SUPPLEMENTARY MATERIAL

Amplitudes of Protein Backbone Dynamics and Correlated Motions in a Small $\alpha / \boldsymbol{\beta}$ Protein: Correspondence of dipolar coupling and heteronuclear relaxation measurements

G. Marius Clore ${ }^{*, \dagger}$ and Charles D. Schwieters ${ }^{\ddagger}$
${ }^{\dagger}$ Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
${ }^{*}$ Division of Computational Bioscience, Building 12A, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624

2 Figures

Fig. S1 Correlation between $<S_{N H}^{2}($ jump $)>$ derived from the two-, three- and eightstructure ensembles. The angle brackets denote averaging over 100 calculated ensembles.

Fig. S1

Fig. S2 Correlation between the ω peptide bond torsion angle derived from the one- and two-structure ensemble calculations and those reported by Ulmer et al. (J. Am. Chem. Soc. 2003, $125,9179-9191$). The structure of Ulmer et al. was refined with a different procedure using a single-structure representation against the same set of RDCs, excluding those for the following 10 residues (residues 11-12, 24-26, 39-41 and 43). The angle brackets denote averaging over 100 calculated ensembles.

Fig. S2

