)	3/20 (15%)
Life Table Tests (d)	0/24(10/0)	D = 0.309	P = 0.633	P=0.385
Incidental Tumos Tests (d)		D 0.000	P = 0.649N	P=0.417
Cachuan Annite Trand Tart (3)		P - 0.000	1 -0.04211	1 -0.411
Fisher Exact Test		r = 0.39/	P = 0.684N	P=0.490
fammary Gland: Adanoma or Ada	nocarcinoma			
Overall Rates (a)	4/50 (8%)	2/50 (4%)	4/50 (8%)	5/50 (10%)
Adjusted Rates (h)	11 196	5 596	14.09	17.1%
Terminal Rates (A)	0/24 (0%)	0/26 (04)	1/20 (5%)	0/20 (0%)
Life Table Tests (d)	JI27 (U70)	P = 0.132	P = 0.304	P=0.177
Incidente i Tumo-Tests (d)		D = 0.102	P = 0.407	P = 0.354
		F = 0.202 D = 0.120	r — V.47/	r - 0.004
Cochran-Armitage Trend Test (d)		P=0.109	D-0 220	D-0918
LIBUAL D'YACT 1 AST			r — 0.009	r = V,210
Iterus: Leiomyoma or Leiomyosar	oma 1/50 (296)	3/49 (60/)	9/49 (AGL)	3/50 (6%)
A diversed Detec (L)	1/00 (2%) 9 0 <i>a</i>	0/9300701 11 K0/-	2/ዓመር (ዓ.70/ 10 በወሩ	19 044
	2.0%	11.070	10.0%	14.070
Terminal Kates (c)	1/24 (4%)	3/26 (12%)	2/20 (10%)	2/20(10%)
Life Table Tests (d)		P = 0.481	P = 0.621N	P=0.567
Incidental Tumor Tests (d)		P = 0.514	P = 0.621N	P = 0.609
Cochran-Armitage Trend Test (d)		P = 0.579 N		
Fisher Exact Test			P = 0.500N	P = 0.651 N

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR DERMAL STUDY OF 2-CHLOROETHANOL (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No values are presented because no tumors were observed in the 15 mg and control groups.

(f) One acidophil adenoma was also present.

⁽c) Observed tumor incidence at terminal kill

APPENDIX F

GENETIC TOXICOLOGY OF 2-CHLOROETHANOL

Dose		Revertants/plate (a)	
(µg/plate)	- 89	+ 89 (rat)	+ 89 (hamster)
0	145 ± 4.3	131 ± 5.9	121 ± 3.5
100		122 ± 0.3	
333	144 ± 8.1	130 ± 12.0	136 ± 3.3
1.000	127 ± 3.8	134 ± 8.5	141 ± 3.5
3.333	138 ± 4.9	143 ± 12.7	150 ± 5.4
6.667	190 ± 8.7	40	154 ± 6.0
10,000	249 ± 5.5	157 ± 7.1	181 ± 4.2
0	23 ± 2.4	12 ± 0.7	10 ± 0.6
333	23 ± 3.2	11 ± 1.5	15 ± 0.3
1.000	21 ± 5.1	17 ± 1.0	13 ± 1.5
3.333	28 ± 3.5	28 ± 3.9	27 ± 5.3
6.667	23 ± 1.2	56 ± 8.6	48 ± 3.5
10,000	38 ± 0.6	63 ± 2.2	66 ± 4.2
0	8 ± 0.7	14 ± 2.9	8 ± 0.6
100	9 ± 1.9	13 ± 1.7	8 ± 1.9
333	7 ± 1.9	7 ± 1.0	7 ± 0.7
1.000	7 ± 1.2	9±1.8	9 ± 1.2
3.333	9 ± 1.2	11 ± 3.2	4 ± 2.0
10,000	7 ± 0.9	6 ± 0.3	6 ± 1.2
0	28 ± 2.3	36 ± 6.8	28 ± 2.2
100	20 ± 3.2	33 ± 1.5	23 ± 5.8
333	23 ± 3.9	29 ± 1.5	27 ± 1.3
1.000	23 ± 1.9	37 ± 4.3	29 ± 5.0
3,333	22 ± 1.3	32 ± 3.4	26 ± 4.2
10.000	24 ± 3.8	29 ± 2.2	25 ± 3.5
	Dose (µg/plate) 0 100 333 1,000 3,333 6,667 10,000 0 333 1,000 3,333 6,667 10,000 0 100 333 1,000 333 1,000 333 1,000 3,333 10,000 0 100 3,333 1,000 3,333 1,000 3,333 1,000	$\begin{array}{c c} \hline Dose \\ (\mu g/piate) & -59 \\ \hline \\ \hline \\ 0 & 145 \pm 4.3 \\ 100 & - \\ 333 & 144 \pm 8.1 \\ 1,000 & 127 \pm 3.8 \\ 3,333 & 138 \pm 4.9 \\ 6,667 & 190 \pm 8.7 \\ 10,000 & 249 \pm 5.5 \\ \hline \\ 0 & 23 \pm 2.4 \\ 333 & 23 \pm 3.2 \\ 1,000 & 21 \pm 5.1 \\ 3,333 & 28 \pm 3.5 \\ 6,667 & 23 \pm 1.2 \\ 10,000 & 38 \pm 0.6 \\ \hline \\ 0 & 8 \pm 0.7 \\ 100 & 9 \pm 1.9 \\ 333 & 7 \pm 1.9 \\ 1,000 & 7 \pm 1.2 \\ 10,000 & 7 \pm 1.2 \\ 3,333 & 9 \pm 1.2 \\ 10,000 & 7 \pm 0.9 \\ \hline \\ 0 & 28 \pm 2.3 \\ 100 & 20 \pm 3.2 \\ 333 & 23 \pm 3.9 \\ 1,000 & 23 \pm 1.9 \\ 1,000 & 23 \pm 1.9 \\ 1,000 & 23 \pm 1.3 \\ 10,000 & 24 \pm 3.8 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE F1. MUTAGENICITY OF 2-CHLOROETHANOL IN SALMONELLA

(a) The S9 fractions were prepared from the livers of Aroclor 1254-induced animals (male Sprague-Dawley rats and male Syrian hamsters). Cells and test compound or solvent (water) were incubated for 20 minutes at 37° C in the presence of either S9 or buffer. After the addition of soft agar, the contents of each tube were poured onto minimal medium, and the plates were incubated at 37° C for 48 hours (Haworth et al., 1983). The experiment was performed twice, each in triplicate; because the results were similar, data from only one experiment are shown.

TABLE F2. INDUCTION OF SEX-LINKED RECESSIVE LETHAL MUTATIONS IN DROSOPHILA BY 2-CHLOROETHANOL

Route of	Dose	N	o. of Lethais/No. of X	Chromosomes Te	sted (a)
Exposure	(ppm)	Mating 1	Mating 2	Mating 3	Total
Inhalation	0	0/881 0/1,115	1/800 0/1,135	2/785 1/1,042	3/2,466 <u>1/3,292</u> 4/5,758 (0.07%)
	400	3/954 0/823	0/928 2/824	0/884 0/778	3/2,766 <u>2/2,425</u> 5/5,191 (0.10%)

(a) The sex-linked recessive lethal assay was performed essentially as described by Abrahamson and Lewis (1971). Canton-S males (24-h-old) were exposed to an atmosphere of the test compound for 4 h and then allowed to recover for 48 h. Exposed males were mated to three *Base* females for 3 d and given fresh females at 2-d intervals to produce three broods of 3, 2, and 2 d, after which the parenta were discarded. F_1 heterozygous females were crossed to their siblings and placed in individual vials. F_1 daughters from the same parental males were kept together to identify clusters; none was found. After 17 d, presumptive lethals were identified as vials containing no wild-type males; these were retested.

