
 Center for Bioinformatics

 Technical Guide

September 6, 2007

 CAARRAY 1.6

i

CREDITS AND RESOURCES

caArray Development
and Management Teams

Development Quality Assurance Documentation
Project and

Product
Management

Eric Tavela2 Bill Mylander5 Eric Tavela2 Mervi Heiskanen1

Leslie Power2 Jenny Glenn5 Leslie Power2 Anand Basu1c

Steve Matyas2 Xiaopeng Bian1 Rob Daly2 Jerry Eads4

Krishna
Kanchinadam2

Krishna
Kanchinadam2

Rob Daly2

Steve Matyas2 Juli Klemm1

Jill Hadfield1

Systems and Application Support Training

Wei Lu3 Don Swan3

Vanessa Caldwell3

Michael Gomes3

1 National Cancer Institute Center for Bioinfor-
matics (NCICB)

2 5AM Solutions 3 Terrapin Systems

4 Northern Taiga Ven-
tures, Inc.

5NARTech

Contacts and Support

NCICB Application Support http://ncicbsupport.nci.nih.gov/sw/
Telephone: 301-451-4384
Toll free: 888-478-4423

http://ncicbsupport.nci.nih.gov/sw/

caArray 1.6 Technical Guide

ii

This is a U.S. Government work. iii

TABLE OF CONTENTS
Credits and Resources .. i
Using the caArray Technical Guide ...1

Introduction to caArray .. 1
Purpose of this Manual ... 1
Recommended Reading .. 2
Organization of the Manual ... 2
Document Text Conventions ... 2

Chapter 1
caCORE and caBIG Overviews ..5

NCICB caCORE Infrastructure Overview ... 5
caBIG Compliance ... 6

caBIG Architectural Principles .. 7
caBIG-Compliant Data Standards ... 7
caArray at caBIG Cancer Centers .. 7

Chapter 2
Overview of caArray ..9

Chapter 3
caArray Architecture ...11

caArray Architecture Diagram .. 11
caArray Technologies ... 12
caArray Interfaces ... 14

Chapter 4
caArray Design ..17

Web Tier .. 17
Model View Controller 2 .. 17
Composite View .. 18
Struts .. 18

caArray 1.6 Technical Guide

iv This is a U.S. Government work.

Application Tier ... 19
Data Transfer Objects .. 19
EJB Layer .. 20
MAGE Manager ... 25
MAGE-stk ... 26
Object Relational Mapping .. 28

Database Tier .. 32
caArray Database .. 32
Security Database .. 32
File Share .. 32

Chapter 5
caArray Data Access Security ...33

Access Privileges ... 33
CRUD Permission Levels ... 35
Security EJB .. 35
Enabling Security ... 36
EJBs .. 36
Programmatic Security ... 37

Chapter 6
caArray Download Site ..39

caArray Portal .. 39
caArray MAGE-OM API .. 40

Chapter 7
MAGE-OM API ...41

MAGE-OM API Introduction .. 41
MAGE-OM Directory Structure .. 42
Accessing the MAGE-OM Production Server ... 43
Testing the MAGE-OM Production Server ... 43
MAGE-OM Architecture .. 44

Domain Objects .. 44
SearchCriteria ... 44
RMI .. 45

MAGE-OM Security .. 47
Client-side Security ... 47
Server-side Security .. 48

Directable .. 50
Persistence .. 50

Table of Contents

This is a U.S. Government work. v

Chapter 8
caArray APIs ..53

caArray EJB API ... 53
Directory Structure .. 54
Testing caArray EJB APIs ... 56

Chapter 9
caAMEL Service API ..59

Introduction to the caAMEL API .. 59
caAMEL Service API Code Example .. 60
Considerations Before Coding for caAMEL Service API 62

Appendix A
UML Modeling ..63

UML Modeling .. 63
Use-case Documents and Diagrams ... 64
Class Diagrams .. 66
Relationships Between Classes .. 67
Sequence Diagrams ... 69

Appendix B
caArray References ...71

Appendix C
caArray Glossary ...73

Index ..77

caArray 1.6 Technical Guide

vi This is a U.S. Government work.

1

USING THE CAARRAY TECHNICAL GUIDE
This chapter contains an overview of the technical guide.

Topics in this chapter include:

Introduction to caArray on this page
Purpose of this Manual on this page
Recommended Reading on page 2
Organization of the Manual on page 2
Document Text Conventions on page 2

Introduction to caArray

The National Cancer Institute (NCI) Center for Bioinformatics (NCICB) Cancer Array
Informatics Project (caArray) consists of a microarray database and microarray data
analysis and visualization tools (http://caArray.nci.nih.gov). caArray is an open source
project, and the source code and Application Programming Interfaces (APIs) are avail-
able for local installations at http://ncicb.nci.nih.gov/download under an open source
license. The goals of the project are to make microarray data publicly available, and to
develop and bring together open source tools to analyze these data. See Overview of
caArray on page 9 for more information on caArray.

Purpose of this Manual

The caArray Technical Guide is intended for developers wanting to understand the
underlying design of the caArray database and architecture to help them better utilize
the open source code and APIs. This guide does not contain information on the data
management or data analysis tools used by caArray.

Existing caArray documentation can be found on the caArray page of the NCICB web-
site: http://caarray.nci.nih.gov/documentation. This guide does not duplicate documents
found independently at that website, but contains ancillary technical documentation
contributing to the successful utilization of caArray.

http://caarray.nci.nih.gov/documentation
http://caArray.nci.nih.gov
http://ncicb.nci.nih.gov/download

caArray 1.6 Technical Guide

2

Recommended Reading

Appendix B contains reading materials and resources that can be useful for familiariz-
ing oneself with concepts contained within this guide.

Uniform Resource Locators (URLs) are used throughout the document to provide more
detail on a subject or product.

Organization of the Manual

The caArray Technical Guide contains the following chapters:

Using the caArray Technical Guide
Chapter 1 caCORE and caBIG Overviews
Chapter 2 Overview of caArray
Chapter 3 caArray Architecture
Chapter 4 caArray Design
Chapter 5 caArray Data Access Security
Chapter 6 caArray Download Site
Chapter 7 MAGE-OM API
Chapter 8 caArray APIs
Chapter 9 caAMEL Service API
Appendix A UML Modeling
Appendix B caArray References
Appendix C caArray Glossary

Document Text Conventions

Table 1.1 illustrates how text conventions are represented in this guide. The various
typefaces differentiate between regular text and menu commands, keyboard keys, tool-
bar buttons, dialog box options and text that you type.

Convention Description Example

Bold & Capitalized Command
Capitalized command > Capi-
talized command

Indicates a Menu command
Indicates Sequential Menu com-
mands

New Array Design

TEXT IN SMALL CAPS Keyboard key that you press Press ENTER

TEXT IN SMALL CAPS + TEXT IN
SMALL CAPS

Keyboard keys that you press simulta-
neously

Press SHIFT + CTRL and then
release both.

Table 1.1 caArray Guide Text Conventions

 Using the caArray Technical Guide

3

Monospace type Used for filenames, directory names,
commands, file listings, and anything
that would appear in a Java program,
such as methods, variables, and
classes.

ExperimentData

Boldface type Options that you select in dialog
boxes or drop-down menus. Buttons
or icons that you click.

From the Experiment Details
page, click Generate MAGE-
ML.

Italics Used to reference other documents,
sections, figures, and tables.

caArray User’s Guide

Boldface monospace
type

Text that you type In the New Subset text box,
enter Array Manufacture
Software.

Note: Highlights a concept of particular
interest

Note: This concept is used
throughout the installation man-
ual.

Warning! Highlights information of which you
should be particularly aware.

Warning! Deleting an object will
permanently delete it from the
database.

{ } Curly brackets are used for replace-
able items.

Replace {root directory}
with its proper value, such as
c:\caarray

Convention Description Example

Table 1.1 caArray Guide Text Conventions (Continued)

caArray 1.6 Technical Guide

4

5

CHA PTE R

1
CACORE AND CABIG OVERVIEWS

This chapter contains overviews of the cancer Common Ontologic Representation
Environment (caCORE) and the cancer Biomedical Informatics Grid (caBIG) since the
caArray application is engineered to use the caBIG APIs, thus complementing the
caCORE infrastructure.

Topics in this chapter include:

NCICB caCORE Infrastructure Overview on this page

caBIG Compliance on page 6

NCICB caCORE Infrastructure Overview

Note: caArray will interface to the caCORE infrastructure in future releases; the caArray
application will point to Cancer Bioinformatics Infrastructure Objects (caBIO). Currently,
Cancer Data Standards Repository (caDSR) data is loaded into the caArray database.

NCICB provides biomedical informatics support and integration capabilities to the
cancer research community. NCICB has created a core infrastructure called caCORE,
a data management framework designed for researchers who need to be able to
navigate through a large number of data sources. caCORE is NCICB's platform for data
management and semantic integration, built using formal techniques from the software
engineering and computer science communities.

Characteristics of caCORE include:

Model Driven Architecture

n-tier architecture with open APIs

Use of controlled vocabularies, wherever possible

Registration of metadata

caArray 1.6 Technical Guide

6

The first two items allow for easy access of data, particularly by other applications. The
last two items help resolve what might be called the ‘metadata problem’, that is,
identifying in an unambiguous manner the meaning of each object and attribute in an
API. In this case, metadata is the definition of an attribute rather than its value. For
example, given the attribute ‘zipCode’ its value might be ‘20852’ while its metadata
(definition) is ‘a 5 or 9 digit number used by the United States Postal Service to divide
geographical regions into delivery zones’. By registering metadata (using terms in an
electronically accessible controlled vocabulary) in a repository, caCORE provides a
means to select appropriate information resources and to aggregate information from
multiple sources.

All of the components of caCORE are designed using these same principles. Systems
with these properties are said to be “caCORE-like”.The main components of caCORE,
created and deployed by NCICB, include:

Cancer Bioinformatics Infrastructure Objects (caBIO): A set of JavaBeans
with open APIs that can be used to directly access bioinformatics data. (http://
ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO). Unified Modeling
Language™ (UML) models of biomedical objects are implemented in Java as
middleware connected to various cancer research databases to facilitate data
integration and consistent representation.

Cancer Data Standards Repository (caDSR): A metadata registry based
upon the ISO/IEC11179 standard that is used to register the descriptive
information needed to render cancer research data reusable and interoperable
(http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr). The caBIO,
EVS and caDSR data classes are registered in the caDSR, as are the data
elements on NCI-sponsored clinical trials case report forms.

Enterprise Vocabulary Services (EVS): Controlled vocabulary resources that
support the life sciences domain, implemented in a description logics framework
(http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary). EVS
vocabularies provide the semantic 'raw material' from which data elements,
classes, and objects are constructed.

caBIG Compliance

The NCICB, in cooperation with various cancer centers and other research institutions
has recently launched a new project, the caBIG (http://cabig.nci.nih.gov/) that is designed
to create a large data system using Grid technology. Because of the federated nature of
data grids, it was deemed essential that semantic interoperability be integrated into
caBIG, with guidelines devised for various levels of compliance ranging from Legacy
(no semantic interoperability), through Bronze, Silver and Gold (fully Grid compatible).
The current caBIG maturity level of caArray is Silver. For more information, see caBIG
Compatibility Guidelines (http://cabig.nci.nih.gov/guidelines_documentation).

