National Cancer Institute CARCINOGENESIS Technical Report Series No. 3

January, 1977

BIOASSAY OF

1, 1, 1-TRICHLOROETHANE

FOR POSSIBLE CARCINOGENICITY

CAS No. 71-55-6

NCI-CG-TR-3

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service

National Institutes of Health

BIOASSAY OF 1,1,1-TRICHLOROETHANE FOR POSSIBLE CARCINOGENICITY

Carcinogen Bioassay and Program Resources Branch Carcinogenesis Program Division of Cancer Cause and Prevention National Cancer Institute Bethesda, Maryland

November 1976

DHEW Publication No. (NIH) 77-803

BIOASSAY OF 1,1,1-TRICHLOROETHANE

FOR POSSIBLE CARCINOCENICITY

Carcinogenesis Program, Division of Cancer Cause and Prevention

National Cancer Institute

November 1976

<u>CONTRIBUTORS</u>: This report presents the results of the carcinogenesis bio-assay conducted under the direction of the Carcinogen Bioassay and Program Resources Branch, Carcinogenesis Program, Division of Cancer Cause and Prevention, National Cancer Institute (NCI), Bethesda, Maryland. This research was conducted at Hazleton Laboratories America, Inc., Vienna, Virginia, initially under direct contract to the NCI and currently under a subcontract to Tracor Jitco, Inc., prime contractor for the NCI Carcinogenesis Bioassay Program.

The results of this study were reviewed and this report was prepared at Tracor Jitco. Those responsible for the report are the toxicologists, Drs. W. E. MacDonald², and Jane F. Robens²; the technical editor, Dr. E. W. Gunberg²; and the technical writer, Ms. B. G. J. Ross².

The experimental design, including doses, was determined by the NCI Project Officers, Drs. J. H. Weisburger^{1,4} and E. K. Weisburger^{1'}. The principal investigators for the contract were Drs. M. B. Powers³, R. W. Voelker³, W.

A. $\texttt{Olson}^{\texttt{3},\texttt{5}},$ and W. N. $\texttt{Weatherholtz}^{\texttt{3},\texttt{6}}.$ Chemical analysis was performed

iii

by Dr. C. L. Guyton³'⁷; the technical supervisor of animal treatment and observation was Ms. K. J. Petrovics³.

The pathologic examinations were done by the Hazleton Laboratories America, Inc.³, and the Experimental Pathology Laboratories⁸. The histopathologic evaluation was conducted by Dr. D. A. Willigan9 and reviewed by Dr. C. N. Barron².

Compilation of individual animal survival, pathology, and summary tables was performed by EG&G Mason Research Institute¹⁰; the statistical analysis was performed by Dr. J. R. Joiner², using methods selected for the Bioassay Program by Dr. J. J. Gart¹¹. This report was reviewed by members of the participating organizations^{1,2,3}.

¹Carcinogenesis Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

²Tracor Jitco, Inc., 1776 E. Jefferson Street, Rockville, Maryland.

³Hazleton Laboratories America Inc., 9200 Leesburg Turnpike, Vienna, Virginia.

⁴Now with the Naylor Dana Institute for Disease Prevention, American Health Foundation, Hammond House Road, Valhalla, New York.

⁵Now with the Center for Regulatory Services, 2347 Paddock Lane, Reston, Virginia.

⁶Now with the Department of Food Science and Nutrition, Commonwealth of Massachusetts, University of Massachusetts, Amherst, Massachusetts.

⁷Now with Rhodia, Inc., 23 Belmont Drive, Somerset, New Jersey.

⁸Experimental Pathology Laboratories, 17 Pine Street, Herndon, Virginia.

⁹Donald A. Willigan, Inc., 730 Park Avenue, Bound Brook, New Jersey.

¹⁰EG&G Mason Research Institute, 1530 East Jefferson St., Rockville, Maryland.

¹¹Field Studies and Statistics, Division of Cancer Cause and Prevention, National Cancer Institute, National Institute of Health, Bethesda, Maryland.

SUMMARY

The carcinogenesis bioassay of technical grade 1,1,1-Trichloroethane was conducted using Osborne-Mendel rats and B6C3F1 mice. 1,1,1-Trichloroethane was administered orally by gavage in corn oil to 50 animals of each sex and species at two dose levels 5 days per week for 78 weeks.

<u>Rats</u>: The experiment was originally started using doses of 3,000 and 1,500 mg/kg of body weight. After a few weeks the study was terminated, and the animals discarded because of marked signs of intoxication. The experiment was restarted with rats 7 weeks of age that were put on doses of 1,500 and 750 mg/kg. There was a moderate depression of body weight in the first year of the study. During the second year a yellow discoloration of the fur of the lower abdomen and increased eye and nasal discharge and dyspnea were noted. Both males and females given the test chemical exhibited early mortality when compared with the untreated controls, and the statistical test for dose-related trend was significant (P < 0.04). All surviving animals were killed at 117 weeks of age.

<u>Mice</u>: Male and female weanlings were started on test at 5 weeks of age and killed at 96 weeks of age. Initially, the doses for male and female mice were 4,000 and 2,000 mg/kg body weight. During the 10th week of the study, doses were increased to 5,000 and 2,500 mg/kg, since the animals apparently could tolerate a higher dose. Doses were again increased at week 20 to 6,000 and 3,000 mg/kg and maintained at these levels to the end of the study. Timeweighted average doses for the high- and low-dose mice were, respectively, 5,615 and 2,807 mg/kg. There was a moderate depression of body weight throughout the study in both sexes of mice, and the survival

vii

was significantly decreased. In the female mice, there was a positive doserelated trend (P = 0.002) in the proportions surviving.

A variety of neoplasms were represented in both 1,1,1-trichloroethane treated and matched-control rats and mice. However, each type of neoplasm has been encountered previously as a lesion in untreated rats or mice. The neoplasms observed are not believed attributable to 1,1,1-Trichloroethane exposure, since no relationship was established between the dosage groups, the species, sex, type of neoplasm, or the site of occurrence. Even if such a relationship were inferred, it would be inappropriate to make an assessment of carcinogenicity of 1,1,1-trichloroethane on the basis of this test, because of the abbreviated life spans of both the rats and the mice.

TABLE OF CONTENTS

		<u>Page</u>
1.0 In	ntroduction	1
2.0 Ma	aterials and Methods	2
	Chemicals Dosage Preparation Animals Animal Maintenance Subchronic Toxicity Tests Design of Chronic Studies Clinical and Pathologic Examinations Data Recording and Statistical Analyses	2 2 3 4 5 9 10
3.0 Re	esults	12
A.	Rats	
	Body Weights and Clinical Signs Survival Pathology Statistical Analysis of Results	12 14 16 18
в.	Mice	
	Body Weights and Clinical Signs Survival Pathology Statistical Analysis of Results	20 20 24 25
4.0 Di	iscussion	28
5.0 Bi	ibliography	30
	APPENDICES	
Append	dix A Summary of the Incidence of Tumors in Rats Exposed to 1,1,1-Trichloroethane	32
Append	dix B Summary of the Incidence of Tumors in Mice Exposed to 1,1,1-Trichloroethane	35
Append	dix C Summary of the Incidence of Nontumor Pathology in Rats Exposed to 1,1,1-Trichloroethane	38
Append	dix D Summary of the Incidence of Nontumor Pathology in Mice Exposed to 1,1,1-Trichloroethane	53

FIGURES

Page

Figure	1	Growth Curves for Rats - 1,1,1-Trichloroethane14
Figure	2	Survival Curves for Rats - 1,1,1-Trichloroethane16
Figure	3	Growth Curves for Mice - 1,1,1-Trichloroethane22
Figure	4	Survival Curves for Mice - 1,1,1-Trichloroethane 23

TABLES

Table	1	Design of 1,1,1-Trichloroethane Chronic Study: Rats	6
Table	2	Design of 1,1,1-Trichioreothane Chronic Study: Mice	7
Table	3	Comparison of Survival of Control Groups, 1,1, 1-Trichloroetnane-Treated, and Carbon Tetrachloride-Treated (Positive Control) Rats 1	7
Table	4	Comparison of the Incidence of Liver Tumor in Control Groups, 1,1, 1-Trichloroethane-Treated, and Carbon Tetrachloride-Treated (Positive Control)1	19
Table	5	Statistical Analyses of the Incidence of rumors at Specific Sites in Matched Controls and 1, 1, 1-Trichloroethane-Treated Rats	20
Table	6	Comparison of Survival of Control Groups, 1,1, 1-Trichloroethane-Treated, and Carbon Tetrachloride-Treated (Positive Control) Mice	24
Table	7	Comparison of the Incidence of hepatocellular Carcinoma in Control Groups, 1, 1, 1-Trichloroethane-Treated, and Carbon Tetrachloride-Treated (Positive Control) Mice 2	
Table	8	Statistical Analyses of the Incidence of Tumors at Specific Sites in Matched Controls and 1, 1, 1-Trichloroethane-Treated Mice	27

INTRODUCTION

1,1,1-Trichloroethane (commonly called methylchloroform) is one of a group of halogenated hydrocarbons selected for testing in the Carcinogenesis Bioassay Program. The rationale for its selection includes its structural relationship to carbon tetrachloride, its wide use in industry, its extensive exposure of humans, and the incomplete knowledge of its carcinogenic potential. In 1959 Browning reported that 1,1,1-trichloroethane was replacing the more toxic industrial solvents: trichloroethylene, tetrachloroethylene, and carbon tetrachloride. Furthermore a growing market has developed for 1,1,1-Trichloroethane after reports suggested the carcinogenicity of carbon tetrachloride (Reuber and Glover, 1970; Della Porta et al., 1961; Eschenbrenner and Miller, 1946) and of trichloroethylene (National Cancer Institute, 1976). In the years 1970 through 1973, domestic sales grew from 327 to 566 million pounds (Chemical Economics Handbook, 1975). The Environmental Protection Agency permits 1,1,1-Trichloroethane to be used as a solvent or cosolvent in pesticide formulations for the postharvest fumigation of citrus fruits (U.S. Environmental Protection Agency, 1972). The United States Occupational Standard requires that no worker be exposed to a concentration in excess of 350 ppm by volume, or 1,900 mg/m3 determined as a time-weighted average exposure over an 8-hour workday (U.S. Dept. of Labor, 1974).

2.0 MATERIALS AND METHODS

Chemicals

Two batches of technical grade 1,1,1-trichloroethane were purchased from Aldrich Chemical Company, Inc., Milwaukee, Wisconsin. The purity was checked by Hazleton Laboratories America, Inc., Vienna, Virginia, using gas-liquid chromatography (glc) and infrared spectrophotometry. Analyses by glc showed that both batches contained approximately 95% 1,1,1-trichloroethane and 3% pdioxane, an inhibitor routinely added to commercial preparations of 1,1,1trichloroethane. The remaining 2% of the glc peak area contained several minor impurities, two of which may have been 1,1-dichloroethane and 1,1dichloroethylene. Throughout this report, the term 1,1,1-trichloroethane is used to represent the technical grade material.