APPENDIX G

CHEMICAL CHARACTERIZATION

OF 2-CHLOROETHANOL

I. Identity and Purity Determinations Performed by the Analytical Chemistry Laboratory

A. Lot No. A3X

1...

1. Physical Properties

a. Appearance:	Light yellow liquid	
b. Boiling Point:	Determined	Literature Values
	124.0°-128.0° C at 751 mm clear liquid distilled, yellow residue (macrodistillation)	128° - 130° C (Merck, 1968)
c. Index of Refraction	Determined	Literature Values
	n ²⁰ 1.4421	n ²⁰ 1.4419 (Merck, 1968)

2. Spectral Data

a. Infrared	Determined	<u>Literature Values</u>
(1) Instrument:	Beckman IR-12	
(2) Cell:	Barnes Engineering liquid cell	
(3) Results:	See Figure 6	Identical to literature spectrum (Sadtler Standard Spectra)
b. Ultraviolet/Visible	Determined	Literature Values
(1) Instrument:	Cary 118	
(2) Solvent:	95% Ethanol	
(3) Results:	λ _{max} (nm) ε	No literature reference found.
	305 936 ± 0.17 (δ)	structure.
	No absorption 800-350 nm 0.2 g/ml	1 at

FIGURE 6. INFRARED ABSORPTION SPECTRUM OF 2-CHLOROETHANOL (LOT NO. A3X)

c. Nuclear Magnetic Resonance

	Determined	Literature Values
(1) Instrument:	Varian HA-100	
(2) Solvent:	Neat with internal tetramethylsilane standard	
(3) Assignments:	See Figure 7	Identical to literature spectrum (Sadtler Standard Spectrum)

(4) Chemical Shift (8):

a	3.56 ppm	a, b: A ₂ B ₂ pattern
L.	975	

b 3.75 ppm

4.75 ppm C

(5) Integration Ratios:

3. Water Analysis (Karl Fischer): $0.090\% \pm 0.003(\delta)\%$

4. Elemental Analysis:

Element	С	Н	C1
Theory	29.83	6.26	44.04
Determined	29.68 29.79	6.29 6.18	44.13 43.97

~

FIGURE 7. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 2-CHLOROETHANOL (LOT NO. A3X)

5. Chromatographic Analyses

Gas Chromatography:

a. System 1:

(1) Instrument: Tracor MT-220

(2) Column: 3% OV-17 on W(HP) 80/100 mesh, $1.8 \text{ m} \times 4 \text{ mm}$ ID

(3) Detector: Flame ionization

(4) Temperature Program: 60°-120° C at 5° C/min

(5) Results: Single homogenous peak at 1.0 min

b. System 2:

(1) Instrument: Bendix 2500

(2) Column: Porapak-Q, 80/100 mesh, $1.8 \text{ m} \times 4 \text{ mm ID}$

(3) Detector: Flame ionization

(4) Temperature Program: 100°C, 1 min; 100°-200°C at 8°C/min; 200°C, 10 min

(5) Results: Major peak and one impurity

<u>Peak No.</u>	<u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	16.3	1.00	100
2	20.3	1.25	0.20

c. System 3:

(1) Instrument: Tracor MT-220

(2) Column: Chromosorb 102, $1.8 \text{ m} \times 2 \text{ mm} \text{ ID}$

(3) Detector: Flame ionization

(4) Temperature Program: 100°-235° C at 10° C/min

(5) Results: Major peak and two impurities

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>	
1	6.2	1.00	100	
2	7.9	1.28	0.25	
3	12.6	2.03	0.14	

APPENDIX G. CHEMICAL CHARACTERIZATION

B. Lot No. C 742

- 1. Physical Properties--Appearance: Light yellow liquid
- 2. Spectral Data

a. Infrared	Determined	Literature Values
(1) Instrument:	Perkin-Elmer 283	
(2) Cell:	Thin film between silver chloride plates	
(3) Results:	See Figure 8	Spectrum consistent with literature spectrum (Sadtler Standard Spectra)
b. Ultraviolet/Visible	Determined	Literature Values
(1) Instrument:	Cary 219	
(2) Solvent:	95% Ethanol	
(3) Results:	No absorbance from 800 to 350 nm at a concentration of 1% (v/v). No maximum from 350 to 215 nm but a gradual increase in absorbance toward 215 nm at a concentration of 1% (v/v).	No literature reference found. Spectrum consistent with structure.
c. Nuclear Magnetic Resonance	Determined	Literature Values
(1) Instrument:	Varian EM-360A	
(2) Solvent:	Neat with internal tetramethylsilane standard	
(3) Assignments:	See Figure 9	Spectrum consistent with literature reference (Sadtler Standard Spectra)
(4) Chemical Shift (8):		
	a m, 3.65 ppm	
	b m, 3.78 ppm	
	c s, 4.87 ppm	

FIGURE 8. INFRARED ABSORPTION SPECTRUM OF 2-CHLOROETHANOL (LOT NO. C742)

162

(5) Integration Ratios:

$$\begin{array}{c} a \\ b \\ c \end{array} - 4.00$$

3. Water Analysis (Karl Fischer): $0.082\% \pm 0.004(\delta)\%$

4. Elemental Analysis:

Element	С	Н	Cl	
Theory	29.83	6.26	44.04	
Determined	29.78 29.54	6.15 6.25	44.46 44.32	

5. Chromatographic Analyses: Gas Chromatography

Instrument: Varian 3700 Detector: Flame ionization Inlet Temperature: 200° C Detector Temperature: 250° C Carrier Gas: Nitrogen Carrier flow rate: 70 cc/min

a. System 1:

Column: Porapak QS, 80/100 mesh; $1.8 \text{ m} \times 4 \text{ mm ID}$, glass **Oven Temperature Program:** 100° C for 1 min, then 100°-200° C at 8° C/min **Samples Injected:** Neat liquid (4 µl) and solutions of 1.0% and 0.5% (v/v) 2-chloroethanol in methylene chloride to detect impurities, quantitate the major peak, and check for detector overload.

Results: Major peak and five impurities. Two impurities with a combined area of 0.03% of the major peak that eluted before the major peak. The other three impurities eluted after the major peak and had a combined area of 1.4% that of the major peak. The largest impurity had an area 1.3% of the major peak area.

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	4.2	0.32	0.02
$\bar{2}$	8.3	0.63	0.01
3	13.1	1.00	100
4	14.7	1.12	0.04
5	16.2	1.24	0.04
6	36.0	2.75	1.3

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	4.2	0.32	0.02
2	13.1	1.00	100
3	14.7	1.12	0.24
4	36.5	2.79	0.14

Note: A sample of the previous lot (lot no. A3X) was run on this system concomitantly with the current batch. The following results were obtained:

b. System 2:

Column: 10% Carbowax 20M-TPA on 80/100 Chromosorb W(AW); 1.8 m \times 4 mm ID, glass **Oven Temperature Program:** 60° C for 6 min, then 60°-200° C at 10° C/min **Samples Injected:** Neat liquid (4 µl) and solutions of 1.0% and 0.5% (v/v) 2- chloroethanol in methylene chloride to detect impurities, quantitate the major peak, and check for detector overload.

Results: Major peak and eight impurities. Three of the impurities with a combined area of 0.08% of the major peak area eluted before the major peak. Three of the other five impurities eluted after the major peak and had a combined area of 1.8% of the major peak area. The largest impurity had an area 1.6% of the major peak area.

