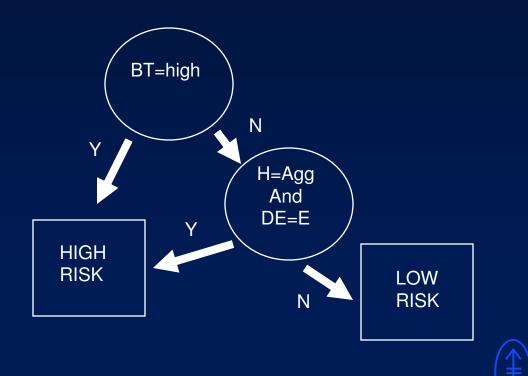
Comparing the accuracy of prediction methods

Michael W. Kattan, Ph.D. Associate Attending Outcomes Research Scientist Memorial Sloan-Kettering Cancer Center Associate Professor of Public Health Cornell University

How is risk typically computed?

- Based on features, we make a crude tree.
- Most cancer staging systems do this.



The problem with crude trees

- They are very easy to use.
- But they do not predict outcome optimally.
 - » High risk groups are very heterogeneous.
 - A single risk factor may qualify a patient as high risk.
- Other approaches, like a Cox regression model, predict more accurately.

Some simple steps that will make a difference

Build the most accurate model possible. Take model to bedside

- » As a nomogram,
- » In stand-alone software (desktop, handheld, web)
- » Built into the electronic medical record
- Doing this will predict patient outcome more accurately, resulting in
 - » better patient counseling
 - » better treatment decision making

Desirable characteristics of an error measure

- Understandable/interpretable
- Sensitive to model improvement
- Model-free
- Unaffected by censoring

CONCORDANCE INDEX (censored data)

- probability that, given two randomly drawn patients, the patient who fails first had a higher probability of failure.
 - assumes that the patient with the shorter follow-up fails
 - does not apply if both patients fail at the same time, or the censored patient has shorter follow-up.

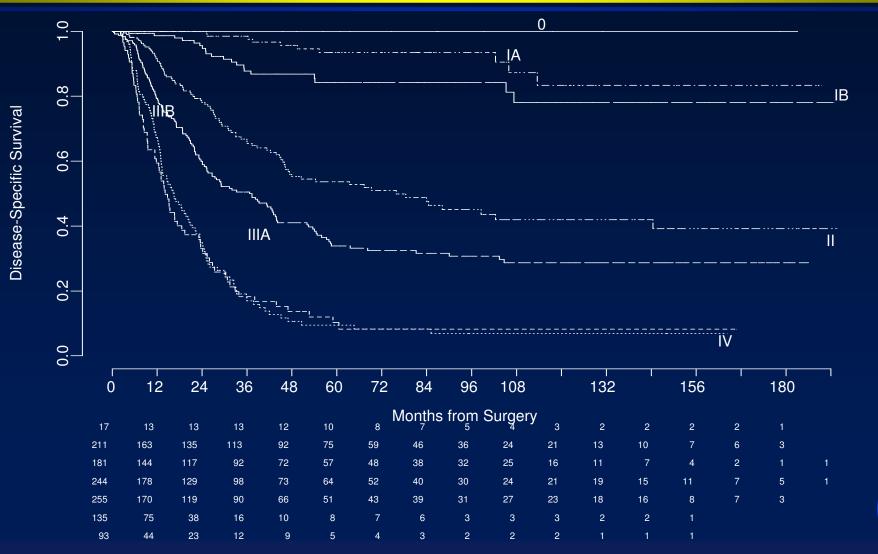
<u>Usable patient pairs with consistent outcome</u> Usable patient pairs

usable patient pair - patient with the shorter follow-up must fail consistent outcome - failure more likely for the shorter follow-up patient

tied predicted probabilities get 1/2

(Harrell, 1982)

Gastric Cancer Disease-Specific Survival by AJCC Stage



0 IA IB IIA

Gastric Cancer Disease-Specific Survival Nomogram

	Points	0	10		20	30		40	50	. 6	0	70	80	90	100
	Sex	, F	M												
	Age	— ——	70 	20	80			90		1	00				
	Primary.Site	A/P	B/M		G	ĒJ									
	Lauren	Int	Dif												
	Size	0	20												
	NumPosNodes	0 40	70					5		10	20	30	40	50	60
	NumNegNodes	40 -++ 30	70	10	S	0 M						SS	S	2	
	Depth	MM							MP				S1		
	Total Points	, 0	15	30	45	60	75	90	105	120	135	150	165	180 19	5 210
	Prob. of 5-Year DSS		0.97		0.94	0.9		0.8	0.7		0.5	0.3	0.	.1 (0.01
	Prob. of 9-Year DSS	0.	.97	0.9	4 ().9	0	.8	0.7	0.5	5	0.3	0.1	0.01	
atta	an et al., <i>JCO</i> , 2003														

Ka

How to tell if we are doing any better than existing models?

