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How is risk typically computed?

• Based on features, we make a crude tree.

• Most cancer staging systems do this.
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The problem with crude trees

• They are very easy to use.

• But they do not predict outcome optimally.

» High risk groups are very heterogeneous.

– A single risk factor may qualify a patient as high 

risk.

• Other approaches, like a Cox regression 
model, predict more accurately.



Some simple steps that will make a difference

1. Build the most accurate model possible.

2. Take model to bedside
» As a nomogram, 

» In stand-alone software (desktop, handheld, web)

» Built into the electronic medical record

• Doing this will predict patient outcome more 
accurately, resulting in
» better patient counseling

» better treatment decision making



Desirable characteristics of an error measure

• Understandable/interpretable

• Sensitive to model improvement

• Model-free

• Unaffected by censoring



CONCORDANCE INDEX (censored data)

• probability that, given two randomly drawn patients, the patient who 

fails first had a higher probability of failure.

• assumes that the patient with the shorter follow-up fails

• does not apply if both patients fail at the same time, or the 

censored patient has shorter follow-up.

Usable patient pairs with consistent outcome

Usable patient pairs

usable patient pair - patient with the shorter follow-up must fail

consistent outcome - failure more likely for the shorter follow-up 
patient

tied predicted probabilities get 1/2
(Harrell, 1982)



Gastric Cancer Disease-Specific Survival 

by AJCC Stage

Months from Surgery
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Gastric Cancer Disease-Specific Survival Nomogram

Points
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How to tell if we are doing any better than 

existing models?

Compare jackknife predicted probabilities of new 

model to existing model predictions:

Method Concordance Index

AJCC Stage 0.77

Nomogram (jackknife) 0.80

(p<0.001).



How to tell if we are doing any better than 

existing models?  Validation dataset

Concordance Index

Method Original Dutch Trial (n=459)

AJCC Stage 0.77 0.75

Nomogram 0.80 0.77

(p<0.001) (p<0.001)



Heterogeneity within stages
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Carroll et al., J. Urol, 2004



Nomograms for clinical trial design

• Example: CALGB 90203, preoperative therapy for patients at high 
risk of failure following surgery for prostate cancer 

Biopsy Gleason Grade ≤≤≤≤ 2+ ≤≤≤≤ 2 3+3 ≤≤≤≤ 3+≥≥≥≥ 4

≤≤≤≤ 2+3 ≥≥≥≥ 4+ ?

Total Points 0 20 40 60 80 100 120 140 160 180 200

60 Month Rec. Free Prob. .96 .93 .9 .85 .8 .7 .6 .5 .4 .3 .2 .1 .05

3+ ≤≤≤≤ 2

Clinical Stage T1c T1ab

T2a T2c T3a

T2b

Points
0 10 20 30 40 50 60 70 80 90 100

PSA 0.1 1 2 3 6 8 9 10 12 16 30 45 70 1107 204

< 60%



Continuous Models vs. Staging/Grouping Systems

0.84 vs. 0.73L/H Risk GroupsPreop + 

IL6/TGFβ1

0.76 vs. 0.69L/I/H Risk GroupsPre XRT

0.67 vs. 0.64L/I/H Risk GroupsPreop

CI (M vs C)ComparatorModel

0.77 vs. 0.74CART GroupsSarcoma

0.69 vs. 0.64NPI GroupsBreast Ca

0.77 vs. 0.75AJCC StageGastric Ca

0.64 vs. 0.56AJCC StagePancreatic Ca

0.69 vs. 0.66AJCC StageMelanoma SLN+



Software to facilitate real-time predictions

• Software is free from http://www.mskcc.org/predictiontools

• Prostate, renal cell, gastric, sarcoma, breast, lung available now. 

• Pancreatic, melanoma available  soon.

Software for the Palm Pilot, PocketPC, and 
Windows Desktop ComputersModels 



Levels of discrimination for some prediction tools
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When The Patient Wants A Prediction, What 

Options Does The Clinician Have?

• Quote an overall average to all 
patients

• Deny ability to predict at             
the individual patient level

• Assign the patient to a risk 
group, i.e. high, intermediate, 
or low

• Apply a model

• Predict based on 
knowledge and experience



Points
  0  10  20  30  40  50  60  70  80  90 100

NUCGRADE
I

II III

LVI
No

Yes

MULTIFOCAL
No

Yes

ER
Negative

Positive

NUMNEGSLN
14 12 10 9 8 7 6 5 4 3 2 1 0

NUMSLNPOS
1 3 5 7

2 4 6

PATHSIZE
0 1 2 3 4 5 6 7 8 9

METHDETECT
IHC Routine

Serial HE Frozen

Total Points
  0  20  40  60  80 100 120 140 160 180 200 220 240 260 280 300 320

Predicted Probability of +LN
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Nomogram for predicting the likelihood of 

additional nodal metastases in breast cancer patients 

with a positive sentinel node biopsy 

Vanzee K, et al., Ann Surg Oncol., 2003.
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Breast Cancer Prediction: 17 Clinicians vs. 

Model on 33 Patients
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ROC Curves

Individual Clinicians and Model
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Conclusions

• Concordance index is a useful metric by 
which to compare rival prediction 
models.

• The decision whether to use any model 
vs. assume homogeneous risk is context 
dependent.
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