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	0.9	0.07	0.01
2	6.0	0.45	0.06
3	12 .1	0.92	0.01
4	13.2	1.00	100
5	15.5	1.17	0.01
6	18.1	1.37	1.60
7	18.5	1.40	0.17
8	18.7	1.42	0.02
9	23.7	1.80	0.01

Note: A sample of the previous lot (lot no. A3X) was run on this system concomitantly with the current batch. The following results were obtained:

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	6.0	0.45	0.29
2	13.2	1.00	100
3	18.1	1.37	0.22

II. Test Chemical Stability at the Testing Laboratory

A. Analytical Method:

1. Infrared Spectroscopy:

Instrument: Perkin-Elmer model 283B, 398, or 457 Phase: Neat liquid

Results: All bulk spectra were consistent with those of the reference sample stored at -20° C and with those supplied by the analytical chemistry laboratory.

2. Gas Chromatography:

a. System 1:

Instrument: Varian 2100 Detection: Flame ionization Column: 1.8 m × 2 mm ID glass packed with 100/120 mesh Chromosorb 102 Oven Temperature Program: 100°-235° C at 10° C/min

b. System 2:

Instrument: Shimadzu GC Mini-2 with C-RIA Data System Detector: Flame ionization Inlet Temperature: 225°C Detector Temperature: 225°C Carrier Gas: Nitrogen Carrier flow rate: 70 ml/min Column: 1.8 m × 2.6 mm ID silanized glass with Porapak QS on 80/100 mesh Oven Temperature Program: 100°C for 1 min; 100°- 200°C at 8° C/min; 200°C for 10 min. Samples Injection: 3 µl neat for each sample; 3 µl solutions of 1.0% and 0.5% 2-chloroethanol in methylene chloride to quantitate the major peak and to check for detector overloading.

B. Results:				
	Date of	Percent 2	-Chloroethanol	
	Analysis	Bulk	Reference	
	Lot No. A3X			
	01/08/75	99 .6		
	(a) 01/31/78	99.6	•=	
	(a) 06/17/78	99.8	(b) 21.9	
	10/16/79	99 .5	99.9	
	01/18/80	99.4	99.9	
	05/21/80	99.8		
	09/12/80	99.9	99 .9	
	11/24/80	99.9		
	Lot No. C-742			
	11/24/80	100.0		
	03/13/81	99.0	99 .0	
	07/16/81	99 .0	99.0	
	02/25/82	99.9	97.5	

(a) Analyzed by system 1; subsequent analyzes by system 2.
(b) Reference sample believed to have reacted with the storage vial liner. A new reference sample was taken and stored in glass.

C. Conclusion: No notable degradation was observed during the studies.

III. A Special Reanalysis of Lot A3X Performed by the Analytical Chemistry Laboratory in February 1980

A. Analytical Method: Gas Chromatography

Instrument: Varian 3700 Detector: Flame ionization Inlet Temperature: 200° C Detector Temperature: 250° C Carrier Gas: Nitrogen Carrier flow rate: 70 cc/min Column: Porapak QS, 80/100 mesh; 1.8 m × 4 mm ID, glass Oven Temperature Program: 100° C for 1 min, then 100° -200° C at 8° C/min Samples Injected: Neat liquid (3 µl) and solutions of 1.0% and 0.5% (v/v) 2-chloroethanol in methylene chloride to detect impurities, quantitate the major peak, and check for detector overload.

B. Results: Both the sample and reference chromatograms indicated a major peak followed by two impurities. This chromatogram with Porapak QS was extended to 38 min to observe the small peak previously seen on Chromosorb 102 but not on Porapak because of its long retention time. The chromatogram is tabulated below:

Peak No.	Retention Time (min)	Retention Time Relative to Major Peak	Area (percent of major peak)	
			Bulk	Reference
1	13.1	1.00	100	100
2	15.2	1.16	0.20	0.19
3	38.0	2,90	0.16	0.08

(a) Stored at - 20° C

C. Conclusion : No notable differences were observed between this and the original analysis..

APPENDIX H

PREPARATION AND CHARACTERIZATION

OF DOSE MIXTURES

I. Sample Preparation

Solutions of 2-chloroethanol in 70% (v/v) ethanol-water were prepared in duplicate on five different days over a 14-day period. The days were chosen so that the solutions, when analyzed on the 14th day, represented samples that had been stored 0, 0 + 3 hours open to air and light, 1, 7, 11, and 14 days at room temperature and 0, 7, and 14 days at 5° C. All samples were stored in the dark after preparation, except the 3-hour stability sample.

The solutions were prepared by dissolving approximately 0.5 g of 2-chloroethanol, weighed to the nearest 0.1 mg, in a few ml of 70% ethanol-water and diluting to 25 ml with the solvent. After thorough mixing, about 7 ml of each solution was sealed in an 8.5-ml septum vial for the stability study. Samples exposed to air and light for 3 hours were prepared in duplicate by dissolving 2 g of 2-chloroethanol, weighed to the nearest milligram, in a few milliliters of solvent and diluting to 100 ml. Approximately 95 ml of this solution was placed in a 125-ml Erlenmeyer flask for the 3-hour study. The concentration of the chemical in the solutions was approximately 20 mg/ml.

II. Analysis Procedure

A 5-ml aliquot of each sample was pipetted into individual 100-ml volumetric flasks containing 5 ml of an internal standard solution (isoamyl alcohol, 10 mg/ml in methanol), and diluted to 100 ml with methanol. The concentration of 2-chloroethanol in the solutions was determined by the gas chromatographic system described below.

Instrument: Varian 3700 equipped with an autosampler and CDS-111 data system Column: Glass, 6 ft × 2 mm ID, packed with Chromosorb 102, 100 to 120 mesh Detector: Flame ionization Temperatures: Injector--190°C Oven--180 C, isothermal Detector--230 C Carrier gas: Nitrogen at 30 ml/min Injection volume: 4 µl Retention times: Test chemical--4.4 min Internal standard--7.9 min

The instrument was calibrated with two independently weighed stock standard solutions of 2chloroethanol ($\sim 20 \text{ mg/ml}$ in 70% ethanol). Aliquots (3,5, and 6 ml) of the solutions were mixed with 5 ml of internal standard solution and diluted for the samples as described above.

III. Quality Assurance Measures

Analyses were performed by making duplicate injections of sample solutions prepared in duplicate from each stability sample tested in duplicate (determinations), following a randomized order for the standards and samples. All determinations were related to an internal standard incorporated into the solutions. Results were calculated from relative response factors (RRF) computed from peak areas of the calibration standards by the following equations:

RRF = <u>milligrams per milliliter test chemical × peak area of internal standard</u> peak area of test chemical × milligrams per milliliter of internal standard

then the milligrams per gram chemical in the vehicle =

 $\frac{\textbf{RRF} \times \textbf{sample peak area} \times \textbf{milligrams per milliliter internal standard} \times \textbf{DF}}{\textbf{peak area internal standard} \times \textbf{gram of sample}}$

where DF = dilution factor

The linearity of the gas chromatographic system was evaluated with standard dilutions of 2chloroethanol in 70% ethanol-water at concentrations of approximately 1.2, 1.0, and 0.6 mg/ml. The correlation coefficient was calculated from the linear regression equation by the standard curve data.

