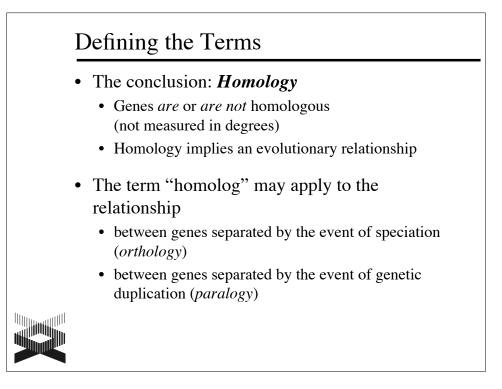


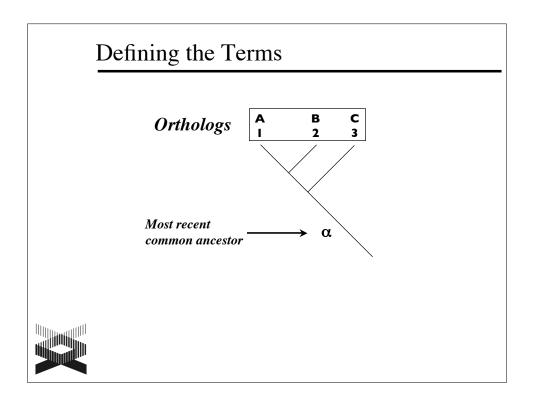
Week 4 Biological Sequence Analysis I

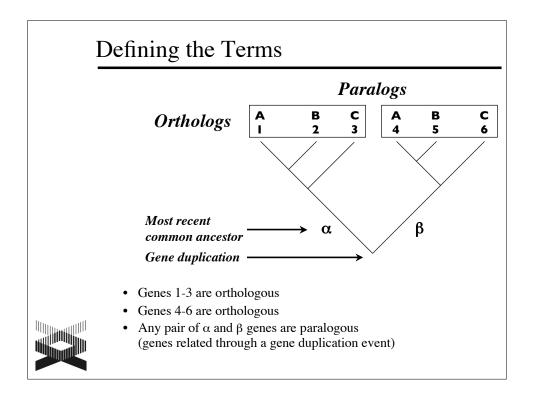
Andy Baxevanis, Ph.D.



- Provide a measure of relatedness between nucleotide or amino acid sequences
- Determining relatedness allows one to draw biological inferences regarding
 - structural relationships
 - functional relationships
 - evolutionary relationships

 \rightarrow importance of using correct terminology




Defining the Terms The quantitative measure: Similarity Always based on an observable Usually expressed as percent identity Quantify changes that occur as two sequences diverge substitutions insertions deletions Identify residues crucial for maintaining a protein's structure or function High degrees of sequence similarity *might* imply a common evolutionary history possible commonality in biological function

Defining the Terms

- Orthologs
 - Sequences are direct descendants of a sequence in a common ancestor
 - Most likely have similar domain structure, threedimensional structure, and biological function
- Paralogs
 - Related through a gene duplication event
 - Provides insight into "evolutionary innovation" (adapting a pre-existing gene product for a new function)

Overview

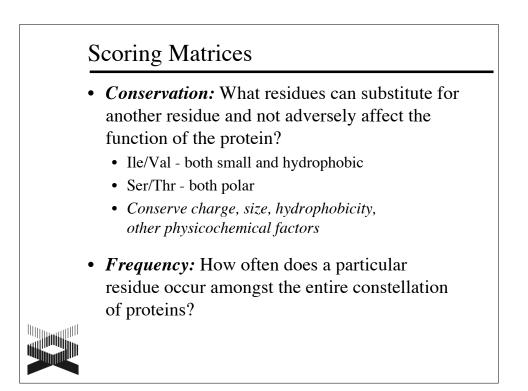
- Week 4: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 5: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and *de novo* prediction

Global Sequence Alignments Sequence comparison along the entire length of the two sequences being aligned Best for highly-similar sequences of similar length As the degree of sequence similarity declines, global alignment methods tend to miss important biological relationships

Local Sequence Alignments

- Sequence comparison intended to find the most similar regions in the two sequences being aligned ("paired subsequences")
- Regions outside the area of local alignment are excluded
- More than one local alignments could be generated for any two sequences being compared
- Best for sequences that share some similarity, or for sequences of different lengths

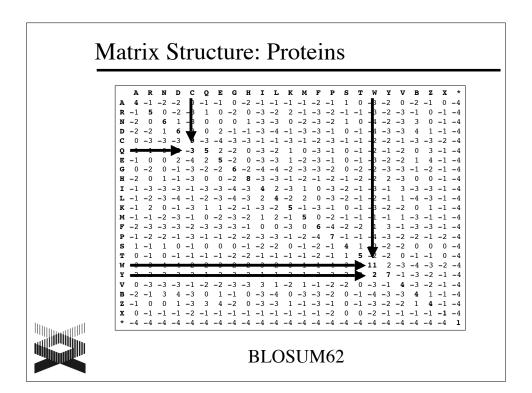
Overview

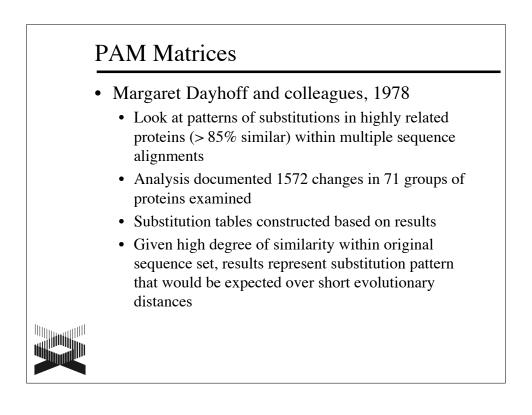

- Week 4: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 5: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and *de novo* prediction

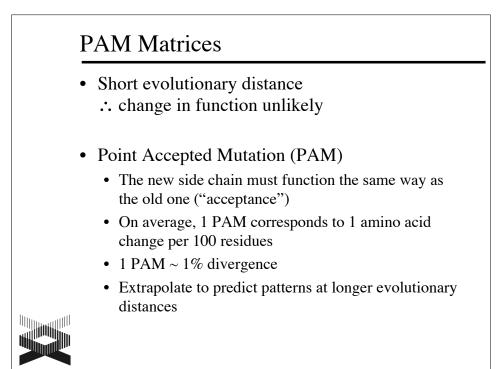
6

Scoring Matrices

- Empirical weighting scheme to represent biology (side chain chemistry, structure, and function)
 - Cys/Pro important for structure and function
 - Trp has bulky side chain
 - Lys/Arg have positively-charged side chains

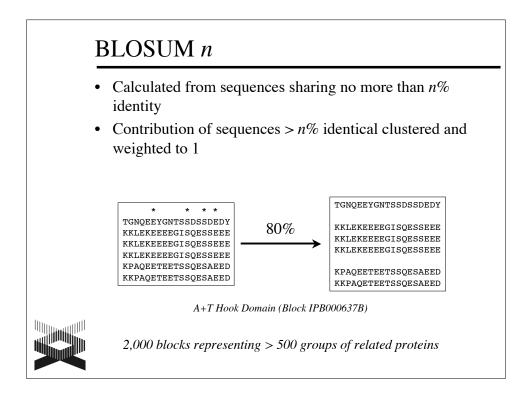


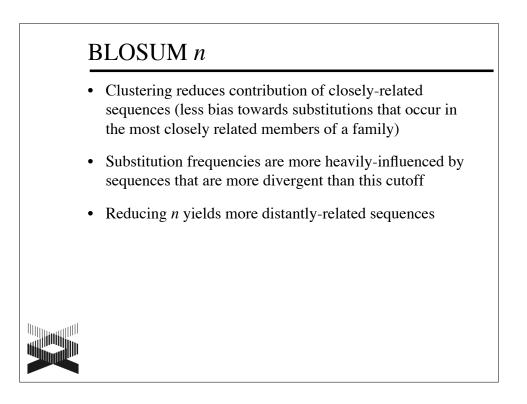



- Importance of understanding scoring matrices
 - Appear in all analyses involving sequence comparison
 - Implicitly represent particular evolutionary patterns
 - Choice of matrix can strongly influence outcomes

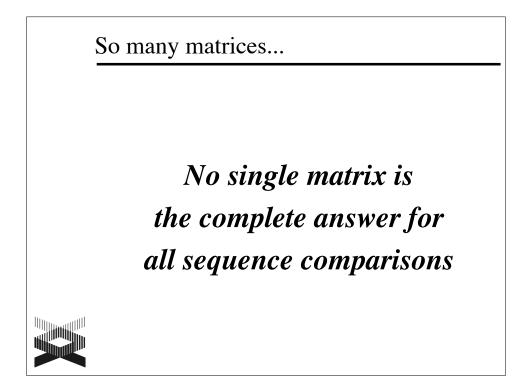
AT	5	-4	-4												
IT		_	-	-4	-4	1	1	-4	-4	1	-4	-1	-1	-1	-
	-4	5	-4	-4	-4	1	-4	1	1	-4	-1	-4	-1	-1	-
G	-4	-4	5	-4	1	-4	1	-4	1	-4	-1	-1	-4	-1	-
c	-4	-4	-4	5		-4	-4	1	-4	1	-1	-1	-1	-4	-
S	-4 1	-4	1	1	-1	-4 -1	-2 -2	-2 -2	-2 -2	-2 -2	-1 -3	-1	-3	-3	-
W	1	1 -4	-4 1	-4 -4	-4 -2	-1 -2	-2 -1	-2 -4	-2 -2	-2 -2	-3 -3	-3 -1	-1 -3	-1	-
v	_4	-4 1	T	-4 1	-2 -2	-2 -2	-1 -4	-4 -1	-2 -2	-2 -2	-3 -1	-1 -3	-3	-1	
	-	-	-4	-		-		-	-	-	-		-1	- 3	_
	-	_	1	-					-	-	-		-	-1	_
1		_1	_1	-			_			-	-	-	-	-2	_
	-	_4	-	-						-	_		-	-2	_
1 -	-	-1	_4							-			-1	-2	_
D	-1	-1	-1	-4	•	-1	-		-1	-3	-2	-	-2	-1	_
N	-2	-2	-2	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	_
-	_	_	-	-	-2 -2 -1 -1 -3 -3 -1	-	-2 -2 -3 -1 -3 -1 -1	-2 -2 -1 -3 -1 -3 -1	-	-	-	-3 -1 -2 -1 -2 -2 -2 -1	-3 -1 -2 -2 -1 -2 -1	-2 -2 -1	2 2 1

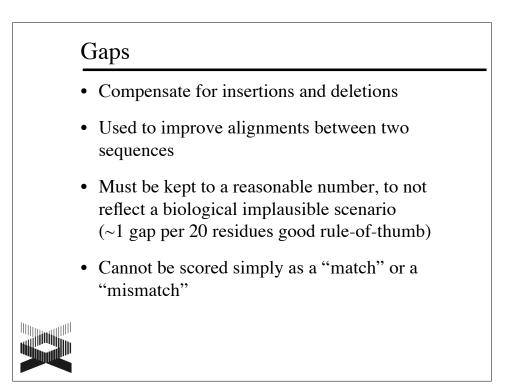
PAM Matrices: Assumptions

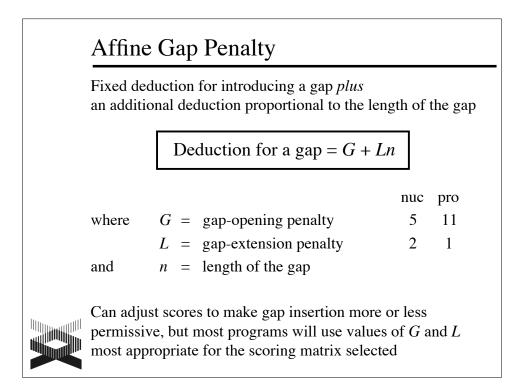

- All sites assumed to be equally mutable
- Replacement of amino acids is independent of previous mutations at the same position
- Replacement is independent of surrounding residues
- Forces responsible for sequence evolution over shorter time spans are the same as those over longer time spans

