

Non-coding Functional Elements

- Critical for gene regulation
- Maintain/Modify chromatin structure
- Candidate regions for human disease mutations
- Better understanding of human biology
- Changes in gene regulation rather than gene structure might be more influential in evolution (King & Wilson, 1975)

King MC & Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107-116

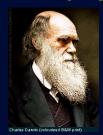
Identifying Functional Elements

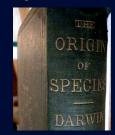
- We understand the "language" of coding sequences (i.e., protein-coding genes)
 - Exons and introns
 - Triplet code
 - Complementary datasets (i.e., ESTs, cDNAs)
- The language of non-coding functional elements is poorly understood
 - We don't know what to look for
 - Signal:Noise problem with short degenerate motifs

Multi-Disciplinary Approaches are Needed

- Find sequences that are likely functional without prior knowledge of the function
- Then characterize functions

Experimental Wet-lab Research





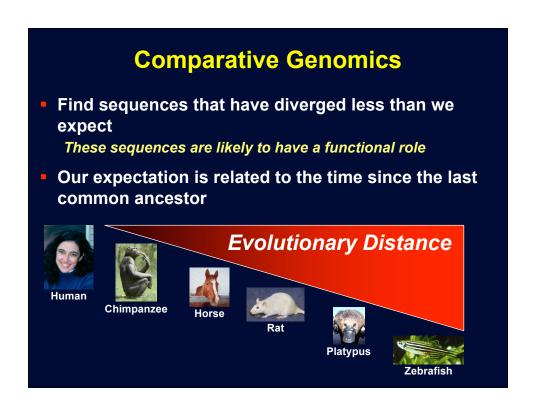
Computational Analyses

Comparative Genomics to Decode the Genome

Charles Darwin

- Served as naturalist on a British science expedition around the world (1831 -- 1836)
- The Origin of Species (1859)
 - All species evolved from a single life form
 - "Variation" within a species occurs randomly
 - Natural selection
 - Evolutionary change is gradual

Other Intellectual Foundations


- Darwin (1859)Theories of Evolution
- Mendel (1866) (rediscovered in 1900)
 Genes are units of heredity
- Avery, McCarty & MacLeod (1944) DNA as the "transforming principle"
- Watson & Crick (1953)
 Structure of DNA
- Sanger (1977)Methods of sequencing DNA

Rationale Behind Comparative Genomics

- DNA represents a "blueprint" for the structure and physiology of all living things
- All species use DNA
- Mutations occur randomly throughout the genome
 - Neutral theory of evolution (M. Kimura, 1983)
- Mutations in functional DNA are less likely to be tolerated

Kimura M. (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge [Cambridgeshire]; New York.

Functional Element Functional Element Functional Element Functional Sequences will be "more similar" when compared between different species

Comparative Sequence Analysis

- Generate comparative sequence datasets
 - Targeted approaches
 - NISC Comparative Sequencing Program http://www.nisc.nih.gov
 - Genome-wide
 - "Finished" genomes
 - · Draft whole-genome shotgun
 - · Low-redundancy sequencing
- Generate multi-sequence alignments
- Downstream analysis efforts

Tools for Aligning Genomic Sequences (Targeted Regions)

Genome Research (2000) 10:577-586

PipMaker—A Web Server for Aligning Two Genomic DNA Sequences

Scott Schwartz, ¹ Zheng Zhang, ¹ Kelly A. Frazer, ² Arian Smit, ³ Cathy Riemer, ¹ John Bouck, ⁴ Richard Gibbs, ⁴ Ross Hardison, ⁵ and Webb Miller^{1,6}

DOTH DOUCK, NICHAEL GIDUS, NOSS HARINSON, AND VINEE DEPARTMENT OF COMPUTED WHILE DEPARTMENT OF COMPUTED STATE OF CONTROL STAT

BIOINFORMATICS APPLICATIONS NOTE Vol. 16 no. 1
Pages 1044

VISTA: visualizing global DNA sequence alignments of arbitrary length

Chris Mayor¹, Michael Brudno¹, Jody R. Schwartz², Alexander Poliakov², Edward M. Rubin², Kelly A. Frazer², Lior S. Pachter^{3,*} and Inna Dubchak^{1,*}

¹National Energy Research Scientific Computing Center, ²Genome Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and ³Department of Mathematics University of California at Berkeley, Berkeley, CA

