Skip Navigation
National Institute of Environmental Health SciencesNational Institutes of Health
Increase text size Decrease text size Print this page

Selected Publications

Human Metabolism Group

Polymorphisms in Human CYP Enzymes

  1. Goldstein, J.A., Faletto, M.B., Romkes-Sparks, Sullivan T, Raucy, J., Kitareewan, S., Lasker, J.M., and Ghanayem B. Evidence that CYP2C19 is the major (S)-mephenytoin 4’-hydroxylase in humans. Biochemistry 33: 1743-1752, 1994.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8110777&query_hl=26) Exit NIEHS
  2. de Morais, S.M.F., Wilkinson, G.R., Blaisdell, J., Nakamura, K., Meyer, U.A. and Goldstein, J.A. The major defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269: 15419-15422, 1994.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8195181&query_hl=28) Exit NIEHS
  3. de Morais, S.M.F., Wilkinson, G.R., Blaisdell, J., Meyer, U.A. Nakamura, K., and Goldstein, J.A. Identification of a new Genetic Defect Responsible for the Polymorphism of S-Mephenytoin Metabolism in Japanese. Mol. Pharmacol. 46: 595-598, 1994.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7969038&query_hl=30) Exit NIEHS
  4. Sullivan-Klose, T.H., Ghanayem, B.I., Bell, D.A., Zhang, Z.Y., Kaminsky, L.S., Shenfield, G.M., Miners, J.O, Birkett. D.J., and Goldstein, J.A.: The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics, 6: 341-349, 1996.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8873220&query_hl=32) Exit NIEHS
  5. Blaisdell, J, Mohrenweiser, H., Jackson, J, Ferguson, S, Coulter, S, Chanas, B, Xi, T, Ghanayem, B, and Goldstein, J.A.: Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics. 12: 703-711, 2002.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12464799&query_hl=34) Exit NIEHS
  6. Blaisdell, J., Mohrenweiser, H., Coulter, S., Ferguson, S.S., Chanas, B., Xi, T., Ghanayem, B., and Goldstein, J.A.: Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 14: 527-537, 2004.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15284535&query_hl=36) Exit NIEHS
  7. Goldstein, J.A. Invited review: Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Brit. J. of Clin. Pharmacol. 52: 349-355, 2001.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11678778&query_hl=38) Exit NIEHS
  8. Lee, C.R., Goldstein, J.A., and Pieper, J.A. Cytochrome P450 2C9 Genetic Polymorphisms: A Comprehensive Review of the In Vitro and Human data. Pharmacogenetics 12:251-263, 2002.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11927841&query_hl=40) Exit NIEHS
  9. Lee, S., Bell,D., Coulter, S., Ghanayem, B., and Goldstein, J.A.: Recombinant CYP3A4*17 is defective in metabolizing the hypertensive drug nifedipine, and the CYP3A4*17 allele may occur on the same chromosome as CYP3A5*3, representing a new puntative defective CYP3A haplotype. J. Pharmacol. Exper. Ther. 313: 302-309, 2005.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=pubmed&term=is+defective+in+metabolizing+the+hypertensive+drug+nifedipine%2C+and+the+cyp3a4%2A17+allele+may+occur+on+the+same+chromosome+as+cyp3a5%2A3%2C+representing+a+new+putative+defective+cyp3a+haplotype&tool=fuzzy&ot=is+defective+in+metabolizing+the+hypertensive+drug+nifedipine%2C+and+the+CYP3A4%2A17+allele+may+occur+on+the+same+chromosome+as+CYP3A5%2A3%2C+representing+a+new+puntative+defective+CYP3A+haplotype) Exit NIEHS
  10. Lee, S-J., and Goldstein, J.A.: Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms (SNPs) and their detections with genotyping tests. Pharmacogenomics 6:357-371, 2005.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16004554&query_hl=7&itool=pubmed_DocSum) Exit NIEHS