The caArray database and analysis tools were developed to be consistent with caBIG
compatibility guidelines that highlight use of controlled vocabularies, Common Data
Elements (CDEs), well documented APIs and UML models. caBIG is a new initiative
coordinated by NCI in partnership with other members of the cancer research
community. caBIG seeks to create a network that links organizations, institutions, and
individuals to enable the sharing of cancer research infrastructure, data, and

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://ncicb.nci.nih.gov/core/EVS
http://cabig.nci.nih.gov/

Chapter 1: caCORE and caBIG Overviews

7

interoperable tools. It is an open-access, open-source activity that promises to expedite
progress in cancer research. caArray’s compatibility with the caBIG design
requirements facilitates the cross-silo use of cancer biology information to promote
integrated cancer research.

caBIG Architectural Principles
Data and analytic services using uniform APIs and appropriate standard message
formats are made available to caBIG. This allows programmatic interface to caArray
data via the Enterprise JavaBeans (EJB) Managers, Microarray and Gene Expression
Object Model (MAGE-OM) API, and the Microarray and Gene Expression Markup
Language (MAGE-ML) document. caArray is built upon the MAGE-OM object model,
Minimum Information About a Microarray Experiment (MIAME) and Microarray Gene
Expression Data (MGED) Ontology standards. The APIs and messages support the
delivery of data and of accompanying metadata in order to ensure that aggregated data
sets are comparable. caArray supports and extends MAGE-OM that allows for the deep
annotation of microarray experiments according to MIAME.

caBIG-Compliant Data Standards
caArray data is described by metadata elements that conform to the accepted ISO/IEC
11179 standard. The metadata resides in caDSR and is leveraged to achieve data
interoperability and comparability. caArray supports MAGE-OM as described in Unified
Modeling Language (UML).

Standards for the following international data exchange formats form the basis for
caBIG-compliant data exchange in caArray:

MIAME - http://www.mged.org/Workgroups/MIAME/miame.html

MAGE-ML - http://www.mged.org/Workgroups/MAGE/mage-ml.html

MGED Ontology - http://mged.sourceforge.net/ontologies/MGEDontology.php

caArray at caBIG Cancer Centers
caArray design is based on the caBIG compatibility guidelines to allow interoperability
with other applications developed under the caBIG program. The design allows the
integration with other data for comparative analysis. The caArray database can be
deployed locally at NCI-designated cancer centers and other affiliated organizations as
shown in Figure 1.1. The caArray system design facilitates data exchange between

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MAGE/mage-ml.html
http://mged.sourceforge.net/ontologies/MGEDontology.php

caArray 1.6 Technical Guide

8

research centers. The data can be easily migrated to the central caArray database at
the NCI when the data is published.

Figure 1.1 caArray database deployment

9

CHA PTE R

2
OVERVIEW OF CAARRAY

This chapter contains an overview of caArray and specifies the data management and
data analysis tools used with caArray.

The NCICB's caArray consists of a microarray database and microarray data analysis
and visualization tools. caArray is an open source project, and the source code and
APIs are available for local installations at http://ncicb.nci.nih.gov/download under an open
source license. The goals of the project are to make microarray data publicly available,
and to develop and bring together open source tools to analyze these data.

The key features of caArray include the following:

Allows researchers to manage and document their experiment data with full
MIAME 1.1 compliant annotation

Supports the import and export of MAGE-ML, promotes data exchange via an
internationally standardized format.

Supports submission and retrieval of Affymetrix and GenePix native format files

Supports use of MGED controlled vocabularies (via OntologyEntry)

Allows access via MAGE-OM API

Is consistent with caBIG principles in providing an open-source application to
NCI-designated cancer centers and other affiliated organizations

The caArray database is a standards-based open source data management system;
version 1.0 was released in January 2005. caArray features MIAME 1.1 compliant data
annotation forms, controlled vocabularies (MGED ontology), and MAGE-ML import and
export. caArray also provides open interfaces for programmatic access to microarray
data.

The caArray datasets and open source tools are publicly available and contain the
following data management and data analysis tools. These tools are referenced here,
but are not described in this guide. For more information about these tools, refer to the
websites displayed.

http://ncicb.nci.nih.gov/download

caArray 1.6 Technical Guide

10

1. Data Management - (https://caarraydb.nci.nih.gov/caarray/index.jsp)
o caArray Data Portal - is a MIAME compliant data repository that allows

submission of MIAME 1.1 level annotations and microarray data via web-
based submission forms.

2. Data Analysis -
o geWorkbench - https://gforge.nci.nih.gov/projects/geworkbench/ - A suite of

tools for loading, visualizing and analyzing gene expression data that
provides access to data from any repository with a MAGE-OM API

o GenePattern - https://gforge.nci.nih.gov/projects/genepattern/ - An analysis
platform that supports multidisciplinary genomic analysis and the integration
of new technologies

o Bioconductor affy package - https://gforge.nci.nih.gov/projects/bioconductor/ -
A package that contains functions for exploratory oligonucleotide array
analysis. Functionality includes background correction, normalization, and
expression summaries.

https://gforge.nci.nih.gov/projects/bioconductor/
https://gforge.nci.nih.gov/projects/genepattern/
https://caarraydb.nci.nih.gov/caarray/index.jsp
https://gforge.nci.nih.gov/projects/geworkbench/
http://caarraydb.nci.nih.gov/caarray/index.jsp

11

CHA PTE R

3
CAARRAY ARCHITECTURE

This chapter contains the architecture of caArray including its design, implementation
and interfaces.

Topics in this chapter include:

caArray Architecture Diagram on this page

caArray Technologies on page 12

caArray Interfaces on page 14

caArray Architecture Diagram

The caArray system uses an architecture that separates the application into a series of
tiers. A typical client-server system is a two-tier system (the client and the server that
returns the data). This has the advantage of simplicity, but it ties the client very tightly to
the details of the implementation model. To isolate the client from the implementation
details, a data system can be built with one or more layers of ‘middleware’, software
whose purpose is to act as a bridge between the server and the client. If changes are
made to the server, the middleware is modified so that the client sees a consistent
interface (API).

Some of the features of the caArray architecture as shown in Figure 3.1 include:

Servlet

Web tier

EJB/ Session Facade

Data Transfer Object (DTO

Data Access Object (DAO)

MAGE-OM API

caArray 1.6 Technical Guide

12

MAGE Software Toolkit (MAGE-stk)

caArray MAGE-ML Loader (caAMEL)

Messaging Service

Figure 3.1 caArray architecture diagram

caArray utilizes an n-tier architecture as shown in Figure 3.1. It utilizes the J2EE
framework and provides programmatic interfaces as well as a web portal interface for
submission and retrieval of microarray data. The EJB interface provides transactional
API capability with the use of DTOs that are used to transfer actual data. The Web
portal, built utilizing Struts framework, uses the EJB and corresponding DTOs to
perform transactions with the backend. An RMI-based query, API-based on MAGE-OM,
provides programmatic query access to fine grain data, for example Quantitation data.
Internally, caArray utilizes an Object Relational Mapping (ORM) tool called
ObjectRelationalBridge (OJB) to abstract the actual Data source from the application
and provide object-based access to data. The application also utilizes Java Messaging
Service (JMS) from asynchronous parsing of large data files.

Role based security is implemented with the system, and a common NCICB security
schema is used for users access. This configurable security architecture allows for
Lightweight Directory Access Protocol (LDAP)- or Relational Database Management
System (RDBMS)-based authentication and has concept of Groups, which allows for
sharing of data amongst a consortium of researchers. MAGE-OM also utilizes the same
common security service to filter objects based on users' roles and permission. This
implementation is provided via Aspect Oriented Programming (AOP).

caArray Technologies

To create a scalable and robust distributed caArray architecture, caArray uses the
following technologies:

Chapter 3: caArray Architecture

13

J2EE web container and J2EE EJB container (JBoss implementation) for data
submission

Java Messaging Service (JMS) for asynchronous processing of large uploaded
documents

Apache’s OJB as the ORM tool that allows transparent persistence for “plain
old” Java objects (POJOs) in the MAGE-stk toolkit

MAGE-ML import via caAMEL uses MAGE-stk 1.1 with caArray-specific
enhancements

Figure 3.2 represents the implementation of caArray. The top three boxes represent the
client machine as noted by the client layer. The presentation, business and data access
layers represent the layers on the server.

Figure 3.2 caArray implementation

The Presentation layer provides the GUI framework (see Model View Controller 2 on
page 17) and flexible web page layout (see Composite View on page 18).

Table 3.1 displays the business layer challenges and solutions used by caArray.

Design Challenge caArray Solution

Data encapsulation Transfer Objects

Common object to locate/lookup
services

Service Locator

Abstract and decouple business services Business Delegate

Encapsulate the DTO to MAGE-OM logic Transfer Object Assembler

Table 3.1 Business layer design solutions

caArray 1.6 Technical Guide

14

Table 3.2 displays the persistence design challenges and solutions used by caArray.

caArray Interfaces

caArray provides access to its data via the following interfaces.

1. Programmatic
o MAGE-OM API - Provides fine-grain search and retrieval of all caArray data

via a RMI-based API. The MAGE-OM API objects are based on MAGE-OM
1.1 and are modified to map the MAGE objects to the new caArray database
schema. An RMI security module provides for user/group level data access.

o caArray EJB API - Provides transaction control, asynchronous processes,
service location, common security and distributed capabilities for
submission and retrieval of microarray experiments, MAGE-ML documents
and its associated data files via DTOs.

o caArray Submission Portal - Provides a user friendly GUI. caArray allows
users to submit, annotate and retrieve experiments. caArray portal includes
MIAME 1.1 compliance, MGED Ontology for annotation, MAGE-ML import,
and support for file formats from Affymetrix, Agilent, GenePix, Illumina, and
Imagene.

o caAMEL Service API – The caArray MAGE-ML Loader (caAMEL)
distribution provides an EJB remote interface for validating and loading
MAGE-ML documents into caArray.

2. Document
o MAGE-ML import – caArray supports MAGE-ML import for any well-formed

and valid MAGE-ML document. caArray supports DataExternal and
DataInternal for import of Quantitation data with MAGE-ML. The
Quantitation data is generated in a tab delimited text file. The actual format
of the DataExternal/DataInternal is specified within the XML, such as tab
delimited and others. For more information, refer to the caAMEL 1.0 User’s
Guide: https://caarraydb.nci.nih.gov/caamel/.

Uniform coarse-grained service access
layer to clients

Session Facade

Access to vocab/metadata services Configurable Interface Pattern

Process asynchronous MAGE-ML import
& file uploads

Service Activator

Design Challenge caArray Solution

Decouple object and data source layer Abstraction and Database Independence

Efficient materialization of objects Lazy Materialization Pattern

Table 3.2 Persistence design solutions

Design Challenge caArray Solution

Table 3.1 Business layer design solutions (Continued)

https://caarraydb.nci.nih.gov/caamel/
https://caarraydb.nci.nih.gov/caamel/

Chapter 3: caArray Architecture

15

o Native Affymetrix, Agilent, GenePix, Illumina, and Imagene file formats
- Submission and retrieval of native Affymetrix , Agilent, GenePix, Illumina,
and Imagene files

caArray 1.6 Technical Guide

16

17

CHA PTE R

4
CAARRAY DESIGN

This chapter describes design strategy and solutions employed by the caArray
development team.