Dosage Preparation

Fresh solutions of 1,1,1-trichloroethane in corn oil in amounts sufficient to dose all animals were prepared weekly, sealed, and refrigerated to reduce volatilization. The concentration of 1,1,1-trichloroethane in corn oil was 75% for rats and 40-60% for mice. Duke's corn oil was purchased from a distributor, C. F. Sauer Co., Richmond, Virginia. Dosing was conducted under a hood to minimize extraneous exposure of other animals and laboratory personnel.

Animals

The Osborne-Mendel rat was selected because of the experience gained by the Food and Drug Administration, where this strain has been used for many

years as a general-purpose test animal. In addition, it was known to be sensitive to the carcinogenic effects of carbon tetrachloride administered by subcutaneous injection (Reuber and Glover, 1970). The B6C3F1 hybrid mouse was selected because it has been extensively used by NCI for carcinogenesis bioassays.

Rats and mice of both sexes, obtained through contracts of the Division of Cancer Treatment, National Cancer Institute, were used in these tests. The Osborne-Mendel rats, and the B6C3F1 hybrid mice were obtained from the Charles River Breeding Laboratories, Inc., Wilmington, Massachusetts. Upon receipt, animals were quarantined for at least 10 days, determined to be free from observable disease or parasites, and assigned to the various experimental and control groups.

Animal Maintenance

All animals were housed in temperature- and humidity-controlled rooms. Incoming air was filtered through 2-inch-thick disposable fiberglass filters at a rate of 12 changes of room air per hour. Lighting was provided on a 12hour-per-day cycle. Rats were individually housed in suspended steel, wiremesh cages, and mice were in polypropylene cages equipped with filter tops. Ten mice were housed in each cage. Clean cages with bedding (Sanichips®, manufactured by Shurfire) were provided twice each week for mice; rats were given clean wire cages weekly.

Food hoppers were changed and heat-sterilized once a week for the first 10 weeks and once a month thereafter. Heat-sterilized glass water bottles were provided twice a week for rats and three times a week for mice. Food

(Wayne® Laboratory Blox Meal) and water were consumed ad libiturn Racks were repositioned in the room on a weekly basis.

Housed in the same room with the rats given 1,1,1-trichloroethane, were rats treated with trichloronitronmethane, and trichlorofluoromethane; the matched controls for 1,1,1-trichloroethane and trichlorofluoromethane; and the vehicle controls for trichloronitromethane.

The 1,1,1-trichloroethane-treated mice were maintained in the same room as mice receiving 1,1,2,2-tetrachloroethane, trichloromethane, 3-chloro-1propene, trichloronitromethane, 1,2-dibromo-3-chloropropane, 1,2dibromoethane, 1,2-dichloroethane, 1,1-dichloroethane, trichloroethene, 2,5dihydrothiophene 1,1-dioxide, triiodomethane, 1,1,2-trichloroethane, tetrachloroethene, hexachloroethane, carbon disulfide, trichlorofluoromethane, and tetrachloromethane (carbon tetrachloride). The control mice to these 17 chemicals were also housed in the same room as the 1,1,1-trichloroethanetreated mice.

Subchronic Toxicitity Tests

Subchronic toxicity studies were conducted to establish the maximum tolerated doses (MTD) of 1,1,1-trichloroethane for administration to the rats and mice in the chronic study. On the basis of results from the range-finding study, doses of 1,000, 1,780, 3,160, 5,620, and 10,000 mg/kg were administered in corn oil by gavage to five animals of each sex and species. Animals were dosed 5 days a week for 6 weeks, followed by 2 weeks of observation. At 3,160 mg/kg none of the rats died and there was no reduction of weight

gain, while at 5,620 mg/kg, two female rats died and weight gain in the surviving females was reduced. At 10,000 mg/kg, two male rats died and weight gain in the survivors was reduced. The high dose for rats in the chronic study was therefore set at 3,000 mg/kg; the low dose was half that amount, or 1,500 mg/kg. No gross pathology was observed in rats at necropsy in the subchronic tests.

At 5,620 mg/kg none of the mice died and none had reduced weight gain, whereas at 10,000 mg/kg only one male and one female survived. The high dose for mice in the chronic study was therefore set at 4,000 mg/kg and the low dose at 2,000 mg/kg. No gross pathology was observed in mice at necropsy in the subchronic tests.

Design of Chronic Studies

Tables 1 and 2 show the numbers of rats and mice of each sex used in the study, including those used as matched controls. Also shown is the dosage, duration of treatment, observation period, and the time-weighted average dose for each category of test animal.

The rats were started on the study at 7 weeks of age. Those on the low dose were treated for 78 weeks, 5 days per week, with 750 mg/kg, while rats on the high dose received 1,500 mg/kg for the same period of time. Both groups were observed to 110 weeks, when the surviving animals were killed. (The high dose for rats had been set originally at 3,000 mg/kg; this dosage proved to be too toxic, however, and the study was terminated, the animals discarded, and the study restarted as indicated above (see table 1).

Experimental Design	Initial No. of Animals	l,l,l-Trichloro- ethane Uoses ^a (mg/kg)	<u>Ubservat</u> Treated (weeks)	Ubservation Period Treated Untreated (weeks) (weeks)	Time-Weighted Average Dose ^b (mg/kg)
MALE					
Control	20	0	0	110	0
Low Dose	50	750	78	32	750
digh Dose	50	1,500	78	32	1,500
FEMALE			7 .		
Control	20	0	0	110	0
Lov Dose	50	750	18	32	750
Aign Dose	50	1,500	78	32	1,500

Table 1. Design of 1,1,1-Trichloroethane Chronic Study: Kats

^aDoses (in mg/kg body weight)administered in corn oil five times per week by gavage. ^bTime-weighted average dose = <u>[(dose in mg/kg x number weeks at that dose)</u> **\[C(number of weeks receiving dose)**

Experimental	No. of	I,I,I-ITICNLOFO- ethane Doses ^a	<u>Ubservat</u> Treated	Ubservation Period Treated Untreated	Time-Weighted Average Dose ^b
Design MALE	Animals	(mg/kg)	(weeks)	(weeks)	(mg/kg)
Control	20	0	0	06	0
Low Dose	50	2,000 2,500 3,000 0	10 10 58	12	2,807
High Dose	50	4,000 5,000 6,000	10 10 53	12	5,615
FEMALE					
Control	20	0	0	06	
Low Dose	50	2,000 2,500 3,000 0	10 10 58	13	2,807
High Dose	50	4,000 5,000 6,000 0	10 10 28		5,615

The mice were started at 5 weeks of age and were treated 5 days per week, for a total of 78 weeks at varying dosages. Since the test chemical did not cause toxic signs, both the high and low dosages were raised twice during the treatment period. Surviving animals were observed for 12 weeks following the treatment and then killed in the 90th week of the study.

Animals which received a known carcinogen, carbon tetrachloride, served as the positive control for this study and for the entire series of halogenated chemicals tested. The purpose of this control was to verify the sensitivity of the test animals to carcinogenicity by halogenated hydrocarbons and to serve as a check on procedures and techniques. The animals used were of the same strain and source as those dosed with 1,1,1trichloroethane. The positive control rats were housed separately from the 1,1,1-trichloroethane-dosed rats, but were in the same room as the 1,1,1-trichloroethane-dosed mice. The design of the carbon tetrachloride study (positive control) was essentially the same as that of 1,1,1-tri chloroethane. The high dose for male rats was 74 mg/kg and the high dose for females 160 mg/kg. The high dose for both male and female mice was 2,500 mg/kg. Groups of males and females of both species were also administered low doses which were one-half the high doses. Untreated animals of the same strain, source, and age were used as matched controls to the carbon tetrachloride-treated (positive control) rats and mice.

Untreated animals of the same strain and source were used as untreated matched controls to the 1,1,1-trichloroethane-treated rats and mice; there were 20 animals of each sex of each species. They were started at the same time as the 1,1,1-trichloroethane-treated rats and mice and were housed in the same room as the treated animals. They received identical animal care,

except that neither the test substance nor the corn oil was administered. There were no vehicle control animals used.

Clinical and Pathologic Examinations

All animals were inspected twice daily. Body weights and food consumption were recorded weekly for the first 10 weeks and monthly thereafter. A necropsy was performed on each animal regardless of whether it died, was killed early, or survived to termination. All animals were injected with sodium pentobarbital intraperitoneally (0.3 to 0.5 ml for rats and 0.05 to 0.1. ml for mice) until they were completely anesthetized. The animals were then exsanguinated and immediately necropsied. The following tissues were taken from killed animals and, where practical, from those found dead: brain, pituitary, adrenal, thyroid, parathyroid, trachea, esophagus, thymus, salivary gland, lymph nodes (mesenteric and cervical), heart, nasal passages, lung, spleen, liver, kidney, stomach, small intestine, large intestine, pancreas, urinary bladder, prostate or uterus, seminal vesicles and testis with epididymis or ovary, skin with mammary gland, muscle, nerve, bone, bone marrow, and tissue masses.

Tissues were preserved in 10% buffered formalin, embedded in paraffin, sectioned, stained with hematoxylin and eosin, and examined microscopically. In evaluating suspected treatment-related effects in rats, the matched-control group was compared to the test group. Complete data on all tumors are presented for the matched controls and for the 1, 1, 1-trichloroethane-treated groups in Appendixes A and B. For positive (carbon tetrachloride) controls, only the data relating to survival and specific lesions of concern are presented.

The intent was to evaluate all organs, tissues, and gross lesions for every animal as specified in the pathology protocol for the Bioassay Program. However, a few tissues (especially small organs) were lost during the necropsy and the histologic preparation process; therefore, the denominator used for a particular organ, tissue, or lesion in Appendixes A and B may not necessarily equal the number of animals placed on experiment in each group.

Data Recording and Statistical Analyses

Pertinent data for this experiment have been recorded in an automatic data processing system, the Carcinogenesis Bioassay Data System (Linhart at al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, animal weight, and individual pathologic results as recommended by the International Union Against Cancer (UICC) (Berenbium, 1969). Data tables were generated for statistical review and verification of data transcription.

Survival probabilities were estimated by the product limit procedure of Kaplan and Meier (1958) and presented in this report in the form of graphs. Deaths due to accident are not included; all other deaths are recorded in the system. Statistical tests of differences in survival between groups are compared using the method of Cox (1972) for two groups and an extension of this method by Throne (1975) for more than two groups.

The number of animals with tumors was analyzed as a percentage of the number of tissues examined. For some sites, such as liver or lung, the animal is counted in the denominator of the tables showing such tumors at that site only if the site had a histologic examination. For tumors that

appeared at several sites, a count is entered in the denominator for any animal that had at least one such site histologically examined for that tumor.

Statistical analysis of tumor incidence was made using the Fisher exact test (Cox 1970) to compare the controls to each dose level. In addition, the Armitage and Cochran test for linear trend in proportions with continuity correction (Armitage, 1971) was used. This test, assuming a linear trend, determines if the slope of the dose-response curve is different from zero (P < 0.05). The method also calculates the probability level of a departure from linear trend.