IV. Results

A. Two-week Stability Study

Storage Time (Days)	Storage Temperature	Milligrams 2-Chloroethand Found/Milliliter 70% Ethanol-water	ol Target Milligrams/ Milliliter 2-Chloroethanol in 70% Ethanol-water	Percent Recovery (Found/Target × 100)
0		20.2 20.6	20.2 20.4	$\begin{array}{c} 100.0\\ 101.0\\ \text{Av} = \frac{101.0}{100.5} \pm 0.5 \end{array}$
0 + 3 h open to air and light	Ambient	20.4 20.2	20.0 20.0	$\begin{array}{c} 102.0\\ \frac{101.0}{101.5} \pm 0.5 \end{array}$
1	Ambient	1 9 .7 20.1	19.9 20.1	$Av = \frac{\frac{100.0}{100.5} \pm 0.5}{100.5}$
7	Ambient	20.2 19.9	20.2 20.0	$100.0 \\ \frac{99.5}{99.8} \pm 0.3$
7	5° C	20.4 19.9	20.2 20.0	$ \begin{array}{r} 101.0 \\ 99.5 \\ Av = 100.3 \pm 0.8 \end{array} $
11	Ambient	19.9 19.8	19.9 19.8	$Av = \frac{100.0}{100.0} \pm 0.0$
14	Ambient	20.1 19.8	20.3 19.9	$Av = \frac{99.0}{99.3} \pm 0.3$
14	5° C	20.3 19.9	20.3 19.9	$100.0 \\ \frac{100.0}{100.0 \pm 0.0}$

B. Evaporation Study

To determine how much of the sample was lost by evaporation during 3-hour exposure to the atmosphere, individual 125-ml Erlenmeyer flasks were filled with approximately 2 ml, 45 ml, and 95 ml of dose mixture, in duplicate, and were placed uncovered in a standard laboratory hood for 3 hours. The flasks were each weighed before and after the exposure period to determine loss by evaporation. The results follow.

Volume in Flask (ml)	Weight Loss (g)	Weight of Solution (g)	Percent Evaporation Loss by Weight	
~95	1.2	83.18	1.44	
~45	0.63	39.23	1.61	
~2	0.19	1.75	12.7	

The concentration of 2-chloroethanol in the 3-hour samples was 101.5% of the target concentration and reflects the apparent concentration of 2-chloroethanol caused by evaporation of the vehicle.

V. Conclusions: 2-Chloroethanol (2% w/v) in 70% (v/v) ethanol/water was found to be stable for 14 days at room temperature in a covered container.

APPENDIX I

ANALYSIS OF DOSE MIXTURES: METHODS

I. Analytical Chemistry Laboratory

A. Procedure

1. Preparation of Standards: Two standard solutions of 2-chloroethanol were prepared independently in methanol at concentrations of 6.26 and 5.17 mg/ml. These solutions were diluted with methanol to make four additional standards at concentrations of 3.13, 2.59, 1.57, and 1.29 mg/ml. Aliquots (8 ml) of the six standard solutions were pipetted into individual 25-ml volumetric flasks. A blank was prepared by diluting 4 ml of undosed 70% ethanol to 100 ml with methanol and then pipetting an 8-ml aliquot of the diluted blank into a 25-ml volumetric flask. The spiked standards and the blank were used in the analysis procedure described below.

2. Preparation of the Referee Sample: Two portions (4 ml each) of the referee skin paint sample were pipetted into individual 100-ml volumetric flasks and diluted to volume with methanol. After being mixed, an 8-ml aliquot of each sample was pipetted into individual 25-ml volumetric flasks; then the samples were analyzed by the procedure described below.

3. Analysis: A 14-ml volume of internal standard solution (*n*-amyl alcohol in methanol, 1 mg/ml) was added to each standard, blank, and the referee sample flask was prepared as described above and diluted to 25 ml with methanol. After the solutions were mixed, the 2-chloroethanol content was determined by the gas chromatographic system described below:

Instrument: Varian 3700 Gas Chromatograph with Autosampler and Varian CDS 111-C integrator Column: Chromosorb 102, 100/120 mesh; 1.8 m × 2 mm ID, glass silanized Detection: Flame ionization Inlet Temperature 250° C Detector Temperature: 300° C Carrier Gas: Nitrogen Carrier flow rate: 30 cc/min Oven Temperature Program: 200° C, isothermal Samples Injected: 3 μl. Retention Times: 2-Chloroethanol: 3.2 min n-Amyl alcohol (Internal Standard): 5.9 min

B. Results: The total amount of 2-chloroethanol in the referee skin paint samples was determined from the linear regression equation computed from the standard data, relating the ratio obtained by dividing the peak area of each spiked standard by the peak area of the internal standard, to the amount of chemical in the respective spiked standard.

II. Testing Laboratory

Procedure: Samples were analyzed, as submitted, by gas chromatography. The instrument used was a Varian Model 2100 equipped with flame ionization detectors. A silanized glass column, 1.8 m \times 2.6 mm ID, containing 100/120 mesh Chromosorb 102 was used. The column temperature was 170° C, with a nitrogen (carrier) flow rate of 30 ml/min. Suitable aliquots, from 1 to 4 µl, of the samples were injected directly into the chromatograph without prior treatment. Concentrations were determined by reference to a calibration curve obtained by analysis under the same parameters of a standard solution of 2-chloroethanol in 80% ethanol.

APPENDIX J

ANALYSES OF DOSE MIXTURES: DATA

2-Chloroethanol, NTP TR 275

Date Mixed	Target Concentration (mg/ml)	Actual Concent ratio n	Percent of Target Concentration
12/14/79	25.0	22.6	90.4
	50.3	47.3	94.0
	75.0	71.8	95.7
1/05/00	150.0	141.0	94.U 107.9
1/20/00	150.0	156.0	104.0
2/01/80	35.0	36.5	104.3
	70.0	68.8	98.3
	75.0	73.4	97.6
5 KO 0 KO 0	150.0	142.0	94.7
3/28/80	58.U 75.0	57.U 75.0	70.0 100 0
	116.0	113.0	97.4
	150.0	152.0	101.3
5/27/80	75.0	78.2	104.3
	150.0	156.0	104.0
	67.0	69.2	103.3
7150200	135.0	133.0	98.0 101.0
1/10/00	150.0	154.0	102.7
	72.6	75.3	103.7
	146.0	145.0	99.3
9/12/80	75.0	80.8	107.7
	150.0	159.0	106.0
	70.0	81.8 162.0	100.8
11/07/80	75.0	81.6	108.8
	150.0	154.0	102.7
	77.4	85.8	110.9
	156.0	160.0	102.6
1/09/01	77.4	75.6	97.7 94 5
1/02/01	150.0	148.0	98.7
1	82.2	83.2	101.2
	165.0	165.0	100.0
2/27/81	75.0	84.4	(b) 112.5
	150.0	164.0	109.3
	174.0	185.0	106.3
3/03/81	75.0	79.6	(c) 106.1
4/24/81	75.0	78.6	104.8
	150.0	144.5	96 .3
	93.4	93.9	100.5
6/10/81	186.0	172.0	92.0 (h) 56 0
0/15/01	150.0	149.5	99.7
	95.8	102.5	107.0
	192.0	192.5	100.3
0/54/05	75.0	81.7	(c) 108.9
8/14/81	75.0	70.8 149.5	101.1
а.	99.0	98.2	99.2
	197.9	194.8	98.4
10/7/81	75.0	79.7	106.3
	150.0	160.0	106.7
	99.0 197.9	214.0	108.1
Mean Standard Action			101.0 7 20
Coefficient of variat	ion (percent)		7.82
Range	(*)		56.1-112.5
Number of samples			55

TABLE J1. CONCENTRATIONS OF 2-CHLOROETHANOL IN THE TWO-YEAR DERMAL STUDIES

(a) The data presented are the average of the results of duplicated analyses.
(b) Out of specifications, not used in the study
(c) Remix, not included in the mean

	Target Concentration (mg/ml)	Determined Concentration	
Date Mixed		Testing Laboratory	Analytical Laboratory
3/28/80	150.0		157.0
7/18/80	75.0	76.4	75.8
1/02/81	150.0	148.0	153.0
8/14/81	99.0	98.2	100.2