Topics in this chapter include:

Web Tier on this page

Application Tier on page 19

Database Tier on page 32

Web Tier

Model View Controller 2
caArray’s Presentation Layer utilizes the Model View Controller 2 (MVC2) design
pattern. As shown in Figure 4.1, there is a separation of the application object (model)
from the way it is represented to the user (view) from the way in which the user controls
it (controller). The benefit is it separates the User Interface from the underlying
structure.

MVC2 is implemented via Apache Struts framework. For more information on Struts,
see http://struts.apache.org/ and http://struts apache.org/userGuide/index.htm.

http://struts.apache.org/
http://struts.apache.org/userGuide/index.html

caArray 1.6 Technical Guide

18

Figure 4.1 MVPC2 design pattern

Composite View
The Composite design pattern lets you treat primitive and composite objects the same
as shown in Figure 4.2.

Figure 4.2 Composite view

The Apache Struts framework includes a JSP tag library, known as Tiles (http://
struts.apache.org/userGuide/dev_tiles.html), which lets you compose a Webpage from
multiple JSPs. Tiles allows you to build a flexible and reusable presentation layer.

Struts
The components utilized for Struts include:

Model View Controller 2

Tiles for layout (composite view pattern)

http://struts.apache.org/userGuide/dev_tiles.html
http://struts.apache.org/userGuide/dev_tiles.html

Chapter 4: caArray Design

19

Validation Framework (form validate method)

Common functionality for Action classes in ActionUtils

Some complex logic involved forms/objects in session.

Delegates used for EJB calls

Exception Handling mechanism

Application Tier

Data Transfer Objects
Data Transfer Objects (DTOs) provide a means to interact with EJB APIs and contain
information that allows web tier and other applications to create, read, update or delete
caArray data. The DTOs contain a mix of custom DTOs and domain DTOs. DTOs are
structured according to the needs of the web tier while representing copies of MAGE-
stk (domain objects). They take away the complexity of MAGE-stk objects.

There are three levels of DTO objects:

1. Desc classes - Contain minimal identifying data for search results. These
classes name ends with Desc (for example, ExperimentDesc as shown in
Figure 4.3).

2. Data classes - Contain data intended for update and insert operations of the
object and its associated objects which must exist and may contain only the ID.
These classes name ends with Data (for example, ExperimentData as shown in
Figure 4.3).

3. View classes - Contain data intended for displaying the full details of an object
often with all of its aggregations. For example, ExperimentView contains an
array of ExperimentalFactorData while ExperimentData does not. These
classes name ends with View (for example, ExperimentView as shown in Figure
4.3).

Figure 4.3 DTO class structure

caArray 1.6 Technical Guide

20

The benefits of DTO include:

All data needed by client and server-side processes are encapsulated in the
object and sent/retrieved in one method call, therefore lessening the network
impact.

Strongly typed DTOs simplify server-side interface, providing easier code
maintenance.

Figure 4.4, the DTO sequence diagram, includes the following:

The application client sets user-entered values in the ProtocolData Transfer
Object.

The client application then invokes the EJB method to add protocol, sending the
Transfer Object by value.

The EJB method then retrieves all user-entered values from the Transfer
Object, and begins business processing.

Figure 4.4 DTO sequence diagram

EJB Layer
The EJB layer contains Stateless Session Beans that follow the session façade pattern.
They partition the business logic to minimize dependencies between the client and
server while forcing use cases to execute in one network call and in one transaction. An

Chapter 4: caArray Design

21

EJB method typically invokes a mirrored method from a ManagerDB subclass for a
given use case. All EJBs extend from the base AbstractSessionBean.

The EJB layer has Bean-managed persistence with explicit use of Java Transaction
API (JTA) such as begin, commit, rollback, and so forth. One EJB method typically uses
one transaction except for hybridization data file parsing services, which use multiple
sequential transactions.

Figure 4.5 depicts the logic flow through the EJB layer.

Figure 4.5 Logic flow of EJB layer

Service Locator Pattern
As shown in Figure 4.6 and Figure 4.7, caArray uses a common object,
ServiceLocator, to locate/lookup EJB home objects and JMS service components
(Connection Factory, Session, Topic, and so forth). The benefits include:

A single point of control of the complexity of the lookup operation

Ease of code maintenance for the creation of vendor-dependent initial context

caArray 1.6 Technical Guide

22

Increased application performance with cached EJB home objects.

Figure 4.6 ServiceLocator object

Figure 4.7 ServiceLocator sequence diagram

Business Delegate Pattern
As shown in Figure 4.8 and Figure 4.9, caArray uses a wrapper class for each of the
specific EJB Managers such as ExperimentManager, ProtocolManager, and so forth as
BusinessDelegate reduces coupling between presentation-tier clients and business
services. The benefit is it hides the underlying implementation details of the business

Chapter 4: caArray Design

23

service, such as the creation of EJB objects and accessing the details of business
operations.

Figure 4.8 BusinessDelegate object

Figure 4.9 BusinessDelegate sequence diagram

Session Façade Pattern
As shown in Figure 4.10 and Figure 4.11, caArray uses EJB managers such as
ProtocolManager, ExperimentManager and so forth as a façade to hide the
complexity of interactions between the business objects participating in a workflow. The
Session Façade manages the business objects and provides a uniform coarse-grained
service access layer to clients. The benefits include:

Reduces coupling between client and server side code increasing
manageability

Provides common API interface access for multiple client applications

Provides clean coarse grained access interface

caArray 1.6 Technical Guide

24

Allows for distributed deployment of client and server distributions.

Figure 4.10 SessionFacade

Figure 4.11 SessionFacade sequence diagram

VocabManager
The VocabManager retrieves controlled vocabularies and metadata via an interface
pattern. The implementations associated with this interface are configurable. This
allows you to plug caArray into the caCORE API, a different metadata repository or an
XML metadata descriptor file. Through this interface, the VocabManager allows the
caArray application to perform attribute type checking, validation and population of
enumerated lists and other controlled vocabularies.

Chapter 4: caArray Design

25

SecurityManager EJB
SecurityManager EJB provides programmatic APIs to access the security functionality.
All the domain elements implement the secure element interface using these methods
to get the security ID. Some methods are overloaded to take a collection of objects
implementing SecuredElementItf for scalability. SecurityManager EJB does not
know about the actual objects, it only deals with securedElementId passed in as an
argument or from SecuredElementItf.

It is configurable to use LDAP or RDBMS for authentication. Authorization roles and so
forth are accessed from RDBMS. SecurityCommon.properties and
LDAP.properties contain configurable properties. LDAP.properties specifies
LDAP server properties. SecurityCommon.properties specifies LDAP properties
file names as well as authentication and authorization class names.

LDAPAuthentication LdapAuthenticationDAObj

RdbmsAuthentication RdbmsAuthentication

Authorization RdbmsAuthorizationDAObj

Two commonly used SecurityManager methods are listed here but there are many
more.

1. Role[] getUserRoleData(String userName, String password)

a. Returns a collection of Role objects if you have authenticated correctly

2. public SecuredElementItf canUserAccessElement(SecuredEle-
mentItf object, String[] roleIds)

a. Meant to be called from EJBs, not from web tier

b. Returns the object if user can access the element

c. User is passed in via the session and is not passed explicitly as an argu-
ment

d. Roles which are given declarative access to a method are passed in

e. Corresponding overloaded method works with a collection

public SecuredElementItf[] canUserAccessElement(Secure-
dElementItf[] objectIds, String[] roleIds)

MAGE Manager
caArray uses the MAGE Manager as a Transfer Object Assembler to build the required
MAGE model or sub model as shown in Figure 4.12 and Figure 4.13. It uses DTOs to
retrieve data from various MAGE-stk business objects that define the model or part of
the model. The mapping between the DTOs and MAGE-stk is generated using XDoclet
and persists in an XML document. The benefits of the MAGE Manager include:

It encapsulates the MAGE-OM and hides it from business logic.

It shields business logic from complexity of assembling transfer objects.

caArray 1.6 Technical Guide

26

The use of the generic method reduces the code-base and enhances maintenance.

Figure 4.12 MAGE Manager Transfer Object Assembler Pattern

Figure 4.13 MAGE Manager Transfer Object sequence diagram

MAGE-stk
MAGE-stk is a collection of open source packages that implement the MAGE-OM in
various programming languages. The MAGE web site http://mged.sourceforge.net has
links to the MAGE-OM UML model, MAGE-stk source and javadoc, and user forums.
MAGE-stk is used as domain and persistence objects for caArray. MAGE-stk objects
are stored and retrieved using OJB.

DTO MAGE-stk Conversion
DTO - MAGE-stk conversion is performed to make copies of data stored as MAGE-stk
objects and represent them as DTO objects and vice versa. This is accomplished by
generalizing the copying of a source object to a target object based on the mapping of
the classes and their attributes. The DTO - MAGE-stk conversion utility uses Apache’s

http://mged.sourceforge.net

Chapter 4: caArray Design

27

commons-beanutils for fast cache of reflected methods, avoiding inefficient method
reflection in subsequent calls.

Shown in Figure 4.14 is an example of a DTO XML mapping.

<DTOmapping>
 <DTOClass
name="gov.nih.nci.caarray.common.data.vocab.DatabaseData">
 <TargetClass name="org.biomage.Description.Database">
 <ConvertField id="id"
 from="id_" to="id"
 fromtype="long" totype="long">
 </ConvertField>
 <ConvertField id="name“
 from="name_" to="name"
 fromtype="java.lang.String"
totype="java.lang.String">
 </ConvertField>
 …
 </TargetClass>
 </DTOClass>
<DTOClass
name="gov.nih.nci.caarray.common.data.vocab.VocabData">
 <TargetClass
name="org.biomage.Description.OntologyEntry">
 <ConvertField id="id"
 from="desc_.id_" to="id"
 fromtype="long" totype="long">
 </ConvertField>
 <ConvertField id="database"
 from="database_" to="ontologyReference.database“
fromtype="gov.nih.nci.caarray.common.data.vocab.DatabaseData"
 totype="org.biomage.Description.Database">
 </ConvertField>
 …
 </TargetClass>
 </DTOClass>
<DTOClass
name="gov.nih.nci.caarray.common.data.vocab.VocabDesc">
 <TargetClass
name="org.biomage.Description.OntologyEntry">
 <ConvertField id="id"
 from="id_" to="id"
 fromtype="long" totype="long">
 </ConvertField>
 …
 </TargetClass>
 </DTOClass>
 …
<DTOmapping>

Figure 4.14 DTO XML mapping

caArray 1.6 Technical Guide

28

The conversion functionalities include:

Copy an object of one object type to an object of another type: Copy an
object of one type by value to and from an object of another type using the
mapping of their attributes

Copy attribute to attribute: Attributes can be of the same or different types (for
example, String to int, int to int, and so forth). This is supported by commons-
utils.

Copy object reference to object reference: Based on the mapping of the
referenced object types. For example, copying VocabData.database attribute to
OntologyEntry.ontologyReference.database attribute is done using the mapping
of the classes DatabaseData to Database.

Copy an array or list of primitives or object references to an array or list of
primitives or object references: For example, String[] to String[], String[] to
java.util.ArrayList, int[] to Integer[], DatabaseData[] to Database[],
DatabaseData[] to java.util.List are all possible

Note: Copying null results in null; Array or list attributes that are set to null are converted to
null in the target object. Always initialize/return zero-size arrays and empty lists instead
of null.