A conservative adjustment, the Bonferroni inequality (Miller, 1966) was used for simultaneous comparisons of several treatments with a control. For the comparison of k doses with a control, this correction requires a significance level less than or equal to 0.05/k for the overall comparison to be significant at the 0.05 level. This adjustment was not made in the tables where the Fisher exact test results are shown but is discussed in the analysis when appropriate.

A. <u>RATS</u>

Body Weights and Clinical Signs (Rats)

Average weight gains of male rats appeared to be treatment related during the first year of the study. However, there was little difference among groups of female rats until the second year, when deaths made any comparison questionable (see figure 1).

During the first year of the study, the appearance and behavior of the treated rats were generally comparable to those of the matched controls, except that by week 10 urine stains were evident on a few animals in the treated groups. As the study progressed, increasing numbers of treated females, and, to a lesser extent, treated male rats, showed urine staining of the abdominal fur. Respiratory involvement characterized by wheezing, rapid or labored breathing, a nasal discharge that was sometimes bloody in appearance, and/or a hunched appearance were noted at a low or moderate incidence among rats in all groups, including matched controls, during the latter part of the first year. The number of treated animals showing respiratory signs increased somewhat over that of the matched controls as the study progressed. Toward the end of the experiment all surviving rats showed wheezing and a hunched appearance. Signs of aging commonly observed in laboratory rats were noted during the second year in comparable numbers of control and treated rats. These signs included rough fur, sores on the body and/or extremities, alopecia or desquamation of the tail, squinted eyes, and bloody discharge or crust around the eyes. The latter sign was noted more often in treated animals than in the matched controls.

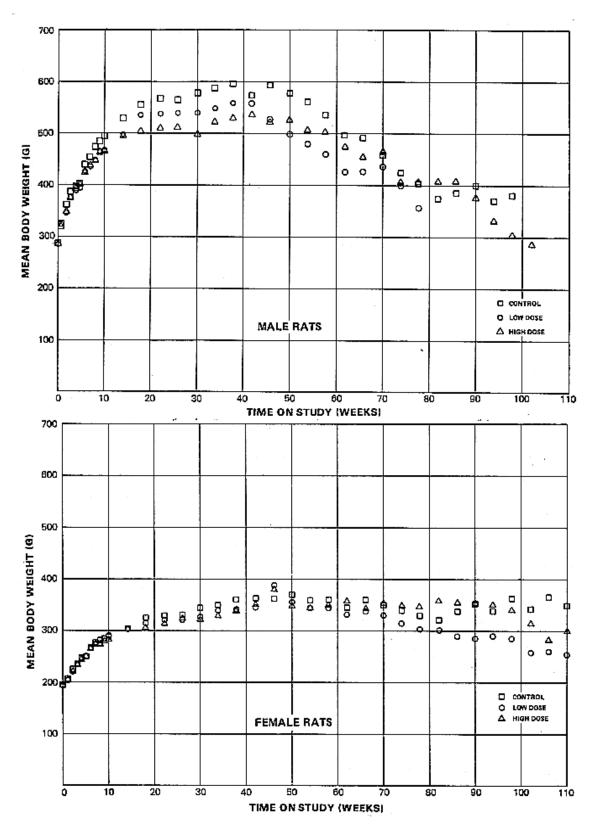


Figure 1. Growth Curves for Rats - 1,1,1-Trichloroethane

Survival (Rats)

The survival of both sexes of dosed rats was less than that of the matchedcontrol groups. In male rats 6/20 (30%) of the controls, 32/50 (64%) of the low-dose group, and 36/50 (722) of the high-dose group died within a year of the start of the study. The Throne statistical test of survival showed a doserelated positive trend (P < 0.001) in the proportions of deaths over the period of the experiment.

In female rats 1/20 (5%) of the matched controls, 24/50 (48%) of the low-dose group, and 21/50 (42%) of the high-dose group died in the first year. As in male rats, the statistical test for positive dose-related trend was significant (P 'z 0.04). Figure 2 shows the estimated probability of survival of rats.

In both sexes, the early mortality in the 11,1-trichloroethane-treated rats may have affected the incidence of late-appearing tumors; this is especially true in the males, since none survived to the scheduled termination of the study.

Fewer rats receiving 1,1,1-trichloroethane survived at both 78 and 110 weeks than did the positive control rats receiving the known carcinogen, carbon tetrachloride (see table 3).

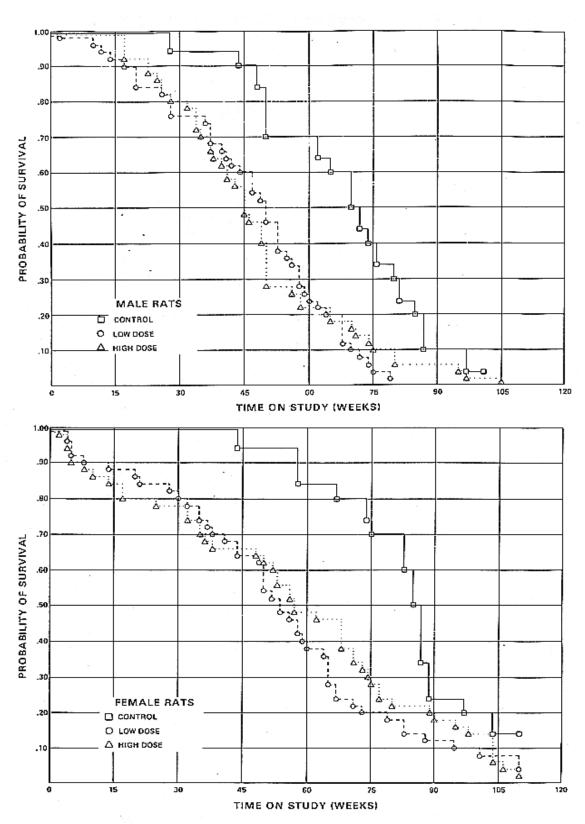


Figure 2. Survival Curves for Rats -1,1,1-Trichloroethane

Group	Initial No. of Animals	<u>1,1,1-Tric</u> Number Alive at 78 Weeks	<u>hloroethane</u> Number Alive at 110 Weeks ^ª	Initial No. of		<u>hloride</u> Number t Alive at 110 Weeks ^ª
Male						
Control Low Dose High Dose	20 50 50	7 1 4	0 0 0	20 50 50	20 34 35	12 15 8
FEMALE						
Control Low Dose High Dose	20 50 50	14 9 12	3 2 1	20 50 50	18 38 21	14 20 14

Table 3. Comparison of Survival of Control Groups, 1, 1, 1-Trichloroethane-Treated, and Carbon Tetrachloride-Treated (Positive Control) Rats

^aTime in study at last weighing.

Pathology (Rats)

A variety of neoplasms was represented among both 1,1,1-trichloroethanetreated and matched-control animals (see Appendix A). These included hemangiosarcoma (subcutaneous tissue in the abdomen), papillary cystadenocarcinoma (mammary gland and subcutaneous tissue in the groin), lipoma (heart), hemangioma (mesenteric artery, spleen), leiomyoma (artery in thymus region), adrenal cortical adenoma, and pheochromocytoina. Some thyroid neoplasms occurred sporadically: follicular-cell adenoma and carcinoma and papillary cystadenoma. One hepatic-cell adenoma was observed. Mammary gland neoplasms included the following types: fibroadenoma, adenocarcinoma, and papillary cystadenocarcinoma. Other neoplasms were identified as follows: transitional-cell carcinoma (urinary bladder), chromophobe adenoma, endometrial stromal polyp, malignant glioma (brains) and osteosarcorna (mesentery: inetastatic).

Of the malignant neoplasms, the following occurred only in test rats: papillary cystadenocarcinoma in the subcutis of 1/50 high-dose females; urinary bladder transitional-cell carcinoma in 1/50 high-dose males; brain malignant glioma in 1/48 low-dose males, and mesenteric metastatic osteosarcoma in 1/50 high-dose females. Follicular carcinoma was observed in 1/20 matched-control females and 1/49 high-dose females. All other malignant neoplasms occurred in the matched-control animals.

Each of the types of neoplasm represented had been encountered previously as a spontaneous lesion in the rat and no relationship in type or incidence to chemical treatment was apparent.

A variety of nonneoplastic lesions was represented among both the matchedcontrol and 1,1,1-trichloroethane-treated animals (see Appendix C). Such lesions have been encountered previously as spontaneous occurrences in aging laboratory rats.

Of the spontaneous lesions, chronic murine pneumonia was prevalent and was the most probable cause for the high incidence of natural deaths. It was characterized by a variety of inflammatory changes including abscesses, pleuritis, and bronchiectasis.

The only proliferative hepatocellular lesion (adenoma) in rats treated with 1,1,1-trichloroethane was in a high-dose female. None occurred in the

matched-control goups; however, several neoplastic nodules and hepatocellular carcinomas occurred in the positive-control rats treated with carbon tetrachloride (see table 4).

Group	<u>Hepatocellular</u>	<u>Carcinoma</u>	<u>Neoplastic</u>	<u>Nodules</u>
	CCl 3CH3	Cl4	CCl3CH3	CC14
MALES				
Control	0/20	0/20	0/20	0/20
Low Dose	0/49	2/50	0/49	2/50
High Dose	0/50	2/50	0/50	1/50
<u>FEMALES</u>				
Control	0/20	0/20	0/20	0/20
Low Dose	0/50	4/49	0/50	2/49
High Dose	0/50	1/49	1/50ª	3/49

Table 4. Comparison of the Incidence of Liver Tumors in Control Groups, 1, 1, 1-Trichloroethane-Treated, and Carbon Tetrachloride-Treated (Positive Control) Rats

[°]Hepatocellular adenoma.

Statistical Analyses of Results (Rats)

There were no tumors at any site that appeared in sufficient numbers to indicate a statistically significant dose relationship. Table 5 shows the incidence of those tumors that had a proportion of greater than 5% in any dose group in either sex. The proportion of the rats with tumors was higher in the untreated group of both sexes than in the dose groups. There is no statistical evidence of carcinogenicity of the chemical in these results; however, the significant difference in survival of the dosed groups compared to the controls and the low survival rate of all groups should be considered in evaluation of the data. Statistical Analyses of the Incidence of Tumors at Specific Sites in Matched Controls and 1,1,1-Trichloroethane-Treated Rats Table 5.

