Susceptibility Prediction in Familial Colon Cancer

Giovanni Parmigiani gp@jhu.edu

Cancer Risk Prediction Models: A Workshop on Development, Evaluation, and Application NCI, May 2004

SUSCEPTIBILITY PREDICTION MODELS

Family history can be very informative about the presence of a mutation

Predicting mutations is possible and useful in two contexts:

SUSCEPTIBILITY PREDICTION MODELS

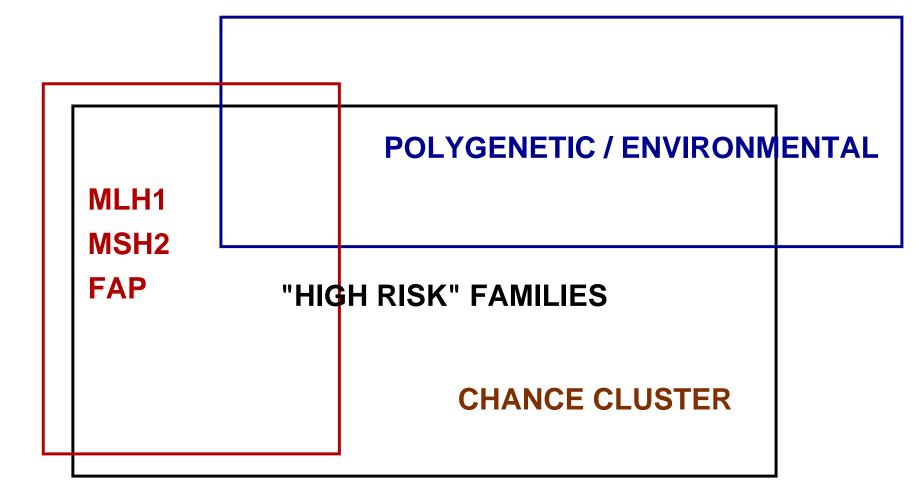
Family history can be very informative about the presence of a mutation

Predicting mutations is possible and useful in two contexts:

HIGH RISK CLINICS: Counseling about testing decisions Interpretation test outcomes *for individuals* Predicting who will develop cancer

SUSCEPTIBILITY PREDICTION MODELS

Family history can be very informative about the presence of a mutation


Predicting mutations is possible and useful in two contexts:

HIGH RISK CLINICS: Counseling about testing decisions Interpretation test outcomes *for individuals* Predicting who will develop cancer

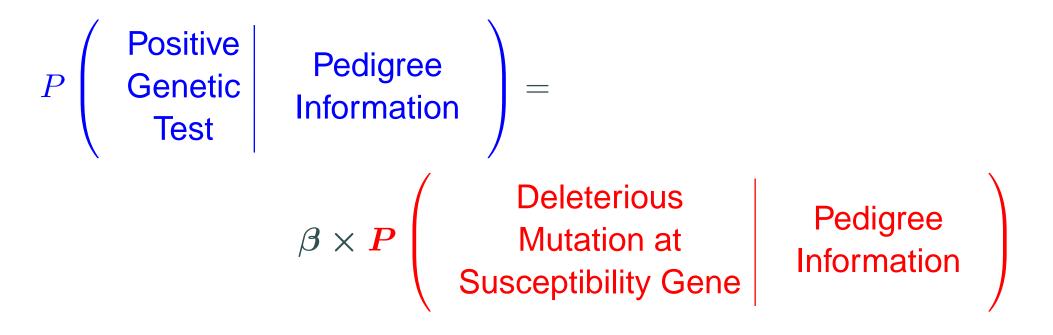
GENE CHARACTERIZATION RESEARCH: Selecting high risk subjects Building measures of susceptibility

OTHER FAMILIES

EMPIRICAL MODELING

• Correlates genetic testing results to features of family history

- Relies on Al/statistics to infer the genotype | phenotype relationship and the mode of inheritance
- Generally gives broad classes of families


MENDELIAN MODELING

PDeleterious
Mutation at
Susceptibility GenePedigree
Information

- Derives carrier probabilities from genetic parameters
- Relies on statistics to infer the phenotype | genotype relationship
- Relies on Mendel's laws for the mode of inheritance.

RELATIONSHIP BETWEEN SCALES OF EMPIRICAL AND MENDELIAN PREDICTIONS

skip tutorial

📢 🗙 🗌 i 2p 🍉

β: Test Sensitivity; Specificity assumed complete
 EMPIRICAL
 MENDELIAN

LOGIC BEHIND MENDELIAN RISK PREDICTION: notation

γ	Genotype vector.	
γ^*	(the 0 vector) indicates the wildtype.	
θ	Penetrance-related parameters	
π	Prevalence-related parameters	
Н	History of relevant phenotypes for an individual	
$r = 1, \ldots, R$, R Index of relative of a counselee within a family	
	(counselee indexed by 0)	
F	A family history, vector $F = (H_0, H_1, \dots, H_R)$	
T	Genetic test result	