Resources for Targeted Sequence Analysis

Resource=

zPicture: Dynamic Alignment and Visualization Tool for Analyzing Conservation Profiles

Ivan Ovcharenko, 1,2 Gabriela G. Loots, 2 Ross C. Hardison, 3 Webb Miller, 4,5 and Lisa Stubbs^{2,6}

¹Energy, Environment, Biology and Institutional Computing, Lawrence Livermore National Laboratory, Livermore, California 94550, USA; ²Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA; ³Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; ⁴Department of Computer Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; ⁵Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Genome Research, 2004, 14(3):472-7

DCODE.org Comparative Genomics Center comparing genomes to decipher the code of gene regulation

http://www.dcode.org/

Genome-wide Multi-sequence Alignments

- This is not a "solved problem"
- Significant challenges:
 - Finding the correct sequences to align
 - Not all sequences should align
 - Dealing with insertions/deletions
 - Handling duplications and rearrangements
 - Missing data challenges (i.e., sequencing gaps)

Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner

Mathieu Blanchette, ^{1,6} W. James Kent, ² Cathy Riemer, ³ Laura Elnitski, ³ Arian F.A. Smit, ⁴ Krishna M. Roskin, ² Robert Baertsch, ² Kate Rosenbloom, ² Hiram Clawson, ² Eric D. Green, ⁵ David Haussler, ^{1,2} and Webb Miller ^{3,7}

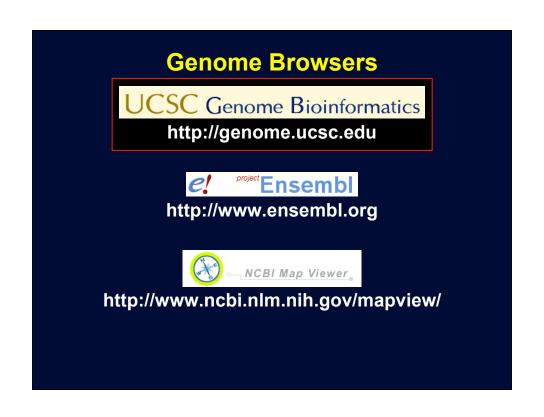
'Howard Hughes Medical Institute and *Center for Biomolecular Science and Engineering, University of California at Santa Cruz, Santa Cruz, California 95064, USA, *Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA, *Institute for Systems Biology, Seattle, Washington 98103, USA, *Genome Technology Branch and NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Manyland 20892, USA

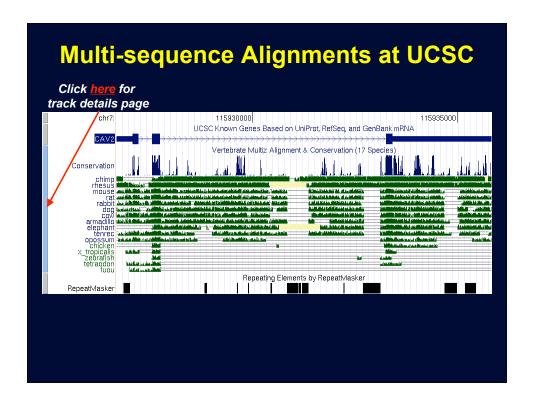
Genome Research (2004) 14:708-715

LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA

Michael Brudno,¹ Chuong B. Do,¹ Gregory M. Cooper,² Michael F. Kim,¹ Eugene Davydov,¹ NISC Comparative Sequencing Program,¹ Eric D. Green,³ Arend Sidow,² and Serafim Batzoglou^{1,4}

*Department of Computer Science, Stanford University, Stanford, California 94305-9010, USA; *Department of Pathology and Department of Genetics, Stanford University, Stanford, California 94305-5334, USA; *Genome Technology Branch and AlHI Intramual Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA


Genome Research (2003) 13:721-31


MAVID: Constrained Ancestral Alignment of Multiple Sequences

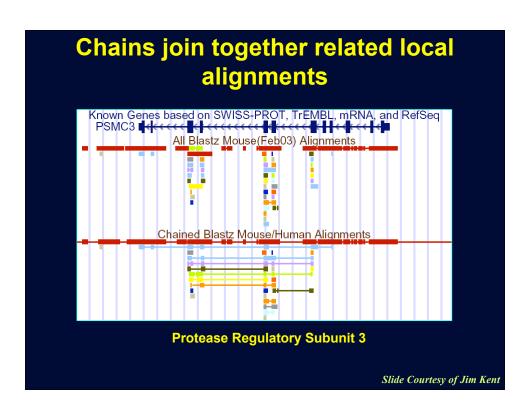
Nicolas Bray and Lior Pachter¹

Department of Mathematics, University of California at Berkeley, Berkeley, California 94720, USA