		MALE			FEMALE	
	Matched	Lowa	Higha	Ma tc hed	Lowa	High ^a
Topography: Norphology	Control	Dose	Dose	Control	Dose	Dose
Total Animals: All Tumors ^b	3/20(15)	6/48(12)	6/50(13)	7/20(35)	7/50(14)	9/50(18)
P Values ^c	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
Weeks to First Observed Tumor	72	28	50	58	64	56
Pituitary: Chromophobe Adenoma ^b	0/20(0)	0/48(0)	0/48(0)	3/20(15)	2/48(4)	1/48(2)
P Values ^c	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
Weeks to First Observed Tumor		1	1	84	71	96
Thyroid: Follícular-Cell Adenoma or Carcinoma ^b	0/20(0)	0/48(0)	0/20(0)	2/20(10)	0/20(0)	1/49(2)
P Values ^c	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
Weeks to First Observed Tumor		;	}	103		97
Adrenal: Cortical Adenoma ^b	0/20	3/49(6)	1/50(2)	2/19(11)	1/48(2)	2/49(4)
P Values ^c	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
Weeks to First Observed Tumor		28	106	85	66	106

19

^bNumber of tumor-bearing animals/number of animals examined at site (percent).

CBeneath the incidence of the matched controls is the probability level for the Armitage test for positive dose-related trend in proportions when it is below 0.10, otherwise N.S. - not significant. Beneath the dosed group incidence is the probability level for the Fisher exact (conditional) test for comparison of that dosed group with the matched control group when it is below 0.10, otherwise N.S. - not significant.

The first tumors observed in the male rats were hemangioma in the spleen at 72 weeks in a matched-control animal, cortical adenoma of the adrenal at 28 weeks in a low-dose animal, and lipoma in the heart at 50 weeks in a high-dose animal. In female rats, the first tumor seen was fibroadenoma in the mammary tissue at 58 weeks in a matched-control animal, endometrial stromal polyp of the uterus at 64 weeks in a low-dose animal, and papillary cystadenocarcinoma in the mammary tissue at 56 weeks in a high-dose animal.

B. <u>MICE</u>

Body Weight and Clinical Signs (Mice)

Treated animals of both sexes gained less weight than did the matched controls (see figure 3). The reduction in weight gain appears directly related to the treatment.

Throughout the test, the appearance and behavior of the treated and matchedcontrol mice were generally similar. Clinical signs commonly observed in group-housed mice and usually associated with aging were observed at a similar rate among matched-control and treated animals during the study. These signs included: alopecia (generalized or localized), sores on the back and other body parts, anal and/or penile irritation, hunched appearance, rough hair coat, and occasional abdominal distension.

Survival (Mice)

Figure 4 shows the estimated probability of survival of mice. In male mice, the Tarone test showed no significant difference between the proportions of the groups surviving (p 0.55). In male mice, 10/20 (50%) of the matched-control group, 21/50 (42%) of the low-dose group, and 25/50

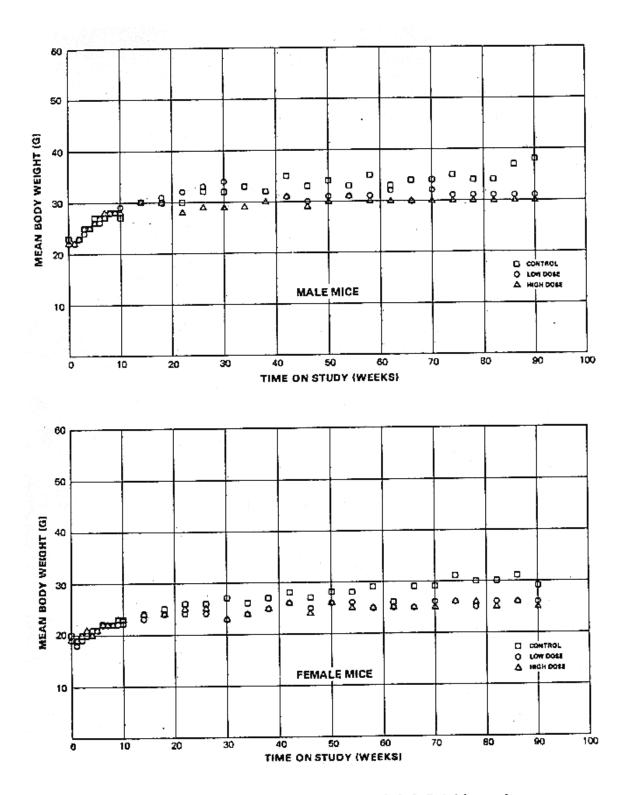


Figure 3. Growth Curves for Mice - 1,1,1-Trichloroethane



Figure 4. Survival Curves for Mice - 1,1,1-Trichloroethane

(50%) of the high-dose group died within a year of the start of the experiment

In female mice, 1/20 (5%) of the matched-control group, 9/50 (18%) of the low-dose group, and 20/50 (40%) of the high-dose group died within the first year of the study. The Tarone test for positive dose-related trend in the proportions surviving had a significance level of P = 0.002.

Table 6 shows that while few mice receiving carbon tetrachloride survived until the planned termination of the test, from 25 to 40% of those treated with 1,1,1-trichloroethane reached the planned termination date. The high early mortality in mice receiving 1,1,1-trichloroethane may have lowered the incidence of late-appearing tumors.

Table 6.	Comparison	. of Su	rvival	. of (Control	Groups,
1,1, 1-Trich	loroethane-T	reated	, and	Carbo	on Tetra	achloride-
	Treated (Po	sitive	Contr	ol) N	lice	

Group	1,1,1-	Trichloro	ethane	Carbo	on Tetrachlor	ride
	Initial No. of Animals	Number Alive at 78 Weeks	Number Alive at 90 Weeks	Initial No. of Animals	Number Alive at 78 Weeks	Number Alive at 90 Weeks
MALE						
Control Low Dose High Dose	20 50 50	6 21 14	2 15 11	20 50 50	13 11 2	7 0 1
FEMALE						
Control Low Dose High Dose	20 50 50	12 28 14	11 23 13	20 50 50	18 10 3	17 0 1

Pathology (Mice)

A variety of neoplasms was represented among both the 1,1,1-trichloro-ethanetreated and matched-control mice (see Appendix B). These included fibrosarcoma and sarcoma of the subcutis, alveolar /bronchiolar adenoma, hepatic-cell adenoma and carcinoma, cystadenocarcinoma of the ovary, and adrenal cortical adenoma. Malignant lymphoma, occurred in a number of organs either at primary (lymph node, spleen) or metastatic (liver, pancreas, spleen, brain, kidney, ovary) sites.

Fibrosarcoma and sarcoma of the subcutis were observed in 1/47 low-dose females and 1/50 high-dose females, respectively. Hepatocellular carcinoma occurred in 1149 high-dose males. Cyatadenocarcinoma of the ovary occurred in 1/43 high-dose females. Malignant lymphoma of the spleen appeared in 1/15 matched-control males, 2/44 high-dose males (with liver metastases), and 1/48 low-dose females. The few other cases of malignant lymphoma occurred in matched-control animals.

Each of the types of neoplasm represented had been encountered previously as a spontaneous lesion in the mouse and no relationship in type or incidence to chemical treatment was apparent.

A variety of nonneoplastic lesions was represented among both the matchedcontrol and chemical-treated animals (see Appendix D). Such lesions have been encountered previously as spontaneous occurrences in aging laboratory mice. Of the spontaneous lesions, chronic murine pneumonia was the most significant pathologically. It occurred in all groups of matched-control and test animals and was the probable cause for the high incidence of early death.

The nearly 100% incidence of hepatocellular carcinoma in the positivecontrol groups receiving carbon tetrachloride stands in marked contrast to the very low incidence among the 1,1,1-trichloroethane-treated mice and the matched-controls (see table 7).

Group	1,1,1-Trichloroethane	Carbon Tetrachloride
MALE		
Control Low Dose High Dose	2/19 0/47 1/49	2/19 49/49 47/48
<u>FEMALE</u>		
Control Low Dose High Dose	1/20 0/48 0/50	1/20 40/40 43/45

Table 7. Comparison of the Incidence of Hepatocellular Carcinoma in Control Groups, 1,1,1-Trichloroethane-Treated, and Carbon Tetrachloride-Treated (Positive Control) Mice

Statistical Analyses of Results (Mice)

Table 8 shows the proportions of primary tumors of the liver and malignant lymphoma that accounted for most of the tumors observed in mice. In the dosed groups the proportion of animals observed to have tumors was not statistically significant; the matched-control groups had a higher proportion of animals with tumors than any of the dosed groups. There were no vehicle controls with an environment and period of test comparable to that of the dosed groups, but, due to the low incidence of tumors in the dosed groups, the use of such vehicle-control groups could not show a

		MALE			FEMALE	
Topography: Morphology	Matched Control	Low ^a Dose	High ^a Dose	Matched Control	Low ^a Dose	High ^a Dose
Total Animal: Àll Tumors ^b	2/15(13)	2/47(4)	6/49(12)	4/18(22)	2/48(5)	3/50(6)
P Values ^c	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
Weeks to First Observed Tumor	80	89	50	80	54	26
Hematopoietic System: Malignant Lymphoma ^b	2/15(13)	0/47(0)	2/49(4)	3/18(17)	1/48(2)	0/20(0)
P Values ^c	N.S.	N.S.	N.S.	N.S.	N.S	N.S.
Weeks to First Observed Tumor	80	1	64	80	90	1
Liver: Hepatocellular Adenoma or Carcinoma, or Neoplastic Nodule ^b	0/15(0)	0/47(0)	4/49(8)	0/18(0)	0/48(0)	0/50(0)
P Values ^c	P = 0.035	N.S.	N.S.	N.S.	N.S.	N.S.
Weeks to First Observed Tumor	1)]	1	1	1	ļ

Beneath the dose group incidence is the probability level for the Fisher exact test for comparison of that dosed group with the control group when it is below 0.10, otherwise N.S. - not significant.

26

dose-related association. The early deaths that occurred in the high-dose mice should be considered when inferences are made on the incidences of tumors observed in the groups.

The first lesions observed in the male mice were alveolar/bronchiolar tumor of the lung and malignant lymphoma in a matched-control animal at 80 weeks, hemangiosarcoma in the low-dose animal group at 89 weeks, and hepatocellular adenoma of the liver at 50 weeks in a high-dose mouse. In the females, malignant lymphoma was observed at 80 weeks in the matched group, fibrosarcoma in the subcutaneous tissue at 54 weeks in the low-dose group, and cystadenocarcinoma of the mammary at 26 weeks in the high-dose group.

The low incidence of tumors of any type precluded interpretation of ageadjusted statistical analyses.

4.0 DISCUSSION

The studies were not completely adequate tests of carcinogenicity because of the short survival time of the dosed animals.

In rats, treatment with 1,1,1-trichloroethane failed to elicit a statistically significant increase in either the total number of neoplasms or in any specific type of neoplasm. However, there was compound-related and dose-related early mortality among the rats treated with 1, 1, 1-trichloroethane, and insufficient numbers survived to have demonstrated a significant incidence of late-developing tumors. The observation of a small number of hepatocellular carcinomas and neoplastic nodules in the carbon tetrachloride-treated positive control rats but not in the matched controls, suggests that Osborne-Mendel rats may respond positively to a potent chlorinated hydrocarbon hepatic carcinogen, but this requires confirmation.