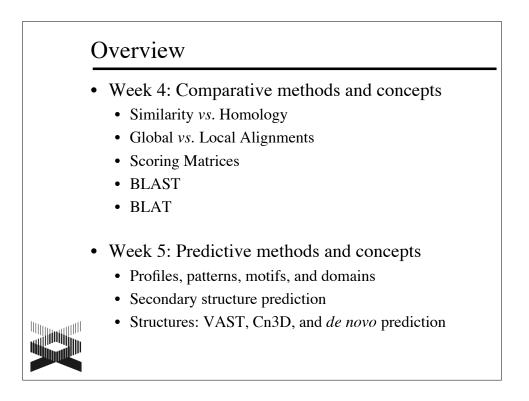

PAM Matrices: Sources of Error

- Small, globular proteins of average composition used to derive matrices
- Errors in PAM 1 are magnified up to PAM 250 (only PAM 1 is based on direct observation)
- Does not account for conserved blocks or motifs

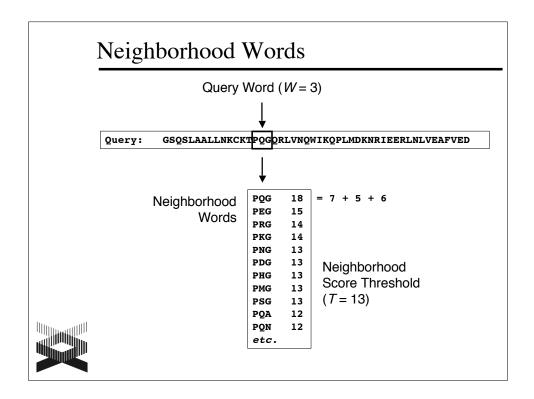

BLOSUM Matrices Henikoff and Henikoff, 1992 Blocks Substitution Matrix Look only for differences in conserved, ungapped regions of a protein family ("blocks") Directly calculated, using no extrapolations More sensitive to detecting structural or functional substitutions Generally perform better than PAM matrices for local similarity searches (*Henikoff and Henikoff, 1993*)

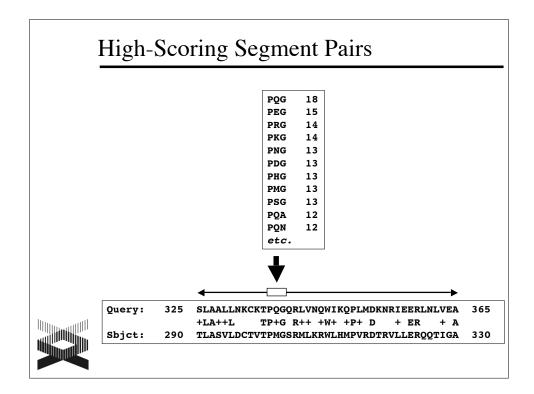


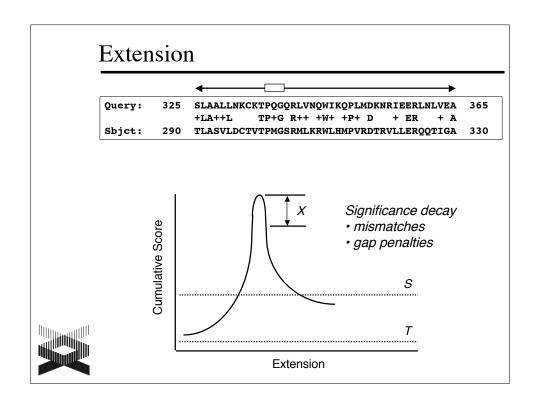


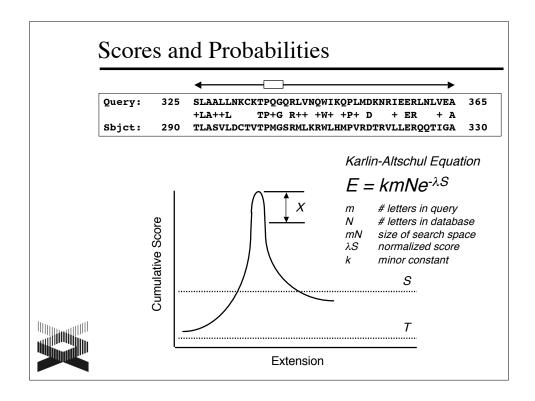

Triple-PAM Strategy (Altschul, 1991)						
PAM 40	Short alignments, highly similar	70-90%				
PAM 160	Detecting known members of a protein family	50-60%				
PAM 250	Longer, weaker local alignments	~ 30%				
BLOSUM (Henikoff, 1993)					
BLOSUM 90	Short alignments, highly similar	70-90%				
BLOSUM 80	Detecting known members of a protein family	50-60%				
BLOSUM 62	Most effective in finding all potential similarities	30-40%				
BLOSUM 30	Longer, weaker local alignments	< 30%				
BLOSUM 62	Most effective in finding all potential similarities	30-40				

So many matrices								
Matrix Equivalencies								
PAM 250	\sim	BLOSUM 45						
PAM 160	\sim	BLOSUM 62						
PAM 120	\sim	BLOSUM 80						
• Specialized matrices								
Transmembrane prSpecies-specific m								
Wheeler, 2003	latrices							

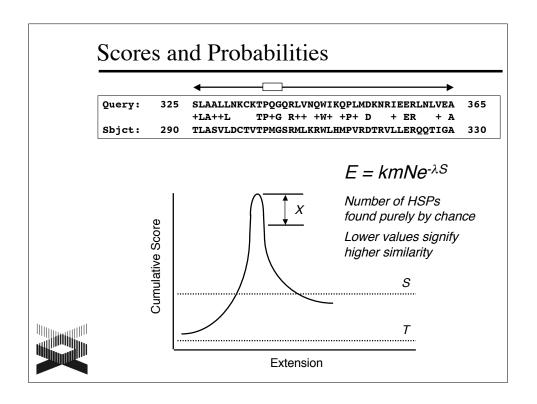


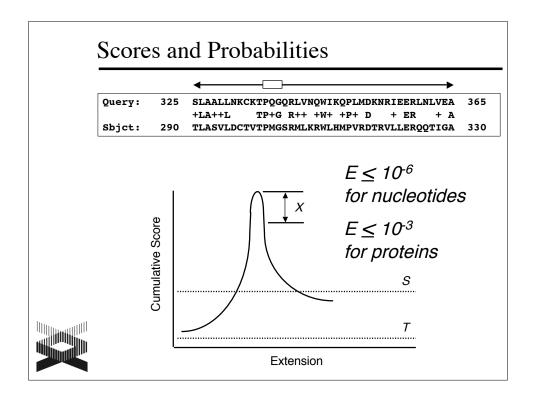

BLAST

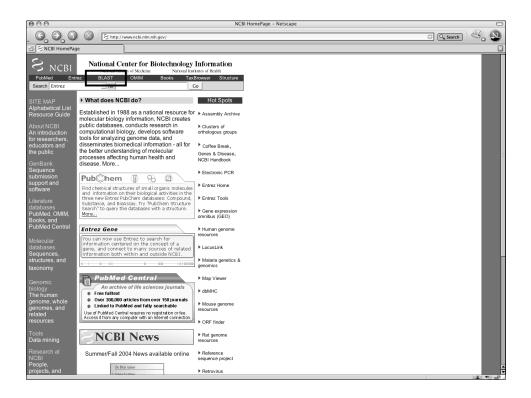

- <u>Basic Local Alignment Search Tool</u>
- Seeks high-scoring segment pairs (HSP)
 - pair of sequences that can be aligned without gaps
 - when aligned, have maximal aggregate score (score cannot be improved by extension or trimming)
 - score must be above score threshold S
 - gapped or ungapped
- Results not limited to the "best HSP" for any given sequence pair

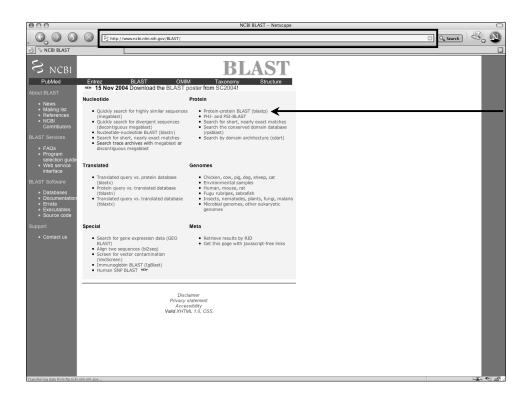


]	BLAST A	lgorithms	
	Program BLASTN	<i>Query Sequence</i> Nucleotide	<i>Target Sequence</i> Nucleotide
	BLASTP	Protein	Protein
	BLASTX	Nucleotide, six-frame translation	Protein
	TBLASTN	Protein	Nucleotide, six-frame translation
	TBLASTX	Nucleotide, six-frame translation	Nucleotide, six-frame translation

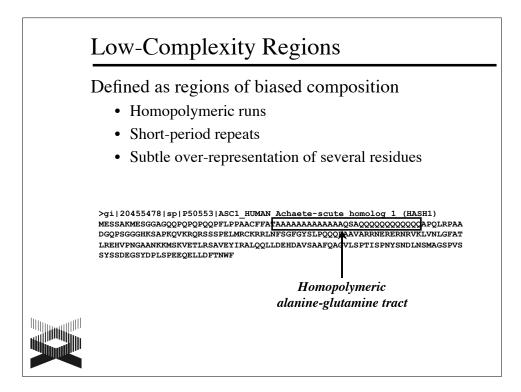


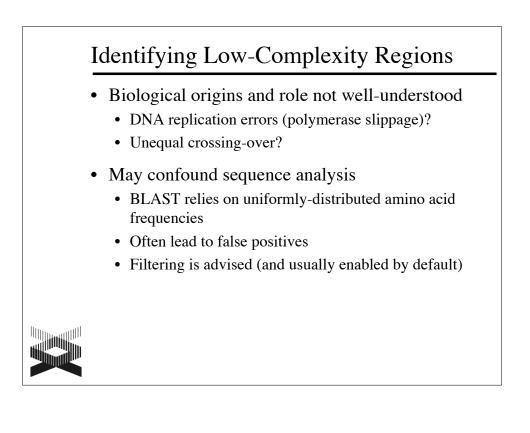






18

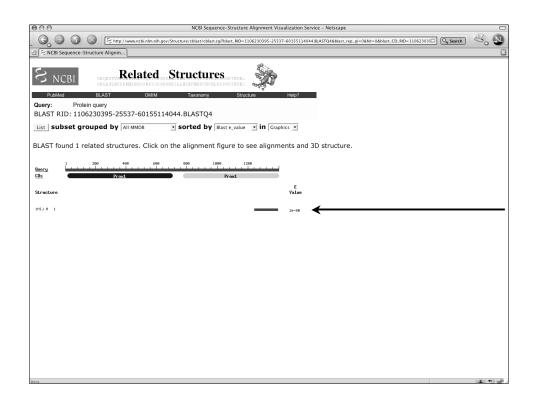


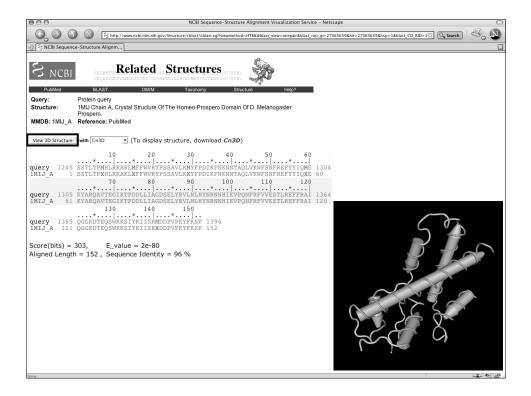


(000 N	CBI Blast – Netscape		0
G G G G C Fttp://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Web&LAYOUT=Tw	voWindows&AUTO_FORMAT=Semiaut	såALIGNMENTS=250&ALIGNMENT_VIEW=Pairwise&CDD_Sf	S. N
S NCBI Blast			×
S NCBI protein-protein BLAST			
Nucleotide Protein Translations Retrieve results for an RID			
>Protein query	r	-	
MSSAAAAAAGAAGGGALFQPQSVSTANSSSSNNNNSSTPAALA FGGSSAKMI.NFLFGROMKOAODATSGLPOSLDNAMLAAAMFTA			-
Search PANSTPMSNGTNASISPGSAHSSSHSHQGVSPKGSRRVSACSD ASSGEQHQSQLQHDLVAHHMLRNILQGKKELMQLDQELRTAMQ	RSLEAAAADVAGGSPPRA		
subsequence From: To:			
Choose nr 💌	Available pro	otein databases include:	
Do	,		i i
CD-Search M	nr	Non-redundant	
Now: (BLAST!) or (Reset query) (Reset all	refseq	Reference Sequences	
	swissprot	SWISS-PROT	
Options for advanced blasting	pat	Patents	
Limit by entrez or select from: All organisms	pdb	Protein Data Bank	
query ,	month	Last 30 days	
Composition-based statistics		,	
Choose filter ⊨ Low complexity Mask for lookup table only Mask	ask lower case		
Expect 10			
Word Size 3 -			
Matrix BLOSUM62 V Gap Costs Existence: 11 Extension: 1 V			

