
Introduction to R and BUGS

Richard F MacLehose, PhD
National Institute of Environmental Health Sciences

June 18, 2007

1 What is R

R is the freeware version of S-Plus. It is an exceptional statistical computing environment and of-
fers tremendous graphical flexibility (see http://addictedtor.free.fr/graphiques/ if you don’t believe me).
User-written packages that can be downloaded from the web make R very flexible and it will cover most
of the needs of most epidemiologists. In fact, one of the packages is epitools which includes functions
for 2x2 tables, standardization, kaplan-meier curves, etc.

2 What is BUGS

BUGS (Bayesian inference Using Gibbs Sampling) is free software that allows users to specify fairly
complex hierarchical models and then figures out a Markov Chain Monte Carlo (MCMC) algorithm to
estimate the model. BUGS allows you to specify your outcome model (the likelihood) and your priors,
which are relatively easy tasks, and then it does the hard part: running an MCMC algorithm. WinBUGS
is the Windows version of BUGS and openBUGS is the new open source version of BUGS. Other BUGS
programs exist: geoBUGS, for spatial data, and pkBUGS for pharmacokinetic data. The examples from
our shortcourse use winBUGS and openBUGS. You should get the same answer from either software
package, although they may use different flavors of MCMC methods to get to that answer. OpenBUGS
is nice to use in conjunction with R simply because it runs completely in the background, whereas when
R calls winBUGS it has to open a new window.

2.1 Getting BUGS and R

Follow the directions on Andrew Gelman’s website http://www.stat.columbia.edu/ gelman/bugsR/ to
install R and BUGS, as well as the R packages that call BUGS from R. The directions are very explicit
and easy to follow.

The directions at his website are for his book with Jennifer Hill titled ”Data Analysis using Re-
gression and Multilevel/Hierarchical Models”, which is an excellent resource for anyone who plans on
doing any of this type of analysis.

Download the file ”Rprofile.site” from our website and copy it to the directory ”etc” where R was
saved, probably C:\Program Files\R\R-2.5.0\etc. You’ll save this over an existing file of the same
name. Rprofile.site tells R what packages to load when it starts up and where your working directory is.
As a default, I’m setting c:\r as the working directory, so you should create that file on your harddrive
and save the R programs and datasets on our website there.

1

3 Getting Started in R

It really is worth becoming proficient in R, as it offers virtually every statistical and graphical technique
you could ever want. As with any software program, the easiest way to learn it is to use it for a couple
of analyses. You’ll pick it up quickly. Online tutorials are everywhere. Here are a few good ones

• http://www.math.csi.cuny.edu/Statistics/R/simpleR/index.html

• http://cran.r-project.org/doc/contrib/usingR.pdf

• cran.r-project.org/doc/manuals/R-intro.pdf

• http://cran.r-project.org/doc/contrib/refcard.pdf

One of the things you’ll find strange about R at first is that while you can interact with it on a line-
by-line basis (sort of like Stata’s command line), it’s much easier to write a program and then run the
program (as in SAS). However, unlike SAS, R doesn’t have a built in text editor where you can write and
run the program. You can use your computers standard text editor, like winpad, but its better to down-
load (free) programs that have been adapted to suit R programming. I use WinEdt (www.winedt.com),
and it works quite well. You’ll want to type

install.packages(”RWinEdt”)

at the R command prompt (>) so that WinEdt can interact with R. Go ahead and install the epitools
package while you’re at it

install.packages(”epitools”).

Now you’ve got everything you need to get up and running. As I said, the easiest way to learn R is
to use it. In this tutorial, I’ll walk you through the analysis of the county-specific breast cancer rates in
North Carolina in 2004. Download ”counties.txt” and ”counties.R” and save them in c:\r.

When you start R, WinEdt will start up automatically (because we told it to in Rprofile.site). In
WinEdt, open the files counties.txt and counties.bug. I usually find if I’m working on a desktop or a
laptop with a large enough screen that its easiest to have R open on the left half of the screen and WinEdt
on the right half of the screen. Even on my laptop, this work pretty well. The file counties.txt that we’ll
be using is well annotated so you should be able to follow along with what each line of code does.