  11. Lee, S.J., van der Heiden, I.P., Goldstein, J.A. and van Schaik, R.H.: A new CYP3A5 variant, CYP3A5*11, is shown to be defective in nifedipine metabolism in a recombinant cDNA expression system. Drug Metab. Disp. 35:67-71, 2007.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17035598&query_hl=20&itool=pubmed_docsum) Exit NIEHS
  12. Delozier, T.C., Lee, S.C., Coulter, S. J., Goh, B.C., Goldstein, J.A.: Functional characteriztion of novel allelic variants of CYP2C9 recently discovered in Southeast Asians. J. Pharmacol. Exp. Ther. 315:1085-1090, 2005.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=16099926&query_hl=52) Exit NIEHS
  13. Lee, S.J., Coulter, Perera, L, S.J., Jetten, A., Mohrenweiser, H.M., Jetten, A. and Goldstein, J.A.: Discovery of new coding alleles of human CYP2C26A1* which are potentially defective in the metabolism of all-trans retinoic acid and their assessment in a recombinant cDNA expression system. Pharmacogenet. Genomics 17: 169-180, 2007.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17460545&query_hl=24&itool=pubmed_docsum) Exit NIEHS
  14. Parikh, S., Ouedraogo, J.B., Goldstein, J.A., Rosenthal, P.J., and Kroetz, D.L.: Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: Implications for malaria treatment in Africa. Clin. Pharmacol Therapeut 82(2):197-203, 2007.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17361129&query_hl=27&itool=pubmed_docsum) Exit NIEHS
  15. Lee, S.J., van der Heiden, I.P., Goldstein, J.A., van Schaik, R.H.N.: A new CYP3A5 variant, CYP3A5*11, is shown to be defective in nifedipine metabolism in a recombinant cDNA expression system. Drug metabolism and disposition: the biological fate of chemicals 1:67-71, 2007.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=17035598) Exit NIEHS
  16. Limdi, N.A., Arnett, D.K., Goldstein, J.A., Beasley, T.M., McGwin, G., Adler, B.K., Acton, R.T.: Influence of CYP2C9 and VKORC1 s on warfarin dose, anticoagulation attainment and maintenance among European American and African Americans. Pharmacogenomics 9(5):511-526, 2008. [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=18466099) Exit NIEHS
  17. Limdi, N.A., Goldstein, J.A., Blaisdell, J.A., Beasley, M.T., Rivers, C.V., and Acton, R.T.: Influence of CYP2C9 genotype on warfarin dose among African-American and European-Americans. Personalized Medicine 4(2):157-169, 2007.  [Abstract] (http://www.ncbi.nlm.nih.gov/pubmed/18466099?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum) Exit NIEHS
  18. Limdi, N.A., McGwin, G., Goldstein, J.A., Baird, M.F., Rivers, C.A., and Acton, R.T.: Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin. Pharmacol. Therapeut. 83(2): 312-321, 2008.  [Abstract] (http://www.ncbi.nlm.nih.gov/pubmed/17653141?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum) Exit NIEHS
  19. Limdi, N.A., McGwin, G., Goldstein, J.A., Beasley, T.M., Adler, B.K., Acton, R.T., and Arnett, D.K.: Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulant attainment and maintenance dose among European American and African Americans. Pharmacogenomics 9(5):511-526, 2008.  [Abstract] (http://www.ncbi.nlm.nih.gov/pubmed/18466099?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum) Exit NIEHS
  20. Limdi, N.A., Beasley, T.M., Crowley, M.R., Goldstein, J.A., Rieder, M.J., Flockhart, D.A., Arnett, D.K. and Liu, N.: VKORC1 polymorphisms, haplotypes and haplotype-groups on warfarin dose among African–Americans and European–Americans. Pharmacogenomics 9(10): 1445-58, 2008.   [Abstract] (http://www.ncbi.nlm.nih.gov/pubmed/18855533?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum) Exit NIEHS