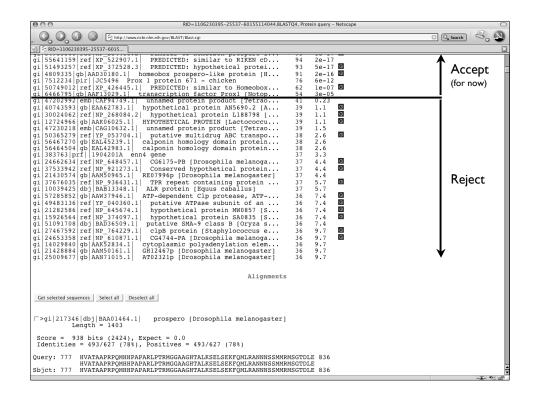
000	NCBI Blast – Netscape	C
	Shtp://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi7CMD=Web&LAYOUT=TwoWindows&AUTO_FORMAT=Semiauto&ALICNMENTS=250&ALICNMENT_VIEW=Pairwise&CDD_SCO	N
S NCBI Blast		G
Options	for advanced blasting	
Limit by entrez query	or select from: All organisms	
Composition-based	Г	
statistics		
Choose filter		
Expect	10	
Word Size	3 -	
Matrix	BLOSUM62 J Gap Costs Existence: 11 Extension: 1	
Mauix		
PSSM		
Other advanced		
PHI pattern		
Format		
	aphical Overview 🕫 Linkout 🕫 Sequence Retrieval 🕫 NCBI-g Alignment 🚽 in [HTML] format	
	iprincal Overview P. Linkouch, Sequence Ketheval P. NCDL-gl Algament M. III (HTML Monthat	
Use new formatter □ Mas	sking Character Default(X for protein, n for nucleotide) 🖃 Masking Color Black 🖃	
Number of: Descri	iptions 500 V Alignments 250 V	
Alignment	50	5-)6

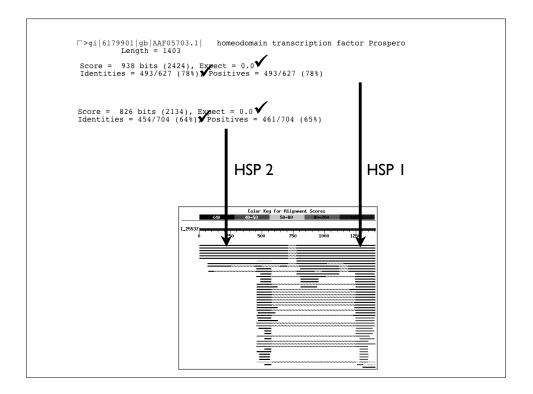
000	NCBI Blast – Netscape
6.008	🖹 🖹 http://www.acbi.nlm.nih.gov/BLAST/Blast.cgiPCND=Web&LAYOUT=TwoWindows&AUTO_FORMAT=Semiauto&ALIGNMENTS=250&ALIGNMENT_VEW=Pairwise&CDD_SC 🔍 🔍 Search
리 S NCBI Blast	
Options	for advanced blasting
Limit by entrez query	
Composition-based statistics	п
Choose filter	$ earrow$ Low complexity $\!$
Expect	10
Word Size	3
Matrix	RLOSUM62 J Gap Costs Existence: 11 Extension: 1 J + PAM30
PSSM	PAM70 BLOSUM80
	BLOSUM62
Other advanced	BLOSUM45
PHI pattern	
Format	
Show 🖻 Gra	aphical Overview 🕫 Linkout 🕫 Sequence Retrieval 🖻 NCBI-gi 🕅 Ilignment 🛫 in 🛛 HTML 🔄 format
Use new formatter □Mas	sking Character Default(X for protein, n for nucleotide) 🗾 Masking Color Black 🔳
Number of: Descri	iptions 500 🔄 Alignments 250 🔄
Alignment Pairwis	se 🗸


000	NCBI Blast – Netscape	0
		S.N
C SNCBI Blast		
[
Options	for advanced blasting	
Limit by entrez query	or select from: All organisms	
Composition-based statistics		
Choose filter	☞ Low complexity Mask for lookup table only Mask lower case	-
Expect		
Word Size	$\mathbb{R} = \mathbb{R} = \mathbb{R} + $	
Matrix	BLOSUM62 🔄 Gap Costs Existence: 11 Extension: 1 💌	
PSSM		
Other advanced		
PHI pattern		
Format		
Show 🖻 Gra	phical Overview 🕫 Linkout 🕫 Sequence Retrieval 🖻 NCBI-g Alignment 💌 in 🛛 HTML 🔄 format	
Use new ⊓Ma: formatter	sking Character DefaultX for protein, n for nucleotide) 🚽 Masking Color Black 🕙	
Number of: Descr	iptions 500 🖃 Alignments 250 🖳	
Alignment Painvi	(ρ •	
		- I F - N - d

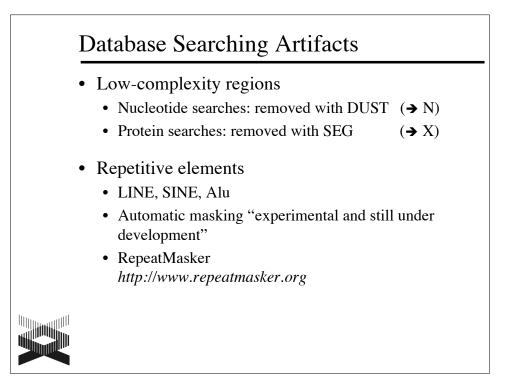

000	NCBI Blast – Netscape	0
SNCBI Blast	(C) (3. 🔊
Other adv PHI p	vanced	
Format	두 Graphical Overview 두 Linkout 두 Sequence Retrieval 두 NCBI-gi Alignment 크 in [HTML]format	
Use new formatter	□ Masking Character DefaultX for protein, n for nucleotide) - Masking Color Black -	
Number of: Alignment view	Descriptions 500 - Alignments 250 -	
Format for PSI-BLAST	□ with inclusion threshold:	_
Limit results by entrez query	or select from: All organisms S Corganism [ORGN]	
Expect value range:		
	Two Windows Formatting options on page with results: None	
BLASTING		
Geographe ORL V	with preset values ?	

Comment of the second sec	000	NCBI Blast – Netscape	C
Format Format Percent Toronaddors Reference Reference Protein Toronaddors Protein Toronaddors Protein Toronaddors Protein query (1403 letters) Putative conserved domains have been detected, click on the image below for detailed results. Image: Protein query (1403 letters) Putative conserved domains have been detected, click on the image below for detailed results. Image: Protein query (1403 letters) Putative conserved domains have been detected, click on the image below for detailed results. Image: Protein query (1403 letters) Putative conserved domains have been detected, click on the image below for detailed results. Image: Protein query (1403 letters) Putative conserved domains have been detected, click on the image below for detailed results. Image: Protein query (1403 letters) Putative conserved domains have been detected, click on the image below for detailed results. Image: Protein query (1403 letters) Putative conserved domains have been detected, click on the image below for detailed results. Image: Protein query (Image: Protein qu		C Stup://www.ncbi.nlm.nih.gov/8LAST/Blast.cgi	
Nacioality Protein Translations Reserve mails for an end Your request has been successfully submitted and put into the Blast Queue. Query = Protein query (1403 letters) Putative conserved domains have been detected, click on the image below for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results. Image: Delow for detailed results.	S NCBI Blast		
Query = Protein query (1403 letters) Putative conserved domains have been detected, click on the image below for detailed results. Image: transmission of the image below for detailed results. Image: transmission of tr		Protein Translations Retrieve results for an	
Putative conserved domains have been detected, click on the image below for detailed results. Image: State of the state of	Your request	has been successfully submitted and put into the Blast Queue.	
	Query = Prot	tein query (1403 letters)	
Please press "FORMATI" when you wish to check your results. You may change the formatting options for your result via the form below and press "FORMATI" again. You may also request results of a different search by entering any other valid request ID to see other recent jobs. Format Show IP Graphical Overview IP Linkout IP Sequence Retrieval IP NCBI-g[Alignment IP in [HTML]] of format Use new IP Masking Character[DefaultX for protein, n for nucleotide] Masking Color[Black IP] Number of: Descriptions[500 IP] Alignments[250 IP] Alignment IP In [Pairwise IP] Format IP] Show	Putative cor	1 260 460 660 860 1200 1200 1403	
Show ☞ Graphical Overview ☞ Linkout ☞ Sequence Retrieval ☞ NCB1-g[Alignment	Formation The Stress are Please press "F	estimated to be ready in 54 seconds but may be done sooner. FORMATI" when you wish to check your results. You may change the formatting options for your result via the form below and press "	FORMAT!"
Use new formatter Masking Character[DefaultX for protein, n for nucleotide) Masking Color[Black Number of: Descriptions[500 Alignments[250 Alignment] View Pairwise Format for with inclusion threshold:0.005	Format		
formatter ¹ Plashing Charlacter Defaults for protein, nor nucleoned ⊆ Plasking Color sack ⊆ Number of: Descriptions[500 ⊆ Alignments[250 ⊆ Alignment View Pairwise Format for □ with inclusion threshold:0.005	Show	F Graphical Overview F Linkout F Sequence Retrieval F NCBI-g Alignment 🗾 in HTMLformat	
Alignment View Pairwise Format for PSI-BLAST □ with inclusion threshold:0:0005		□ Masking Character Default(X for protein, n for nucleotide) 👤 Masking Color Black 🖳	
Format for PSI-BLAST with inclusion threshold:0.005	Number of:	Descriptions 500 - Alignments 250 -	
PSI-BLAST 1 with inclusion interstolatio.oos	view		
	PSI-BLAST		


000	RID=1106230395-25537-60155114044.BLASTQ4, Protein query - Netscape	
King Contraction Contraction	v/BLAST/Blast.cgi	🖸 🔍 Search 🖉 🔊
☑ SRID=1106230395-25537-6015		E
S NCBI result	s of BLAST	
BLASTP 2.2.10 [Oct-19-2004]		
Reference: Altschul, Stephen F., Thomas L. Ma Jinghui Zhang, Zheng Zhang, Webb M. "Gapped BLAST and PSI-BLAST: a new programs", Nucleic Acids Res. 25:	iller, and David J. Lipman (1997), generation of protein database search	
RID: 1106230395-25537-60155114044.1	BLASTQ4	
Query= Protein query (1403 letters)		
Database: All non-redundant GenBan translations+PDB+SwissProt+PIR+PRF 2,309,749 sequences; 78	excluding environmental samples	
If you have any problems or questic please refer to the BLAST FAQs	ons with the results of this search	
Taxonomy reports		
Dis	stribution of 115 Blast Hits on the Query Sequence	
Mouse	-over to show defline and scores. Click to show alignments	
	Color Key for Alignment Scores	
	1_25537	
	0 250 500 750 1000 1250	
Done		



