System Dynamics Modeling: Population Flows, Feedback Loops, and Health

George P. Richardson

Rockefeller College of Public Affairs and Policy University at Albany, SUNY

Jack B. Homer

Homer Consulting Voorhees, NJ

1

Dynamic Complexity arises because systems are...

- Changing over time
- Tightly coupled
- Governed by feedback
- Nonlinear: changing dominant structure
- History-dependent

- Self-organizing
- Adaptive
- Counterintuitive
- Policy resistant
- Characterized by tradeoffs

3

System Dynamics Contributions

Thinking dynamically

- Move from events and decisions to patterns of continuous behavior over time and policy structure
- Thinking in circular causal / feedback patterns
 - Self-reinforcing and self-balancing processes
 - Compensating feedback structures and policy resistance
 - Communicating complex nonlinear system structure

• Thinking in stocks and flows

- Accumulations are the resources and the pressures on policy
- Policies influence flows

• Modeling and simulation

- Accumulating (and remembering) complexity
- Rigorous (daunting) model evaluation processes
- Controlled experiments
- Reflection

Changing Models of Population Health What Accounts for Poor Health?

God's will Humors, miasma, ether 1840 Poor living conditions, immorality (e.g., sanitation) Single disease, single cause (e.g., germ theory) 1880 Single disease, multiple causes (e.g., heart disease) 1950 Single cause, multiple diseases (e.g., tobacco) 1960 Multiple causes, multiple diseases 1980 (but no feedback dynamics) (e.g., multi-level modeling) Dynamic feedback among afflictions, living conditions, and ۲ 2000 public strength (e.g., syndemic)

Milstein B. Hygeia's constellation: navigating health futures in a dynamic and democratic world [Doctoral Dissertation]. Cincinnati, OH: Union Institute & University; 2006.

The system dynamics modeling process

Adapted from Saeed 1992

Rockefeller College of Public Affairs and Policy University at Albany

Processes focusing on system structure

Processes focusing on system behavior

The System Dynamics Iterative Modeling Process

What Do We Mean by Structure?

- Accumulations (populations, resources,..., 'stocks')
- Causal structure: 'feedback' loops
- Delays
- Perceptions (a kind of accumulation)
- Pressures
- Affects, emotions, (ir)rationalities
- Policies governing decisions

Stocks and flows and feedback loops"

11

What Do We Mean by Dynamics?

- Graphs over time
- Patterns in time series data
- "Dynamic behavior"

12

New York City Population, 1900-2000

Global Carbon Emissions (1800-2000)

Rockefeller College of Public Affairs and Policy University at Albany

Death Rate from Coronary Heart Disease, 1950-98

Poliomyelitis Before and After Vaccines

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Source: Thompson and Tebbens (2006)

Tobacco Prevalence Sketches

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

August 2007 17

Stocks and Flows

Stocks and Flows in Global Climate

Stocks and Flows in Tobacco Prevalence

Society's Health Protection Enterprise as a Stock-Flow Structure

Milstein & Homer, 2003; Gerberding, 2004, 2007

Feedback Thinking

"For one good deed leads to another good deed, and one transgression leads to another transgression." (Pirke Avot)

A Classic Reinforcing Loop (Myrdal 1944, Merton 1948)

A Classic Balancing Loop Values, Goals, **Objectives & Targets Health Protection Efforts** Surveillance, **Research & Evaluation Changes in** Vulnerability, Risk & **Translated** Disease to Public **Population** Health Health **Status**

ırdson August 2007

Reinforcing Loops in Tobacco Prevalence

Reinforcing Loops in Tobacco Prevalence

Finding the Appropriate Boundary SARS Epidemiology

Traditional Approach: SEIR Model

- Most widely used paradigm in epidemiology
- Compartment model-individuals in given state aggregated
- Deterministic or stochastic
- Disaggregation & heterogeneity handled by adding compartments & interactions

32

Infection in the Standard SEIR Model

Standard SEIR Model vs. SARS Data for Taiwan

Cumulative Cases

People

Infection in the Standard SEIR Model

Expanding the Boundary: Behavioral Feedbacks

Model with Behavioral Feedbacks vs. Data

Cumulative Cases

Model Evaluation ('Validation')

What gives us confidence to implement policy?