Function of Murine CYP2Cs

  1. Wang, H. J.A. Bradbury, J.A. Blaisdell, Goldstein, J.A., and Zeldin, D.C.: Cloning, expression and characterization of three new murine CYP2Cs involved in fatty acid metabolism. Mol. Pharmacol. 65:1-11, 2004.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15102943&query_hl=54) Exit NIEHS
  2. Andreola, F., Hayhurst, G.P., Luo, G., Ferguson, S.S., Gonzalez, F.J., Goldstein, J.A., and. De Luca, L.M.: Mouse liver CYP2C39 is a novel retinoic acid 4-hydroxylase: Its downregulation offers a molecular basis for liver retinoid accumulation and fibrosis in AHR-null mice. J. Biol. Chem. 279: 343-348, 2004.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14623888&query_hl=56) Exit NIEHS
  3. Delozier, T.C., Tsao, C.-C., Coulter, S.J., Zeldin, D.C., and Goldstein, J.A.: CYP2C44, A new murine CYP2C that metabolizes arachidonic acid to unique stereospecific products. J. Pharmacol. Exper. Ther. 310: 845-854, 2004.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15084647&query_hl=58) Exit NIEHS

Regulation of the CYP2Cs

  1. Ferguson, S. S., E. L. LeCluyse, Negishi, M., and Goldstein, J.A.: Regulation of human CYP2C9 by constitutive androstate receptor (CAR): discovery of a new distal binding site. Mol. Pharmacol. 62: 737-746, 2002.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12181452&query_hl=60) Exit NIEHS
  2. Jackson, J.P., Ferguson, S. S., Moore, R., Negishi, M., and Goldstein, J.A.: The constitutive active/androstane receptor regulates phenytoin induction of Cyp2c29. Mol. Pharmacol. 65:1397-404, 2004.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15155833&query_hl=62) Exit NIEHS
  3. Chen, Y., Ferguson, S., Negishi, M., Goldstein, J.A.: Identification of constitutive androstane receptor and glucocorticoid receptor sites in the CYP2C19 promoter differences in transcriptional regulation of CYP2C9 and CYP2C19. Mol. Pharmacol. 64: 316-324, 2003.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12869636&query_hl=65) Exit NIEHS
  4. Chen, Y., Ferguson, Stephen, S.S., Negishi, M.., and Goldstein, J.A.: Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol. Exper. Ther. 308:495-501, 2004.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14600250&query_hl=67) Exit NIEHS
  5. Chen, Y., Kissling,G., Negishi,M.,and Goldstein, J.A.: The nuclear receptors CAR and PXR cross talk with HNF4α to synergistically the human CYP2C9 promoter. J. Pharmacol Exp. Ther. 314:1125-33, 2005.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15919766&query_hl=72) Exit NIEHS
  6. Ferguson, S., Chen, Y., LeCluyse, E., Negishi, M., and Goldstein, J.A.: Human CYP2C8 is transcriptionally regulated by the nuclear receptors CAR, PXR, GR and HNF4α. Mol. Pharmacol. 72: 737-746, 2005.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15933212&query_hl=75) Exit NIEHS
  7. Jackson, J. P., Ferguson, S.S., Negishi, M. and Goldstein, J.A.: Phenytoin induction of the CYP2C37 gene is mediated by the constitutive androstane receptor. Drug Metab. Disp. 34(12):2003-10, 2006.  [Abstract] (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16936065&query_hl=31&itool=pubmed_docsum) Exit NIEHS
  8. Surapureddi, S., Rana, R., Reddy, J.K., and Goldstein, J.A.: The coactivator NCOA6 mediates the synergistic activation of human cytochrome P-450 2C9 by the constitutive androstane receptor and hepatic nuclear factor-4α. Mol. Pharmacol. 74(3):913-23. 2008.  [Abstract] (http://www.ncbi.nlm.nih.gov/pubmed/18552123?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum) Exit NIEHS

Back to top Back to top

USA.gov Department of Health & Human Services National Institutes of Health
This page URL: http://www.niehs.nih.gov/research/atniehs/labs/lpc/human/publications.cfm
NIEHS website: http://www.niehs.nih.gov/
Email the Web Manager at webmanager@niehs.nih.gov
Last Reviewed: November 05, 2008