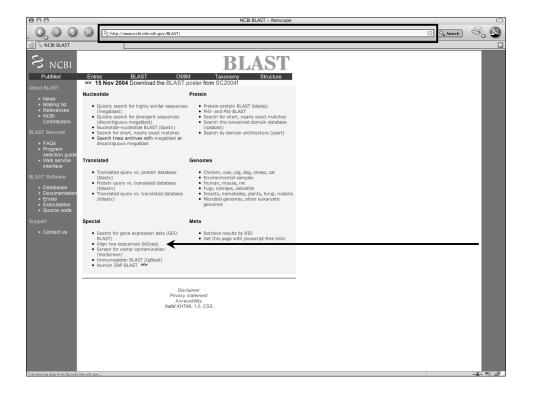
● ○ ○ RID=1106230395-25537-60155114044.BL	ASTQ4, Pro	tein query – Netscape	(
(C)			🗆 🔍 Search 🛛 💐
2 [S RID=1106230395-25537-6015]			
C KID=1108230393-23337-0013			
Sequences producing significant alignments: Descending	· .) Value	
gi 217346 dbj BAA01464.1 prospero [Drosophila gi 24645914 ref NP 524317.2 CG17228-PC, isofo SCOPE	938 938	0.0 0.0 G	
gi 6179901 gb AAF05703.1 homeodomain transcri	938	0.0	0.0 means ≤ 10 ⁻¹⁰⁰⁰
gi 158184 gb AAA28841.1 Pros protein OI GEI gi 28571646 ref NP 788636.1 CG17228-PD, isofo	932 931	0.0 0.0 G	
gi 28571644 ref NP 731565.2 CG17228-PA, isoform A [Drosoph	931	0.0	
gi 54639735 gb EAL29137.1 GA14403-PA [Drosophila pseudoobs gi 14285684 sp Q9U6A1 PROS DROVI Protein prospero >gi 62744	553 542	e-155 e-152	
gi 31201317 ref XP 309606.1 ENSANGP00000010936 [Anopheles	352	6e-95 G	6e-95 = 6 x 0 ⁻⁹⁵
gi 55244567 gb EAA05345.2 ENSANGP00000010936 [Anopheles ga	352	6e-95	0e-95 - 0 x 10 %
gi 48095851 ref XP_392355.1 similar to ENSANGP00000010936 gi 27065659 pdb 1MIJ A Chain A, Crystal Structure Of The Ho	328 303	9e-88 🖸 2e-80 🖻	
gi 27065659 pdb 1MIJ A Chain A, Crystal Structure Of The Ho gi 32261038 emb CAE00181.1 prospero protein [Cupiennius sa	279	4e-73	
gi 16768018 gb AAL28228.1 GH11848p [Drosophila melanogaster]	273	3e-71	
gi 39587414 emb CAE75068.1 Hypothetical protein CBG22984 [gi 17552742 ref NP 498760.1 C.Elegans Homeobox (ceh-26) [C	243 239	4e-62 4e-61 🖸	
gi 3024449 sp 092786 PRX1 HUMAN Homeobox prospero-like prot	239	6e-53 G	S Structure
gi 546374 gb AAB30541.1 Prox 1=homeobox gene prospero homo	212	6e-53	G Gene
gi 55589302 ref XP_514189.1 PREDICTED: similar to prospero	212	8e-53	Gene Gene
gi 21359846 ref NP_002754.2 prospero-related homeobox 1 [H gi 6679483 ref NP 032963.1 prospero-related homeobox 1 [Mu	211 211	2e-52 G	
gi 56785422 ref NP 001005616.1 PROX 1 protein [Gallus gall	211	2e-52 G	
gi 7512233 pir JC5495 Prox 1 protein - chicken	211	2e-52	
gi 40254702 ref NP_571480.2 prospero-related homeobox gene	208 208	8e-52 G 8e-52 G	
gi 3834411 gb AAC70926.1 homeodomain protein [Danio rerio] gi 57090743 ref XP_547908.1 PREDICTED: similar to RIKEN cD	208	8e-52	
gi 11071924 dbj BAB17310.1 Prox 1 [Xenopus laevis]	207	2e-51 G	
gi 30424822 ref NP_780407.1 RIKEN cDNA 1700058C01 [Mus mus	205	7e-51 🖸	
gi 27680210 ref XP 223067.1 similar to prospero-related ho gi 47205868 emb CAF92934.1 unnamed protein product [Tetrao	200 191	2e-49 G 2e-46	
gi 47227457 emb CAG04605.1 unnamed protein product [Tetrao	188	1e-45	
gi 47230216 emb CAG10630.1 unnamed protein product [Tetrao	182	8e-44	
gi 47206446 emb CAF95276.1 unnamed protein product [Tetrao gi 3372869 gb AAC28353.1 Prox1 [Xenopus laevis]	182 178	8e-44 9e-43	
gi 47224292 emb CAG09138.1 unnamed protein product [Tetrao	172	7e-41	
i 1117962 gb AAC59781.1 prospero_like protein	152	5e-35	
gi 21753053 dbj BAC04278.1 unnamed protein product [Homo s gi 11071926 dbj BAB17311.1 Prox 1 [Cynops pyrrhogaster]	151 151	1e-34 🖸 1e-34	
gi 55961898 emb CAI15309.1 OTTHUMP00000061061 [Homo sapiens]	142	6e-32	
gi 57089333 ref XP_547411.1 PREDICTED: similar to prospero	140	2e-31	
gi 47224321 emb CAG09167.1 unnamed protein product [Tetrao gi 47204095 emb CAG13403.1 unnamed protein product [Tetrao	139 96	8e-31 8e-18	
gi 34935368 ref XP_234418.2 similar to Homeobox prospero-1	95	1e-17 G	
gi 55641159 ref XP_522907.1 PREDICTED: similar to RIKEN cD	94	2e-17	-II- •);