In WinEdt, there are a few ways to interact with R. The two that I generally choose are to 1) put my
curser on the line of code in WinEdt that I want to run in R and press alt-l 2)highlight a block of code that
I want to run and press alt-p. We’ll go line by line right now. First, notice a couple of R-peculiarities:
the pound sign (#) is used for comments. R will ignore anything after a #. Second, R uses← like other
programs use =. This is the more traditional usage, however a few versions ago R changed and now lets
you use = sign too. I generally use the arrow notation because thats how i learned it. Feel free not to
adopt this notation if you find it confusing. But if you type a← 2 or a=2, in either case a is set equal to
2.

Lets load the county data. Put your curser on the line of code that says

county← read.table(’c:/r/counties.txt’,header=TRUE)

and press alt-l. This will automatically run the line of code and bring the R window up so you can
see what’s happening. We’ve read in the dataset counties.txt and saved in the matrix county. If you type

2

county, you’ll see the dataset. If you type county[1,] you’ll see the first row of the dataset. If you type
county[,1] you’ll see the first column of the dataset. If you type county[1:10,1], you’ll see the first 10
rows of the first column of the dataset, etc.

Now we generate the exact MLE results by placing the cursor on the line of code that says

mle.exact←pois.exact(county$cases,county$pop)

and pressing alt-l. This line of code calls the function pios.exact and stores the results in mle.exact.
The dollar signs tell R that you want the column of the dataset that has the heading cases or pop. If
you type mle.exact you’ll see the results: the MLE of the rate for each county with upper and lower
confidence intervals.

We have our frequentist results, now lets get the Bayes results. First, take a look at the file coun-
ties.bug (open it in WinEdt). You’ll notice that the way this file looks is pretty similar to how I wrote
things in my slides. It starts with a model statement which has to be there: it tells BUGS everything
between the curly brackets is the model. The next line is a for loop. This is a little different from what
you’re probably used to in most software packages. When defining models into BUGS, its typically
easiest to write out the model for each of the observations in your dataset. In this case we have 100
observations (100 counties) so we have a loop that goes from 1 to 100. BUGS understands that every-
thing in the FOR loop’s curly brackets is repeated for each county. The first line in the for loop says
that the number of BrCa cases in each county follows a poisson distribution with parameter mu[i]. We
define mu[i] in the next line as the product of the size of the population in county i, N[i], and the rate
of BrCa in that county, lambda[i]. We want to place a prior distribution on the log of lambda[i] (this
is convenient to do, since we can place a Normally distributed prior on log(lambda[i]) and not have to
worry about negative values, since exponentiating a negative number leads to a positive number which
a rate must be) so we define theta[i] as the log of lambda[i] in the next line of code. Finally, we place
a Normal prior on theta[i] in the last line. That’s it. Four lines of code (excluding the brackets, model
statement and for statement).

Now that we know what our BUGS program says, we just need to call it from R. Doing this is easy.
You define your data set, initialize parameters, then call BUGS. First, we’ll define the data that we pass
to BUGS ”data.” There are three lines of code that define this dataset as the cases/county and the pop-
ulation/county. Highlight those lines of code and hit alt-p. Next, define where you want your MCMC
algorithm to begin:

inits← function() list (theta=rep(0,100))

Remember, we have 100 values of theta so we need to specify 100 initial values. Here we use the
rep (repeat) command, which creates a vector of zeros one hundred units long. Try altering this to start
at locations other than zero and see what happens.

Now you need to tell BUGS which parameters you want to keep track of. You’ll store the names of
these parameters in the variable ”parameters”:

parameters←c(”theta”,”lambda”)

Finally, call BUGS with the command that begins
county.sim←bugs(. . .)
I have this set up to call openBUGS, but you can change it to winBUGS if you want. Try it and you’ll
see why I like calling openBUGS a bit more. When you’re troubleshooting programs, its sometimes
useful to call one and than the other. They tend to give different types of error messages, so one may be

3

more helpful in locating your error.
It will take a few seconds for BUGS to run your model. When its done, your results will be saved

in ”county.sim”. To examine the results you need to ”attach” the results, so run that line of code. Now
if you type ”print(county.sim)” you’ll get a summary of your results. You can monitor convergence by
typing plot(theta[,1]) to get the trace plot for theta[1].

I included the graphics commands I used at the bottom of the program to give you a head start on
graphics. In general the easiest way to program in BUGS and R is just like in SAS: borrow as much
code as you can from other sources. Use what we provide on this website as much as you can. Andrew
Gelman has code for all the examples in his book on his website. The winBUGS program includes two
volumes of example code that are very helpful too. For R, when I don’t know how to do something I do
a quick google search and usually find an answer without much difficulty.

4