The package name for the converter is
gov.nih.nci.caarray.services.util.Dataconverter. The
DataConverter class contains static methods create and update for performing the
conversion. The use of the DataConverter class is abstracted from the EJB layer
using static classes such as services.experiment.ExperimentUtils, and so
forth.

Object Relational Mapping
ObjectRelationalBridge

caArray uses Apache's OJB as the ORM tool that allows transparent persistence for
POJOs against relational databases. The underlying utilization of OJB is standard. See
http://db.apache.org/ojb for more information on using OJB.

The benefits of OJB include:

Structured Query Language (SQL) generation is based on ORM (You don't
have to write SQL)

Create, Read, Update, Delete (CRUD) operations work with Java objects
directly

A wide range of database platforms including Oracle, MySQL, Sybase, etc. are
supported

Caching is performed; Once objects are retrieved, they stay in memory and are
handed out for subsequent retrievals

Connection pooling, statement cache

caArray utilizes OJB's persistence facility to manage the connection to the data source,
store and restore MAGE-stk objects. The mapping of MAGE-stk objects and their

http://db.apache.org/ojb
http://db.apache.org/ojb

Chapter 4: caArray Design

29

relationships to the database entities is described in OJB repository files to allow OJB
to know how to persist or restore them.

The caArray schema and OJB mapping repository were originally generated by
annotating MAGE-stk with XDoclet tags and using Apache’s Torque. A variety of
updates/corrections has been incrementally made to the schema and OJB repository
such as:

Key constraints

Column size

Java-to-SQL type conversion

Optimized inheritance hierarchy mappings

Adjusted settings for cascade-update, -deletion and -retrieval

caARRAY utilizes OJB’s table-based high/low sequence generator using the
OJB_HL_SEQ table to create globally unique primary keys for the MAGE-stk tables.
caArray utilizes OJB HI_LO sequence manager so you can set the max_seq in
OJB_HL_SEQ table against SEQ_Extendable to set the right values. Ids are long by
default and so are biomaterials. Ids in DTOs are java long.

OJB’s persistence mechanism is abstracted from caARRAY by a small set of classes in
package gov.nih.nci.caarray.services.util.db. Hiding OJB’s specifics
facilitates replacing it if needed.

ManagerDB is a wrapper of OJB’s PersistenceBroker (which can be thought of as Java
Database Connectivity (JDBC) connection, though there are some differences). All
persistence classes extend from ManagerDB. Table 4.1 contains important methods in
ManagerDB. They work hand-in-hand with the settings for auto-update, auto-delete
and auto-retrieve for the attribute-descriptor mappings in the OJB repository.

Method Description

storeObject(Object object) Insert or update an object in the database along
with its associated objects if auto-
update=true

deleteObject(Object object) Delete an object from the database along with its
associated objects if auto-delete=true

updateObject(Object object) Update an object in database and insert or update
its associated values if auto-update=true.
Cascade update (auto-update=true) for 1-n
does not mean the removal of elements on the n-
side association effect the deletion of them, rather
just their relationship with the parent object.

Table 4.1 ManagerDB Methods

caArray 1.6 Technical Guide

30

TransactionHandler as shown in Figure 4.15 was added to allow for the same
transaction operations used in both managed and non-managed (local) environments:

Local accessed database uses the JDBC’s autoCommit flag while J2EE uses
JTA, i.e. UserTransaction

Abstract UserTransaction for ease of exception handling

PersistenceBrokerManager as shown in Figure 4.15 manages OJB’s brokers
used by ManagerDB subclasses. The ManagerDB subclasses are expected to provide
specific persistence operations for domain objects and often contain business logic as
well. For example, ProtocolManagerDB has methods addProtocol,
updateProtocol, deleteProtocol, and so forth. Therefore, many methods

link(Object instance, String
attributeName, boolean insert)

Manually associate the parent object with the
associated object(s) for persistence based on
their relationship when the attribute has auto-
update=false

For 1-1 relationship: Not needed. The parent
object is automatically set with the foreign key
identifying the associated child object

For 1-n relationship: Set the primary key of
the parent object as the foreign key in the
associated list of child objects. Note: This
method is called after the parent object is
stored and before the child objects is stored

For m-n relationship: Insert or remove the
links in the many-to-many association table
as specified by the mapping repository.

Note: This method is called after both parent and
child objects are stored.

close() Close connection to database, similar to JDBC
Statement.close()

Method Description

Table 4.1 ManagerDB Methods

Chapter 4: caArray Design

31

such as storeObject, updateObject and deleteObject in ManagerDB are
protected.

Figure 4.15 OJB Abstraction layer and DAO classes

Reading of incorrect repository files should not be an issue as the OJB object names in
MAGE-OM are different from that in caArray even though they are mapped to the same
tables. The class contact is an abstract class and a person or organization is a
concrete class of contact. OJB needs to know in which table to look for a given
contact object. For this task, OJB goes to the contact table and reads in the value
of the OjbConcreteClass column. Dependent on this value, OJB goes to the
person or organization table. However, if the value in this class is incorrect, empty
or OJB cannot read it, then an error occurs.

Lazy Materialization Pattern
Lazy materialization refers to loading data collections only when they are actually
required. In caArray, lazy loading (also known as lazy materialization) is a capability
that is implemented via OJB collection proxies. Lazy materialization is implemented
using a proxy to make the calls to manipulate the collection. This can help you in
reducing unnecessary database lookups and object materialization.

For example, you load an Array Design object from the database, which contains a
collection of 15000 feature objects. Without proxies, all 15000-feature objects are
immediately loaded from the database, even if you are not interested in them but just
want to lookup the description-attribute of the array design object.

With a proxied class, the collection is implemented via a proxy that implements the
same interface as the real collection but only materializes the objects in the collection
when necessary. Once you access such a proxied collection, it loads its collection
objects by OJB and executes the method call.

Since the actual Java class uses an interface for the collection, the OJB proxy can be
utilized without changing, or creating dependencies within the classes code. The

caArray 1.6 Technical Guide

32

benefits include allowing materialization of objects efficiently in terms of both time and
memory usage.

Database Tier

The database tier of caArray contains caArray data sources that consist of the
following:

caArray Database

Security Database

File Share

caArray Database
The caArray database schema is originally generated from the MAGE-OM then
modifications are made for performance and caArray functionality. The caArray data
model was derived by annotating the MAGE-OM API with XDoclet tags. An XDoclet
module (Apache’s Torque) processed the Java files. The process generated the OJB
repository.xml file and the SQL Data Definition Language (DDL) schema. The
schema was then optimized for performance. Tables prefixed with as_ are security
tables, ca_ are caArray specific tables and no prefix indicates a MAGE-OM table (even
though there still could be changes). Reference the caArray database DDL
(http://caarray.nci.nih.gov/documentation/) for more information.

Security Database
The security database has its own schema and is physically located in the same
database as the caArray database, but it does not have to be.

File Share
The file share stores the uploaded hybridization files, MAGE-ML, and other files. The
file share location is selected during caArray installation (see the caArray 1.6 Local
Installation Guide for more information). The property file caarray.properties
contains the location of the various subdirectories in the file share used for the various
types of uploaded artifacts.

http://caarray.nci.nih.gov/documentation/
http://caarray.nci.nih.gov/caARRAY/devdoc/caarraydbdocs
http://caarray.nci.nih.gov/caARRAY/devdoc/caarraydbdocs

33

CHA PTE R

5
CAARRAY DATA ACCESS SECURITY

This chapter describes declarative as well as programmatic security as it pertains to
caArray.

Topics in this chapter include:

Access Privileges on this page

CRUD Permission Levels on page 35

Security EJB on page 35

Enabling Security on page 36

EJBs on page 36

Programmatic Security on page 37

Access Privileges

Table 5.1 displays the Roles that can be assigned in caArray. The Constants Class
Reference column defines constants for the roles that can be referenced in the code.

Access
Privilege Description Role in Database Constants Class

Reference

User General access to data
that has been identified
as public or is not
protected; will use the
system to submit data or
search through and
utilize existing data

User USER = "User"

Table 5.1 caArray Access Privileges

caArray 1.6 Technical Guide

34

Notes: Unauthenticated public users are assigned a principal with name Public and
role of User. In the security database, there must be a user with name Public
which has role User on protection group Public. This data is essential security
data that is tied to the code and must be populated in the security database.

All the users of the system always have a User role on the protection Group
Public. This allows caArray to search secured elements with visibility Public.

User Manager Creates and manages
users, roles, protections
groups, etc.

UserManager USER_MANAGER =
"UserManager"

Protocol
Manager

Manages protocol,
hardware and software
definitions

ProtocolManager PROTOCOL_MANAGE
R = "ProtocolManager"

Array Design
Manager

Manages caArray
design definitions

ArrayDesignManager ARRAY_DESIGN_MAN
AGER =
"ArrayDesignManager"

Experiment
Manager

Manages experiment
data; is responsible for
annotating biomaterials
and maintaining the data
associated with
experiments

ExperimentManager EXP_MANAGER =
"ExperimentManager"

Curator Has full capability to
modify data for specified
protection groups and is
responsible for the
integrity of the data for a
particular
group or a set of groups

Curator CURATOR = "Curator"

BioMaterial
Manager

Manages biomaterial
definitions and
annotations

BioMaterialManager BIO_MANAGER =
"BiomaterialsManager"

Vocabulary
(“Ontology”)
Manager

Manages dynamic
vocabulary elements

VocabularyManager VOCABULARY_MANA
GER =
“VocabularyManager”

Data Owner Any user that is currently
listed as the owner of
any protected data
element in the system

Unauthenticate
d user

N/A UNAUTHENTICATED_
USER = "Public"

Access
Privilege Description Role in Database Constants Class

Reference

Table 5.1 caArray Access Privileges (Continued)

Chapter 5: caArray Data Access Security

35

CRUD Permission Levels

Declarative security at EJB level controls the CRUD authorization for a given role. The
programmatic security determines the given users access to the particular secured
element.

Create—User must have the appropriate role to call the method in the
corresponding EJB. For example, only a user with ArrayDesignManager role
can create an array design. The container blocks all other calls to create
method if the user does not have the ArrayDesignManager role. The creator of
the secured element becomes its owner.

Read—Any user with role User can read any secured element. The secured
element has to be part of a protection group on which the user has the User
role. An unauthenticated user is given a username of Public and assigned the
role User to the protection Group Public.

Update/Delete—A user needs to be owner of a secured element to be able to
edit or delete the secured element. In order for a user to update/delete an array
design, the user not only needs to have ArrayDesignManager role, but also be
the owner of the array design. By transferring ownership to a group account, the
group is able to update/delete the secured element.

Security EJB

canUserAccessElementmethod has a new implementation. This is necessary to
check for ownership in case of update/delete permission. In case of read only access,
additional checks are performed for a user having the appropriate role in the Protection
Group which has the secured element.