CRID=1106200395-25337-6015 C>g10=61799011 gb1AFC65703.1] Length = 1403 Score = 938 bits (2424), Expect = 0.0 Identities = 493/627 (78%), Positives = 493/627 (78%) Duery: 777 HVATAAPRPOMHEPAPARLPTRNGGAAGHTALKSELSEKFOMLRANNISSMEMISGTOLE 836 HVATAAPRPOMHEPAPARLPTRNGGAAGHTALKSELSEKFOMLRANNISSMEMISGTOLE 836 Sbjct: 777 HVATAAPRPOMHEPAPARLPTRNGGAAGHTALKSELSEKFOMLRANNISSMEMISGTOLE 836 Duery: 837 GLADVLKSETTTSLSALVDTIVTRFVNGRACHTALKSELSEKFOMLRANNISSMEMISGTOLE 836 Sbjct: 837 GLADVLKSETTTSLSALVDTIVTRFVNGRRUFFSKQADSVTAAAEQLINKDLLLSQILDRK 896 Sbjct: 837 GLADVLKSETTTSLSALVDTIVTRFVNGRRUFFSKQADSVTAAAEQLINKDLLLSQILDRK 896 Sbjct: 837 SPRTKVADRPONGPTPATOSAAMFQAPKTPOGMNPVAAAALYNSMTGPFCLPPDQQQQQ 956 Sbjct: 897 SPRTKVADRPQNGPTPATOSAAAMFQAPKTPOGMNPVAAAALYNSMTGPFCLPPDQQQQQ 956	000	RID=1106230395-25537-60155114044.BLASTQ4, Protein query - Netscape	
<pre>>gil 6179901 gbl AP05703.1 homeodomain transcription factor Prospero [Drosophila meli Length = 1403</pre> <pre>> 25% for proteins</pre> <pre>> 25% for proteins</pre> <pre>> 70% for nucleotides</pre>	G, O (Image: Shttp://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#6179901	🖸 🔍 Search 🐸 🗸
Length = 1403 Score = 938 bits (2424), Expect = 0.0 Identities = 433/627 (78%), Fosilives = 493/627 (78%) Duery: 777 HVATAAPROMEIDAPARLPTENGGAAGHTALSELSEKFOMLANINGSMMENSGTDLE 836 Duery: 837 GLAOUKSEITTSLSALUDTIVTRY-UNGGAAGHTALSELSEKFOMLANINGSMMENSGTDLE 836 Duery: 837 GLAOUKSEITTSLSALUDTIVTRY-UNGGAAGHTALSELSEKFOMLANINGSMMENSGTDLE 836 Duery: 837 GLAOUKSEITTSLSALUDTIVTRY-UNGRAFSGADSUTAAAEOLINKDLLLASOLIDEK 896 Sbjct: 837 GLAOUKSEITTSLSALUDTIVTRY-UNGRAFSGADSUTAAAEOLINKDLLASOLIDEK 896 SpertivaaRpongPtpartSaAAHFOAPKTPCOMIPVAAAALINSMTGPFCLPPDQQQQ 956 Duery: 957 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
Identifies = 433/627 (786), Positives = 433/627 (788) puery: 777 HWATAAPRPOMHEPARALPTRNGGAAGHTALKSELSEKPOMLEANINSSMNENGSTDLE 836 puery: 837 GLADVLKSETTTSLSALVDTIVTRFVBORALFSKQASUTAAAEQLINKDLLASQILDRK 896 GLADVLKSETTTSLSALVDTIVTRFVBORALFSKQASUTAAAEQLINKDLLASQILDRK 896 puery: 837 SPRTKVADRPONGPTPATOSAAMFOAPKTPOGMNPVAAAALYNSMTGPFCLPPDXXXXX 956 SPRTKVADRPONGPTPATOSAAAMFOAPKTPOGMNPVAAAALYNSMTGPFCLPPDXXXXX 956 SPRTKVADRPONGPTPATOSAAAMFOAPKTPOGMNPVAAAALYNSMTGPFCLPPDXXXX 956 SprtKvADRPONGPTPATOSAAAMFOAPKTPOGMNPVAAAALYNSMTGPFCLPPDXXXXX 956 SprtKvADRPONGPTPATOSAAAMFOAPKTPOGMNPVAAAALYNSMTGPFCLPPDXXXXX 956 SprtKvADRPONGPTPATOSAAAMFOAPKTPOGMNPVAAAALYNSMTGPFCLPPDXXXXX 956 SprtKvADRPONGPTPATOSAAAMFOAPKTPOGMNPVAAAALYNSMTGPFCLPPDXXXXX 956 SprtKvADRPONGPTPATOSAAAMFOAPKTPOGMNPVAAAALYNSMTGPFCLPPDXXXXX 1076 Sbjct: 957 QTAQQQOSAQQQQOSSQOTQQUEQNEALSLVVTPKKKHKVTDTRITPRTVSRILAQDE 1016 Duery: 1017 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		001 gb AAF05703.1 homeodomain transcription factor Prospero [Drosophila mela ength = 1403	25% for proteins
HVATAAPRPOMHPAPARLPTRNGGAAGHTALKSELSEKFOMLRANNISSMMRMSGTDLE Sbjet: 777 HVATAAPRPOMHPAPARLPTRNGGAAGHTALKSELSEKFOMLRANNISSMRMSGTDLE Sbjet: 837 GLADVLKSEITTSLSALVDTIVTRFVNGRRLFSKQADSVTAAAEQLINKDLLASQILDRK 896 Sbjet: 837 SPRTKVADRPONOPTPATOSAAMFOAFKTPOGNINVAAALVISKUGPFCLPPDXXXX 956 SprTKVADRPONOPTPATOSAAMFOAFKTPOGNINVAAALVISKUGPFCLPPDQQQQQ 956 SprTKVADRPONOPTPATOSAAMFOAFKTPOGNINVAAALVISKUGPFCLPPDQQQQQ 957 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		238 bits (2424), Expect = 0.0 s = 493/627 (78%), Positives = 493/627 (78%)	2 70% for nucleotides
Wight Stratter B37 GLADVLKSEITTSLSAUUTIVTRFVHQRRLFSKQADSVTAAAEQLINKDLLASQILDRK B96 Sbjet: B37 GLADVLKSEITTSLSAUUTIVTRFVHQRRLFSKQADSVTAAAEQLINKDLLASQILDRK B96 Superstittslsauutivter SpritkvadrepongeptpatosaaamfoApkrpogenpvaaaeQuinkDillasQilDRK B96 Superstittslsauutivter SpritkvadrepongeptpatosaaamfoApkrpogenpvaaaAutinsMtorpCLPPDQXXXX 956 Superstittslsauutivter SpritkvadrepongeptpatosaaamfoApkrpogenpvaaalinsMtorpCLPPDQXQ00 956 Query: 957 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Query: 777	HVATAAPRPQMHHPAPARLPTRMGGAAGHTALKSELSEKFQMLRANNNSSMMRMSGTDLE	
GLADVLKSETTTSLSALUDTITTRFVBÖRRLFSKÖADSVTAAAEČINNDLLLAŠGILDRK Sjot: 837 GLADVLKSETTTSLSALUDTITTRFVBÖRRLFSKÖADSVTAAAEČINNDLLAŠGILDRK 96 Duery: 897 SPRTKVADRPONCPTPATOSAAAMFOAPTTPOGNNPVAAALINSMTGPCLPPDXXXXX 956 SPRTKVADRPONCPTPATOSAAAMFOAPTTPOGNNPVAAALINSMTGPCLPPDQQQOQ 956 Duery: 957 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Sbjct: 777	HVATAAPRPQMHHPAPARLPTRMGGAAGHTALKSELSEKFQMLRANNNSSMMRMSGTDLE 836	
X Low- Complexity 37 SPRTKVADRPONCPTPTOSAAMFOAPKTPOGNNPVAAALYNSMTGPFCLPPDXXXX 956 SPRTKVADRPONCPTPATOSAAMFOAPKTPOGNNPVAAALYNSMTGPFCLPPDXXXX 956 Sbjct: 897 SPRTKVADRPONCPTPATOSAAMFOAPKTPOGNNPVAAALYNSMTGPFCLPPDQQQQO 956 Sbjct: 957 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Query: 837	GLADVLKSEITTSLSALVDTIVTRFVHÖRRLFSKÖADSVTAAAEÖLNKDLLLASÕILDRK	– Gap
SPRTKVADRPQNOPTPATQSAAAHFQAPKTPQGNNPVAAALVNSMTGPFCLPPD SprtkvADRPQNOPTPATQSAAAHFQAPKTPQGNNPVAAALVNSMTGPFCLPPD Query: 957 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Sbjct: 837	GLADVLKSEITTSLSALVDTIVTRFVHQRRLFSKQADSVTAAAEQLNKDLLLASQILDRK 896	
<pre>puery: 957 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>	Query: 897	SPRTKVADRPQNGPTPATQSAAAMFQAPKTPQGMNPVAAAALYNSMTGPFCLPPD	X LOW-
LEONRALSLVYTPKKKRHKVTDTRITPRTVSRILADD Sbjet: 957 GTAQQQQAQQSSQQTQQQLEQNRALSLVYTPKKKRHKVTDTRITPRTVSRILADD JUEY: 1017 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Sbjct: 897	SPRTKVADRPQNGPTPATQSAAAMFQAPKTPQGMNPVAAAALYNSMTGPFCLPPDQQQQQ 956	Complexity
<pre>Duery: 1017 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>	Query: 957		
ASINGGNSNATPAÖSPTRSSGAAYHPO Sojet: 1017 VVPPTGGPPSTP000000000000000000000000000000	Sbjct: 957	QTAQQQQSAQQQQQSSQQTQQQLEQNEALSLVVTPKKKRHKVTDTRITPRTVSRILAQDG 1016	
<pre>Duery: 1077 XXXXXXXXVSLpTSVAIPNPSLHESKVFSPYSPFPNPXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>	Query: 1017		
VSLDTSVAITPNPSLHESKVFSPYSPFNP Sbjct: 1077 PPPPPPMMVVSLTSVAITPNPSLHESKVFSPYSPFNP ALMDSRD 20ery: 1177 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Sbjct: 1017	VVPPTGGPPSTPQQQQQQQQQQQQQQQQQQQQQQQQASNGGNSNATPAQSPTRSSGGAAYHPQP	
<pre>uery: 1137 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>	Query: 1077		
ALMOSRO DYKTCLRAVMDAĞ Sbjct: 1137 HQSMQLSSSPPGSLGALMDSRDSPPLPHPPSMLHPALLAAAHHGGSPDYKTCLRAVMDAĞ 1196 Query: 1197 DRQSECNSADMQFDGMAPTISFYKQMQLKTEHQESLMAKHCESLTPLSSTLTPHHLKKA 1256 DRQSECNSADMQFDGMAPTISFYKQMQLKTEHQESLMAKHCESLTPLSSTLTPHHLKKA 1256 Query: 1257 KLMFFWNRYSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIK 1316 KLMFFWNRYSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIK 1316 Sbjct: 1257 KLMFFWNRYSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIK 1316 20ery: 1317 TPDDLLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DYDDLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DydLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DydLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DydLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DydLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DydLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DydLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DydLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DydLIACDSELYKVLMLHYNRNNHTEVPQNFFRVVESTLREFFFAIQGGKDTEQSWKK 1376 DydLIACDDPVEFFKSPNFLEQLE 1403 SITKIISKMDDPVPEFYKSPNFLEQLE 1403	Sbjct: 1077	7 PPPPPPMMPVSLPTSVAIPNPSLHESKVFSPYSPFFNPHAAAGQATAAgehQHHQQHHPH 1136	
Duery: 1197 DRQSECNSADMQFDGMAPTISFYKQMQLKTEHQESLMAKHCESLTPLHSSTLTPHHLRKA 1256 DRQSECNSADMQFDGMAPTISFYKQMQLKTEHQESLMAKHCESLTPLHSSTLTPHHLRKA 1256 Sbjet: 1197 DRQSECNSADMQFDGMAPTISFYKQMQLKTEHQESLMAKHCESLTPLHSTLTPHHLRKA 1256 Query: 1257 KLMFFWNRYSSAVLKMYFPDIKFNKNNTAQIVKWFSNFREFYYIQMEKYARQAVTEGIK 1316 KLMFFWNRYSSAVLKMYFPDIKFNKNNTAQIVKWFSNFREFYYIQMEKYARQAVTEGIK 1316 Duery: 1317 TPDDLLIACDSELYKULMIYNNNHIEVPQNFFRYVESTLREFFRAIQGKOTEQSWKK 1376 TPDDLLIACDSELYKULMIYNNNHIEVPQNFFRYVESTLREFFFRAIQGGKOTEQSWKK 1376 Sbjet: 1317 TPDDLLIACDSELYKULMIYNNNHIEVPQNFFRYVESTLREFFFRAIQGGKOTEQSWKK 1376 DUERY: 1317 TPDDLLIACDSELYKULMIYNNNHIEVPQNFFRYVESTLREFFFRAIQGGKOTEQSWKK 1376 DUEY: 1377 SIYKIISKNDDPVPEYFKSNPLEQLE 1403 SIYKIISKNDDPVPEFYFKSNPLEQLE 1403	Query: 1137		
DROSECNSADMÓPDGMAPTISFYKOMOLKTEHÓESLMAKHCESLTPLHSSTLIPHHLKKA Sbjct: 1197 DROSECNSADMÓPDGMAPTISFYKOMOLKTEHÓESLMAKHCESLTPLHSSTLIPHHLKKA JUEY: 1257 KLMFFWURYPSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIOMEKYARQAVTEGIK Sbjct: 1257 KLMFFWURYPSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIOMEKYARQAVTEGIK JUEY: 1317 TPDDLLIAGDSELYRVLNLHYNRNNHEVPONFRFVYIOMEKYARQAVTEGIK TPDDLLIAGDSELYRVLNLHYNRNNHEVPONFRFVVESTLREFFRAIQGGKDTEQSWKK 1376 TPDDLLIAGDSELYRVLNLHYNRNNHEVPONFRFVVESTLREFFRAIQGGKDTEQSWKK 1376 JUEY: 1377 SIYKIISRMDDPVPEYFKSPNFLEQLE 1403 SIYKIISRMDDPVPEYFKSPNFLEQLE 1403	Sbjct: 1137	HQSMQLSSSPPGSLGALMDSRDSPPLPHPPSMLHPALLAAAHHGGSPDYKTCLRAVMDAQ 1196	
 Juery: 1257 KLMFFWVRYPSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIK 1316 KLMFFWVRYPSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIK Sbjct: 1257 KLMFFWVRYPSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIK Juery: 1317 TPDDLLIAGDSELYRVLNLHYNRNNHEVPQNFRFVVESTLREFFRAIQGGKDTEQSWKK 1376 TPDDLLIAGDSELYRVLNLHYNRNNHEVPQNFFFVVESTLREFFRAIQGGKDTEQSWKK 1376 Sbjct: 1317 TPDDLLIAGDSELYRVLNLHYNRNNHEVPQNFFFVVESTLREFFRAIQGGKDTEQSWKK 1376 Juery: 1377 SIYKIISRMDDPVPEYFKSPNFLEQLE 1403 SIYKIISRMDDPVPEYFKSPNFLEQLE 		DRÖSECNSADMÖFDGMAPTISFYKÖMÖLKTEHÖESLMAKHCESLTPLHSSTLTPMHLRKA	
 KLMFFWVRYPSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIK Sbjct: 1257 KLMFFWVRYPSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIK 20uery: 1317 TPDDLLIAGDSELJRVLNLHVNRNNHEVPQNFRFVVESTLREFFRAIQGGKDTEQSWKK 1317 TPDDLLIAGDSELJRVLNLHVNRNNHEVPQNFRFVVESTLREFFRAIQGGKDTEQSWKK 1317 TPDDLLIAGDSELJRVLNLHVNRNNHEVPQNFRFVVESTLREFFRAIQGGKDTEQSWKK 1377 TPDDLLIAGDSELJRVLNLHVNRNNHEVPQNFRFVVESTLREFFRAIQGGKDTEQSWKK 20uery: 1377 SIYKIISRMDDPVPEYFKSPNFLEQLE 1403 21KYIISRMDDPVPEYFKSPNFLEQLE 	Sbjct: 1197	7 DRQSECNSADMQFDGMAPTISFYKQMQLKTEHQESLMAKHCESLTPLHSSTLTPMHLRKA 1256	
Duery: 1317 TPDDLLIAGDSELYRVLNLHYNRNNHIEVPONFRFVVESTLREFFRAIQGGKDTEQSWKK 1376 TPDDLLIAGDSELYRVLNLHYNRNHIEVPONFRFVVESTLREFFRAIQGGKDTEQSWKK 1376 Sbjct: 1317 TPDDLLIAGDSELYRVLNLHYNRNHHIEVPONFRFVVESTLREFFRAIQGGKDTEQSWKK 1376 Query: 1377 SIYKIISRMDDPVPEYFKSPNFLEQLE 1403 SIYKIISRMDDPVPEYFKSPNFLEQLE	Query: 1257		
TPDDLIAGDSELYRVINLHYNRNNHIEVPONFRFVVESTLREFFRAIQGGKDTEQSWKK Sbjct: 1317 TPDDLIAGDSELYRVINLHYNRNHHIEVPONFRFVVESTLREFFRAIQGGKDTEQSWKK 1376 Query: 1377 SIYKIISRMDDPVPEYFKSPNFLEQLE 1403 SIYKIISRMDDPVPEYFKSPNFLEQLE	Sbjct: 1257	KLMFFWVRYPSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIK 1316	
Query: 1377 SIYKIISRMDDPVPEYFKSPNFLEQLE 1403 SIYKIISRMDDPVPEYFKSPNFLEQLE	Query: 1317		
SIYKIISRMDDPVPEYFKSPNFLEQLE	Sbjct: 1317	7 TPDDLLIAGDSELYRVLNLHYNRNNHIEVPQNFRFVVESTLREFFRAIQGGKDTEQSWKK 1376	
	Query: 1377		
	Sbjct: 1377		

000		RID=1106230395-25537-60155114044.BLASTQ4, Prote	tein query – Netscape
C C		http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#6179901	🖸 🔍 Search 🕹 🔍
 2 [≳ RID=1	10623	30395-25537-6015	
Score = Identit	= 8	26 bits (2134), Expect = 0.0 = 454/704 (64%), Positives = 461/704 (65%)	← No definition line ∴ second HSP identified
Query: 1 Sbjct: 1		MSSXXXXXXXXXXLFQPQSVSTAXXXXXXXXXXXTPAALATHXXXXXXXXXXXXXXX MSS LFQPQSVSTA TPAALATH MSSAAAAAAGAAGGGALFQPGSVSTANSSSSNNNNSSTPAALATHSPTSNSPVSGASSAS	
Query: 6 Sbjct: 6		XXXXXFGNLFGGSSAKMLNELFGRQMKQAQDATSGLPQSLDNAMLAAAMETATSAELLI FCNLFGGSS + + QSLDNAMLAAAMETATSAELL SLTAAFCNLFGGSSQDAERAVWPPDEAGPGREWEPAGSLDNAMLAAMETATSAELLN	
-		GSLNSTSKLLQQQHNNSIAPANSTPMSNGTNXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Α
		CSDRSLEAAAADVAGGSPPRAASVSSLNGGASSGEQHQSQLQHDLVAHHMLRNILQGKKE CSDRSLEAAAADVAGGSPPRAASVSSLNGGASSGEQHQSQLQHDLVAHHMLRNILQGKKE CSDRSLEAAAADVAGGSPPRAASVSSLNGGASSGEQHQSQLQHDLVAHHMLRNILQGKKE	8
- 1		LMQLDQELRTAMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	М
		ADIKIKSEPQTAPQPQQXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
-		XXXXXXXPTGQRSESRAPEEPQLPTKKESVDDMLDEVELLGLHSRGSDMDSLASPSHSX PTGQRSESRAPEEPQLPTKKESVDDMLDEVELLGLHSRGSDMDSLASPSHS DØDEEDAAPTGQRSESRAPEEPQLPTKKESVDDMLDEVELLGLHSRGSDMDSLASPSHSD	
Query: 4	121	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	3 480 3
Query: 4	181	HILDINGCKKRKLYQPQQHAMERYVXXXGLNFGLNLQSMMLDQEDSESNELESPQIQQKR QLQVNGCKKRKLYQPQQHAMERYV GLNFGCKKRKLYQPQQHAMERYVAAAGLNFGLNLQSMMLDQEDSESNELESPQIQQKR QLOVNGCKKRKLYQPQOHAMERYVAAAGLNFGLNLQSMMLDQEDSESNELESPQIQQKR	R 540 R
Query: 5	541	VEWNALKSQLRSMQEQLAEMQQKYVQLCSRMEQESXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	I 600 I
Query: 6	501	ELSPSPTLTGDGDVSPNHKEETGQERVXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ELSPSPTLTGDGDVSPNHKEETGQER ELSPSPTLTGDGDVSPNHKEETGQERPGSSSPSSPLKPKTSLGESSDSGANMLSQMMSK	K 660