In the mice, as in the rats, there were no tumors that could be related to treatment. Survival of mice treated with 1,1,1-trichloroethane was longer than that of the rats. Only 3% of the rats survived to termination of the experiment, compared with 31% of the mice. However, no carcinogenic response was demonstrated.

Had the data indicated a positive carcinogenic effect for 1,1,1trichloroethane, the presence of the inhibitor p-dioxane, or other possibly carcinogenic impurities, would have raised some questions regarding the results. However, in the present study it is evident that such carcinogenic components (Argus et al.,1965 and 1973; Hoch-Ligeti et al., 1970) of technical grade 1,1,1-trichloroethane, if present, were in such low concentrations that their influence was not revealed.

28

These studies cannot be regarded as appropriate tests for the carcinogenicity of 1,1,1-trichloroethane in the test animals because of the abbreviated life spans of both the rats and mice. In addition, no previous studies adequate to evaluate carcinogenicity have been reported in the literature.

5.0 **BIBLIOGRAPHY**

- Argus, M. F., Arcos, J.C., and Hoch-Ligeti, C. 1965. Studies on the carcinocenic activity of protein-denaturing agents: Hepatocarcinogenicity of dioxane. <u>J. Natl. Cancer Inst</u> <u>35</u>:949-958.
- Argus, M. F., Sohal, R. S., Bryant, G. H., Hoch-Ligeti, C., and Arcos, J. C. 1973. Dose-response and ultrastructural alterations in dioxane carcinogenesis. <u>Europ</u>. J. <u>Cancer 9</u>:237-243.
- Armitage, P. 1971. <u>Statistical Methods in Medical Research</u>, p. 135. John Wiley and Sons, New York.
- Berenblum, I., ed. 1969. <u>Carcinogenicity Testing</u>. UICC Technical Report Series, Vol. 2. International Union Against Cancer, Geneva.
- Browning, E. 1959. Toxic solvents: A review. Brit. J. Indust Med. 16:23-39.
- <u>Chemical Economics</u> <u>Handbook.</u> 1975. Chemical Information Services, Stanford Research Institute, Menlo Park, California.
- Cox, D. R. 1970. Analysis of Binary Data pp. 61-65. Methuen, London.

Cox, D. R. 1972. Regression models and life tables. .3. Statist Soc. B 34:187-220.

Della Porta, C., Terracini, B., and Shubik, P. 1961. Induction with carbon tetrachloride of liver cell carcinomas in hamsters. <u>J</u>. <u>Natl</u>. <u>Cancer</u> <u>Inst</u>. <u>26</u>:855-863.

Eschenbrenner, A. B. and Miller, E. 1946. Liver necrosis and the induction of carbon tetrachloride hepatomas in strain A mice. <u>J. Natl. Cancer Inst.</u> <u>6</u>:325-341.

- Hoch-Ligeti, C., Argus, H. F., and Arcos, J. C. 1970. Induction of carcinomas in the nasal cavity of rats by dioxane. <u>Brit</u>. <u>J</u>. <u>Cancer</u> <u>24</u>:164-167.
- Kaplan, E. L. and Meier, P. 1958. Nonparametric estimation from incomplete observations. <u>J. Amer. Statist. Assn.</u> <u>53</u>:457-481.
- Klassen, C. D. and Plaa, G. L. 1969. Comparison of the biochemical alterations elicited in livers from rats treated with carbon tetrachloride, chloroform, 1,1,2-trichloroethane, and 1,1, 1-trichloroethane. <u>Biochem</u>. <u>Pharmacol</u>. 18:2019-2027.

Linhart, M. S., Cooper, J. A., Martin, R. L., Page, N. P., and Peters, .3. A. 1974. Carcinogenesls bioassay data system. <u>J. Comp. Biomed. Res</u>. <u>7</u>:230-248.

Miller, R. C., Jr. 1966. <u>Simultaneous</u> <u>Statistical</u> <u>Inference</u> McGraw-Hill, New York.

- National Cancer Institute. 1976. <u>Carcinogenesis Bioassay of Trichloroethylene</u> NCI-CG-TR-2. Carcinogenesis Program, Division of Cancer Cause and Prevention, National Institutes of Health, Bethesda, Maryland. USDHEW Pub. No. (NIH) /76-802.
- Reuber, M. D. and Glover, E. L. 1970. Cirrhosis and carcinoma of the liver in male rats given subcutaneous carbon tetrachloride. <u>J. Natl. Cancer Inst.</u> <u>44</u>:419-423.
- Sontag, J. M., Page, N. P., and Saffiotti, U. 1976. <u>Guidelines</u> for <u>Carcinogen</u> <u>Bioassay in Small Rodents</u>, NCI-CG-TR-1. Carcinogenesis Program, Division of Cancer Cause and Prevention, National Institutes of Health, Bethesda, Maryland. USDHEW Pub. No. (NIH) 76-801.
- Squire, R. A. and Levitt, H. H. 1975. Report of a workshop on classification of specific hepatocellular lesions in rats. <u>Cancer Res</u>. <u>35</u>:3214-3233.
- Tarone, R. E. 1975. Tests for trend in life table analysis. <u>Biometrika</u> 62:679b82.
- U.S. Department of Health, Education, and Welfare, Food and Drug Administration. 1973a. Trichloroethane: Aerosol Drug Products for Human Use. <u>Federal Register</u> <u>38</u> (No. 156): 21935-21936, 21 CFR Part 130, August 14, 1973.
- U.S. Department of Health, Education, and Welfare, Food and Drug Administration, 1973b. Human drugs containing trichloroethane: Notice to drug manufacturers, Packers, and Distributors. <u>Federal Register 38</u> (No. 156): 21950-21951, 21 CFR Part 130, August 14, 1973.
- U.S. Department of Labor, Occupational Health and Environmental Control. 1972. Air contaminants. <u>Federal Register 37</u> (No. 202): 22139-22144, 29 CFR Part 1910, October 18, 1972.
- U.S. Dept. of Labor, Occupational Safety and Health Standards, Federal Register, Vol. 39, No. 125- Thursday, June 27, 1974, page 23542.
- U.S. Environmental Protection Agency. 1972. Tolerances and exemptions from tolerances for pesticide chemicals in or on raw agricultural commodities. <u>Code of Federal Regulations</u> 40 CFR Sec. 180.1012.
- U. S. Environmental Protection Agency, 1975. Preliminary Study of Selected Potential Environmental Contaminants - Optical Brighteners, Methyl Chloroform, Trichloroethylene, Tetrachloroethylene, Ion Exchange Resins.

APPENDIX A.

SUMMARY OF THE INCIDENCE OF TUMORS IN RATS TREATED WITH

1,1,1-TRICHLOROETHANE

				MALE		FEMALE	ΓE	
	Ti ssue/Response	Animals at Start: Animals Necropsied:	Matched Control 20 20	Low 50 49	High Dose 50	Matched Control 20 20	Low Dose 50	H i gh Dose 50
	SKIN (Subcutaneous Tissue) Hemangiosarcoma	Tissue)	1/20 (5%)	0/45	0/50	0/18	0/47	0/50
	Papillary cystadenocarcinoma	enocarcinoma	0/20	0/45	0/50	0/18	0/47	1/50 (2%)
35	HEART Lipoma		0/20	0/49	1/50 (2%)	0/20	0/49	0/49
-	ARTERY Hemangioma (Mesenteric Artery)	nteric Artery)		1/1 (%)001)				
	Leiomyoma (Arter	Leiomyona (Artery in thymus region)						(%00L) 1/L
	LIVER Hepatocellular adenoma	denoma	0/20	0/49	0/50	0/20	0/50	1/50 (2%)
	URIMARY BLADDER Transitional cel	k cell carcinoma	0/20	0/47	1/50 (2%)	0/18	0/48	0/47
	PITUITARY Chromophobe adenoma	oma	0/20	0/47	0/47	3/20 (15%)	2/48 (4%)	1/48 (2%)

PAGES 32-34 BLANK

continued							
			MALE		FEMALE	щ	
Tissue/Response	Animals at Start: Animals Necropsied:	Matched Control 20 20	Low 50 49	High 50 50	Matched Control 20 20	Low 50 50	High 50 50
ADRENAL Cortical adenoma	R	0/20	3/49 (6%)	1/50 (2%)	2/19 (10%)	1/48 (2%)	2/49 (4%)
Pheochromocytoma	Ja A	1/20 (5%)	0/49	0/50	61/0	2/48 (4%)	0/49
THYROID ප Follicular cell carcinoma	l carcinoma	0/20	0/47	0/50	1/20 (5%)	0/50	1/49 (2%)
Follicular cell adenoma	l adenoma	0/20	0/47	0/50	1/20 (5%)	0/50	0/49
Papillary cystadenoma	adenoma	0/20	0/47	0/50	1/20 (5%)	0/50	0/49
SPLEEN Hemangioma		1/20 (5%)	1/49 (2%)	0/50	0/20	0/50	0/49
MAMMARY GLAND Fibroadenoma		9/0	0/49	1/50 (2%)	4/18 (22%)	0/50	1/49 (2%)
Adenocarcinoma		0/6	0/49	0/50	1/18 (6%)	0/50	0/49
Papillary cystadenocarcinoma	adenocarcinoma	9/0	0/49	0/50	1/18 (22)	0/50	0/49

Appendix A. Summary of the Incidence of Tumors in Rats Treated with 1,1,1-Trichloroethane^a

f the Incidence of Tumors in Rats Exposed to Ireated with 1,1.1-Trichloroethane ^a
to
Exposed .
its
n Ra
i.
Tumors
of
Incidence
of the
of
Summary of the
Α.
Appendix

- · · ·-

continued

				MALE		FEMALE	TE	
	T i ssue/Response	Animals at Start: Animals Necropsied:	Matched Control 20 20	Low 50 49	High Dose 50	Matched Control 20 20	Low 50 50	High Dose 50
	UTERUS Endometrial stromal polyp	omal polyp	1		:	0/20	1/49 (2%)	4/49 (8%)
	BRAIN Glioma (Malignant)	nt)	0/20	1/48 (2%)	0/50	0/20	0/49	0/49
37	MESENTERY Osteosarcoma (Metastatic)	etastatic)						1/1 (100%)

^aFigures express the ratio of the number of tumors found to the number of tissues evaluated.

APPENDIX B.

