Skip Navigation
About   Site Map   Contact Us
 
A service of the U.S. National Library of Medicine®
 
 
Printer-friendly version
Chromosome 5
 
 References
 
 Quick links to this topic
 National Institutes of Health
 Information pages
 Health information
 Information and databases
 Recent literature
 OMIM
 Genetic disorder catalog
 Genetic maps

Chromosome 5

Reviewed August 2007

What is chromosome 5?

Humans normally have 46 chromosomes in each cell, divided into 23 pairs. Two copies of chromosome 5, one copy inherited from each parent, form one of the pairs. Chromosome 5 spans about 181 million DNA building blocks (base pairs) and represents almost 6 percent of the total DNA in cells.

Identifying genes on each chromosome is an active area of genetic research. Because researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. Chromosome 5 likely contains between 900 and 1,300 genes.

Genes on chromosome 5 are among the estimated 20,000 to 25,000 total genes in the human genome.

There are many genetic conditions related to genes on chromosome 5.

What chromosomal conditions are related to chromosome 5?

The following conditions are caused by changes in the structure or number of copies of chromosome 5.

cancers

Changes in the structure of chromosome 5 are associated with certain forms of cancer and conditions related to cancer. These changes are typically somatic, which means they are acquired during a person's lifetime and are present only in tumor cells. Deletions in the long (q) arm of the chromosome have been identified in a form of blood cancer known as acute myeloid leukemia (AML). These deletions also frequently occur in a disorder called myelodysplastic syndrome, which is a disease of the blood and bone marrow. People with this condition have a low number of red blood cells (anemia) and an increased risk of developing AML. When myelodysplastic syndrome is associated with a specific deletion in the long arm of chromosome 5, it is known as 5q- (5q minus) syndrome. Studies are under way to determine which genes in the deleted region of chromosome 5 are related to myelodysplastic syndrome and AML.

cri-du-chat syndrome

Cri-du-chat syndrome is caused by a deletion of the end of the short (p) arm of chromosome 5. This chromosomal change is written as 5p- (5p minus). The signs and symptoms of cri-du-chat syndrome are probably related to the loss of multiple genes in this region. Researchers are working to identify all of these genes and determine how their loss leads to the features of the disorder. They have discovered that in people with cri-du-chat syndrome, larger deletions tend to result in more severe intellectual disability and developmental delays than smaller deletions. They have also defined regions of the short arm of chromosome 5 that are associated with particular features of cri-du-chat syndrome. A specific region designated 5p15.3 is associated with a cat-like cry, and a nearby region called 5p15.2 is associated with intellectual disability, small head size (microcephaly), and distinctive facial features.

Crohn disease

Several regions of chromosome 5 have been associated with the risk of developing Crohn disease. For example, a combination of genetic variations in a region of DNA on the long (q) arm of the chromosome (5q31) has been shown to increase a person's chance of developing Crohn disease. Taken together, these variations are known as the inflammatory bowel disease 5 (IBD5) locus. This region of chromosome 5 contains several related genes that may be associated with Crohn disease risk, including SLC22A4 and SLC22A5.

Variations in a region of the short (p) arm of chromosome 5 designated 5p13.1 are also associated with Crohn disease risk. Researchers refer to this part of chromosome 5 as a "gene desert" because it contains no known genes; however, it may contain stretches of DNA that help regulate nearby genes such as PTGER4. Research studies are under way to examine a possible connection between the PTGER4 gene and Crohn disease.

periventricular heterotopia

In a few cases, abnormalities in chromosome 5 have been associated with periventricular heterotopia, a disorder characterized by abnormal clumps of nerve cells (neurons) around fluid-filled cavities (ventricles) near the center of the brain. In each case, the affected individual had extra genetic material caused by an abnormal duplication of part of this chromosome. It is not known how this duplicated genetic material results in the signs and symptoms of periventricular heterotopia.

other chromosomal conditions

Other changes in the number or structure of chromosome 5 can have a variety of effects, including delayed growth and development, distinctive facial features, birth defects, and other medical problems. Changes to chromosome 5 include an extra segment of the short (p) or long (q) arm of the chromosome in each cell (partial trisomy 5p or 5q), a missing segment of the long arm of the chromosome in each cell (partial monosomy 5q), and a circular structure called ring chromosome 5. Ring chromosomes occur when a chromosome breaks in two places and the ends of the chromosome arms fuse together to form a circular structure.

Is there a standard way to diagram chromosome 5?

Geneticists use diagrams called ideograms as a standard representation for chromosomes. Ideograms show a chromosome's relative size and its banding pattern. A banding pattern is the characteristic pattern of dark and light bands that appears when a chromosome is stained with a chemical solution and then viewed under a microscope. These bands are used to describe the location of genes on each chromosome.

Where can I find additional information about chromosome 5?

You may find the following resources about chromosome 5 helpful. These materials are written for the general public.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

Where can I find general information about chromosomes?

The Handbook provides basic information about genetics in clear language.

These links provide additional genetics resources that may be useful.

What glossary definitions help with understanding chromosome 5?

References (17 links)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? in the Handbook.

 
Reviewed: August 2007
Published: January 23, 2009