Carrier Probability: $p(\gamma_0|H_0, H_1, \ldots, H_R, \pi, \theta)$

◀ 🗙 🗌 i 2p 🕽

LOGIC BEHIND MENDELIAN RISK PREDICTION: general approach

Updating:

 $p(\gamma_0|H_0,\ldots,H_R,\pi, heta) = \ rac{p(\gamma_0|\pi)p(H_0,H_1,\ldots,H_R|\gamma_0, heta,\pi)}{\sum_{\mathrm{all } \gamma_0 \mathrm{'s}} p(\gamma_0|\pi)p(H_0,\ldots,H_R|\gamma_0, heta,\pi)}.$

LOGIC BEHIND MENDELIAN RISK PREDICTION: general approach

Updating:

 $p(\gamma_0|H_0,\ldots,H_R,\pi, heta) =
onumber \ rac{p(\gamma_0|\pi)p(H_0,H_1,\ldots,H_R|\gamma_0, heta,\pi)}{\sum_{\mathrm{all }\gamma_0\mathrm{'s}} p(\gamma_0|\pi)p(H_0,\ldots,H_R|\gamma_0, heta,\pi)}.$

Integration:

 $egin{aligned} p(H_0,H_1,\ldots,H_R|\gamma_0, heta,\pi) &= \ &\sum p(H_0,\ldots,H_R|\gamma_0,\ldots\gamma_R, heta)p(\gamma_1,\ldots,\gamma_R|\gamma_0,\pi). \ & ext{all } \gamma_1\ldots\gamma_R ext{'s} \end{aligned}$

LOGIC BEHIND MENDELIAN RISK PREDICTION: sources of information

 $p(\gamma_0)$ Prevalence studies

 $p(\gamma_1, \dots, \gamma_R | \gamma_0)$ Mendel's laws + Prevalence Studies

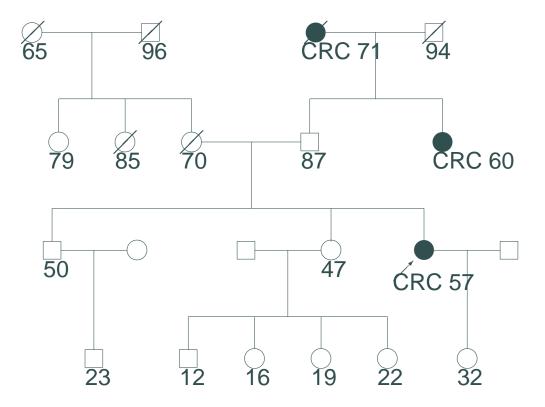
 $p(H_0, \ldots, H_R | \gamma_0, \ldots, \gamma_R)$ Penetrance studies

 $p(H_0, \dots, H_R | \gamma_0, \dots, \gamma_R) = \prod_r p(H_r | \gamma_r)$ Conditional independence

to HNPCC example

CRCAPRO

GENOTYPE: MLH1 & MSH2


FAMILY HISTORY:

I-st and II-nd degree relatives of counseland Colorectal and endometrial cancer history (m & f) MSI testing Age of onset, age of death or current age

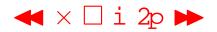
<u>PENETRANCES</u>: Meta-analysis. Independent estimates in progress using Creighton data.

PREVALENCES: Meta-analysis.

	Pedigree	Mendelian	Wijnen
1	As in Figure above	0.028	.0019
2	No information about father	0.277	.0019
3	Father with CRC@60, pat. aunt unaff.	0.357	.0019
4	Sister with EC@50	0.597	.0099
5	Living maternal aunt with EC@50	0.057	.0099

SOFTWARE

BayesMendel:


R environment for Mendelian risk prediction, including:

- BRCAPRO
- CRCAPRO
- Sets of genetic parameters that are specific to ethnic groups
- Functionality to build Mendelian Models for other syndromes

CaGene:

- Inclusion of CRCAPRO (via BayesMendel) completed
- Legal details pending

web search for BayesMendel

> library(BayesMendel)

- > data(testfam)
- > testfam

- > data(HNPCCpenet)
- > crcapro(testfam,penetrance=HNPCCpenet)
 [,1] [,2] [,3]
 [1,] 2.498343e-18 2.923043e-13 1.895220e-08
- [2,] 1.813742e-13 2.073328e-08 1.100074e-03
- [3,] 6.683116e-09 6.653272e-04 9.982346e-01

VALIDATION

Data: 60 families tested for MSH1 and MLH2 at JHU.