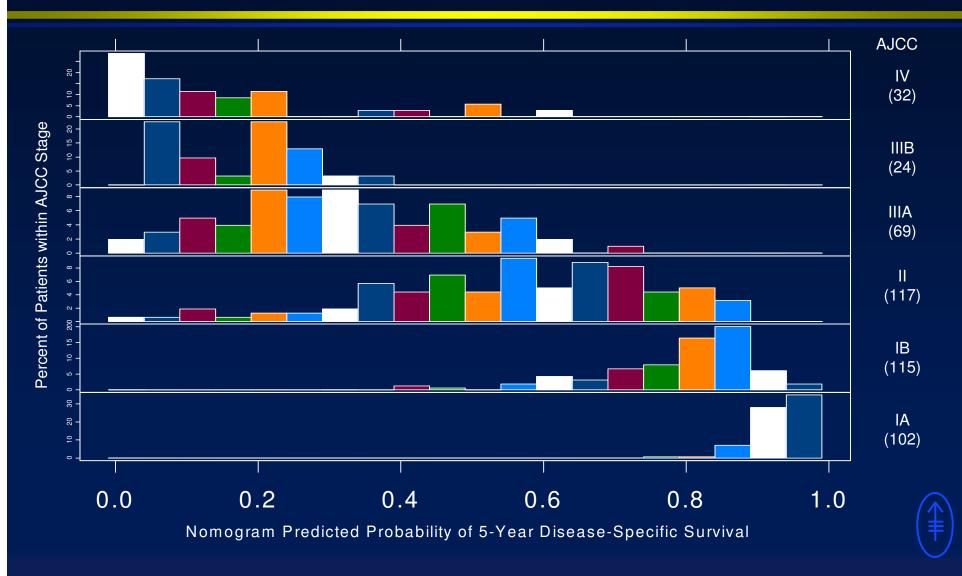
Compare jackknife predicted probabilities of new model to existing model predictions:

<u>Method</u>	Concordance Index
AJCC Stage	0.77
Nomogram (jackknife)	0.80

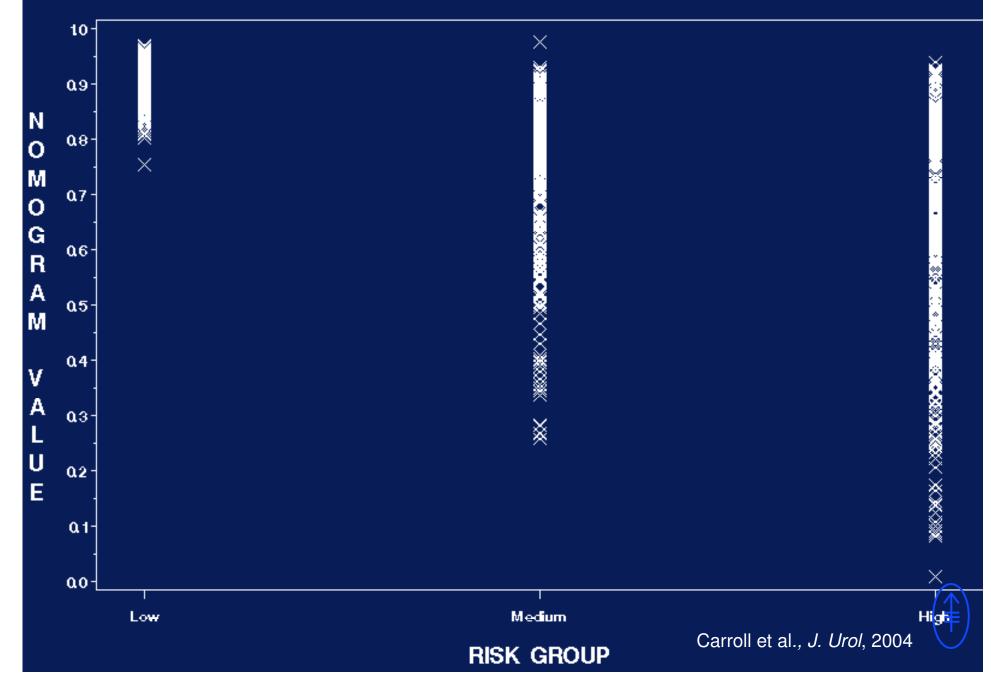
How to tell if we are doing any better than existing models? Validation dataset