The canUserAccessElement method takes in objects implementing
securedElement Interface. This interface has following methods:

 public String getSecuredElementId() ;
 public void setSecuredElementId(String securedObjectId) ;
 public boolean isEditable() ;
 public void setIsEditable(boolean editable) ;

 The security checks the secured element for access. If the caller is owner, security sets
the isEditable flag to true. The calling EJB makes the determination based on the
isEditable flag whether to delete/update the secured element. If isEditable is
false, the caller can only read it. If isEditable is true, the caller can edit it. The
search method also makes use of this interface. The isEditable flag is transferred to
DTO and sent back to GUI. The GUI makes the determination based on the
isEditable flag whether to display a Modify button to the user.

There are two versions of the caUserAccessElement method.

1. One takes a single object implementing securedElementInterface. It
returns that object with the appropriate setting for the isEditable flag. If the
user cannot access it, it returns no object.

caArray 1.6 Technical Guide

36

2. The second version takes a collection of securedElementInterface and
returns a subset that the user can access. Each object is appropriately set with
the appropriate isEditable flag.

Enabling Security

Complete the following steps to implement and enable security properly:

1. Use the latest login-config.xml that has a definition for “caarray” as the
authentication configuration. This makes use of the custom login model for
authentication as well as authorization. Login code makes the appropriate call
on the client and sets appropriate Java Authentication and Authorization
Service (JAAS) principals/subjects. The client login should also put appropriate
credentials in sessionContext that each EJB could use to authenticate.

Note: The EJBs need to authenticate caller credentials on each call to each
method, as a dubious client can fake the principal and credentials gain-
ing access to the system/data. This could be a potential security hole if
the deployment is outside a firewall.

2. If using Eclipse, set XDoclet setting for JBoss by setting the security domain to
java:/jaas/caarray. If using the ant scripts, uncomment the security
domain tagline.

EJBs

Security EJB has both local as well as remote interfaces. EJBs should call localhome
as it makes a call by reference and avoids expensive marshalling/unmarshalling of data
for calling remote methods. If using Eclipse, set localhomeinterface and
localinterface tags for generation.

In respective EJBs, set appropriate XDoclets to enable and enforce security. Based on
a caller’s JAAS role, the container allows or disallows calls to EJB methods.

Implementation at class level:

* @ejb.security-identity use-caller-identity="true"
* @ejb.security-role-ref role-name="User" role-link="User" etc…
for all the roles.

* @jboss.container-configuration name="Standard Stateless Ses-

sionBean"

For each of the secured methods set:

* @ejb:permission role-name="User" etc.
The following is added to the relevant ejb-jar.xml file via XDoclet:

<method-permission >
<role-name>User</role-name>
<method >

Chapter 5: caArray Data Access Security

37

<ejb-name>gov/nih/nci/caarray/services/protocol/ejb/
HardwareManager</ejb-name>
<method-intf>Remote</method-intf>
<method-name>search</method-name>

Programmatic Security

Programmatic security allows for more specific security check for a protection element.
It is performed in the EJB with the help of helper methods. SecuredElementItf is
used as shown in Figure 5.1. All MAGE objects implement this.

public interface SecuredElementItf
{
 public String getSecuredElementId() ;
 public void setSecuredElementId(String securedObjectId) ;
 public boolean isEditable() ;
 public void setIsEditable(boolean editable) ;
}

Figure 5.1 SecuredElementItf code

caArray 1.6 Technical Guide

38

39

CHA PTE R

6
CAARRAY DOWNLOAD SITE

This chapter describes the caArray and MAGE-OM files that can be downloaded.

Topics in this chapter include:

caArray Portal on this page

caArray MAGE-OM API on page 40

caArray Portal

The caArray download web site https://ncicb.nci.nih.gov/download/index.jsp contains the
following caArray software for distribution. The caArray Portal distribution contains files
in Table 6.1. See the caArray 1.4 Local Installation Instructions for detailed steps to
install the caArray source code and create a local caArray database.

File File Description

Database Dump file Contains a caArrayop.dmp.zip file for caArray seed data

caArray DDL Schema file Contains the caArray_DDL.sql schema file

Update Database Scripts Contains a SQL files to update the database schema to the
specified version

caArray Portal Source Code Contains the caArray_SourceCode_{version}.zip file with the
source code

caArray Local Installation
Instructions

Contains instructions to install the caArray portal source
code and create a local caArray database

caArray Java documents Describes the caArray APIs

caArray Microarray Files Contains seed data for caArray Microarray files

Table 6.1 caArray download files

http://ncicb.nci.nih.gov/download/index.jsp
https://ncicb.nci.nih.gov/download/index.jsp

caArray 1.6 Technical Guide

40

caArray MAGE-OM API

The MAGE-OM API download site (http://ncicb.nci.nih.gov/download/index.jsp) contains
the files in Table 7-2. See the MAGE-OM API Installation Instructions for detailed steps
to build the source code. For more information on caArray MAGE-OM API, see Chapter
8.

The caAMEL download site (http://ncicb.nci.nih.gov/download/index.jsp) contains the files
in Table 6.3. See the caAMEL Installation Instructions for detailed steps to install
caAMEL. For more information on caAMEL, see Chapter 9 MAGE-OM API.

UCSF Spot to GenePix Utility Is a Perl script utility that converts a UCSF Spot clone list file
or a UCSF Spot CGH results file to GenePix .gal files and
.gpr files: ftp://ftp1.nci.nih.gov/pub/caARRAY/Utilities/
spot2genepix.pl. Detailed instructions are included in the
Perl file.

File File Description

Table 6.1 caArray download files (Continued)

File File Description

MAGE-OM API Source Code Contains the source code, client jar file, and Java
documents

MAGE-OM API Installation
Instructions

Contains the instructions to build the source code which
builds a client and a server

MAGE-OM API Java
Documents

Describes the MAGE-OM APIs

caArray-MAGE-OM-CLIENT.jar Client jar file set up to access the NCICB server

Table 6.2 MAGE-OM download files

File File Description

caamel-1.0.zip (and
tar.gz)

Binary distribution of the caAMEL application. This is the
recommended distribution for users who wish to install and
use caAMEL locally.

caamel-1.0-src.zip
(and .tar.gz)

Source code distribution of the caAMEL application. This
is intended for developers who want access to the source
code for informational purposes or who wish to modify the
code base to suit their local needs.

caAMEL Installation Guide Describes how to install and configure caAMEL from either
the binary distribution or source distribution.

Table 6.3 caArray MAGE-ML Loader

http://ncicb.nci.nih.gov/download/index.jsp
http://ncicb.nci.nih.gov/download/index.jsp
ftp://ftp1.nci.nih.gov/pub/caARRAY/Utilities/spot2genepix.pl
ftp://ftp1.nci.nih.gov/pub/caARRAY/Utilities/spot2genepix.pl
http://ncicb.nci.nih.gov/download/index.jsp
http://ncicb.nci.nih.gov/download/index.jsp
ftp://ftp1.nci.nih.gov/pub/caARRAY/Utilities/spot2genepix.pl
ftp://ftp1.nci.nih.gov/pub/caARRAY/Utilities/spot2genepix.pl

41

CHA PTE R

7
MAGE-OM API

This chapter contains the architecture, design and implementation of the MAGE-OM
API.

Topics in this chapter include:

MAGE-OM API Introduction on this page

MAGE-OM Directory Structure on page 42

Accessing the MAGE-OM Production Server on page 43

Testing the MAGE-OM Production Server on page 43

MAGE-OM Architecture on page 44

MAGE-OM Security on page 47

Directable on page 50

Persistence on page 50

MAGE-OM API Introduction

The caArray MAGE-OM API is a set of Java objects that adhere to the object model
defined by the OMG Gene Expression Specification, http://www.omg.org/technology/
documents/index.htm. The caArray MAGE-OM API objects provide access to data in the
caArray database via a Remote Method Invocation (RMI) call issued to a dedicated
MAGE server at NCI or any other site with an accessible MAGE-OM server installation.
There are two primary types of objects defined in the API as shown in Figure 7.1:

1. MAGE-OM-compliant interfaces

2. Custom MAGE-OM Impl (implementation) objects

The MAGE-compliant objects are defined as Java interfaces, which the custom MAGE-
OM Impl Java classes implement. This ensures the custom MAGE-OM Impl provides a
MAGE-OM compliant API. The MGED Society web site, http://www.mged.org/

http://www.omg.org/technology/documents/index.htm
http://www.omg.org/technology/documents/index.htm
http://www.mged.org/Workgroups/MAGE/mage.html

caArray 1.6 Technical Guide

42

Workgroups/MAGE/mage.html, is an excellent source for supplemental material on the
MAGE object model.

Figure 7.1 MAGE-OM architecture

The MAGE-OM API provides the following:
MAGE-OM API objects are based on MAGE-OM 1.1 and are modified to map
the MAGE objects to the new caArray database schema.

RMI security module is incorporated and tested for user/group level data
access.

MAGE-OM Directory Structure

After installing MAGE-OM API, the top-level directories are listed in Table 7.1.

Directory Description

conf Contains configuration files

docs Contains MAGE-OM Javadocs

download Contains demonstration code

lib Contains all JAR files

models Contains UML models

src Contains source code

test Contains test source code

Table 7.1 MAGE-OM directory structure

http://www.mged.org/Workgroups/MAGE/mage.html

Chapter 7: MAGE-OM API

43

Accessing the MAGE-OM Production Server

Following is the RMIconnection information to access the production server. The server
URL and port should be defined as:

rmi.public.host =caarray-mageom-server.nci.nih.gov

rmi.public.port =8080

The following steps summarize how RMI works.

1. The RMI service is started after reading rmi-server.properties that
defines RMI service host name, data port, registry port, and shutdown port.

2. RMIBinder creates those using caCORERMISocketFacotry then starts the
RMI registry.

3. Two service objects, RMISecureSessionManagerRmote and RMISearch-
CriteriaHandlerRmote, are registered on this registry.

4. They are proxy in server site, waiting calls from clients. The implementation to
handle the real call is DefaultSearchCriteriaHandler and SecureSes-
sionManagerImpl objects.

5. A client, based on rmi-client.properties, has access to those service
points by looking up the RMI service registry remotely. Registry returns a direct-
able object that can be used to enforce session management and access
remote objects using session ID once logged in.

Testing the MAGE-OM Production Server

The code for a sample test case displays in Figure 7.2. More test cases can be found in
the test/src/java/gov/nih/nci/mageom/test/package.

public void testRetrieveExperimentDescriptions() {
try {
String serverLoc = System
.getProperty("mageom.test.directable.serverLoc1");

 if (serverLoc == null) {
 fail("No server location provided");

 }
SecureSession sess =

SecureSessionFactory.defaultSecureSession();
((Directable) sess).direct(serverLoc + "SecureSessionManager");
sess.start(CAARRAY_USER, CAARRAY_USER_PWD);
String sessionId = sess.getSessionId();
ExperimentSearchCriteria sc = SearchCriteriaFactory

.new_EXPERIMENT_EXPERIMENT_SC();

// sc.setId(new Long("1015897536498154")) ;
sc.setMaxRecordset(new Integer(20));

((SessionObject) sc).setSessionId(sessionId);
((Directable) sc).direct(serverLoc + "SearchCriteriaHandler");

caArray 1.6 Technical Guide

44

SearchResult sr = sc.search();

Experiment[] result = (Experiment[]) sr.getResultSet();
 if(result.length > 0){

 for(int x=0;x<result.length;x++){
 System.out.println("Experiement : "+x) ;
 Description[] descs =

result[x].getDescriptions();
 for (int i = 0; i < descs.length; i++) {

 System.out.println("Experiemental Desc: "
+ result[x].getIdentifier() + " - " + descs[i].getText());

 }
 }

 }
 else

 System.out.println("No Experiemental Description
Found!");

 sess.end() ;
} catch (Exception ex) {
ex.printStackTrace();
fail("Got " + ex.getClass().getName() + ": " + ex.getMessage());

}
}

Figure 7.2 MAGE-OM test case

MAGE-OM Architecture

Domain Objects
The domain objects comprise the NCICB’s Java implementation of the MAGE-OM
model, which is defined at http://www.omg.org/cgi-bin/doc?dtc/02-09-06. You can use
instances of these classes to navigate through the caArray data and each class defines
a toXML method.