SUMMARY OF THE INCIDENCE OF TUMORS IN MICE

TREATED WITH

1,1,1-TRICHLOROETHANE

		1	MALE		FEMALE	LE	
Tissue/Response	Animals at Start: Animals Necropsied:	Matched Control 20 15	Low Dose 47	High Dose 49	Matched Control 20 18	Low 50 48	High Dose 50
SKIN (Subcutaneous Tissue Fibrosarcoma	is Tissue)	0/15	0/46	0/47	0/18	1/47 (2%)	0/50
Sarcoma 140S		0/15	0/46	0/47	0/18	0/47	1/50 (2%)
LUNG E Alveolar/Brochiolar adenoma	olar adenoma	1/15 (7%)	1/47 (2%)	1/49 (2%)	0/18	0/43	1/50 (2%)
LIVER Hepatocellular adenoma	adenoma	0/15	0/47	3/49 (6%)	0/13	0/43	0/50
Hepatocellular carcinoma	carcinoma	0/15	0/47	1/49 (2%)	0/18	0/48	0/50
Hemangiosarcoma		0/15	1/47 (2%)	0/49	0/18	0/48	0/50
Lymphoma (Metastatic)	static)	1/15 (7%)	0/47	2/49 (4%)	1/18 (6%)	0/48	0/50
LYMPH NODE Malignant lymphoma	homa	0/10	0/45	0/43	1/16 (6%)	0/47	0/47

Summary of the Incidence of Tumors in Mice Treated with 1,1,1-Trichloroethane^a Appendix B.

PAGES 38-40 BLANK

continued		MALE		FEMALE	lLE	
Animals at Start: Tissue/Response Animals Necropsied:	Matched Control 20 15	Low Dose 50 47	High Dose 50 49	Matched Control 20 18	Low 50 48	High Dose 50≩
PANCREAS Lymphoma (Metastatic)	1/13 (8%)	0/47	0/48	0/17	0/47	0/50
SPLEEN Malignant lymphoma	1/15 (7%)	0/46	2/44 (5%)	0/17	1/48 (2%)	0/50
Lymphoma (Metastatic)	0/15	0/46	0/44	1/17 (6%)	0/48	0/50
BRAIN Malignant lymphoma	0/15	0/47	0/49	1/16 (6%)	0/48	0/50
KIDNEY Lymphoma (Metastatic)	0/15	0/47	0/49	2/18 (11%)	0/43	0/50
OVARY Lymphoma (Metastatic)	1	:	:	2/15 (13%)	0/31	0/43
Cystadenocarcinoma	!	:	:	0/15	0/31	1/43 (2%)

			MALE		FEMALE	ΓE	
Tissue/Response	Animals at Start: Animals Necropsied:	Matched Control 20 15	Low Dose 47	High Dose 50 49	Matched Control 20 18	Low 50 48	High 50 50
ADRENAL Cortical adenoma		0/14	0/41	0/48	1/18 (6%)	0/48	0/47
MULTIPLE ORGANS Malignant lympho	JLTIPLE ORGANS Malignant lymphoma (Histiocytic)	1/14					
Malignant lymphoma	DIMA				1/18		

Summary of the Incidence of Tumors in Mice Treated with 1,1.1-Trichloroethane^a Appendix B.

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONTUMOR PATHOLOGY IN RATS EXPOSED TO 1 ,1 ,1-TRICHLOROETHANE

TABLE C1

SUMMARY OF THE INCIDENCE OF NONTUMOR PATHOLOGY IN MALE RATS TREATED WITH 1,1,1-TRICHLOROETHANE

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALL ANIMALS WITH NON-TUMOR PATHOLOGY	v 20	50 49(100%) 49 48 (98%)	50
INTEGUMENTARY SYSTEM * SKIN EDEMA	2 (10%) 2 2		
SUBCUT TISSUE EDEMA	2 2		
RESPIRATORY SYSTEM	20 (100%)	48 (98%)	50 (100%)
TRACHEA INFLAMMATION ULCER	10	23 5	23 1 1
INFLAMMATION SUPPURATIVE INFLAMMATION ACUTE ULCER ACUTE	2	1 6 7	2 7 11
INFLAMMATION ACUTE SUPPURATIVE INFLAMMATION SUBACUTE	8	4	1 1
TRACHEAL SUBMUCOSA HEMORRHAGE		4 4	2 2
LUNG/BRONCHUS BRONCHIECTASIS ULCER	10 10	15 10 1	24 6
INFLAMMATION ACUTE ULCER ACUTE INFLAMMATION ACUTE SUPPURATIVE		1 2	7 6 5
INFLAMMATION CHRONIC INFLAMMATION CHRONIC SUPPURATIV	E	1	1
LUNG/BRONCHIOLE INFLAMMATION ACUTE SUPPURATIVE INFLAMMATION SUBACUTE INFLAMMATION CHRONIC		14 2 3 9	6 1 1

	CONTROL	LOW DOSE	HIGH DOSE
LUNG	20	28	29
BROICHIECTASIS		-	1
CONGESTION		8	6
EDEMA		2	1
INFLAMMATION FOCAL			1
BRONCOPNEUMONIA ACUTE	1		6
INFLAMMATION ACUTE		2	5
INFLAMMATIONA CUTE SUPPURATIVE	9	7	8
BRONCOPNEUMONIA ACUTE SUPPURATIV	Έ		2
ABSCESS			
PNEUMONIA CHRONIC MURINE	_		
INFLAMMATION CHRONIC	5		
INFLAMMATION FOCAL CHRONIC	4		
INFLAMMATION CHRONIC SUPPURATIVE	7	11	
BRONCOPNEUMONIA CHRONIC SUPPURATI	VE	1	
ABSCESS CHRONIC		1	
INFLAMMATION GRANULOMATOUS		1	
FIBROSIS DIFFUSE		1	
LUNG/ALVEOLI	1	19	25
COLLAPSE	1	2	0.5
EDEMA		17	25
CIRCULATORY SYSTEM	2 (10%)	5 (10%)	7 (14%
ATRIUM		1	
THROMBOSIS		1	
YOCARDIUM			1
INFLAMMATION CHRONIC			- 1
FIBROSIS			
DEGENERATION			
PERICARDIUM			
INFLAMMATION			
EPICARDIUM	1	4	6
INFLAMMATION		1	
INFLAMMATION ACUTE	1		
INFLAMMATION ACUTE		1	
INFLAMMATION SUBACUTE		1	4
INFLAMMATION CHRONIC		1	2
LIPO-GRANULOMA			1

TABLE C1 MALE RATS: NONTUMOR PATHOLOGY (CONT.)

AORTA MEDIAL CALCIFICATION

NECROSIS FAT

	CONTROL	LOW DOSE	HIGH DOSE
CORONARY ARTERY MEDIAL CALCIFICATION			
MESENTERIC ARTERY MEDIAL CALCIFICATION			
PORTAL VEIN THROMBOSIS	1 1		
DIGESTIVE SYSTEM	17 (85%)	8 (16%)	7 (14%)
SALIVARY GLAND INFLAMMATION ACUTE		1 1	
LIVER CONGESTION ABSCESS CHRONIC PELIOSIS HEPATIS	13 11	4 1 1	3 3
NECROSIS FOCAL INFARCT METAMORPHOSIS FATTY HYPERTROPHY	1 1 1	2	
LIVER/CENTRILOBULAR CONGESTION	1 1		
LIVER/PERIPORTAL FIBROSIS	1 1		
LIVER/KUFFER CELL HYPERTROPHY			1 1
BILE DUCT HYPERPLASIA	1 1		
PANCREAS INFLAMMATION CHRONIC PERIARTERITIS	3 2 1		
ESOPHAGUS DISTENTION FOREIGN-BODY GRANULOMA		2 1 1	
STOMACH HEMORRHAGE	2 1		

	CONTROL	LOW DOSE	HIGH DOSE
STOMACH (CONT.) ULCER INFLAMMATION FOCAL CALCIUM DEPOSITION	1		
GASTRIC MUCOSA HEMORRHAGE		2 2	2 2
SMALL INTESTINE HEMORRHAGE	1 1		
LARGE INTESTINE INFLAMMATION ACUTE HEMORRHAGIC			1 1
COLONIC SUBMUCOSA HEMORRHAGE	1 1		
URINARY SYSTEM	16 (80%)	18 (37%)	22 (44%)
KIDNEY MINERALIZATION	10	13	20
MINERALIZATION HYDRONEPHROSIS CONGESTION HEMORRHAGE PYELONEPHRITIS	4	1 3 3 1	1 7
ABSCESS INFLAMMATION CHRONIC INFLAMMATION CHRONIC CYSTIC INFARCT HEALED	5 1	6	1 11 2
KIDNEY/CORTEX HEMORRHAGE	1	4	2
ABSCESS FIBROSIS DIFFUSE	1	3	
RENAL TUBULE DILATATION CAST	8 8 8	1 1 1	5 5 5
URINARY BLADDER HEMORRHAGE	2 1	1	

	CONTROL	LOW DOSE	HIGH DOSE
URINARY BLADDER (CONT.)			
ULCER ACUTE		1	
ULCER CHRONIC	1		
ENDOCRINE SYSTEM	4 (20%)	10 (20%)	8 (16%)
PITUITARY		3	3
CYST		3	3
ADRENAL	2	2	1
CYST			
CONGESTION			1
HEMORRHAGE	1		
HEMATOCYST			1
ANGIECTASIS	1	1	
METAPLASIA OSSEOUS		1	
ADRENAL CORTEX	3	5	3
HEMORRHAGE	1		
DEGENERATION			
LIPOIDOSIS	2	5	3
ADRENAL MEDULLA		1	
CYST			
HYPERPLASIA		1	
THYROID	1	1	1
CYST	1	1	1
PARATHYROID			2
HYPERPLASIA			2
PANCREATIC ISLETS			1
HYPERPLASIA			1
HEMATOPOIETIC SYSTEM	13 (65%)	27 (55%)	19 (38%)
BONE MARROW	2	3	
HYPERPLASIA HEMATOPOIETIC	2	3	

	CONTROL	LOW DOSE	HIGH DOSE
SPLEEN	12	19	16
CONGESTION		3	
INFLAMMATION ACUTE	1	5	
HEMOSIDEROSIS	10	11	9
ATROPHY	10	1	2
LYMPHOID DEPLETION		1	
MYELOID METAPLASIA	1	6	7
HEMATOPOIESIS	_	Ū.	
LYMPH NODE	6	14	10
LYMPHANGIECTASIS	1	2	
CONGESTION	3	б	2
EDEMA		1	
HEMORRHAGE			1
INFLAMMATION	1		
INFLAMMATION ACUTE		3	
INFLAMMATION ACUTE HEMORRHAGIC	-		2
INFLAMMATION SUBACUTE	1	2	-
HYPERPLASIA RETICULAR-CELL		3	5
LYMPHOID HYPERPLASIA		1	
THYMUS		3	
CONGESTION HEMORRHAGE		1 2	
REPRODUCTIVE SYSTEM	7 (35%)	14 (20%)	12 (24%)
REPRODUCTIVE SISTEM	7 (353)		12 (24%)
MAMMARY GLAND		1	
CYST		1	
PROSTATE	3	8	9
EDEMA		1	
INFLAMMATION	1	2	2
INFLAMMATION ACUTE INFL&MMATIOI ACUTE SUPPURATIVE	1	3	3
INFL&MMATIOI ACUTE SUPPORATIVE INFLAMMATION SUBACUTE	T	1	
INFLAMMATION SUBACULE INFLAMMATION CHRONIC		⊥ 3	2
INFLAMMATION CHRONIC INFLAMMATION CHRONIC SUPPURATIVE	1	د	2
FIBROSIS DIFFUSE	· _		2
ATROPHY	1		1
SEMINAL VESICLE		1	1
INFLAMMATION ACUTE		1	1
TESTIS	6	8	4
ATROPHY	2	2	2
ATROPHY FOCAL		2	
ASPERRMATOGENESIS	4	4	2

	CONTROL	LOW DOSE	HIGH DOSE
EPIDIDYMIS	1		
NECROSIS FAT ATROPHY	1		
NERVOUS SYSTEM	1 (5%)	1 (2%)	
BRAIN/MENINGES INFLAMMATION ACUTE INFLAMMATION GRANULOMATOUS	1	1 1	
BRAIN ABSCESS	1 1		
MUSCULOSKELETAL SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
NONE			
ALL OTHER SYSTEMS		1(2%)	2 (4%) 1
ABDOMEN LIPO-GRANULOMA NECROSIS FAT			1 1
PLEURA		1 1	1
INFLAMMATION ACUTE INFLAMMATION SUBACUTE		1	1
NO LESION REPORTED AUTOLYSIS/NO NECROPSY PERFORMED		1	
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATH* MORIBUND SACRIFICE SCHEDULED SACRIFICE ACCIDENTALLY EXILED FERMINAL SACRIFICE	20 20	50 50	50 49 1
* INCLUDES AUTOLYZED ANIMALS			

TABLE C1 MALE RATS: NONTUMOR PATHOLOGY (CONT.)