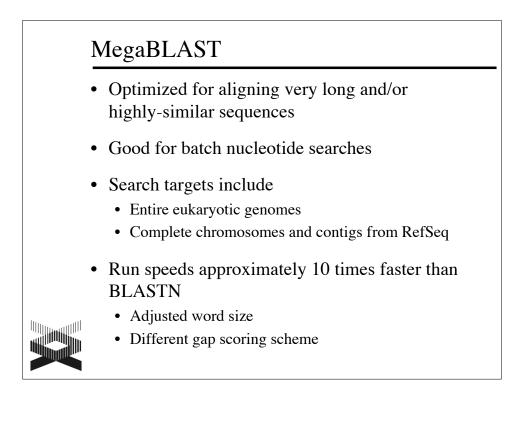
Suggested BLA	ST Cutoffs	
	E value	Sequence Identity
Nucleotide	≤ 10 ⁻⁶	≥ 70%
Protein	<u>≤</u> 10 ⁻³	≥ 25%

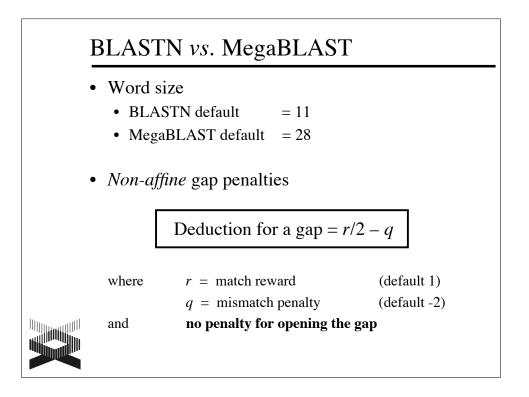


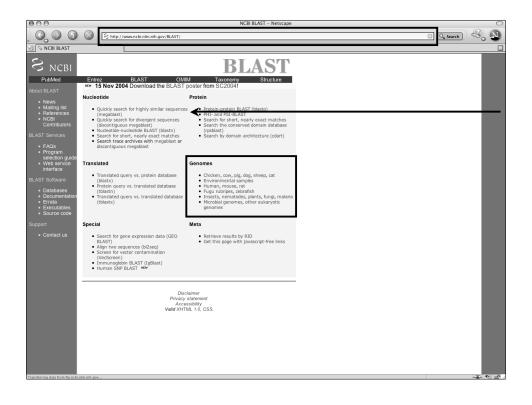
Database Searching Artifacts Low-quality sequence hits Expressed sequence tags (ESTs) Single-pass sequence reads from large-scale sequencing (possibly with vector contaminants)

BLAST 2 Sequences

- Finds local alignments between two protein or nucleotide sequences of interest
 - All BLAST programs available
 - Select BLOSUM and PAM matrices available for protein comparisons
 - Same affine gap costs (adjustable)
 - Input sequences can be masked
- Implementations
 - NCBI Web interface
 - bl2seq downloadable executable *ftp://ncbi.nlm.nih.gov/blast/executables/*

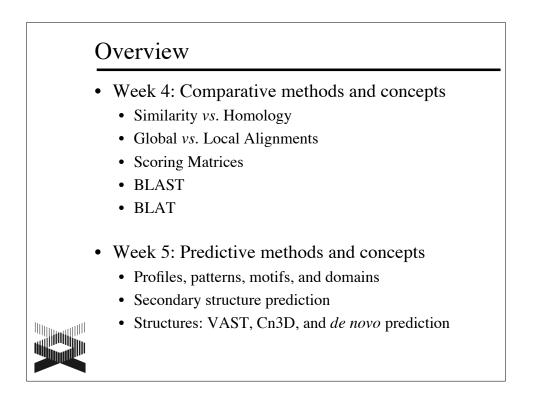





000	Blast 2 Sequences	- Netscape			0
C C C C C C C C C C C C C C C C C C C	t/wblast2.cgi			Q Search	₿. ₪
Blast 2 Sequences					×
NCBI Entrez	BLAST 2 sequences		BLAST	Example	Help
	BLAST 2 SEC	UENCES			
This tool produces the alignment of two given sequent The stand-alone executable for blasting two sequent Reference: Tatiana A. Tatusova, Thomas L. Mado FEMS Microbiol Lett. 174:247-250	nces (bl2seq) can be retri	eved from NCE	3I ftp site	rotein and nucleotide seq	uences",
Program blastp I Matrix BLOSUM62 I	PAM30				
Parameters used in BLASTN program only: Reward for a match: Penalty for a mis	PAM70 BLOSUM80				
Use Mega BLAST Strand option Not Applicable 🗾	BLOSUM62				
Open gap 11 and extension gap 1 penalties gap x_dropoff 50 expect 10.0 word size 3 Fi	BLOSUM45				
	nload from file	Browse			
or sequence in FASTA format from: DNP 008872.1 [SOX-10 [Homo sapiens] MAEEQDLSEVELSPVGSEPRCLSPGSAPSLGPPGGGGGS CIREAYSQUSGYDMTVPMVRVGASSAPSHVKPNNPAR LWRLINESDKRPFIEBAERLRNQHKKDHPDYKYOPRRKNG HLDHRRHCEGSPNSGCRPEPFFGSGSGCPPTPTTYTKELGS ISHEVMSNMETFDVAELDQYLPPNCHPGHVSSYSAAGYGLG	MVWAQAARRKLADQYPHLHN KAAQGEAECPGGEAEQGGTA GKADPKRDGRSMGEGGKPHI				
	nload from file	Browse			
or sequence in FASTA format from: 0 to: 0					
DNP 003131.1 sex determining region Y [H MQSYASAMLSVFNSDDYSPAVQENIPALRSSSFLCTESCN SRDQRRMALENPRMNSEISKQLGYQMKMLTEAEKMPFPQ NCSLLPADPASVLCSEVQLDNRLYRDDCTKATHSRMEHQLG	SKYQCETGENSKGNVQDRVKR EAQKLQAMHREKYPNYKYRPR				
ii	[4]Þ				
Comments and suggestions to blast-help@ncbi.nln	n.nih.gov				
					- TC - 0000-

Blast 2 Sequences - Netscape			0
S http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi		🖸 🔍 Search	8. N
Blast 2 Sequences			×
NCBI Entrez BLAST 2 sequences	BLAST	Example	Help
BLAST 2 SEQUENCES			
This tool produces the alignment of two given sequences using BLAST engine for local alig The stand-alone executable for blasting two sequences (bl2seq) can be retrieved from NC Reference: Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences - a new I FEMS Microbiol Lett. 174:247-250	BI ftp site	protein and nucleotide sequ	uences",
Program blastp 💌 Matrix BLOSUM62 💌			
Parameters used in BLASTN program only: Reward for a match: Penalty for a mismatch: Image: Use Mega BLAST Strand option Not Applicable Image: Strand option			
Open gap 11 and extension gap 1 penalties gap x_dropoff 50 expect 10.0 word size 3 Filter 7 Align			
Sequence 1 Enter accession or GI or download from file erows or sequence in FASTA format from:[o to:]o NP 008872.1 SOX-10 [Homo sapiens] MAEEQDLSEVELSPVGSEBERCLSPGGAPSLGEDGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG			
Sequence 2 Enter accession of 1 0 download non me 1 orsequence 3 O'r sequence in FASTA format from:0 to:0 orsequence 3 ONP 003131.1] sex determining region Y [Homo sapiens] most Mg63YASANLEVPRMNNSEISKOLGYØWKMLTEAEKWPFPQEAØKLØAMHREKYPNYKYRPR NCSLLPADPASVLCSEVQLDNRLYRDOCTKATHSRMEHQLØHLPPINAASSPQØRDRYSHWT Align Clear Input	<u></u>		
Mint .			
Comments and suggestions to blast-help@ncbi.nlm.nih.gov			

000	Blast Result – Netscape	0
GO G Shttp://www.ncbi.nlr	n.nih.gov/blast/bl2seq/wblast2.cgi70	🖸 🔍 Search 🖉 🔊
Blast Result		X
PubMed Blast 2 Sequence	PS results DMIM Taxonomy Structure	
BLAST 2 SEQUENCES RESULTS VE	RSION BLASTP 2.2.10 [Oct-19-2004]	
Matrix BLOSUM62 S gap open: 11 gap e x_dropoff: 50 expect: 10.000 wordsize:		
Sequence 1 Icl tmpseq_0 SOX-10 [H Sequence 2 Icl tmpseq_1 sex detern 2	Homo sapiens] Length 466 (1 466) mining region Y [Homo sapiens] Length 204 (1 204)	
/	1	
NOTE: The statistics (bitscore and exp	pect value) is calculated based on the size of nr database	
Score = 94.7 bits (234), Expect Identities = 39/84 (46%), Posit	t = 8e-18 tives = 62/84 (73%)	
N + VKRPMNAF+V	WAQAARRKLADQYPHLHNAELSKTLGKLWRLLNESDKRPFI 154 W++ RRK+A + P + N+E+SK LG W++L E++K PF WSRDQRRKMALENPRMRNSEISKQLGYQWKMLTEAEKWPFF 110	
Query: 155 EEAERLRMQHKKDHPDYKY +EA++L+ H++ +P+YKY Sbjct: 111 QEAQKLQAMHREKYPNYKY	+PRR+	
CPU time: 0.03 user secs.	0.01 sys. secs 0.04 total secs.	
Lambda K H 0.311 0.130 0.399		
Gapped		


BLAST the Mouse Genome - Netscape	0
O, O, O C Fhttp://www.acbinlm.nih.gov/genome/seq/MmBlast.html	🖸 🔍 Search 🕹 🔊 🔊
E S BLAST the Mouse Genome	X
Done	

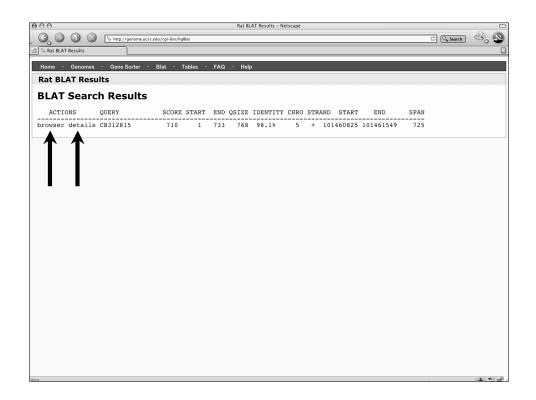
RID=1106244016-30776-135135895718.BLASTQ4, AK045456 RIKEN CDNA Library Clone - Netscape RID=1106244016-30776-1351 Centers View Show positions of the BLAST hits in the House genome using the Entrez Genomes HapViewer Query= AK045456 RIKEN CDNA Library Clone (2803 letters) Distribution of 2 Blast Hits on the Query Sequence Mouse-over to show define and scores. Click to show alignments Color Key for Blagement Scores 1.30776 9.500	5. N E
Image: Show positions of the BLAST hits in the Mouse genome using the Entrez Genomes MapViewer Query= AR045456 RIKEN cDNA Library Clone (2803 letters) Distribution of 2 Blast Hits on the Query Sequence Mouse-over to show define and scores. Click to show alignments Color Kay for Illipenet. Scores 400 1.3076	
Genome View Show positions of the BLAST hits in the Mouse genome using the Entrez Genomes MapViewer Query= AK045456 RIKEN cDNA Library Clone (2803 letters) Distribution of 2 Blast Hits on the Query Sequence Mouse-over to show define and scores. Click to show alignments Color Key for Blayment. Scores Color Key for Blayment. Scores 50-00 1_30776 120776	
Query= AK045456 RIKEN cDNA Library Clone (2803 letters) Distribution of 2 Blast Hits on the Query Sequence Mouse-over to show define and scores. Click to show alignments Color Key for Higment Scores 1_30776	
(2803 letters) Distribution of 2 Blast Hits on the Query Sequence Mouse-over to show define and scores. Click to show alignments Color Key for Illgement. Scores 1_30776	
Mouse-over to show define and scores. Click to show alignments Calor Key for Illignment. Scores 4.0250 50-00 50-00 50-	
Colar Kap for Blagment Scores 4(2) 4(2) 50-00 89-00 39-00 39-00 1_30776	
Score E Sequences producing significant alignments: (bits) Value	
ref NT_094258.1 Mm5_93895_33 Mus musculus chromosome 5 geno 5388 0.0 ref NT_094219.1 Mm5_93856_33 Mus musculus chromosome 5 geno 5388 0.0	
Alignments	
>ref NT_094258.1 Mm5_93895_33 Mus musculus chromosome 5 genomic contig, strain C57BL/6J Length = 51609	
Score = 5388 bits (2802), Expect = 0.0 Identities = 2802/2802 (100%) Strand = Plus / Minus	
Query: 2 aaaggatcccaagcagtgcagggtgagcgcccctcgggtctggggcaggtcagctgcagg 61	
Sbjct: 36392 aaaggatcccaagcagtgcagggtgagcgcccctcgggtctggggacggtcagctgcagg 36333	