An interface for each UML Class is defined underneath the
gov.nih.nci.mageom.domain package. The implementation for each interface is
defined in the corresponding impl package. For example, the interface for the MAGE-
OM’s Experiment UML Class is defined in the
gov.nih.nci.mageom.domain.Experiment package, and the default
implementation of that class is defined in the
gov.nih.nci.mageom.domain.Experiment.impl package.

SearchCriteria
The MAGE-OM client locates domain objects by constructing queries using
SearchCriteria objects. There is one SearchCriteria class defined for each UML Class
in the MAGE-OM model. For example, the ExperimentSearchCriteria interface is
defined in the gov.nih.nci.search.Experiment package. Its implementation is
defined in the gov.nih.nci.search.Experiment.impl package.

http://www.omg.org/cgi-bin/doc?dtc/02-09-06

Chapter 7: MAGE-OM API

45

RMI
The MAGE-OM middleware uses RMI. The RMI server does not have to run in JBoss; it
needs to run in its Java Virtual Machine(JVM). However, it uses the caArray
SecurityEJB service that is hosted in JBoss and, therefore, needs to look that up
through Java Naming and Directory Interface (JNDI).

The UML diagram in Figure 7.3 shows this middleware architecture.

Figure 7.3 Middleware architecture

SearchCriteria objects are used to locate domain objects. Therefore, instances of
classes that implement ExperimentSearchCriteria locate instances of classes
that implement Experiment. In this implementation of the MAGE-OM, all SearchCriteria
implementations extend MAGEOMSearchCriteria. When the client executes a
search, by call of the search method that is defined on the Searchable interface,
MAGEOMSearchCriteria delegates the request to an instance of
SearchCriteriaHandler.

Client code can be running locally (within the same JVM as the MAGE-OM server) or it
can be running remotely (not within the same JVM as the MAGEOM server). In either
case, queries are ultimately handled my some implementation of
SearchCriteriaHandler that is running in the MAGE-OM server’s JVM.

If the client is running remotely, then the SearchCriteria must be sent to the MAGE-OM
server’s JVM using RMI. MAGEOMSearchCriteria instantiates
RMISearchCriteriaHandlerProxy which sends the SearchCriteria over RMI and
is ultimately processed by DefaultSearchCriteriaHandler.

If the client is running locally, then RMI is not needed. In this case,
MAGEOMSearchCriteria instantiates DefaultSearchCriteriaHandler, which
materializes the selected domain objects.

caArray 1.6 Technical Guide

46

MAGEOMSearchCriteria determines what implementation of
SearchCriteriaHandler by checking the value of the following two system
properties:

DefaultSearchCriteriaHandlerClass - the classname of the local
SearchCriteriaHandler; defaults to
gov.nih.nci.common.persistence.DefaultSearchCriteriaHandle
r

DefaultProxySearchCriteriaHandlerClass - the classname of the
remote SearchCriteriaHandler; defaults to
gov.nih.nci.common.remote.rmi.RMISearchCriteriaHandlerProx
y

Upon instantiation, MAGEOMSearchCriteria first tries to instantiate a local
SearchCriteriaHandler (i.e., an instance of the class defined by the value of
DefaultSearchCriteriaHandler). If that fails, it tries to instantiate a remote
SearchCriteriaHandler. The client can also set the SearchCriteriaHandler
programmatically at any time.

RMISearchCriteriaProxy looks for the RMIServerURL property in the rmi-
client.properties file, which must be on the client classpath. The value of this
property is the RMI URL of the SearchCriteriaHandler.

The class that binds RMI server classes to the RMI registry is RMIBinder. This is the
MAGE-OM server. It defines a main method and is started from the command line by
the startmgrs.bat or startmgrs.sh script.

RMIBinder reads the file remote-objects.properties, which contains a
mapping of RMI bind names to remote class names. RMIBinder iterates through
these mappings, instantiating each remote class and binding it to the RMI registry using
the specified name.

RMIBinder takes a number of command-line arguments that affect how the RMI
registry is setup and how remote objects are bound. Table 7.2 provides how the values
of these arguments are specified in startmgrs.bat or startmgrs.sh.

Argument Values

rmipublichost This is the hostname part of the RMI URL that clients must use
when they look up a remote object. It also becomes the value of
the java.rmi.server.hostname system property within
the MAGE-OM server’s JVM.

rmiserverhost This is the hostname part of the RMI URL that is used to bind
remote objects to the RMI registry. The rmipublichost and
rmiserverhost values may have to be different to allow
MAGE-OM clients to run outside of a firewall.

rmiserverport This becomes the value of the java.rmi.registry.port
system property.

rmiserverdataport This becomes the value of the java.rmi.data.port
system property.

Table 7.2 RMIBinder command-line arguments

Chapter 7: MAGE-OM API

47

MAGE-OM Security

The MAGE-OM API is currently read-only. Therefore, MAGE-OM clients cannot
manipulate the persistent state of the caArray database. However, MAGE-OM requires
that a security mechanism restrict read access to data in the caArray database based
on a user’s affiliation with caBIG consortia. To provide for this requirement, the concept
of a secured session was introduced into the MAGE-OM design. You can obtain read
access to caArray data that is restricted to particular consortia by creating a secured
session using your username and password.

Client-side Security
The client must start a secure session by executing the following code:

SecureSession sess =
SecureSessionFactory.defaultSecureSession();
sess.start("johndoe", "secretpassword");
String sessionId = sess.getSessionId();

SecureSession.start(String,String) returns a boolean indicating whether
you authenticated successfully. If so, you have access to data that is accessible to the
consortia to which you belong. The session lasts until the client code calls
sess.end(), the MAGE-OM RMI server exits or the default session length is
exceeded.

The default life of a session is 24 hours that is defined in
gov.nih.nci.common.search.SecureSessionManager.DEFAULT_SECURE_S
ESSION_LENGTH, which is in units of milliseconds. The default session length can be
changed by updating the MaxSecureSessionLengthMins system property, which is
in units of minutes, that is defined in the MAGE-OM server’s JVM. The client can
extend the session life by calling SecureSession.extend(), which extends the
session by the default session length. The client can learn the time remaining in the
session by calling SecureSession.getTimeToLive(), which returns the time
remaining in milliseconds.

The value returned by SecureSession.getSessionId() is the client’s session ID.
This ID must be set on the SearchCriteria object that should retrieve restricted data. All
MAGE-OM SearchCriteria objects implement
gov.nih.nci.common.search.SessionObject, which declares the
setSessionId(String) method.

To associate a query with an authenticated session, the client must call
SearchCriteria.setSessionId(String), passing in the value returned from
SecureSession.getSessionId().

For example:

 ArrayDesignSearchCriteria sc = new
ArrayDesignSearchCriteria();
 sc.setSessionId(sess.getSessionId());

Since the MAGE-OM objects use lazy-fetching by default, calls to get associated
objects result in new queries. Those queries will be automatically associated with the
current session. The implication of using lazy-fetching in this way is that it is possible

caArray 1.6 Technical Guide

48

that the session will expire before a lazy-fetch is executed. In such an event, no
associated objects are retrieved.

MAGE-OM objects retrieved within a secure session are automatically associated with
that session by the
gov.nih.nci.common.search.session.SecureSessionInitializer aspect.

If the client does not associate a SearchCriteria object with a valid session ID, then only
public data is retrieved.

Server-side Security
Query Result Filtering

MAGE-OM queries are handled by
gov.nih.nci.common.persistence.PersistenceManagerQueryHandler,
which delegates the actual query to OJB. The result of a successful query request is
intercepted by the gov.nih.nci.common.persistence.SearchIntercepter
aspect. This aspect then delegates to
gov.nih.nci.common.persistence.SecurityFilter, which filters out objects
to which the client does not have access. SecurityFilter actually delegates the
filtering task to
gov.nih.nci.caarray.services.security.ejb.SecurityManager.

The logic that SecurityFilter uses to filter objects is as follows (though the
program flow is different):

When asking the SecurityManager if the client has access, SecurityFilter
simply passes all objects and all roles to
SecurityManager.canUserAccessElements(SecuredElementItf[],Strin
g[]). SecurityFilter constructs this array of roles as follows:

 _defaultRoles = new String[9];
 _defaultRoles[0] = SecurityConstants.CURATOR_ROLE;
 _defaultRoles[1] = SecurityConstants.EXP_MANAGER_ROLE;
 _defaultRoles[2] = SecurityConstants.BIO_MANAGER_ROLE;
 _defaultRoles[3] = SecurityConstants.USER_ROLE;

If the client is not authenticated,

 Then return an empty result set.

Else,

 For each object in the original result set,

 If the object has no securedElementId,

 Then it is public.

 Else,

 Ask SecurityManager if the client has access to the object.

 If the object is public or the client has access to it,

Chapter 7: MAGE-OM API

49

 _defaultRoles[4] =
SecurityConstants.ARRAY_DESIGN_MANAGER_ROLE;
 _defaultRoles[5] = SecurityConstants.USER_MANAGER_ROLE;
 _defaultRoles[6] = SecurityConstants.PROTOCOL_MANAGER_ROLE;
 _defaultRoles[7] =
SecurityConstants.VOCABULARY_MANAGER_ROLE;
 _defaultRoles[8] = SecurityConstants.DEVELOPER_ROLE;

The JNDI lookup information for SecurityManager is located in security-
jndi.properties file that must be located on the server classpath.

Secure Session Classes
The UML diagram in Figure 7.4 shows the classes involved in managing secure
sessions.

Figure 7.4 Secure Session UML diagram

SecureSessionPersistence is the class that manages user authentication and
session ID persistence. User authentication is handled within caArray, which provides
the SecurityManager EJB. SecureSessionPersistence uses
SecurityManagerFactory to locate (JNDI lookup) an instance of
SecurityManager, SecurityManagerFactory uses the file security-
jndi.properties to populate the InitialContex object that does the JNDI lookup.
This file must be on the classpath. If it is not found, then default values are used.

caArray 1.6 Technical Guide

50

SecureSessionPersistence calls
SecurityManager.isUserAuthenticated(String,String) passing in the
username and password, to verify that the user is authenticated. If so, then a new
session ID is created. Session IDs are generated by
gov.nih.nci.common.persistence.RandomGUID and maintained in memory by
gov.nih.nci.common.persistence.SessionPersistence.