* SYSTEM PERCENTAGES ARE BASED ON NUMBER OF <u>ANIMALS</u> <u>NECROPSIED</u>.

TABLE C2

SUMMARY OF THE INCIDENCE OF NONTUMOR PATHOLOGY IN FEMALE RATS TREATED WITH 1,1,1-TRICHLOROETHANE

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS NECROPSIED		50(100%)	50(100%)
ANIMALS EXAMINED HISTOPATHOLOGICALLY ANIMALS WITH NON-TUMOR PATHOLOGY		50	50 50(100%)
ANIMALS WITH NON-TOMOR PATHOLOGY	20(100%)	49 (90%)	50(100%)
INTEGUMENTARY SYSTEM			
NONE			
INGINE			
RESPIRATORY SYSTEM *	20 (100%)	47 (94%)	49 (98%)
TRACHEA	9	14	17
ULCER			1 2
INFLAMMATION SUPPURATIVE INFLAMMATION ACUTE	3	9	2 4
ULCER ACUTE	1	3	7
INFLAMMATION SUBACUTE	5	2	3
LUNG/BRONCHUS	15	15	14
BROICHIECTASIS	15	7	8
INFLAMMATION ACUTE		1	3
ULCER ACUTE		2	_
INFLAMMATION ACUTE SUPPURATIVE	2	3	1
INFLAMMATION CHRONIC ULCER CHRONIC	2		
INFLAMMATION CHRONIC SOPPURATIVE	-	2	2
LYMPHOID HYPERPLASIA		1	-
LUNG/BRONCHIOLE	3	2	3
INFLAMMATION CHRONIC	2		
INFLAMMATION CHRONIC SUPPURATIVE	_	1	3
FIBROSIS	1	1	
LUNG	19	36	37
CONGESTION		7	21
EDEMA		3	4 1
HEMORRHAGE BRONCHOPNEUMONIA			1
INFLAMMATION	1		±
BRONCHOPNEUMONIA ACUTE	_	6	5
INFLAMMATION ACUTE	2		
INFLAMMATION ACUTE SUPPURATIVE	2	9	5
BRONCHOPNEUMONIA ACUTE SUPPURATI		4	2

	CONTROL	LOW DOSE	HIGH DOSE
LUNG PNEUMONIA CHRONIC MURINE INFLAMMATION CHRONIC BRONCHOPNEUMONIA CHRONIC INFLAMMATION FOCAL CHRONIC INFLAMMATION CHRONIC SUPPURATIVE BRONCHOPNEUMONIA CHRONIC SUPPURA ABSCESS CHRONIC FIBROSIS DIFFUSE LUNG/ALVEOLI COLLAPSE	2 12 1 3 3 3 3	1 1 5 4 3 2 10 1	7 8 1 18 2
EDEMA		9	16
CIRCULATORY SYSTEM HEART	2 (10%) 1	17 (34%)	20 (40%) 1
ABSCESS CHRONIC FIBROSIS DIFFUSE	1		1
MYOCARDIUM INFLAMMATION SUBACUTE			1 1
PERICARDIUM INFLAMMATION			
EPICARDIUM INFLAMMATION INFLAMMATION ACUTE	1	17 1 2	18 1
INFLAMMATION ACUTE FIBRINOUS INFLAMMATION SUBACUTE INFLAMMATION CHRONIC INFLAMMATION CHRONIC	1	1 4 8	7 3 1
SUPPURATIVE FIBROSIS		1	6
DIGESTIVE SYSTEM	12 (60%)	9 (18%)	16 (32%)
SALIVARY GLAND CYST			1
ABSCESS CHRONIC			1
LIVER CONGESTION NECROSIS	6 5 1	2 1	4 3
METAMORPHOSIS FATTY ATROPHY ANGIECTASIS	1	1	1
HEPATIC CAPSULE FIBROSIS		1 1	

	CONTROL	LOW DOSE	HIGH DOSE
LIVER/CENTRILOBULAR		1	2
NECROSIS ATROPHY		1	2
LIVER/PERIPORTAL FIBROSIS	1 1		2 2
BILE DUCT INFLAMMATION CHRONIC	3 1	2	3
HYPERPLASIA	2	2	3
PANCREAS	1		1
INFLAMMATION CHRONIC PERIARTERITIS	Ţ		1
PANCREATIC ACINUS ATROPHY	1 1		
ESOPHAGUS GRANULOMA FIBROSIS			2 1 1
STOMACH	2	2	1
INFLAMMATION HEMORRHAGIC INFLAMMATION ACUTE	1	1	
ULCER ACUTE INFLAMMATION SUBACUTE INFLAMMATION CHRONIC	1	1	1
GASTRIC MUCOSA EDEMA		2	2 1
HEMORRHAGE SMALL INTESTINE	1	2	1
ULCER CHRONIC	1		
LARGE INTESTINE EDEMA			1 1
COLON INFLAMMATION ACUTE			1 1 1

	CONTROL	LOW DOSE	HIGH DOSE
URINARY SYSTEM	15 (75%)	23 (46%)	15 (30%)
KIDNEY	12	21	13
MINERALIZATION	2	5	2
HYDRONEPHROSIS	1		2
CONGESTION	7	14	7
HEMORRHAGE			1
PYELONEPHRITIS			
ABSCESS		1	
INFLAMMATION CHRONIC	4	2	1
CALCIUM DEPOSITION			
KIDNEY/CORTEX			1
FIBROSIS			1
RENAL TUBULE	4	3	2
DILATATION	4	3	2
CAST	4	3	2
ENDOCRINE SYSTEM	12 (60%)	19 (38%)	21 (42%)
PITUITARY	2	4	6
CYST	2	4	6
0151	2	Т	0
ADRENAL	9	16	15
CONGESTION	7	14	13
EDEMA		1	
HEMORRHAGE		2	3
HERATOCYST		1	
ANGIECTASIS	3		8
ADRENAL CORTEX	3	8	10
CYST		1	
DEGENERATION	2		
LIPOIDOSIS	3	8	10
HYPERTROPHY			1
ANGIECTASIS			
ADRENAL MEDULLA	1		2
HYPERRPLASIA	1		2
THYROID	2		
DILATATION	1		
FOLLICULAR CYST	1		
HYPERPLASIA C-CELL	1		
	1		
PARATHYROID			
CONGESTION			

	CONTROL	LOW DOSE	HIGH DOSE
PANCREATIC ISLETS HYPERPLASIA	1 1		
HEMATOPOIETIC SYSTEM BONE MARROW CONGESTION HEMORRHAGE HYPERPLASIA HEMATOPOIETIC	18 (90%)	34 (68%) 1 1	34 (68%) 4 1 1 3
SPLEEN CONGESTION INFLAMMATION ACUTE HEMOSIDEROSIS HYPERPLASIA RETICULUM-CELL MYELOID METAPLASIA	17 1 10 1 10	26 4 2 9 11	29 1 1 9 19
LYMPH NODE LYMPHANGIECTASIS CONGESTION HEMORRHAGE	6 3	18 3 5 2	16 2 3 2
INFLAMMATION INFLAMMATION ACUTE INFLAMMATION SUBACUTE INFLAMMATION CHRONIC GRANULOMA	1 3	3	1
HEMOSIDEROSIS PLASMACYTOSIS HYPERPLASIA RETICULUM-CELL LYMPHOID HYPERPLASIA MYELOID METAPLASIA	2 2	1 1 6	1 5 4 1
REPRODUCTIVE SYSTEM	4 (20%)	8 (16%)	5 (10%)
VAGINA INFLAMMATORY POLYP			
UTERUS HYDROMETRA		32	42

TABLE C2 FEMALE RATS: NONTUMOR PATHOLOGY (CONT.)

58

JTERUS(CONT.) HEMORRHAGE		1	
	CONTROL	LOW DOSE	HIGH DOSE
INFLAMMATION ACUTE SUPPURATIVE INFLAMMATION CHRONIC SUPPURATIVE			1 1
JTERUS/ENDOMETRIUM CYST INFLAMMATION ACUTE INFLAMMATION ACUTE CYSTIC HYPERPLASIA	4 3 1	6 1 3 1 1	4 2 1 1
OVARY CYST			
NERVOUS SYSTEM	2 (10%)	2 (14%)	1 (2%)
CHOROID PLEXUS ANGIECTASIS	1 1		
BRAIN ABSCESS	1	1 1	1
GLIOS1S ATROPHY	1		1
MEDULLA OBLONGATA ABSCESS		1 1	
MUSCULOSKELETAL SYSTEM		1 (2%)	
SKELETAL MUSCLE INFLAMMATION ACUTE		1 1	

NONE

	CONTROL	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS	1 (5%)	4 (8%)	9 (18%)
ABDOMEN LIPO-GRANULOMA NECROSIS FAT		1 1 1	
MEDIASTINUM INFLAMMATION ACUTE SUPPURATIVE ABSCESS CHRONIC FIBROSIS			4 1 2 1
PLEURA	1	3	7
INFLAMMATION INFLAMMATION ACUTE SUPPURATIVE		1	
INFLAMMATION SUBACUTE INFLAMMATION CHRONIC	1	2	1 6
NO LESION REPORTED		1	
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHS MORIBUND SACRIFICE SCHEDULED SACRIFICE ACCIDENTALLY KILLED	20 16 1	50 48	50 47 2
TERMINAL SACRIFICE	3	2	1
* INCLUDES AUTOLYZED ANIMALS			

TABLE C2 FEMALE RATS: NONTUMOR PATHOLOGY (CONT.)

*SYSTEM PERCENTAGES ARE BASED ON NUMBER OF ANIMALS NECROPSIED.