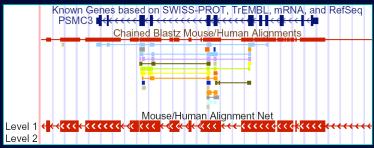
Genome Research (2004) 14:693-699

Chaining Alignments

 Chaining bridges the gulf between large syntenic blocks and base-by-base alignments.

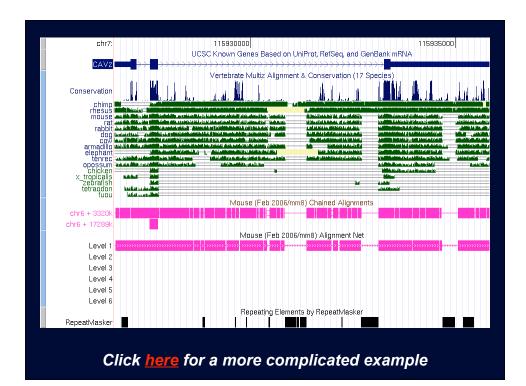

The Challenge:

- Local alignments tend to break at transposon insertions, inversions, duplications, etc.
- Global alignments tend to force non-homologous bases to align.


The Solution:

 Chaining is a rigorous way of joining together local alignments into larger structures.

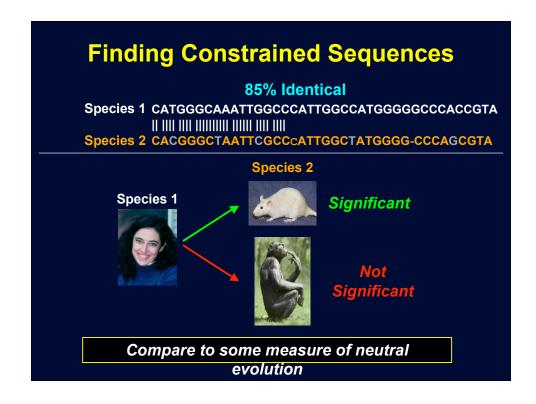
Slide (though modified) Courtesy of Jim Kent



Net Alignments: Focus on Orthology Known Genes based on SWISS-PROT, TrEMBL, mRNA, and RefSeq

- Frequently, there are numerous mouse alignments for any given human region, particularly for coding regions.
- Net finds best mouse match for each human region.

Slide (though modified) Courtesy of Jim Kent



Summary of Alignments

- Not a solved problem
- Accuracy of alignment significantly affects downstream analyses
- Choosing the correct orthologous sequences to align is a major challenge

Constrained Sequences

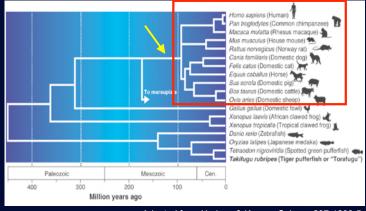
- Highly conserved sequences
- Sequences under purifying selection
- ECOR Evolutionary Conserved RegionVariant: ECR
- CNS Conserved Non-coding Sequence
- CNGs Conserved Non-Genic sequence
- MCS Multi-species Conserved Sequence
- SCAMs Sequence Conserved Across Multiple species

Neutral Evolution

- No selective pressure/advantage to keep or change the DNA sequence
- Amount of observed variation correlates with:
 - Rate of mutation
 - Length of breeding cycle
 - Amount of time since the last common ancestor
- The neutral rate can vary across the genome