A session ID is generated in the following way:

1. Construct String from:

a. IP address

b. System time

c. Result of java.security.SecureRandom.nextLong()

2. Run this String through a MD5 hash.

3. Format String as a GUID.

Directable

The interface gov.nih.nci.common.search.Directable represents a locally
running client that can be directed to communicate with some remote server. The
method, direct(String, takes the URL of some server location. In MAGE-OM, the
important classes that implement this interface are:

gov.nih.nci.common.search.session.SecureSessionImpl

gov.nih.nci.mageom.search.impl.MAGEOMSearchCriteria

Since MAGE-OM uses RMI as its remote communication mechanism, the String
arguments to the direct method are RMI URLs of the form ‘//hostname:port/
bindname. The default values used by MAGEOMSearchCriteria and
SecureSessionImpl are located in rmi-client.properties file that is on the
client classpath at runtime and is located in the source project in the conf/rmi
directory.

Persistence

MAGE-OM uses OJB to perform ORM. The MAGE-OM objects are populated from
data from the same database schema that the caArray application uses, and the OJB
repository used by MAGE-OM is generated from the OJB repository used by caArray.
This creates some difficulties because the MAGE-OM conforms strictly to the official
MAGE UML, while the caArray database schema and ORM have been tuned for
performance reasons. Furthermore, the OJB inheritance mechanism is not flexible
enough (out of the box) to allow two different code bases to be populated from the
same schema (this has to do with the OJB_CONCRETE_CLASS feature).

When the client invokes the search method on some MAGE-OM search criteria (as
introduced in the RMI section on page 50), the SearchCriteria object is eventually
passed to DefaultSearchCriteriaHandler.
DefaultSearchCriteriaHandler uses SC2query to convert the SearchCriteria

Chapter 7: MAGE-OM API

51

object into a gov.nih.nci.common.query.Query object. Then it delegates to
OJBQueryHandler, which uses Query2PBQ to convert the
gov.nih.nci.common.query.Query object into an
org.apache.ojb.broker.query.Query object. The reason all of this conversion
is taking place is that OJBQueryHandler was written in another project and works well
with OJB and complex object models, like MAGE. The quickest way to integrate it into
the MAGE-OM was to write SC2Query to do the conversion.

Query2PBQ compensates for some problems that OJB has with inheritance when one
uses ReportQuery objects. You can see this in the
processAssociationCriterion method.

caArray 1.6 Technical Guide

52

53

CHA PTE R

8
CAARRAY APIS

This chapter describes the caArray APIs.

Topics in this chapter include:

caArray EJB API on this page

Directory Structure on page 54

Testing caArray EJB APIs on page 56

caArray EJB API

caArray EJB API provides transaction control, asynchronous processes, service
location, common security and distributed capabilities for submission and retrieval of
Microarray Experiments, MAGE-ML documents and its associated data files. The
caArray EJB API provides the above functionality via the caArray presentation layer.

Notes: If you are troubleshooting, and your portal works with a deployed caArray in
JBoss, then your JNDI server is fine, as the portal uses same service/EJBs to
perform transactions. This assumes that the MAGE server is running on the
same server as caArray. If not, you need to use the fully qualified
address.servername:1099.

The current caArray EJB API is being deprecated, and we recommend against
its use by external applications. The next major release of caArray (2.0) will not
support the current API; it will instead expose a re-engineered public API that
will not be backward compatible.

caArray 1.6 Technical Guide

54

Directory Structure

During installation, the caArray_SourceCode_{version}.zip file was unjarred
and placed in the {JBOSS_HOME}/caarray directory. Figure 8.1 displays an example
directory structure.

Figure 8.1 caArray directory structure

Table 8.1 lists a description of each directory in {JBOSS_HOME}/caarray /
caarray-dev.

Table 8.2 contains some of caArray properties files located in {JBOSS_HOME}/
caarray/ caarray-dev/build/bin. When you deploy your system, the
information from the deploy.properties file is used to create the other properties
files listed in Table 8.2 from template files. The directory also contains the XML files to

Directory Description

build Contains a bin directory that includes template, xml and
property files (see Table 9-2 for more information)

conf Contains configuration files for jboss, jndi, local,
mapper, ojb, scm, security and sql directories (see
Table 9-3 for more information)

database Contains SQL files/scripts with updates to the schema. It
should not be necessary to use these in most cases.

dev-infrastructure Contains zip files for software products used

lib Contains required JAR files needed to build and run the
application

microarrayfiles Contains a sample directory structure for files stored on the file
system

src Contains Java source code

web Contains JSP files and configuration for the web tier

Table 8.1 caArray directory structure

Chapter 8: caArray APIs

55

build the application including build.xml, application.xml, jboss-
service.xml.template and ear-build.xml.

Table 8.3 lists a description of each directory in {JBOSS_HOME}/caarray /caarray-
dev/conf

File Name Description

deploy.properties Contains installation specific properties that need to be
populated before the caArray application can be deployed
correctly. See the caArray Local Installation Instructions for a
description of each parameter.

caarray.properties Is the OJB repository file used for the MAGE-ML importer and
exporter profiles. caARRAY application uses the default
repository_user_MAGE.xml.

db.properties Defines the database properties including the LPG.driver,
LPG.url, LPG.user, LPG.password and
LPG.maximum. It also contains the maximum records in the
database (for example,
gov.nih.nci.caarray.services.security.db.ROWSPAN=1000).

ldap.properties Allows you to configure system parameters, paths and roles
used for access control, specifically including settings for the
LDAP server

securityCommon.prop
erties

Is the property file for the security framework

Table 8.2 caArray properties files

Directory Description

jboss Contains JMS, JBoss and logging XML files including jbossmq-
destinations-service.xml, jboss-service.xml
log4j.xml and login-config.xml

jndi Contains the jndi.properties file. Following is an example
file:
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=localhost

mapper Contains META-INF\mapper-repository.xml, which
includes DTO to MAGE-stk mappings, and mapper-
repository-template.xdt.

Table 8.3 caArray conf directory

caArray 1.6 Technical Guide

56

Testing caArray EJB APIs

Perform the following steps to call EJB methods.

1. Include the jndi.properties file on your classpath, which is included in
caArray source distribution under conf/jndi.

2. Modify and run one of the JUnit test classes in the test packages (for example,
services.biomaterial.test.Get* is a good test case).

3. The default jndi.properties file locates caArray running on localhost Edit
the jndi.properties file for caArray production to be located at caar-
raydb.nci.nih.gov. The port should be the same.

Note: Since caArray production is behind a firewall, the RMI ports for MAGE-
OM are opened up (the ports/IP on the server are not the same as they
are used to call from outside firewall as the server is sitting behind a BIG
IP and there is mapping of ports/IP done at that point). You would need
to do the same for EJBs, for both JNDI as well as the underlying RMI pro-
tocol used by EJB. For now, it is best to test one of the JUnit test cases
with local install. If declarative security has been enforced then you need
to update auth.conf in the jboss directory.

4. Set the authentication service. If you are running within the container, the
authentication service setting is automatically handled by the Tomcat servlet
container embedded in JBoss when you run the webapp. If you're not running
within the container, you must set the following to tell the Java client what
authentication service to use:

ojb Contains many XML files for the database schema and OJB
including repository.dtd repository.xml
repository_database.xml
repository_database_local.xml
repository_EXPORT_MAGE.xml
repository_IMPORT_MAGE.xml
repository_internal.xml, repository_MAGE.xml
repository_MAGE_local.xml
repository_user_CAARRAY.xml
repository_user_EXPORT_MAGE.xml
repository_user_IMPORT_MAGE.xml
repository_user_MAGE.xml and spy.properties. This
directory contains the files that you need to update your database
schema. For example, use repository_database.xml file to
configure the database connection. If a class-descriptor does not
specify its own JDBC Connection, the connection specified in this
file is used.

security Contains secured-elements.xml which is used to define and
mark security for fine grain MAGE-OM objects

sql Contains SQL files

Directory Description

Table 8.3 caArray conf directory (Continued)

Chapter 8: caArray APIs

57

-Djava.security.auth.login.config={JBOSS_HOME}/client/auth.conf

Note: If you are running the test case on the same server, then you can point
right to your {JBOSS_HOME} directory. If you are not on a JBoss server,
then you must copy the file then point to it.

caArray 1.6 Technical Guide

58

59

CHA PTE R

9
CAAMEL SERVICE API

This chapter describes the caAMEL Service EJB API that can be used to
programmatically validate and import MAGE-ML documents into caArray.

Topics in this chapter include:

Introduction to the caAMEL API on this page

caAMEL Service API Code Example on page 60

Considerations Before Coding for caAMEL Service API on page 62

Introduction to the caAMEL API

Prior to using the API , the caAMEL application (caamel.ear) must be deployed and
available. Generally caAMEL will be deployed to the same application server running
caArray. See the caAMEL Installation Guide (downloadable from http://ncicb.nci.nih.gov/
download/downloadcaarray.jsp) for details on deploying and configuring caAMEL. The
caAMEL application includes the implementation that is invoked by the service client
API.

The caAMEL Service may be invoked remotely by using the classes and interfaces that
are included in caamel_client.jar which is included in the caAMEL 1.0 distribution.
The contents of the caamel_client.jar are documented in the docs/javadocs

http://ncicb.nci.nih.gov/download/downloadcaarray.jsp
http://ncicb.nci.nih.gov/download/downloadcaarray.jsp

caArray 1.6 Technical Guide

60

subdirectory of the caAMEL distribution. The main elements are pictured in the class
diagram shown in Figure 9.1.

Figure 9.1 cd Service API class diagram

The caAMEL Service is a stateless, remote session EJB, so the standard methods of
looking up the remote home interface and creating the bean interface apply. The
general workflow for using the API can be summarized as follows:

1. Copy the MAGE-ML files to a directory visible to the server running caAMEL.

2. Instantiate the CaamelService interface.

3. Create a new ImportJob or ValidationJob instance.

4. Submit the job instance to the interface.

5. Check the job status periodically until completion (note that these can be very
long running jobs – import of very large MAGE-ML documents can take several
hours)

6. Once the job has completed, remove the job data.

caAMEL Service API Code Example

The following code provides a simple example that shows submitting an import job,
waiting for completion, and then writing to standard output either any validation errors
or a success message. Note that this is a simple, illustrative example. There are

Chapter 9: caAMEL Service API

61

additional document statuses that should be accounted for (e.g. validation warnings).
Also, due to length of time that these jobs may take to complete, code would not
typically wait in a loop for completion. (A more reasonable implementation might check
job status at a user’s request).

public void caamelServiceExample () {

 try {

 // Set the JNDI EJB lookup properties

 System.setProperty("java.naming.factory.initial",

 "org.jnp.interfaces.NamingContextFactory");

 System.setProperty("java.naming.factory.url.pkgs",

 "org.jboss.naming:org.jnp.interfaces");

 System.setProperty("java.naming.provider.url",

 "jnp://mycaamel.org:1099");

 // Get the Home interface

 final InitialContext context = new InitialContext();

 Object homeRef = context.lookup("ejb/CaamelService");

 CaamelServiceHome home = (CaamelServiceHome)

 PortableRemoteObject.narrow(homeRef, CaamelServiceHome.class);

 // Create the CaamelService interface

 CaamelService caamelService = home.create();

 // Create an import job

 ImportJob job = new ImportJob();

 job.setUsername("myusername");

 job.setPassword("mypassword");

 job.setServerKey("caarray");

 job.setSourceFile(new File("/usr/share/mage/upload/my_mage_file.xml"));

 // start the job

 ImportJobStatus jobStatus = caamelService.importFile(job);

 // wait for the job to complete

 while (MageDocumentStatus.IMPORTING.equals(jobStatus.getStatus())

 || MageDocumentStatus.VALIDATING.equals(jobStatus.getStatus())) {

 Thread.sleep(10000);

 jobStatus = caamelService.getImportStatus(jobStatus.getJobId());

 }

 // Print out the result

 if (MageDocumentStatus.IMPORTED.equals(jobStatus.getStatus())) {

 System.out.println("Import completed successfully.");

 } else if (MageDocumentStatus.INVALID.equals(jobStatus.getStatus())) {

 // MAGE-ML failed validation -- print out the validation messages

 ValidationResult result = jobStatus.getValidationResult();

 AbstractValidationMessage[] messages = result.getMessages();

 for (int i = 0; i < messages.length; i++) {

 System.out.println(

 messages[i].getMageElementInfo().getMageElementName()

caArray 1.6 Technical Guide

62

 + ": "

 + messages[i].getDescription());

 }

 }

 // Remove the job from the system

 caamelService.removeImportJobData(jobStatus.getJobId());

 } catch (Exception e) {

 e.printStackTrace();

 }

}

Creating and running a validation-only job would look very similar to the code above,
except that the job object created would be an instance of ValidationJob and the
CaamelSession method invoked would be validateFile().