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONTUMOR PATHOLOGY IN MICE EXPOSED TO 1,1,1-TRICHLOROETHANE

TABLE Dl

SUMMARY OF THE INCIDENCE OF NONTUMOR PATHOLOGY IN MALE MICE TREATED WITH 1,1,1-TRICHLOROETHANE

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS MISSING ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICAL ANIMALS WITH NON-TUMOR PATHOLOGY		47	49
INTEGUMENTARY SYSTEM *	2 (13%)	12 (26%)	15 (30%)
SKIN EDEMA	1	12	15 1
ULCER INFLAMMATION ACUTE	1	1	1
ABSCESS CHRONIC ACANTHOSIS PARAKERATOSIS	1	11 2	14
SUBCUT TISSUE EDEMA	1		
ABSCESS	Ŧ		
RESPIRATORY SYSTEM TRACHEA	10 (67%)	40 (85%) 2	46 (92%)
INFLAMMATION		2	
LUNG CONGESTION	10	40 18	46 31
EDEMA	9	11	18
HEMORRHAGE BRONCHOPNEUMONIA		1 1	3
INFLAMMATION BRONCHOPNEUMONIA ACUTE	1	9 4	9 1
ABSCESS		1	1
PNEUMONIA CHRONIC MURINE BRONCHOPNEUMONIA CHRONIC		3	
CIRCULATORY SYSTEM	1 (7%)		
AORTA	1		
INFLAMMATION ACUTE	1		

	CONTROL	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM	8 (53%)	13 (28%)	5 (10%)
LIVER	8	9	5
HEMATOMA		1	
LYMPHOOCYTIC INFLAM INFILTRATE	7	Λ	2
AMYLOIDOSIS HYPERPLASIA	7	4	1 2
ANGIECTASIS	1	-	2
LIVER/CENTRILOBULAR		1	
NECROSIS FOCAL		1	
LIVER/KUPFFER CELL		1	
HYPERPLASIA		1	
PANCREAS		1	
PERIARTERITIS		1	
SMALL INTESTINE		1	
LYMPHOID HYPERPLASIA		1	
COLON HEMATODIASIS			
RINARY SYSTEM	13 (87%)	7 (15%)	7 (14%)
KIDNEY	12	5	7
HYDRONEPHROSIS			6
LYMPHOCYTIC INFLAM INFILTRATE	2 2		1
INFLAMMATION ACUTE SUPPURATIVE INFLAMMATION CHRONIC	4	4	
INFLAMMATION CHRONIC CYSTIC	1	1	
FIBROSIS DIFFUSE	2	-	
AMYLOIDOSIS	3	1	
KIDNEY/CORTEX		2	
LYMPHOCYTIC INFLAM INFILTRATE		2	
RENAL TUBULE	2		
CYTOPLISMIC VACUOLIZATION	2		
URINARY BLADDER			

TABLE D1 MALE MICE: NONTUMOR PATHOLOGY (CONT.)

	CONTROL	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM	3 (20%)		
ADRENAL AMYLOIDOSIS	3 3		
IEMATOPOIETIC SYSTEM	10 (67%)	15 (32%)	14 (28%)
BONE MARROW HYPERPLASIA HEMATOPOIETIC	1 1		1 1
SPLEEN AMYLOIDOSIS	8 7	9 4	7
HYPERPLASIA HEMATOPOIETIC LYMPHOID HYPERPLASIA MYELOID METAPLASIA	1	1 3 2	3 4
LYMPH NODE CONGESTION	3 2	9 3	9 4
HEMORRHAGE INFLAMMATION ACUTE LYMPHOID DEPLETION	1	1 1	
HYPERPLASIA RETICULAM-CELL LYMPHOID HYPERPLASIA	1	5 1	5
CERVICAL LYMPH NODE ANGIECTASIS			
SUPERIOR DEEP CERVIC ANGIECTASIS			
REPRODUCTIVE SYSTEM	1 (7%)		1 (2%)
PROSTATE INFLAMMATION ACUTE	1 1		
SEMINAL VESICLE DILATATION			1 1
EPIDIDYMIS SPERMATOGENIC GRANULOMA			

TABLE D1 MALE MICE: NONTUMOR PATHOLOGY (CONT.)

	CONTROL	LOW DOSE	HICH DOSE
			nigh Dose
NERVOUS SYSTEM BRAIN/MENINGES INFLAMMATION ACUTE	1 (7%) 1 1		
MUSCULOSKELETAL SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
NONE			
ALL OTHER SYSTEMS			
NONE			
NO LESION REPORTED AUTOLYSIS/NECROPSY PERF/NO HISTO	1	2	1
AUTOLYSIS/NO NECROPSY PERFORMED	4	3	
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATH MORIBUND SACRIFICE SCHEDULED SACRIFICE	20 17	50 35	50 37 2
ACCIDENTALLY KILLED TERMINAL SACRIFICE MISSING	2 1	15	11
* INCLUDES AUTOLYZED ANIMALS			

TABLE DI MALE MICE: NONTUMOR PATHOLOGY (CONT.)

* SYSTEM PERCENTAGES ARE BASED ON NUMBER OF ANIMALS NECROPSIED.

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS NECROPSIED	18(100%)	48(100%)	
ANIMALS EXAMINED HISTOPATOLOGICAL	-	48	50
ANIMALS WITH NON-TUMOR PATHOLOGY	18.(100%)	48(100%)	50(100%)
RESPIRATORY SYSTEM *	14 (78%)	42 (88%)	43 (86%)
TRACHEA			1
INFLAMMATION ACUTE			1
LUNG/BRONCHUS			1
INFLAMMATORY POLYP			1
LUNG	14	42	43
CONGESTION	9	16	29
EDEMA	1	6	13
HEMORRHAGE		б	2
INFLAMMATION	4	24	17
INFLAMMATION ACUTE SUPPURATIVE BRONCHOPNEUMONIA ACUTE SUPPURA		6 1	3
PNEUMONIA CHRONIC MURINE	TIVE	T	Z
BRONCHOPNEUMONIA CHRONIC	1		
CIRCULATORY SYSTEM		1 (2%)	
MYOCARDIUM		1	
INFLAMMATION ACUTE		1	
DIGESTIVE SYSTEM	4 (22%)	14 (29%)	8 (16%)
SALIVARY GLAND		1	
SALIVARY GLAND LYMPHOCYTIC INFLAM INFILTRATE		1	
		-	

TABLE D2 SUMMARY OF THE INCIDENCE OF NONTUMOR PATHOLOGY IN FEMALE MICE TREATED WITH 1,1,1-TRICHLOROETHANE

	CONTROL	LOW DOSE	HIGH DOSE
LIVER	3	13	8
LYMPHOCYTIC INFLAM INFILTRATE INFLAMMATION SUBACUTE	2 1	1	-
NECROSIS NECROSIS FOCAL AMYLOIDOSIS		7	6 1 1
HYPERPLASIA ANGIECTASIS LYMPHOID HYPERPLASIA MYELOID METAPLASIA		2 1 1 1	
LIVER/CENTRILOBULAR NECROSIS		1 1	
PANCREATIC DUCT DILATATION			
STOMACH ULCER ACUTE	1 1		
SMALL INTESTINE LYMPHOID HYPERPLASIA	1 1		
COLON HEMATODIASIS			
URINARY SYSTEM	6 (33%)	9 (19%)	2 (4%)
KIDNEY HYDRONEPHROSIS PYELONEPHRITIS	5 1	9 4	2 2
LYMPHOCYTIC INFLAM INFILTRATE INFLAMMATION ACUTE SUPPURATIVE	4	1 2	
INFLAMMATION CHRONIC INFLAMMATION CHRONIC CYSTIC ATROPHY	1	2 2	
URINARY BLADDER	1		
LYMPHOCYTIC INFLAM INFILTRATE	1		

TABLE D2 FEMALE MICE: NONTUMOR PATHOLOGY (CONT.)

	CONTROL	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM 1	L (6%)	6 (13%)	1 (2%)
ADRENAL		5	1
CONGESTION AMYLOIDOSIS		1 4	1
ADRENAL CORTEX HYPERPLASIA	1 1	1 1	
HEMATOPOIETIC SYSTEM	8 (44%)	26 (54%)	11 (22%)
BONE MARROW	3	4	
HEMORRHAGE HYPERPLASIA HEMATOPOIETIC	1 2	4	
SPLEEN	6	24	11
CONGESTION INFLAMMATION ACUTE AMYLOIDOSIS ATROPHY HYPERPLASIA FOLLICULAR-CELL	1	1 3 7 1	1 1 1
HYPERPLASIA HEMATOPOIETIC LYMPHOID HYPERPLASIA MYELOID METAPLASIA	5	4 14	1 4 6
LYMPH NODE HEMORRHAGE INFLAMMATION ACUTE INFLAMMATION ACUTE SUPPURATIV	3 E	8 1 1 1	1
INFLAMMATION CHRONIC PLASMA CELL INFILTRATE HYPERPLASIA RETICULUM-CELL	1	- 1 1	
LYMPHOID HYPERPLASIA	2	3	1
REPRODUCTIVE SYSTEM	15 (83%)	27 (56%)	23 (6%)
VAGINA INFLAMMATION CHRONIC		1 1	
UTERUS HYDROMETRA INFLAMMATION	1	2 2	3 3
INFLAMMATION ACUTE SUPPURATIV	E 1		
UTERUS/ENDOMETRIUM CYST	15	26	19 7

TABLE D2 FEMALE MICE: NONTUMOR PATHOLOGY (CONT.)

	CONTROL	LOW DOSE	HIGH DOSE
UTERUS/ENDOMETRIUM (CONT.)			
HYPERPLASIA		1	
HYPERPLASIA CYSTIC	15	25	12
FALLOPIAN TUBE			1
DILATATION			1
OVARY	5	4	2
CYST	2	2	1
FOLLICULAR CYST HEMORRHAGE	1	2	1
ATROPHY	2		Ŧ
ANGIECTASIS	-	1	
NERVOUS SYSTEM			
JONE			
IUSCULOSKELETAL SYSTEM			
JONE			
SPECIAL SENSE ORGANS			
IONE			
ALL OTHER SYSTEMS		2 (4%)	
PLEURA		2	
INFLAMMATION ACUTE		2	
NO LESION REPORTED			
AUTOLYSIS/NO NECROPSY PERFORMED	2	2	
ANIMAL DISPOSITION SUMMARY			
ANIMALS LEFT IN STUDY	20	50	50
NATURAL DEATH*	9	27	36
MORIBUND SACRIFICE		1	1
SCHEDULED SACRIFICE ACCIDENTALLY KILLED			
FERMINAL SACRIFICE	11	22	13
* INCLUDES AUTOLYZED ANIMALS			

TABLE D2 FEMALE MICE: NONTUMOR PATHOLOGY (CONT.)

• SYSTEM PERCENTAGES ARE BASED ON NUMBER OF ANIMALS NECROPSIED.