TABLE J2. RESULTS OF REFEREE ANALYSES OF 2-CHLOROETHANOL/ETHANOL MIXTURES IN THETWO-YEAR DERMAL STUDIES

2-Chloroethanol, NTP TR 275

178
APPENDIX K

SENTINEL ANIMAL PROGRAM

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect test results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents in the program is monitored via viral serology on sera from extra (sentinel) animals in the test rooms. These animals are untreated, and they and the test animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen Swiss CD-1 mice of each sex and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group are killed at 6, 12, and 18 months on study. Data from animals surviving 24 months are collected from 5/50 randomly selected control animals of each sex and species. The blood from each animal is collected and clotted, and the serum is separated. The serum is cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests are performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	ELISA		
Rats	PVM (pneumonia virus of mice) KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai (12, 18, 24 mo)	RCV (rat coronavirus) Sendai (6 mo)			
Mice	PVM Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) Sendai MVM (minute virus of mice) Ectro (infectious ectromelia)	M.Ad. (mouse adenovirus) LCM (lymphocytic chorio- meningitis virus MHV (mouse hepatitis virus (6, 12, 18 mo)	MHV (mouse hepatitis virus) (24 mo)		

II. Results

See Table K1.

Interval (months)	Positiv Number	Positive Serologi Reaction for	
RATS	MALE	FEMALE	
6			••
12	4/4	3/3	Sendai
18	5/5	3/5	Sendai
24	5/5	5/5	Sendai
MICE			
6	3/5 2/5	2/5 2/2	MVM MHV
12	3/5 1/5	1/4 2/4	Sendai MVM
18	(a)	1/5	Sendai
24	1/5 2/5	2/5 2/5	MVM (b) MHV

TABLE K1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR DERMAL STUDIES OF 3-CHLOROETHANOL

(a) Not done (b) 24-month MHV results by ELISA method

2-Chloroethanol, NTP TR 275

2-Chloroethanol, NTP TR 275

APPENDIX L

INGREDIENTS, NUTRIENT COMPOSITION, AND MEASURED CONTAMINANT LEVELS OF THE NIH 07 DIET

Pelleted Diet: December 1979 to January 1982 (Manufactured by Zeigler Bros., Inc.) (Gardners, PA)

2-Chloroethanol, NTP TR 275

TABLE L1. INGREDIENTS OF THE NIH 07 DIET (a)

Ingredients (b)	Percent by Weight	
Ground #2 yellow shelled corn	24.50	
Ground hard winter wheat	23.00	
Sovbean meal (49% protein)	12.00	
Fish meal (60% protein)	10.00	
Wheat middlings	10.00	
Dried skim milk	5.00	
Alfalfa meal (dehydrated, 17% protein)	4.00	
Corn gluten meal (60% protein)	3.00	
Sov oil	2.50	
Brewer's dried yeast	2.00	
Dry molasses	1.50	
Dicalcium phosphate	1.25	
Ground limestone	0.50	
Salt	0.50	
Pre-mixes (vitamin and mineral)	0.25	

(a) NIH, 1978; NCI, 1976

(b) Ingredients should be ground to pass through a U.S. Standard Screen #16 before mixing.

TABLE L2. VITAMINS AND MINERALS IN THE NIH 07 DIET (a)

	Amount	Source
Vitamins		
A	5,500,000 IU	Stabilized vitamin A
D ₉ d-A-tocopheryl acetate	4,600,000 IU 20,000 IU	D activated animal sterol
Riboliavin Thiamine Niacin	3.4 g 10.0 g 30.0 g	Thiamine mononitrate
d-Pantothenic acid Folic acid	18.0 g 2.2 g	d-Calcium pantothenate
Pyridoxine B ₁₂	1.7 g 4,000 μg	Pyridoxine hydrochloride
Bloun K ₃ Choline	140.0 mg 2.8 g 560.0 g	d-blotin Menadione activity Choline chloride
Minerals		
Iron	120.0 g	Iron sulfate
Manganese Zinc	60.0 g 16.0 g	Manganous oxide Zinc oxide
Copper	4.0 g	Copper sulfate
Iodine Cohalt	1.4 g 0.4 g	Calcium iodate Cobalt carbonate

(a) Per ton (2,000 lb) of finished product

Nutrient	Mean ± Standard Deviation	Range	Number of Samples
Crude protein (percent by weight)	24.29 ± 0.81	22.7 · 26.1	24
Crude fat (percent by weight)	4.81 ± 0.38	4.1 - 5.5	24
Crude fiber (percent by weight)	3.31 ± 0.50	1.4 - 4.3	24
Ash (percent by weight)	6.76 ± 0.44	5.83 - 7.43	24
litamins			
itamin A (IU/kg)	$10,192 \pm 2,534$	6,700 - 17,000	24
'itamin D (IU/kg)	6,300	· · · ·	1
-tocopherol (ppm)	37.6	31.1 - 44.0	2
hiamine (ppm)	16.2 ± 4.5	7.4 - 27	24
iboflavin (ppm)	6.9	6.1 - 7.4	2
iacin (ppm)	75	65 - 85	2
antothenic acid (ppm)	30.2	29.8 - 30.5	2
vridozine (ppm)	7.2	5.6 - 8.8	2
olic acid (ppm)	2.1	1.8 - 2.4	2
iotin (ppm)	0.24	0.21 - 0.27	2
itamin B ₁₂ (ppb)	12.8	10.6 - 15.0	2
holine (ppm)	3,315	3,200 - 3,430	2
inerals	•		
alcium (percent)	1.34 ± 0.20	0.81 - 1.69	24
hosphorous (percent)	1.01 ± 0.08	$0.82 \cdot 1.10$	24
stassium (percent)	0.809	0.772 - 0.846	2
hloride (percent)	0.557	0.479 - 0.635	2
dium (percent)	0.304	0.258 - 0.349	2
agnesium (percent)	0.172	0.166 - 0.177	2
ulfur (percent)	0.278	0.270 - 0.285	2
on (ppm)	418	409 - 426	2
anganese (ppm)	90.8	86.0 - 95.5	2
nc (ppm)	55.1	54.2 - 56.0	2
pper (ppm)	12.68	9.65 - 15.70	2
dine (ppm)	2.58	1.52 - 3.64	2
hromium (ppm)	1.86	1.79 - 1.93	2
obalt (ppm)	0.57	0.49 - 0.65	2
ssential Amino Acids (percent of	total diet)		
rginine	1.260	1.21 - 1.31	2
ystine	0.395	0.39 - 0.40	2
lycine	1.175	1.15 - 1.20	2
istidine	0.553	0.530 - 0.576	2
oleucine	0.908	0.881 - 0.934	2
eucine	1.905	1.85 - 1.96	2
ysine	1.250	1.20 - 1.30	2
ethionine	0.310	0.306 - 0.314	2
henylalanine	0.967	0.960 - 0.974	2
nreonine	0.834	0.840 - 0.827	2
ryptophan	0.175	0.171 - 0.178	2
yrosine	0.587	0.566 - 0.607	2
aline	1.085	1.05 - 1.12	2
ssential Fatty Acids (percent of to	otal diet)		
inoleic	2.37		1
inolenic	0.308		1
	0.008		1

TABLE L3. NUTRIENT COMPOSITION OF THE NIH 07 DIET (a)

(a) One or two batches of feed analyzed for nutrients reported in this table were done on batches of diet manufactured in January and/or April 1983.