000	RID=1106244016-30776-135135895718.8LASTQ4, AK045456 RIKEN cDNA Library Clone - Netscape		C
6.00	Shttp://www.ncbi.nlm.nih.gov/blast/Blast.cgi	Q Search	8. N
중 RID=110624401	6-30776-1351		
	9.1Mm5_93856_33 Mus musculus chromosome 5 genomic contig, strain C57BL/6J gth = $1\overline{9}4175$		
	bits (2802), Expect = 0.0 2802/2802 (100%)		
Strand = Plu			
Query: 2	aaaggateeeaagcagtgeagggtgagegeeeeetegggtetggggaeggteagetgeagg 61		
Sbjct: 107035	aaaggateecaagcagtgeagggtgagegeeeetegggtetggggaeggteagetgeagg 107094		
Query: 62	gccggggggcaccctctggggtgcccgatggggccttccgcggggcgcagggggggaagttg 121		
Sbjct: 107095	gccgggagcaccetetggggtgcccgatggggcettecgeggggegeaagttg 107154		
Query: 122	ggatcgcacgcagtgagcccgagctacccagcgcgacatgctgcctcctgggcgcaatgg 181		
Sbjct: 107155	ggatcgcacgcagtgagcccgagctacccagcgcgacatgctgcctcctgggcgcaatgg 107214		
Query: 182	caccgcacatcgggcgcgggttggggttgcagaggcaactggcgcaggtggacgccccccgg 241		
Sbjct: 107215	caccgcacatcgggcgggggggggggggggggggggggg		
Query: 242	gggctcagcagccccactgggacccgcggtggtcaccgctggcctcctgactcttt 301		
Sbjet: 10/2/5	gggetcageageceeaetgggaceegeggggggteaeegetggeeteetgaetetet 107334		
Query: 302	aatcgtotggacottgotoggoaacgtootagtgtgotgtotgtogtogtoggocgocgoca 361 		
bbjcc. 10/555	aallylliyyalliyylaalylliagyylylylylyllyllyllyllylagegelylla 107574		
Query: 362 Shict: 107395	cctggcgccaaatgaccaacatcttcatcgtatcttcggccgtctcagacctcttcgt 421 		
-			
Query: 422 Sbict: 107455	ggcattgctggtcatgccttggaaggccgtggctgaggtggccgggtactggccctttgg 481 		
-			
Query: 482	ggcattctgcgacatctgggtggcctttgacatcatgtgctccactgcttccatcctgaa 541		- T - P - d

RID=1106244016-30776-135135895718.BLASTQ4, AK045456 RIKEN cDNA Library Clone – Netscape	0
C C C C C C C C C C C C C C C C C C C	Search Sa M
S RID=1106244016-30776-1351	
Genome View Show positions of the BLAST hits in the Mouse genome using the Entrez Genomes MapViewer	
Query= AK045456 RIKEN cDNA Library Clone (2803 letters) Distribution of 2 Blast Hits on the Query Sequence	
Mouse-over to show defline and scores. Click to show alignments Color Key for Alignment Scores	
1_30776 6 560 1000 1560 2000 2500 	
Sequences producing significant alignments: (bits) Value	
ref NT_094258.1 Mm5_93895_33 Mus musculus chromosome 5 geno 5388 0.0 ref NT_094219.1 Mm5_93856_33 Mus musculus chromosome 5 geno 5388 0.0	
Alignments	
>ref NT_094258.1 Mm5_93895_33 Mus musculus chromosome 5 genomic contig, strain C57BL/6J Length = 51609	
Score = 5388 bits (2802), Expect = 0.0 Identities = 2802/2802 (100%) Strand = Plus / Minus	
Query: 2 aaaggatcccaagcagtgcagggtgagcgcccctcgggtctggggacggtcagctgcagg 61 	E

000				Entrez	z Genome view – Netscape		0
ୢୖୄୄୄୖୖୄୖୄ) 🔘 Shttp://www	w.ncbi.nlm.nih.gov	/mapview/map_searc	h.cgi?chr=mouse_c	hr.inf&RID=1106244016-30776	-135135895718.BLASTQ4&CLIENT=	web&QUERY_NUMBER=1 🖸 🔍 Search
Entrez Genom	e view						X
	Nucleotide	Protein	4500K 0 250K		a Genome	PopSet Taxonom	y OMIM Help
Search for			nosome(s)	eneme	assembly All	Find	Advanced Search
Show related	l entries		He	lp	FTP	MapViewer home	
MapViewer Home	Mus musculus build 33.1 statistics	s genome	view				BLAST search the mouse genome
Maps Map Viewer Help Human Maps Help Human Muse Homology Map Related Resources Human Genome Guide Guide LocueLink LocueLink LocueLink UniGene	HitGIss	72 16 .	6 7 0 6 1 0		Ti placed		
Sequence Data Human Genome Sequencing Mouse Genome	Color key for so	ores:	< 40	40-50 50-8	0 80-200 >= 200		Back to BLAST alignments page
Sequencing Reference mRNA sequences			lts: 2 BLAST N cDNA Libra		d		
	Chr • M not mapped N not mapped N				E value 0.0 0.0 Cve Two Finis	shed sequence n	ons of chromosome 5?
				Disclaim	ner Write to the Help Desk NCBI NLM NIH		

BLAT


- "BLAST-Like Alignment Tool"
- Designed to rapidly-align longer nucleotide sequences $(L \ge 40)$ having > 95% sequence similarity
- Can find exact matches reliably down to L = 33
- Method of choice when looking for exact matches in nucleotide databases
- 500 times faster for mRNA/DNA searches
- May miss divergent or shorter sequence alignments
- Can be used on protein sequences

<section-header> When to Use BLAT To characterize an unknown gene or sequence fragment Find its genomic coordinates Determine gene structure (the presence and position of exons) Identify markers of interest in the vicinity of a sequence Identify gene family members Identify putative homologs To display a specific sequence as a separate track

00	UCSC Genome Browser Home - Netscape
Θ_{2}	🕥 🔕 🕟 http://genome.ucsc.edu/
VCSC Gen	ome Browser Home
1000	
JUSC	C Genome Bioinformatics
enomes -	Gene Sorter - Blat - PCR - Tables - Proteome - FAQ - Help
nome	About the UCSC Genome Bioinformatics Site
owser	This site contains the reference sequence and working draft assemblies for a large collection of genomes. It also shows the CFTI (cystic fibrosis) region in 13 species and provides a portal to the ENCODE project.
at Silico PCR ible owser	We encourage you to explore these sequences with our tools. The Genome Browser zooms and scrolls over chromosomes showing the work of annotators worldwide. The Gene Sorter shows expression, homology and other information on groups or genes that can be related in many ways. Blat quickly maps your sequence to the genome. The Table Browser provide convenient access to the underlying database.
oteome owser	News Archive
lities wnloads	To receive announcements of new genome assembly releases, new software features, updates and training seminars by email subscribe to the genome-announce mailing list.
lease Log	18 January 2005 - Opossum Assembly in Genome Browser
stom icks ICODE	The opossum (Monodelphis domestica) is the latest vertebrate addition to the UCSC Genome Browser genome collection. Th Oct. 2004 preliminary assembly UCSC version monDom1 was sequenced and assembled by The Broad Institute Cambridge, MA, USA.
rors :hives	This preliminary draft was assembled from 33,507,069 placed reads, and consists of 109,065 contigs containing a total c 3,492,108,230 bases. There are 3,563,247,205 total bases in the 19,348 scaffolds in the assembly, with 71,138,975 bases in the gaps between contigs within the scaffolds. The scaffolds range in size from 1,000 bases to 22,286,839 bases.
blications	The monDom1 sequence and annotation data can be downloaded from the UCSC Genome Browser FTP server or download page. Please review the guidelines for using these data.
e Us enses	Many thanks to The Broad Institute for providing these data. The UCSC opossum Genome Browser was produced by Hiran Clawson, Galt Barber, Ali Sultan-Qurraie and Donna Karolchik. The initial set of annotation tracks was generated by the UCSI Genome Bioinformatics Group. See the credits page for a detailed list of the organizations and individuals who contributed to the release of this browser.
bs	

900		Rat BLAT Sea	arch – Netscape		
G O O O Int	tp://genome.ucsc.edu/cgi-bin/hgBla	ıt			Search Search
Rat BLAT Search					· · · · · · · · · · · · · · · · · · ·
	ne Sorter – Blat – Ta	bles - FAQ - Help			
Rat BLAT Search					
		BLAT Sear	ch Genome	2	
					NML
Genome:	Assembly:	Query type:	Sort output:	Output type:	7 3
Rat Paste in a query sequence	Jun 2003 💌	DNA	query,score	hyperlink	Submit
separated by a line start			ne sequences may be s	searched at once in	Reser
, ,		·			
>CB312815 NICHD Rr P: GGGGCTCTCGCTGGCCTGTG'					
TACCTCTGGTTCATGTTCGC	ICTTCTGGATAGTCTGTG'	IGCAATGAGCCCTTAAAGGA	ATATTGCAATGA		
GCTATAAGAGTTGTGAGCCT(GCTCCTAAGTCACAGGTTAT(
CAGTAGAGCTTAGGAAAATG	AATGACTCCACCACATTC	AAGAGGCTTCAAATTGTATA	CTTGGCATTTCT		
GATTTCAGTTCTGAAATTCT AAAAACCATTGAATTAAGAGA					
GATCATGGCGGGGGGATATAG	CTCAGTCATGGAGTGCTT	GCATAGCAATGTGCATAATC	CGAGGTTCAAGC		
CCCAGCACCGAAAAAGAGAAA GGGAAGGAGTTTAAACACCT					
AGTCATCACGTAAGAAAAGT'					
Rather than pasting a sec	uence, vou can choos	e to upload a text file co	ontaining the sequence		
Upload sequence:		Submit File	interning the sequence		
Only DNA sequences of sequences can be submit					
sequences can be submit	teu at the same time.	The total limit for multip	pie sequence submissio	ons is 50,000 bases of 2:	5,000 letters.
About BLAT					
BLAT on DNA is designed					
shorter sequence alignme					
finds sequences of 80% a	and greater similarity	of length 20 amino acid	ls or more. In practice	DNA BLAT works well o	on primates, and proteir