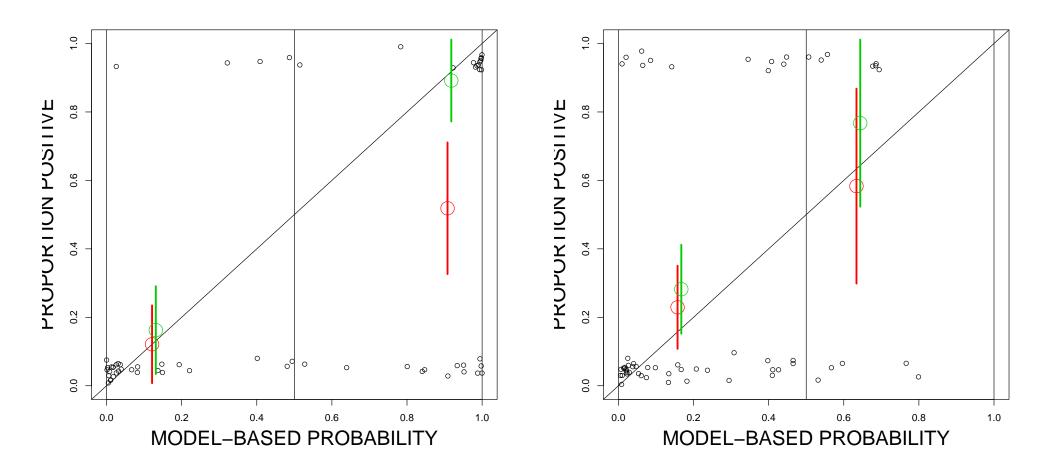
Goal: Compare CRCAPRO to Wijnen

OVERALL PERFORMANCE by RMSE

CRCAPRO 0.30 Wijnen 0.44

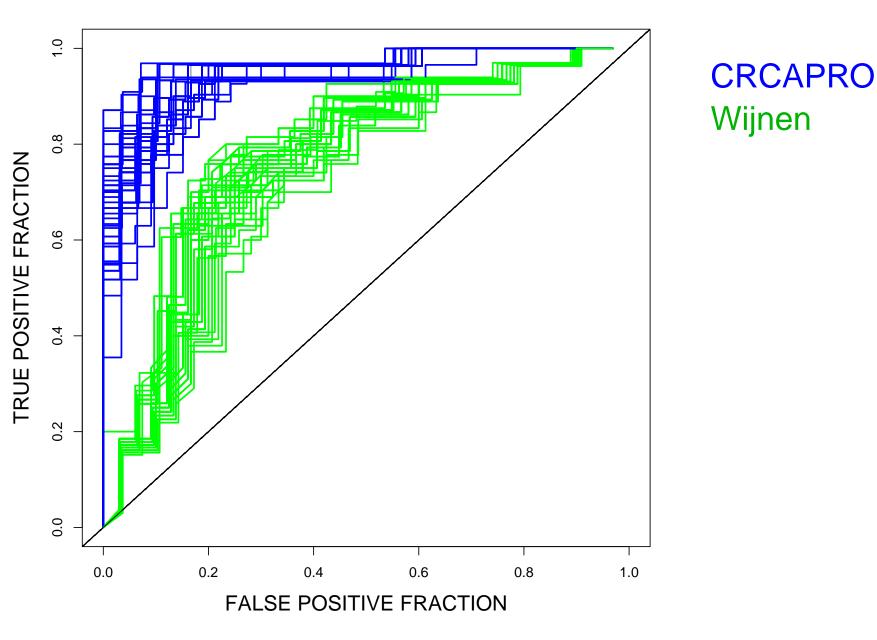
LOGISTIC PREDICTION of POSITIVE TEST RESULT

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-2.7342	0.7224	-3.785	0.000154	* * *
CRCAPRO	2.9138	1.0087	2.889	0.003867	* *
Wijnen	0.6476	1.5523	0.417	0.676549	

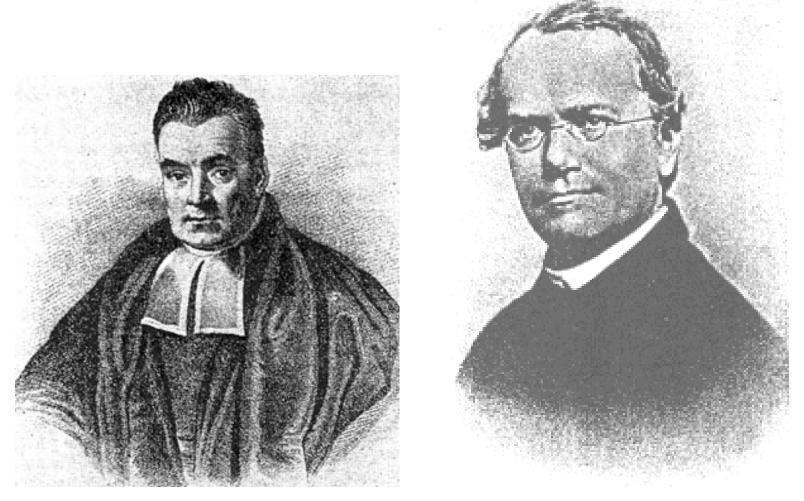


CALIBRATION

CRCAPRO



i 2p


RED: prior to adjustment for mutation screening sensitivity GREEN: after adjustment for mutation screening sensitivity \checkmark

DISCRIMINATION: ROC curves

Credits

Lab: Karl Broman, Sining Chen, Ed Iversen, Wenyi Wang Clinical collaborators: Ken Kinzler, Francis Giardiello, David Euhus SPORE collaborations: Chris Amos, Steve Gruber, Sapna Syngal, Patrice Watson