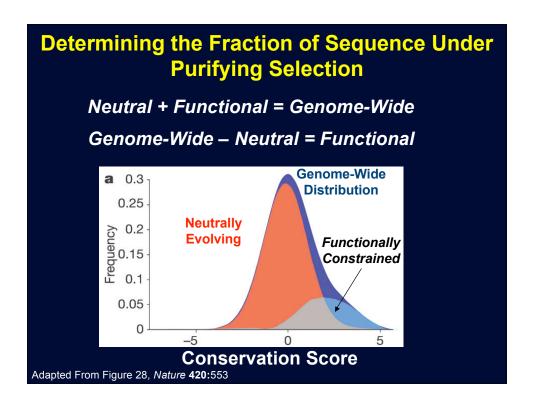
Types of Neutrally Evolving DNA

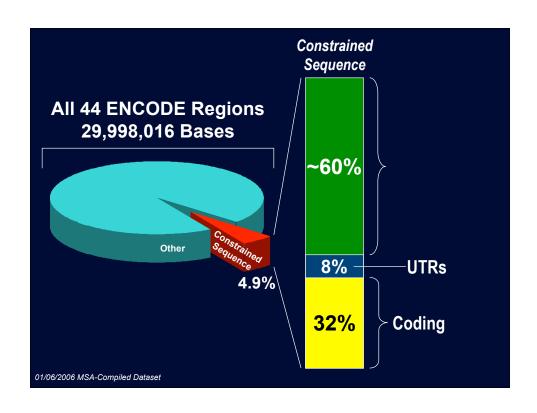
4-Fold Degenerate Sites

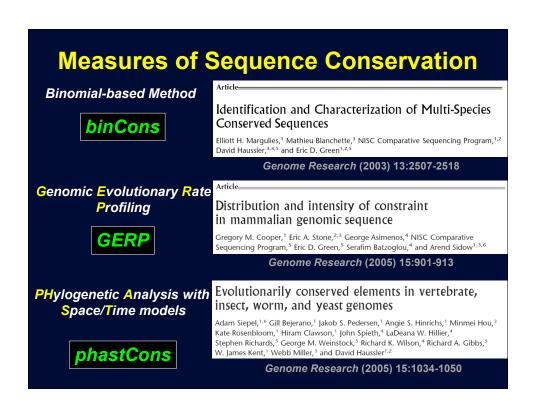

Third position of codons which can be any base and code for the same amino acid

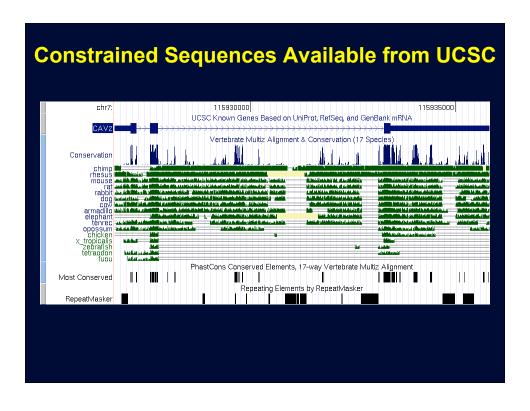
Second					
First	U	С	Α	G	Last
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	С
	Leu	Ser	Stop	Stop	Α
	Leu	Ser	Stop	Trp	G
C	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
Α	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	С
	lle	Thr	Lys	Arg	Α
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G