θ			Rat chr5:101,460,643-10	01,461,730 - UCSC G	enome Browser v95 – Ne	etscape	~
Rat chr5:101,460		enome.ucsc.edu/cgi-bin/h	JTracks				Search Search
Home	Genomes	BLAT DÎ	NA Tables	Gene So	rter Cor	nvert Ensembl	PDF/PS He
	mo	ove _<<< _ <<	< <u>> > </u> >> <u>>>></u> 101,460,643-101,461,73	zoom in <u>1.5x</u> o size 1,0]
Dase Position	Jacob Constant	1458588 181458986		01461100 10146		101461400 101461500	101461600 101461700
	1			Chronosone Banos E			
RNOR 03293477 RNOR 03293478	-			Assembly A	ron Fragments		
fragment yes					ocations From BLAT Search	6	
		CB312815	Known	Genes Based on SHISS-	FROT, TrEMBL, mRNA, and Re a Genes	r59a	
RGD Genes Ensemp1 Genes					base Curated Genes le Predictions		
Soliced ESTs				Rat mRNAS Rat ESTS That	from GenBank Have Been Spliced		
Non-Rat mRNAs				Non-Rat MRNP Mouse (Mag 2004/mm	s from GenBank 5) Chained Alighments		
Nouse Chain House Net				·····	wn5) Alignment Net	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
RepeatMasker		Clief	6 6		its by RepeatHasker	zoom in around curs	an Clister many and
	<pre>move start < 2.0 > </pre>		mini-buttons for t			200m in around curs	or. Click on move end
		1 2 3 Use drop d	4 5 6 7 8 9 1 lown controls belo ts of items will au	omosome Colo 0 11 12 13 14 15 1 ow and press re	or Key: 6 17 18 19 20 21 22 fresh to alter trad displayed in more	XYMUn	
		Base Position	Chromosome	RGD OTL	STS Markers	Recomb Rate	
		full 💌	Band full	hide 💌	hide 💌	hide 💌	
		Assembly	Gap full •	Bactigs full	BAC End Pairs	GC Percent	
		Short Match	BLAT Sequence	a for the second	Constant Sector	out the store	
			Genes an	d Gene Predi	ction Tracks		
		Known Genes	RefSeq Genes	RGD Genes	MGC Genes	Ensembl Genes dense	
							-11-

00	User Sequence vs Genomic – Netscape	
G 0 6 (🔪 🔍 http://genome.ucsc.edu/cgi-bin/hgc?o=101460824&g=htcUserAli&i=/trash/hg5s_genome_1050_1106241806.pslx+.%2Ftrash%2Fhg5s_genome_1050_1106241	4
Sequence vs G	nomic	
lignment of B312815	Alignment of CB312815 and chr5:101460825-101461549	
312815 t.chr5 ock1	Click on links in the frame to the left to navigate through the alignment. Matching bases in cDNA and genomic sequences a colored blue and capitalized. Light blue bases mark the boundaries of gaps in either sequence (often splice sites).	are
ether	cDNA CB312815	
	GGGCTCTCG CTGGCCTGTG TCTCAGAAGC TGCTTTCTCC ACCTCTTCT 50 TGTGAATTTC CTAAACTCTC TACCTCTGGT TCATGTTCG CTTCTCGGAT 100 AGCTCTGTG CAATGACCC TTAAAGCAAT ATTGCAATGA GCTTATAGGA 150 TTGTGAGCT GGGTAGGA AGGCCTGCAC TGGGACAGCA AGGGAATTT 200 CATTGCATC GGCTAGGA AGGCCTGCAC TGGGACAGCA CTTATCCCA 250 AGGACAGCC TCTCCCCAT CCTAGGAAA CAGTAGACCT TAGGAAATG 300 AATGACTCAC CCCACATCAA GAGGCTCACA ATTGCTATCT TGGGATATCT 350 GATTTCAGT CTGAATTCT GTCCTTAGGAAA ATGCTATAGGAAATG 400 GGTTTACACC TGTCATATA AGAGCTCACA ATTGCTATCT TGGGATAGAG 400 GGTTGCACC TGTCACTTA AGAGGCTCACA GTGAAGGA AATGGAAAAT 450 TCATGCCCAC ATGAATTCT GTCCTTAGGAAGG TGTCATGTTT GATTAGGAAATG 400 GGTTCACCC CCCACCACCG GAAGGGTCTAGGAAGGA ATGGAAGAA 450 TCATGCCCAC ATGAATTCT TGGAATGG TGTCATGTTT GATCATGCG 550 GGCTTCATGC CCCACACCGC GAAGGGAGGAGG TTAAACACCT 550 CACCACCGGC TTTCCACTT AGGCCGAAG GGGAAGGAGT TTAAACACCT 550 ACCGACGGAT TGGAATGG GAGTGCCCT GTCCTATGCTC GGGGAGGGT 7700 AGTCCACCG TTTCCACTT AGGCCGAAGG GAAGGCCCTG CGGAGGGAGG TTAAACACCT ACTGACGGA TGGAATGGC TTGGTGATAGTC GGGGAGGGGT 7700 AGTCCACCG TA GGAATGG TATGGAATG ATHAGAATG ATHAGAATG 700 GGTCCACCCACCACCG GAGGGCGAAGG GAGGACGCT TAAACACCT 550 ACCGACGACG TTTCCACTT AGGCCGAAGG GAGGCCCTG TGTCTATGCCC GGGGGGGTG 7700 AGTCCACCGACGAAGG GAGGCCCCTG TGTCTATGCTCC GGGGGGGGT 7700 AGTCCACCGACG	
	Genomic chr5 :	
	Cttggaagaa ggtaactata cattaatata gagccctctt tttctttgca 101460774 ggcccaggaa caaggacg gatgtttcca agtcactca gggacagcat 101460874 GaGGCTCTCG CTGGCCTGF GTCCAGABAGC TGGTTCTCCG ACCTCTCTCCT 101460874 TGTGAATTTC CTAAACTCTC TACCTCTGGT TCATGTTCG TCTTCTGGAT 101460974 AGTCTGTGTC CAATGACCC TTAAAGGAAT ATTGCAATGA GCTATAAGAG 101460974 TTGTGAGCCT GCGGTAGGA AGGCCTGCAC GGGACAGCA AAGGAAATTG 101461074 AGGACAGCC TCTCCCCCAT CCCTAGGAAA CAGTAGAGCT TAGGAAATG 101461074 AGGACAGCC TCTCCCCCAT CCCTAGGAAA CAGTAGAGCT TAGGAAATG 101461174 GATTGCACTC CCCCATAA GAGGCTTCACA ATTGCTATCT TGCATTTCT 101461174 GATTGCACTC TCGAAATTCT GCACTGCT GAATGAGAAATG 1014611274 TCAGGCCCA CTAGCATA GAGGCTTCTG CATGGCGAAA ATGGAAATG 101461274 TCAGGCCCA CTAGCATG TAGGAAGCT TGCATGTCG CCTAGCAAA 101461274 GCAGTCACCC CTCCCCCTAG GAAAGGAAG GGGAGGGCG TGAGGCATT 101461374 AGGGTTCAAGC CTCAGCCAG AAAGGAAA GGGGAGGGAG TGAGGCT TTAGCATCT 101461424 CACACGACGCC CTTTCAGCAGAGG GGGAGGGAG TTAAACCACT 101461474	

000	User Sequence vs Genomic - Netscape
. 6, 0 0 0	🕅 🐚 http://genome.ucsc.edu/cgi-bin/hgc?o=101460824&g=htcUserAli&i=./trash/hg5s_genome_1050_1106241806.ps/x+.%2Ftrash%2Fhg5s_genome_1050_110624182 🔍 🥸
🗐 🛇 User Sequence vs G	enomic X
Alignment of CB312815	Side by Side Alignment
CB312815 Rat.chr5	00000001 ggggctctcgtggcctgtgtctcagaagctgctttctccactcttcct 000000050 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
block1 together	00000051 tgtgaatttoctaaactottaactotggttatggttotggttotggat 00000100 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	000001011 agtctgtgtgcaatgagccttaaaggatattgcaatgagctataagag 00000150 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	000000151 ttgtgaqcctgcqgtaggcaaggcctgcactgggacagcaaggaaatt 00000200 >>>>>>>
	000000201 cattgcatctgctcctaagtcacaggttatccagagcccactttacccca 000000250 >>>>>>>
	000000251 agagacagcctctcccccatccctaggaaacagtagagcttaggaaaatg 000000300 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	000000301 aatgactccaccactactaagaggcttcaaattgtatacttggcatttct 000000350 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	000000351 gatttcagttctgaaattctgtcccttagtcgtggggaaaataagaaatg 000000400 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	000000401 gagttacaccttgtcatttaaaaaaccattgaattaagagaaatggaaaa 000000450 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	000000451 tcatgcccacataaaaacatgtatggaagtgttcatgttttgatcatggcg 000000500 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	000000501 ggggatatagctcatggagtgcttgcatagcaatgtgcataatccg 000000550 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Dona	000000551 aggttcaagccccagcaccgaaaaagaqaaacggqagqagtggaggagt 000000600 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>

FASTA

- Identifies regions of local alignment
- Employs an approximation of the Smith-Waterman algorithm to determine the best alignment between two sequences
- Method is significantly different from that used by BLAST
- Online implementations at *http://fasta.bioch.virginia.edu http://www.ebi.ac.uk/fasta33*

Overview

- Week 4: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 5: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and *de novo* prediction

Further Reading

Altschul, S.F., Boguski, M.S., Gish, W., and Wootton, J.C. 1994. Issues in searching molecular sequence databases. *Nat. Genet.* 6: 119-129. A review of the issues that are of importance in using sequence similarity search programs, including potential pitfalls.

Baxevanis, A.D. Assessing pairwise sequence similarity: BLAST and FASTA. In *Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins*, third edition (Baxevanis, A.D. and Ouellette, B.F.F., eds.), John Wiley and Sons, 2005. An overview of the methods used to generate pairwise sequence alignments and assess the biological significance of results.

Henikoff, S. and Henikoff, J.G. 2000. Amino acid substitution matrices. *Adv. Protein Chem.* 54: 73-97. A comprehensive review covering the factors critical to the construction of protein scoring matrices.

Korf, I., Yandell, M., and Bedell, J. BLAST. O'Reilly and Associates, 2003. An in-depth treatment of the BLAST algorithm, its applications, as well as installation, hardware, and software considerations. The book provides "documentation" that is not easily found elsewhere.

Pearson, W.R. Finding protein and nucleotide similarities with FASTA. 2003. *Current Protocols in Bioinformatics* 3.9.1-3.9.23. An in-depth discussion of the FASTA algorithm, including worked examples and additional information regarding run options and use scenarios.

Wheeler, D.G. Selecting the right protein scoring matrix. 2003. *Current Protocols in Bioinformatics* 3.5.1-3.5.6. A discussion of PAM, BLOSUM, and specialized scoring matrices, with guidance regarding the proper choice of matrices for particular types of protein-based analyses.

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1991. Basic local alignment search tool. *J. Mol. Biol.* 215: 403-410.

Altschul, S.F., Madden T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25: 3389-3402.

Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C. 1978. A model of evolutionary change in proteins. *In* Atlas of Protein Sequence and Structure, M.O. Dayhoff, ed., National Biomedical Research Foundation, Washington, 5: 345-352.

Henikoff, S. and Henikoff, J.G. 1991. Automated assembly of protein blocks for database searching. *Nucleic Acids Res.* 19: 6565-6572.

Henikoff, S. and Henikoff, J.G. 1992. Amino acid substitution matrices from protein blocks. *Proc. Natl. Acad. Sci. USA* 89: 10915-10919.

Henikoff, S. and Henikoff, J.G. 1993. Performance evaluation of amino acid substitution matrices. *Proteins Struct. Funct. Genet.* 17: 49-61.

Henikoff, S. and Henikoff, J.G. 2000. Amino acid substitution matrices. Adv. Protein Chem. 54: 73-97.

Karlin, S. and Altschul, S.F. 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. *Proc. Natl. Acad. Sci. USA* 87: 2264-2268.

Kent, W.J. 2002. BLAT: the BLAST-like alignment tool. Genome Res. 12: 656-664.

Pearson, W.R. 1995. Comparison of methods for searching protein sequence databases. *Protein Sci.* 4: 1145-1160.

Pearson, W.R. 2000. Flexible sequence similarity searching with the FASTA3 program package. *Methods Mol. Biol.* 132: 185-219.

Pearson, W.R. Finding protein and nucleotide similarities with FASTA. 2003. *Current Protocols in Bioinformatics* 3.9.1-3.9.23.

Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. *Proc. Natl. Acad. Sci. USA* 85: 2444-2448.

Smith, T.F. and Waterman, M.S. 1981. Identification of common molecular subsequences. *J. Mol. Biol.* 147: 195-197.

Tatusova, T.A. and Madden, T.L. 1999. BLAST2Sequences, a new tool for comparing protein and nucleotide sequences. *FEMS Microbio. Lett.* 174: 247-250.

Wootton, J.C. and Federhen, S. 1993. Statistics of local complexity in amino acid sequences and sequence databases. *Comput. Chem.* 17: 149-163.