reservic (ppm) 0.39 ± 0.23 $< 0.05 \cdot 1.06$ 24 ead (ppm) 0.91 ± 0.51 $0.50 \cdot 2.65$ 24 encury (ppm) (a) < 0.05 0.00 ± 2.65 24 encury (ppm) 0.11 ± 0.07 (b) < 0.05 · 2.65 24 elenium (ppm) 0.29 ± 0.09 $0.10 \cdot 0.52$ 24 fiterion (ppm) 0.29 ± 0.09 $0.10 \cdot 0.52$ 24 fiterion (ppm) 0.29 ± 0.09 $0.10 \cdot 0.52$ 24 fiterion (trogen (ppm)/(d) 1.45 ± 1.02 $< 0.1 \cdot 4.0$ 24 fiterion (CFU/g) 46.786 ± 22.701 (h) $6.500 \cdot 120.000$ 24 erobic plate count (CFU/g) 46.786 ± 22.701 (h) $6.500 \cdot 120.000$ 24 oliform (MPN/g)(j) 39 ± 57 (k) $< 3 \cdot 2400$ 24 coli (MPN/g) (m) <3 24 24 otal nitrosamines (ppb) 7.79 ± 6.67 (n, n) $1.1 \cdot 20.0$ 21 Nitrosodimethylamine (ppb) 5.81 ± 6.30 (n, n) $1.1 \cdot 27.2$ 24 Nitrosodimethylamine (ppb) 1.44 ± 0.89 $0.5 \cdot 3.5$ 24 esticides (ppm) if $a < 0.01$ 24	Contaminant	Mean ± Standard Deviati	on Range	Number of Sample		
ead (ppn) 0.31 \pm 0.31 0.50 - 2.65 24 iscury (ppn) (a) < 0.05 0.11 \pm 0.07 (b) < 0.05 - 0.40 24 elenium (ppm) 0.29 \pm 0.09 0.10 \cdot 0.52 24 flatoxins (ppb) (a, c) < 10 (b) < 0.05 - 0.40 24 itrate nitrogen (ppm)(d) 7.00 \pm 3.70 (e) < 0.1 \cdot 13.0 24 itrate nitrogen (ppm)(d) 1.45 \pm 1.02 <0.1 \cdot 4.0 24 HA (ppm)(f) 3.83 \pm 3.86 (g) < 0.2 \cdot 13.0 24 erobic plate count (CFU/g) 48,786 \pm 32,701 (h) 5,500 \cdot 120,000 22 oliform (MPN/g)(f) 39 \pm 57 (k) < 3 \cdot 240 20 coliform (MPN/g)(f) 39 \pm 57 (k) < 3 \cdot 240 20 coliform (MPN/g) (m) < 3 24 24 Nitrosodimethylamine (pb) 7.63 \pm 6.67 (n, o) 2.2 \cdot 27.3 24 Nitrosodimethylamine (pb) 7.63 \pm 6.67 (n, o) 1.2 \cdot 20.0 21 Nitrosodimethylamine (pb) 7.63 \pm 6.67 (n, o) 1.2 \cdot 20.0 21 Nitrosodimethylamine (pb) 7.63 \pm 6.67 (n, o) 1.1 \cdot 20.0 21 Nitrosop	Arsenic (ppm)	0.39 ± 0.23	< 0.05 - 1.06	24		
	Lead (ppm)	0.91 ± 0.51	0.50 - 2.65	24		
admitm (ppm) 0.11 ± 0.07 (b) < 0.05 - 0.40	Mercury (ppm)	(a) < 0.05	0.00 1.00			
elenium (ppm) 0.29 ± 0.09 $0.10 \cdot 0.52$ 24 flatoxins (ppb) (a, c) <10	Cadmium (ppm)	0.11 ± 0.07	(b) < 0.05 - 0.40	24		
Intervine (ppb) (a, c) < 10 litrice nitrogen (ppm)(d) 1.45 ± 1.02 <0.1 · 13.0	selenium (ppm)	0.29 ± 0.09	0.10 - 0.52	24		
fitzte nitrogen (ppm) (d) 7.00 \pm 3.70 (e) < 0.1 · 13.0	Aflatoxins (ppb)	(a, c) <10				
litrice nitrogen (ppm) (d) 1.45 \pm 1.02 < 0.1 - 4.0 24 HA (ppm) (f) 3.83 \pm 3.88 (g) < 0.2 : 13.0 24 HT (ppm) (f) 2.97 \pm 1.74 0.8 · 7.8 24 erobic plate count (CFU/g) 48,786 \pm 32,701 (h) 5,500 · 120,000 22 idiorn (MPN/g) (j) 39 \pm 57 (k) < 3 · 240 20 270 \pm 580 (l) < 3 · 240 20 270 \pm 580 (l) < 3 · 240 20 24 otal nitrosamines (ppb) 7.63 \pm 6.87 (n, o) 2.2 · 24.5 21 · Nitrosodimethylamine (ppb) 29.77 \pm 64.59 (n, p) 2.2 · 273 24 · Nitrosodimethylamine (ppb) 5.81 \pm 6.30 (n, o) 1.1 · 20.0 21 · Nitrosopyrrolidine (ppb) 1.44 \pm 0.89 0.5 · 3.5 24 esticldes (ppm) lpha BHC (q) (a) < 0.01 24 etal BHC (a) (a) < 0.01 24 DD (a) < 0.02 24 etal bhordane (a) < 0.01 24 DD (a) < 0.05 (c) 0.24/27/81) 24 etal bhordane (a) < 0.02 24 etal bhordane (a) < 0.03 24	Nitrate nitrogen (ppm) (d)	7.00 ± 3.70	(e) <0.1 - 13.0	24		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nitrite nitrogen (ppm) (d)	1.45 ± 1.02	<0.1 - 4.0	24		
HT (ppm) (f) 2.97 ± 1.74 0.8 - 7.6 24 erobic plate count (CFU/g) 48,786 ± 32,701 (h) 5,500 - 120,000 22 oliform (MPN/g) (j) 39 ± 57 (k) < 3.240	3HA (ppm) (f)	3.83 ± 3.88	(g) <0.2 - 13.0	24		
erobic plate count (CFU/g) 48,786 \pm 32,701 (h) 5,500 - 120,000 24 oliform (MPN/g) (j) 39 \pm 57 (k) < 3 · 240	BHT (ppm) (f)	2.97 ± 1.74	0.8 - 7.6	24		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Aerobic plate count (CFU/g)	48,786 ± 32,701	(h) 5,500 - 120,000	22		
oliform (MPN/g) (j) 39 ± 57 (k) < 3 · 24020.coli (MPN/g)(m) < 3	. –	70,970 ± 81,410	(i) 5,500 - 320,000	24		
$\begin{array}{c c} 270 \pm 580 & (1) < 3 \cdot 2400 & 24 \\ coli (MPN/g) & (m) < 3 & 24 \\ \hline coli (MPN/g) & (m) < 3 & 24 \\ \hline coli (MPN/g) & (m) < 3 & 24 \\ \hline coli (MPN/g) & (m) < 3 & 24 \\ \hline coli (MPN/g) & 7.63 \pm 6.67 & (n, o) 2.2 \cdot 24.5 & 21 \\ \hline 29.77 \pm 64.59 & (n, p) 2.2 \cdot 273 & 24 \\ \hline coli (MPN/g) & 5.81 \pm 6.30 & (n, o) 1.1 \cdot 20.0 & 21 \\ \hline coli (MPN/g) & 5.81 \pm 6.30 & (n, o) 1.1 \cdot 20.0 & 21 \\ \hline coli (MPN/g) & 1.44 \pm 0.89 & 0.5 \cdot 3.5 & 24 \\ \hline coli (MPN/g) & 1.44 \pm 0.89 & 0.5 \cdot 3.5 & 24 \\ \hline coli (MPN/g) & 1.44 \pm 0.89 & 0.5 \cdot 3.5 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.01 & 24 \\ \hline coli (MPN/g) & (a) < 0.05 & (r) 0.09 (B/26/81) & 24 \\ \hline coli (MPN/g) & (a) < 0.05 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.02 & 24 \\ \hline coli (MPN/g) & (a) < 0.03 & 24$	Coliform (MPN/g) (j)	39 ± 57	(k) <3 - 240	20		
coli (MPN/g) (m) <3		270 ± 580	(1) < 3 - 2400	24		
obsile introsemines (ppb) 7.63 \pm 6.67 (n, o) 2.2 · 24.5 21 29.77 \pm 64.59 (n, o) 2.2 · 273 24 -Nitrosodimethylamine (ppb) 5.81 \pm 6.30 (n, o) 1.1 · 20.0 21 -Nitrosopyrrolidine (ppb) 1.44 \pm 0.89 0.5 · 3.5 24 -Nitrosopyrrolidine (ppb) 1.44 \pm 0.89 0.5 · 3.5 24 esticides (ppm) (a) < 0.01	l. coli (MPN/g)	(m) <3		24		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	otal nitrosamines (ppb)	7.63 ± 6.67	(n, o) 2.2 - 24.5	21		
-Nitrosodimethylamine (ppb) 5.81 ± 6.30 $(n, 0) 1.1 \cdot 20.0$ 21 -Nitrosopyrrolidine (ppb) 1.44 ± 0.89 $0.5 \cdot 3.5$ 24 -Nitrosopyrrolidine (ppb) 1.44 ± 0.89 $0.5 \cdot 3.5$ 24 esticides (ppm) in (n, p) 1.1 - 272 24 in BHC (q) (a) < 0.01		29.77 ± 64.59	(n, p) 2.2 - 273	24		
27.79 \pm 64.31(n, p) 1.1 - 27224-Nitrosopyrrolidine (ppb)1.44 \pm 0.890.5 - 3.524esticides (ppm)lpha BHC (q)(a) <0.01	N-Nitrosodimethylamine (ppb)	5.81 ± 6.30	(n, o) 1.1 - 20.0	21		
-Nitrosopyrrolidine (ppb) 1.44 ± 0.89 $0.5 \cdot 3.5$ 24 esticides (ppm) lpha BHC (q) (a) <0.01	•••	27.79 ± 64.31	(n, p) 1.1 - 272	24		
seticides (ppm) ia) < 0.01	I-Nitrosopyrrolidine (ppb)	1.44 ± 0.89	0.5 - 3.5	24		
lpha BHC (q)(a) < 0.0124eta BHC(a) < 0.02	Pesticides (ppm)					
eta BHC (a) < 0.02	Alpha BHC (q)	(a) <0.01		24		
amma BHC - Lindane(a) < 0.0124elta BHC(a) < 0.01	Beta BHC	(a) < 0.02		24		
eita BHC(a) < 0.0124eptachlor(a) < 0.01	amma BHC - Lindane	(a) <0.01		24		
eptachlor(a) < 0.0124ldrin(a) < 0.01	Delta BHC	(a) < 0.01		24		
Idrin(a) < 0.0124eptachlor epoxide(a) < 0.01	leptachlor	(a) < 0.01		24		
eptachlor epoxide(a) < 0.0124DE(a) < 0.01	ldrin	(a) <0.01		24		
DE(a) < 0.0124DD(a) < 0.01	feptachlor epoxide	(a) < 0.01		24		
DD(a) < 0.0124CB(a) < 0.01	DDE	(a) <0.01		24		
CB (a) <0.01	DDD	(a) < 0.01		24		
lirex(a) <0.0124lethoxychlor(a) <0.05	1CB	(a) <0.01		24		
iethoxychlor(a) <0.05(r) 0.09 (8/26/81)24ieldrin(a) <0.01	firex	(a) <0.01		24		
ieldrin(a) < 0.0124ndrin(a) < 0.01	fethoxychlor	(a) <0.05	(r) 0.09 (8/26/81)	24		
ndrin(a) <0.0124elodrin(a) <0.01	Dieldrin	(a) <0.01		24		
slodrin (a) < 0.01	Indrin	(a) <0.01		24		
hlordane(a) <0.0524boxaphene(a) <0.1	elodrin	(a) <0.01		24		
totaphene(a) < 0.124stimated PCB's(a) < 0.2	hlordane	(a) <0.05		24		
stimated PCB's(a) <0.224onnel(a) <0.01	oxaphene	(a) <0.1		24		
onnel (a) <0.01 24 thion (a) <0.02	stimated PCB's	(a) <0.2		24		
thion (a) <0.02 24 rithion (a) <0.05	onnel	(a) <0.01		24		
rithion(a) <0.0524iazinon(a) <0.1	thion	(a) <0.02		24		
iazinon(a) <0.1(r) 0.2 (4/27/81)24iethyl parathion(a) <0.02	rithion	(a) <0.05		24		
isthyl parathion (a) <0.02 24 thyl parathion (a) <0.02	lazinon	(a) <0.1	(r) 0.2 (4/ 27/81)	24		
thyl parathion (a) <0.02	fethyl parathion	(a) <0.02		24		
alathion <0.10 ± 0.07 (s) <0.05 - 0.27 24 ndosulfan I (a) <0.01	thyl parathion	(a) <0.02		24		
ndosulfan I (a) <0.01 24 ndosulfan II (a) <0.01 24 ndosulfan sulfate (a) <0.03 24	falathion	<0.10 ± 0.07	(s) < 0.05 - 0.27	24		
ndosulfan II (a) < 0.01 24 ndosulfan sulfate (a) < 0.03 24	ndosulfan I	(a) <0.01		24		
ndosulfan sulfate $(a) < 0.03$ 94	ndosulfan II	(a) <0.01		24		
	ndosulfan sulfate	(a) < 0.03		24		