<u>Concordance</u>	<u>e Index</u>
Original	Dutch Trial (n=459)
0.77	0.75
0.80	0.77
(p<0.001)	(p<0.001)
	<u>Original</u> 0.77 0.80

Heterogeneity within stages



Nomogram Values by Prostate Cancer Risk Group



Nomograms for clinical trial design

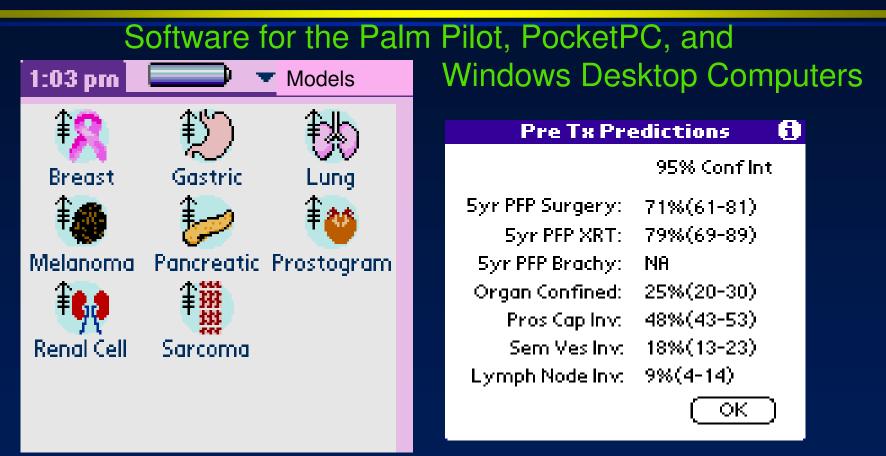
 Example: CALGB 90203, preoperative therapy for patients at high risk of failure following surgery for prostate cancer

Points	0	10	20	30	40	<u>50</u>	60	70	80	90	100
PSA	0.1		ĺ	2 3	467	89	10 12	16	20 30	45 70	110
Clinical Stage	T1c	T2a	T2c T1ab ≤ 2+3 3	T2b		T3a ≥ 4+ ?					
Biopsy Gleason Gi	rade ≤ 2+	≤ 2	3+	3	2	 3+≥ 4					
Total Points	Ō	20	40	60	80	100	120	140	160	180	200
60 Month Rec. Fre	e Prob.		.96	.93 .9	9.85	.8	.7 .6	.5 .4	.3 .2	.1 .05	
									< 60)%	

Continuous Models vs. Staging/Grouping Systems

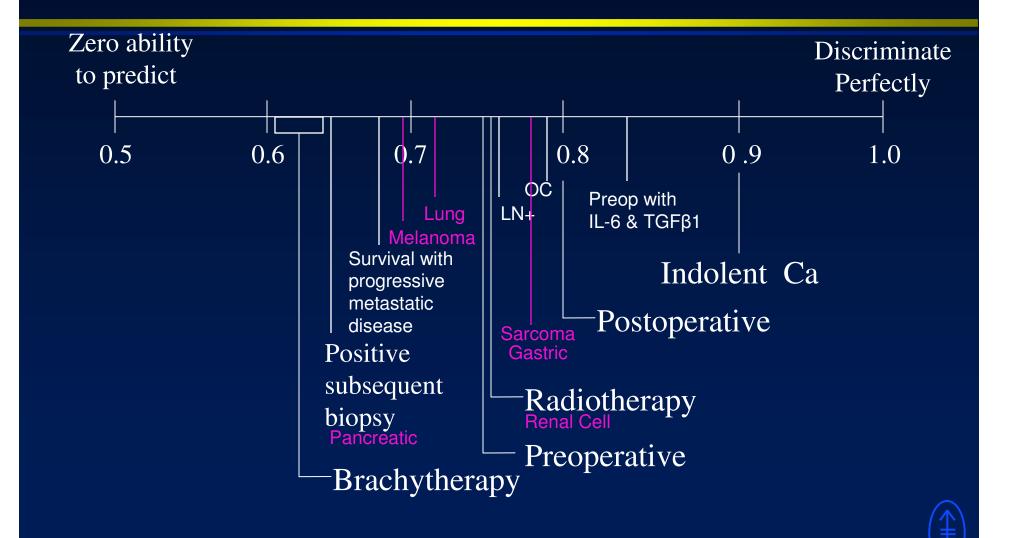
Model	Comparator	CI (M vs C)
Preop	L/I/H Risk Groups	0.67 vs. 0.64
Preop + IL6/TGFβ1	L/H Risk Groups	0.84 vs. 0.73
Pre XRT	L/I/H Risk Groups	0.76 vs. 0.69
Melanoma SLN+	AJCC Stage	0.69 vs. 0.66
Pancreatic Ca	AJCC Stage	0.64 vs. 0.56
Gastric Ca	AJCC Stage	0.77 vs. 0.75
Breast Ca	NPI Groups	0.69 vs. 0.64
Sarcoma	CART Groups	0.77 vs. 0.74