Two kinds of validating processes

Validation Present at Every Step

- Conceptualizing:
 - Do we have the right people?
 - The right dynamic problem definition?
 - The right level of aggregation?
- Mapping: Developing promising dynamic hypotheses
- Formulating: Clarity, logic, and extremes
- Simulating: Right behavior for right reasons
- Deciding: Implementable conclusions
- Implementing: Requires conviction!

How Much Detail is Best?

"It is obvious that a model...cannot represent every individual decision and transaction taking place in the system. In fact, we should not want to do so, any more than we should want equations that account for each molecule of water in calculating pressures and flows in a water supply system...[Appropriate] aggregation, as with other aspects of a model, depends on the purpose of the model."

-- Jay Forrester

Forrester JW. Industrial Dynamics (Chapter 11: Aggregation of Variables). Cambridge, MA: MIT Press, 1961.

The Classic Tests

	Focusing on STRUCTURE	Focusing on BEHAVIOR
Testing SUITABILITY for PURPOSES		
Testing CONSISTENCY with REALITY		
Contributing to UTILITY & EFFECTIVENESS		

Forrester 1973, Forrester & Senge 1980, Richardson and Pugh 1981

Rockefeller College of Public Affairs and Policy University at Albany

42

Model-Based Policy Analysis

Helping Us to Understand the Implications of Our Options

U.S. Flood Damages

source:http://www.nws.noaa.gov/oh/hic/flood_stats/Flood_loss_time_series.shtml

Flood Damages (constant dollars)

Michael Deegan, Exploring U.S. Flood Mitigation Policies: A Feedback View of System Behavior, PhD dissertation, University at Albany: Albany, NY 2007

44

A natural disaster occurs when <u>hazard</u> meets <u>vulnerability</u>.

The Focus: Flood Mitigation

Michael Deegan, Exploring U.S. Flood Mitigation Policies: A Feedback View of System Behavior, PhD dissertation, University at Albany: Albany, NY 2007

Structure explains behavior

- Period 2: recovery & development pressure
- Perceived risk leads to some floodproofing, but there are pressures to redevelop and return to normal

48

Defining the Policy Space

	Base	Scenario #1	Scenario #2	Scenario #3	Scenario n
Base					
Policy Mix #1					
Policy Mix #2					
Policy Mix #3					
Policy Mix m					

The Policy Space

l= total damage 2= vulnerable property 3= mitigated property	Base	High frequency	Low frequency	Major event
Base				
1. Structural Mitigation				
2. Public Information on Damage				
3. Policy Entrepreneurs for Mitigation				
Michae of Syst	el Deegan,Exploring U.S. Flood em Behavior, PhD dissertation,	Mitigation Policies: A Feedback University at Albany: Albany, N	x View NY 2007	G. P. Richardson August 2007 50

The Policy Space

k

Michael Deegan, Exploring U.S. Flood Mitigation Policies: A Feedback View of System Behavior, PhD dissertation, University at Albany: Albany, NY 2007

The Goal: Wise Policy Consensus

References

(in addition to those on slides)

- J.D. Sterman, Business Dynamics. Boston: Irwin McGraw-Hill, 2000.
- K. Saeed (1992). "Slicing a complex problem for systems dynamics modeling." *System Dynamics Review* 8(3): 251-262.
- G.P. Richardson, How to Anticipate Change in Tobacco Control Systems, in *Greater Than the Sum: Systems Thinking in Tobacco Control*, A. Best, P.I. Clark, S.J. Leischow, W.M.K. Trochim, eds. National Cancer Institute, U.S. Department of Health and Human Services, National Institutes of Health, 2007.
- G.P. Richardson and A.L. Pugh III (1981). *Introduction to System Dynamics Modeling*. Waltham, MA: Pegasus Communications.