TABLE L4. CONTAMINANT LEVELS OF THE NIH 07 DIET

TABLE L4. CONTAMINANT LEVELS OF THE NIH 07 DIET (Continued)

(a) All values were less than the detection limit; the detection limit is given as the mean.

(b) Three batches contained more than 0.1 ppm.

(c) Detection limit reduced from 10 ppb to 5 ppb after 7/81

(d) Source of contamination: alfalfa, grains, and fish meal

(e) Two batches contained less than 0.1 ppm.

(f) Source of contamination: soy oil and fish meal

(g) Six batches contained less than 0.5 ppm.

(h) Excludes two extreme values 300,000 and 320,000 obtained in batches produced 12/21/79 and 2/26/80. CFU = Colony Forming Unit.

(i) Includes two extreme values 300,000 and 320,000 obtained in batches produced 12/21/79 and 2/26/80

(j) MPN = most probable number

(k) Excludes four values in the range 1,100 to 2,400 obtained in batches produced 2/4/80, 2/26/80, 5/29/80 and 12/16/80 (l) Includes four values in the range 1,100 to 2,400 obtained in batches produced 2/4/80, 2/26/80, 5/29/80 and 12/16/80 (m) All values were <3 MPN/g.

(n) All values are corrected for percent recovery.
(o) Excludes three values in the range of 115-280 ppb obtained in batches produced 1/26/81, 2/23/81, and 4/27/81

(p) Includes three values in the range of 115-280 ppb obtained in batches produced 1/26/81, 2/23/81, and 4/27/81

(q) BHC is hezachlorocyclohezane or benzene hezachloride.

(r) One value above the detection limit (noted in the range column) was obtained on this date.

(s) Nine batches contained more than 0.05 ppm.