Software to facilitate real-time predictions

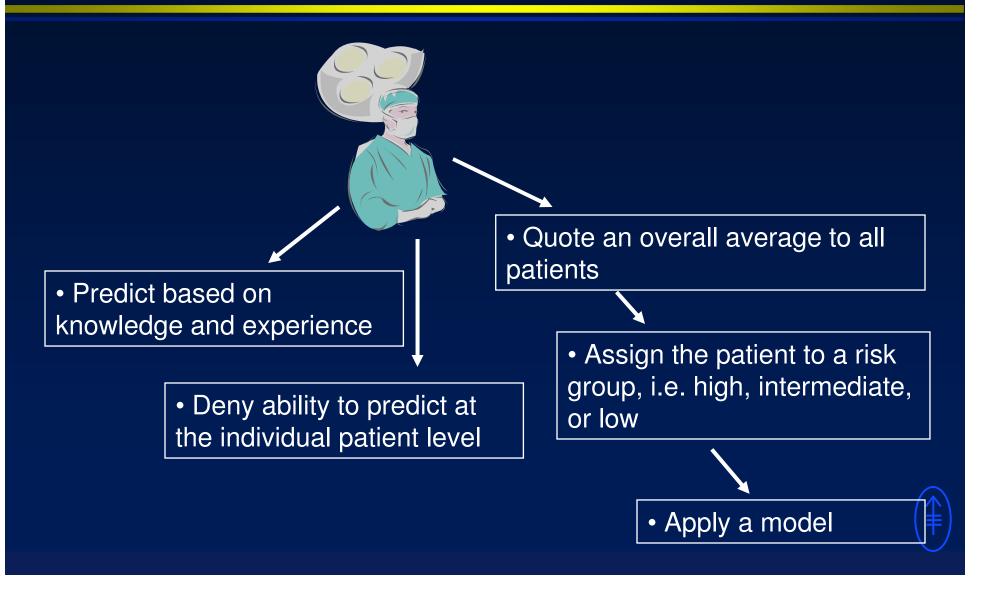


- Software is free from http://www.mskcc.org/predictiontools
- Prostate, renal cell, gastric, sarcoma, breast, lung available now.
- Pancreatic, melanoma available soon.

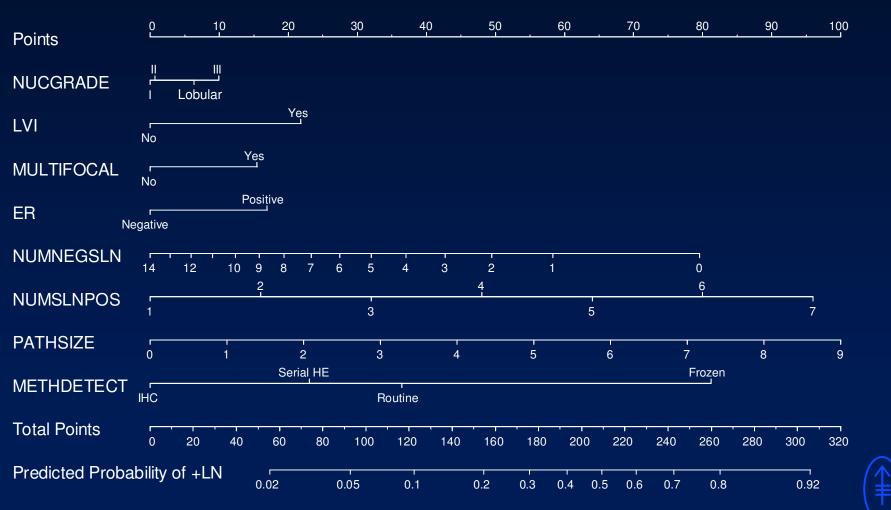
Levels of discrimination for some prediction tools



When The Patient Wants A Prediction, What Options Does The Clinician Have?