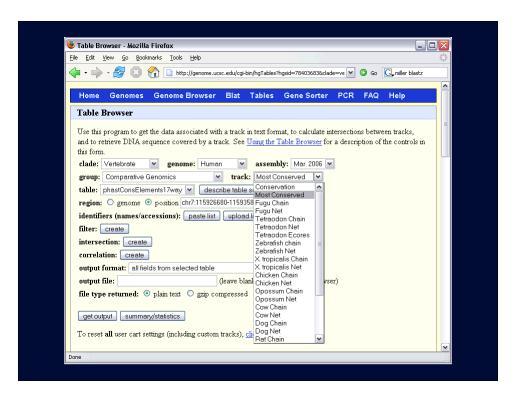
Types of Neutrally Evolving DNA

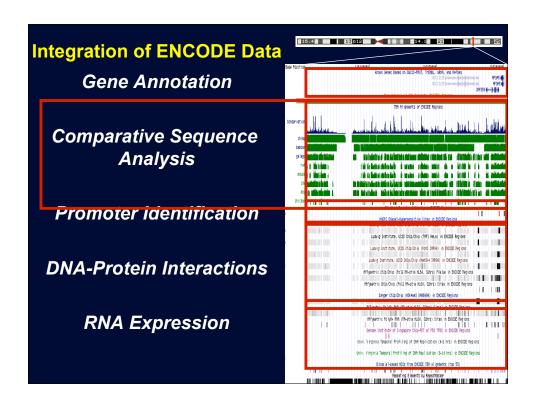

Ancestral Repeats

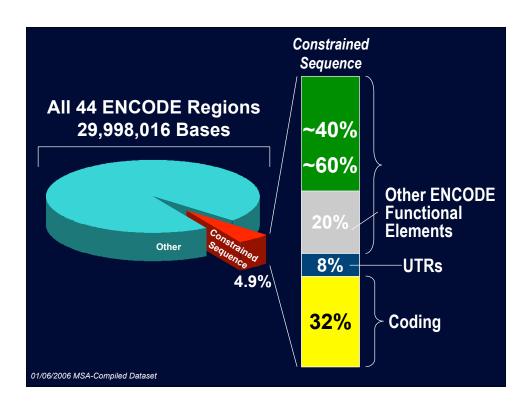

Ancient Relics of Transposons Inserted Prior to the Eutherian Radiation

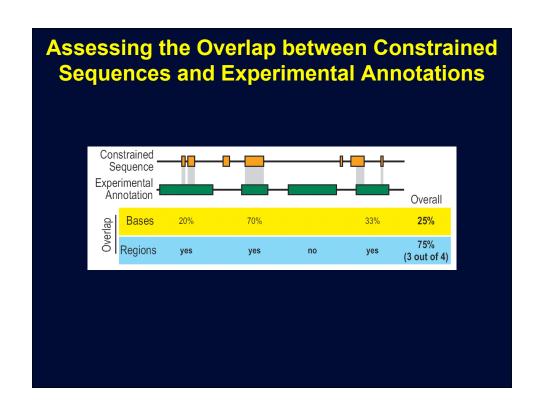


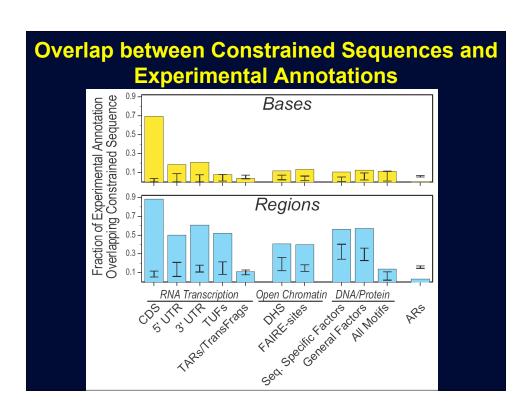

Adapted from Hedges & Kumar, Science 297:1283-5



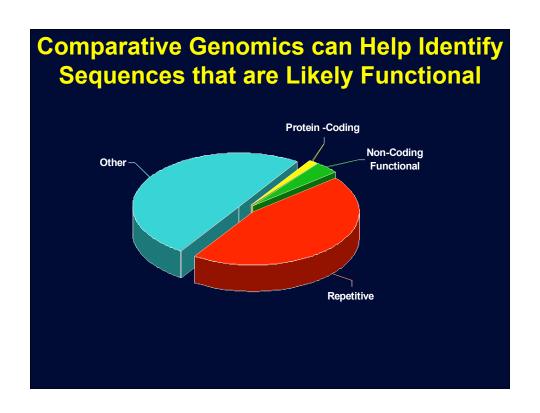

The ENCODE Project


- ENCODE:
 - **ENC**yclopedia **Of DNA Elements**
- Goal: Compile a comprehensive encyclopedia of all functional elements in the human genome
- Initial pilot project: 1% of human genome
- Apply multiple approaches to study and analyze that
 1% in an international consortium


Which 1% was Selected for Analysis?


- Manually picked
 - Prior interest or data
 - 14 regions
 - 500 kb 1.9 Mb
- Randomly Selected
 - Non-coding conservation between Human & Mouse
 - Gene Density
 - Three or four from each strata

Conservation Iow medium high wedium low medium low medium low medium high



Why not a Complete Correlation Between Sequence Constraint and Sequence Function?

- Likely <u>not</u> due to false positive experimental annotations
- Did not ascertain all functions at all time-points
- Annotation is larger than the functioning unit
- Fail to detect constraint that is not reflected in the primary sequence
- Reproducible biochemical events with no biological consequence to the organism
- Not constrained throughout all mammals Lineage-specific constraint beyond this 5%

