Estimating the Burden of Disease
 Examining the impact of changing risk factors on colorectal cancer incidence and mortality

Karen M. Kuntz, ScD

Cancer Risk Prediction Models: A Workshop on
Development, Evaluation, and Application
National Cancer Institute

$$
\text { May 20-21, } 2004
$$

*** Results presented are preliminary.

Decision-Analytic Models

- Analytical structures that represent key elements of a disease
- Goal: evaluate policies in terms of costs and health benefits (not estimation)
- Cohort models vs. population-based model
- Risk functions often incorporated

Age-standardized incidence and mortality

CRC Risk Factors

- Body mass index (BMI)
- Smoking
- Folate intake (multivitamin use)
- Physical activity
- Red meat consumption
- Fruit and vegetable consumption
- Aspirin use
- Hormone replacement therapy (HRT)

Individual Risk Functions

- $\operatorname{Pr}(\mathrm{CRC}$ I BMI, smoking, MV use, etc.)
- Annual risk
- 10-year probability
- Estimate from cohort studies
- Nurses' Health Study (NHS)
- Health Professionals' Follow-up Study (HPFS)

NHS \& HPFS Data

Multivariate logistic regression of NHS/HPFS data provide information about the relationship between risk factors and diagnosed (but not underlying) CRC

Stage-Specific Risk Functions

Goal: decompose the aggregate function into stage-specific risk functions

Our Approach

- Establish "observed relationship" between risk factor and diagnosed CRC
- Simulate incidence of CRC in hypothetical cohort that is matched to study cohort
- Use regression analysis to examine simulated relationship between risk factor and diagnosed CRC
- Calibrate ORs of simulated data analysis to those of cohort analysis

Example: 50 yo white woman

BMI $=25 \mathrm{~kg} / \mathrm{m}^{2}$
Non-smoker
MV user
5 met-hr/wk
2 sv/wk red meat
5 sv/dy fruit/veg
No aspirin use
No HRT use

Lifetime CRC risk:
4.8\%

Example: 50 yo white woman

$\checkmark \mathrm{BMI}=35 \mathrm{~kg} / \mathrm{m}^{2}$
\checkmark Smoker
\checkmark No MV use
5 met-hr/wk
$2 \mathrm{sv} / \mathrm{wk}$ red meat
5 sv/dy fruit/veg
No aspirin use
No HRT use

CANCER INTERVENTION AND
SURVEILLANCE MODELING NETWORK

CISNET Model

Age-standardized incidence

Age-standardized mortality

Age-standardized mortality

Age-standardized mortality

Age-standardized mortality

$\begin{array}{lllllll}1975 & 1980 & 1985 & 1990 & 1995 & 2000 & 2005\end{array}$
Year

Concluding Remarks

- Trends in risk factors over the past 35 years account for a 13% decrease in both CRC incidence and mortality compared to "flat trends"
- Population-based simulation models provide an important tool for evaluating the impact of changing risk factors