2-Chloroethanol, NTP TR 275

188

APPENDIX M

ENVIRONMENTAL CONDITIONS DURING THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

Room No.	Month/ Year	T av (a) (°F)	SD (b)	n (c)	T max (*F)	T min (°F)	n in Specification	Percent of Readings in Specification	Hours Specific Above	Out of ation (d) Below
A211E	1/80	74.4	2.0		79	71	15	83.3	24	12
****	2/80	74.6	2.9	41	80	62	30	73.2	120	12
	3/80	73 4	1.9	42	80	70	37	88.1	24	36
	4/80	73.5	1.5	44	78	71	40	90.9	12	36
	5/80	73 7	14	42	78	71	38	90.5	12	36
	6/90	73 1	20	42	77	65	36	85 7	12	60
	7/90	74 K	1 4	AA	79	79	42	91.3	48	Ő
	8/80	74.5	1 0	42	80	79	37	22 1	60	ŏ
	9/80	73.8	1.8	49	77	70	40	95.2	12	12
	10/80	74.3	2.0	46	70	20	34	73 0	120	94
	11/80	74.7	22	40	82	71	30	75.0	108	12
	12/80	73.9	2.6	ĂŔ	80	68	33	71.7	108	48
	1/81	74.0	21	44	79	71	33	75.0	96	36
	2/91	74.1	2.0	40	80	70	34	85.0	48	24
	3/81	74 R	17	44	78	72	37	84.1	84	
	4/81	74.7	21		80	72	34	77.3	120	ŏ
	5/91	74.9	1 9	42	82	72	38	90.5	48	ŏ
	6/91	74.7	10	44	70	79	35	79.6	108	ŏ
	7/21	74.1	20	AR	79	69	34	73 9	108	36
	9/91	74 6	17	42	77	70	36	85 7	60	12
	0/01	75.0	1 7		70	79	24	77 2	120	10
	10/21	74.0	1 5		77	71	25	70 6	06	12
	11/01	(4.7 72.0	1.0	40	05	70	00	61 0	109	12
	19/01	10.0	4.9	94 45	80	79	40	71 1	156	ŏ
	1/29	78 K	2.0	49	89	79	04 16	98.1	219	0
	2/82	75.5	1.8	15	79	72	10	66.7	60	ŏ
Study Su	mmary	74.5	1.9	1,069	79.4	70.5	846	79.0	2,268	408

TABLE M1. TEMPERATURE RECORD FOR THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

(a) Temperature (T) average; recommended temperature for animal room was 74° ± 2° F (23° ± 1° C).
(b) SD = standard deviation
(c) n = number of readings
(d) Approximation

Room No.	Month/ Year	RH av (a) (percent)	SD (b)	n (c)	RH max (percent)	RH min (percent)	n in Specification	Percent of Readings in Specification	Hour Specifi Above	s Out of cation (d) Below
A211E										
	1/80	48.6	6.3	18	62	37	15	83.3	12	24
	2/80	51.2	6.5	41	70	39	37	90.2	36	12
	3/80	55.0	5.8	42	72	43	38	90.5	48	ō
	4/80	56.2	7.9	44	73	40	32	72.7	144	Ŏ
	5/80	55.9	7.3	42	74	39	32	76.2	108	12
	6/80	59.5	10.4	42	82	39	24	57.1	192	24
	7/80	66.8	9.1	46	86	52	15	32.6	372	0
	8/80	70.7	5.3	42	82	58	1	2.4	492	0
	9/80	68.7	6.7	42	78	44	5	11.9	444	0
	10/80	51.5	14.3	46	86	26	22	47.8	144	144
	11/80	40.8	8.0	40	56	22	22	55.0	0	216
	12/80	42.6	8.6	46	70	30	27	58.7	12	216
	1/81	41.8	7.6	44	65	28	28	63.6	12	180
	2/81	45.3	11.8	40	66	24	19	47.5	60	192
	3/81	47.9	10.1	44	66	24	32	72.7	48	96
	4/81	46.1	10.1	- 44	70	25	28	63.6	48	144
	5/81	55.9	9.9	42	68	32	22	52.4	192	48
	6/81	61.9	8.8	44	74	40	18	40.9	312	0
	7/81	65.3	7.0	46	80	44	12	26.1	408	0
	8/81	64.0	5.8	42	70	48	11	26.2	372	0
	9/81	58.2	7.4	- 44	74	42	29	65.9	180	0
	10/81	56.0	9.8	- 44	75	40	31	70.5	156	0
	11/81	50.0	10.4	42	70	22	31	73.8	72	60
	12/81	47.6	6.7	45	60	26	43	95.6	0	24
	1/82	48.8	8.1	42	66	30	37	88.1	48	12
	2/82	47.7	6.3	15	58	40	15	100.0	0	0
Study S	Summary	54.0	8.3	1,069	71.3	35.9	626	60.2	3,912	1,404

TABLE M2. RELATIVE HUMIDITY RECORD FOR THE TWO-YEAR DERMAL STUDIES OF 2-CHLOROETHANOL

(a) Relative humidity (RH) average; recommended relative humidity for animal rooms was 50% ± 10%.
(b) SD = Standard deviation
(c) n = number of readings
(d) Approximation

APPENDIX N

DATA AUDIT SUMMARY

The experimental data for the Technical Report on the 2-year dermal studies of 2-chloroethanol in F344/N rats and Swiss CD-1 mice conducted at Litton Bionetics, Inc., were audited for completeness, consistency, and accuracy and for consistency of scientific procedures with Good Laboratory Practices. The 2-year studies were initiated by the National Cancer Institute in January 1980, prior to the NTP's requirement for full compliance with Good Laboratory Practices procedures in October 1981. The audit of the experimental data was conducted by ImmuQuest Laboratories, Inc., on February 27-March 9, 1984. Audit team members were Dr. L. Brennecke, Ms. P. Errico, Mr. C. Reese, Dr. K. Whitkin, and Mr. D.C. Haynes.

The complete report of the audit of 2-chloroethanol is on file at the National Toxicology Program, NIEHS. The audit consisted of (a) review of records for the in-life portions of the studies, including clinical observations and body weight data for 10% of the animals and all environmental and mortality records, (b) review of all chemistry data, and (c) review of pathology data consisting of (1) all individual animal pathology records (IADR's), (2) 100% slide/block match for all animals in all dose groups, and (3) wet tissues for 10% of the animals in each group.

The audit identified no outstanding problems with the conduct of the studies or with the collecting or reporting of the experimental data. The analytical chemistry data were considered adequate to support the stated conclusions regarding chemical analyses. Animals were identified by a combination of toe clipping and ear punching. In each of the groups of untreated and vehicle male mice, the identification of two mice did not match the wet tissue bag label identification. Tissue descriptions from the necropsy records confirmed that only the bags were mislabeled. Apparent discrepancies between necropsy gross observations and microscopic diagnoses consisted predominantly of minor tissue alterations with no potential impact on study interpretation. In four mice, lung nodules were undiagnosed (one untreated male, two vehicle control males, and one low dose male); and in rats, three splenic enlargements (one high dose female, one vehicle control male, and one high dose male) and one liver nodule (high dose male) were undiagnosed. These do not alter the interpretative conclusions of the Technical Report. Paraffin blocks for one high dose male mouse and one untreated female mouse were mislabeled (interchanged). The slides for these two mice contained tissues of the appropriate sex for their respective groups. Slides for one high dose female rat were mislabeled with the wrong group letters on the back (VF instead of HF). The front labels were correct, and the slides matched the blocks. These minor pathology discrepancies are not considered to affect the outcome or interpretation of the studies. In conclusion, no data discrepancies were found that would influence the final interpretation of this experiment.