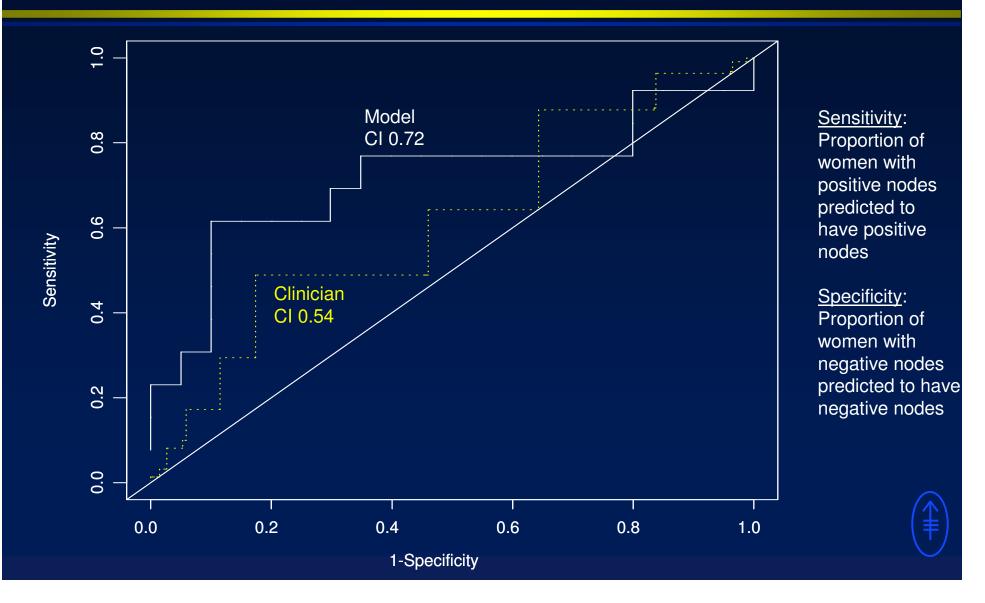


Nomogram for predicting the likelihood of additional nodal metastases in breast cancer patients with a positive sentinel node biopsy

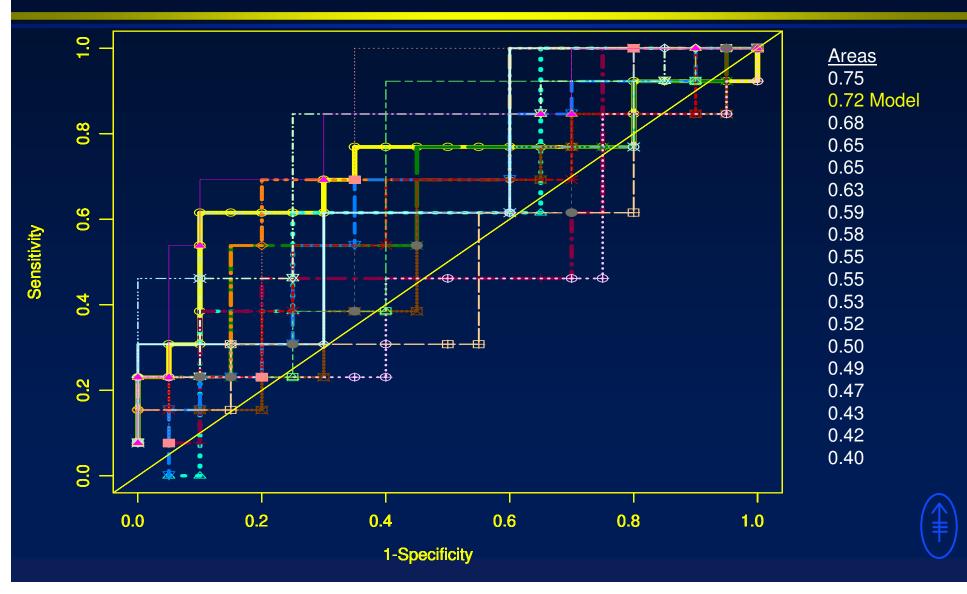


Vanzee K, et al., Ann Surg Oncol., 2003.

Breast Cancer Prediction: 17 Clinicians vs. Model on 33 Patients



ROC Curves Individual Clinicians and Model



Conclusions

- Concordance index is a useful metric by which to compare rival prediction models.
- The decision whether to use any model vs. assume homogeneous risk is context dependent.

Collaborators

- Methods
 - » Biostatistics
 - Mithat Gonen
 - Glenn Heller
 - Peter Bach
 - Colin Begg
 - Frank Harrell
 - » Informatics
 - Paul Fearn
 - David Ladanyi
 - John Davey
 - Pat Turi
 - Jacob Rockowitz
 - Drumbeat Digital

- Applications
 - » Peter Scardino
 - » Murray Brennan
 - » Marty Karpeh
 - » Kim VanZee
 - » Dan Coit