Considerations Before Coding for caAMEL Service API

Having covered the basics of using the caAMEL Service API, some additional
considerations may be helpful to understand prior to developing code that employs the
API. Reviewing the API’s javadoc is also strongly recommended.

The serverKey property of the ImportJob and ValidationJob indicates which
caArray server caAMEL should use for validation and import. Generally,
caAMEL will only be integrated with a single caArray server. The default server
key created in the caAMEL installation is “caarray". If your instance of caAMEL
is configured to integrate with multiple caArray instances, you may find the
server keys at the bottom of the caamel.properties file on your caAMEL server.
The server key is the prefix to the various caArray integration properties (e.g.
“caarray.name”, “caarray.hostname”, “caarray.url”, etc.).

It’s possible to validate the internal structure of a MAGE-ML document without
validating the data against a particular caArray server. To perform this more
basic validation only, do not provide a serverKey, username, or password in the
ValidationJob object.

Ιf the username or password provided in a job object is invalid, an
InvalidLoginException will be thrown.

If a duplicate job is submitted (that is, there is already a validation or import job
in progress for a file), an InProgressException will be thrown.

63

A P P E N D I X

A
UML MODELING

The caArray team bases its software development primarily on UML. This chapter is
designed to familiarize the reader who has not worked with UML with its background
and notation. Topics in this chapter include:

UML Modeling on this page

Use-case Documents and Diagrams on page 64

Class Diagrams on page 66

Relationships Between Classes on page 67

Sequence Diagrams on page 69

UML Modeling

The UML is an international standard notation for specifying, visualizing, and
documenting the artifacts of an object-oriented software development system. Defined
by the Object Management Group, http://www.omg.org/, the UML emerged as the result
of several complementary systems of software notation and has now become the de
facto standard for visual modeling. For a brief tutorial on UML, refer to http://
dn.codegear.com/article/31863.

The underlying tenet of any object-oriented programming begins with the construction
of a model. In its entirety, the UML is composed of nine different types of modeling
diagrams, which form, in essence, a software blueprint.

Only a subset of the diagrams, those used in caArray development, is described in this
chapter.

Use-case diagrams

Class diagrams

Sequence diagrams

http://www.omg.org/
http://dn.codegear.com/article/31863
http://dn.codegear.com/article/31863

caArray 1.6 Technical Guide

64

The caArray development team applies use-case analysis in the early design stages to
informally capture high-level system requirements. Later in the design stage, as
classes and their relations to one another begin to emerge, class diagrams help to
define the static attributes, functionalities, and relations that must be implemented. As
design continues to progress, other types of interaction diagrams are used to capture
the dynamic behaviors and cooperative activities the objects must execute. Finally,
additional diagrams, such as the package and sequence diagrams can be used to
represent pragmatic information such as the physical locations of source modules and
the allocations of resources.

Each diagram type captures a different view of the system, emphasizing specific
aspects of the design such as the class hierarchy, message-passing behaviors
between objects, the configuration of physical components, and user interface
capabilities.

While many good development tools provide support for generating UML diagrams, the
Enterprise Architect (EA) software is used by the caArray development team.

Use-case Documents and Diagrams

A good starting point for capturing system requirements is to develop a structured
textual description, often called a use-case document, of how users will interact with
the system. While there is no hard and fast, predefined structure for this artifact, use-
case documents typically consist of one or more actors, a process, a list of steps, and a
set of pre- and post-conditions. In many cases, it describes the post-conditions
associated with success as well as failure. An example use-case document is
represented in Figure A.1.

Appendix A: UML Modeling

65

Using the use-case document as a model, a use-case diagram is then created to
confirm the requirements stated in the text-based use-case document.

Figure A.1 Use-case document

A use-case diagram, which is language independent and graphically described, uses
simple ball and stick figures with labeled ellipses and arrows to show how users or
other software agents might interact with the system. The emphasis is on what a
system does rather than how. Each “use-case” (an ellipse) describes a particular
activity that an “actor” (a stick figure) performs or triggers. The “communications”
between actors and use-cases are depicted by connecting lines or arrows.

Associate Labeled Extract with Hybridization file
Description:

This Use Case describes automatic creation of additional labeled Extract (and
associated BioSample/BioSource) from a template Labeled Extract when annotating
hybridization files.

Actors: caArray User.

Pre-Conditions:

²User is logged into the caArray application portal and is annotating the upload
of Hybridization Data with Labeled Extracts.

Basic Course:

1. Actor checks the Copy button for the Labeled Extract.

2. Actor Selects the (template) Labeled Extract to associate with the hybridization
file.

3. System make a copy (by value) of the labeled extract as well as all the parent
BioSamples as well as the BioSource. The copied BioMaterial are nabes based
on the uploaded file name for easy identification.

4. System associates the copied labeled extract with the hybridization file/data.

5. Actor searches biomaterial based on the uploaded file name as a token for the
file name.

6. Actor modifies the details of the biomaterial to reflect the actual biomaterial.

Alternative flows:

Flow A

1. The actor does not check the copy button with the labeled extract.

2. System associates the selected labeled extract with the uploaded hybridization.

Flow B

1. Actor searches biomaterial based on the uploaded file name as a token for the
file name.

2. Actor modifies the details of the biomaterial to reflect the actual biomaterial.

caArray 1.6 Technical Guide

66

Class Diagrams
The system designer utilizes use-case diagrams to identify the classes that must be
implemented in the system, their attributes and behaviors, and the relationships and
cooperative activities that must be realized. A class diagram is used later in the design
process to give an overview of the system, showing the hierarchy of classes and their
static relationships at varying levels of detail. Figure A.2 shows an abbreviated version
of a UML Class diagram depicting the OJB abstraction layer and DAO classes.

Figure A.2 OJB Abstraction Layer and DAO Classes

Class objects can have a variety of possible relationships to one another, including “is
derived from,” “contains,” “uses,” “is associated with,” etc. The UML provides specific
notations to designate these different kinds of relations, and enforces a uniform layout
of the objects’ attributes and methods - thus reducing the learning curve involved in
interpreting new software specifications or learning how to navigate in a new
programming environment.

Figure A.3 (a) is a schematic for a UML class representation, the fundamental element
of a class diagram. Figure A.3 (b) is an example of how a simple class might be
represented in this scheme. The enclosing box is divided into three sections: The
topmost section provides the name of the class, and is often used as the identifier for
the class; the middle section contains a list of attributes (structures) for the class. (The
attribute in the class diagram maps into a column name in the data model and an
attribute within the Java class.); the bottom section lists the object’s operations
(methods). In the example below, (b) specifies the Gene class as having a single
attribute called sequence and a single operation called getSequence():

Class Gene

-attribute -sequence

+operation() +getSequence()

(a) (b)

Figure A.3 (a) Schematic for a UML class (b) A simple class called Gene

Appendix A: UML Modeling

67

Naming conventions are very important when creating class diagrams. caArray follows
the formatting convention for Java APIs in that a class starts with an uppercase letter
and an attribute starts with a lowercase letter. Names contain no underscores. If the
name contains two words, then both words are capitalized, with no space between
words. If an attribute contains two words, the second word is capitalized with no space
between words. Boolean terms (has, is) are used as prefixes to words for test cases.

The operations and attributes of an object are called its features. The features, along
with the class name, constitute the signature, or classifier, of the object. The UML
provides explicit notation for the permissions assigned to a feature, and UML tools vary
with respect to how they represent their private, public, and protected notations for their
class diagrams.

The classes represented in Figure A.2 show only class names and attributes; the
operations are suppressed in that diagram. This is an example of a UML view: Details
are hidden where they might obscure the bigger picture the diagram is intended to
convey. Most UML design tools provide means for selectively suppressing either or
both attributes and operation compartments of the class without removing the
information from the underlying design model.

The following notations (as shown in Figure A.3) are used to indicate that a feature is
public or private:

“-” prefix signifies a private feature

“+” signifies a public feature

In Figure B-3 for example, the Gene object’s sequence attribute is private and can only
be accessed using the public getSequence () method.

Relationships Between Classes

A quick glance at Figure A.4 demonstrates relationships between some of the classes.
Generally, the relationships occurring are of the following types: association,
aggregation, generalization, and multiplicity, described as follows:

•Association —The most primitive of these relationships is association, which
represents the ability of one instance to send a message to another instance.
Association is depicted by a simple solid line connecting the two classes.

Directionality—UML relations can have directionality (sometimes called
navigability), as in Figure B-4. Here, a Gene object is uniquely associated with a
Taxon object, with an arrow denoting bi-directional navigability. Specifically, the
Gene object has access to the Taxon object (i.e., there is a getTaxon() method),
and the Taxon object has access to the Gene object. (There is a corresponding
getGeneCollection() method.) Role names also display in Figure B-4, clarifying
the nature of the association between the two classes. For example, a taxon

caArray 1.6 Technical Guide

68

(rolename identified in Figure A.4) is a line item of each Gene object. The (+)
indicates public accessibility.

Figure A.4 one to one association

Multiplicity— Optionally, a UML relation can have a label providing additional
semantic information, as well as numerical ranges such as 1..n at its endpoints,
called multiplicity. These cardinality constraints indicate that the relationship is
one-to-one, one-to-many, many-to-one, or many-to-many, according to the
ranges specified and their placement. Table A.1 displays the most commonly
used multiplicities.

Aggregation—Another relationship is aggregation, in which the relationship is
between a whole and its parts. This relationship is exactly the same as an
association, with the exception that instances cannot have cyclic aggregation
relationships (i.e., a part cannot contain its whole). Aggregation is represented
by a line with a diamond end next to the class representing the whole, as shown
in the Clone-to-Library relation of Figure A.5. As illustrated, a Library can
contain Clones but not vice-versa.

In the UML, the empty diamond of aggregation designates that the whole maintains a
reference to its part. More specifically, this means that while the Library is composed of
Clones, these contained objects may have been created prior to the Library object’s
creation, and so will not be automatically destroyed when the Library goes out of scope.

Figure A.5 Aggregation and multiplicity

Additionally, Figure A.5 shows a more complex network of relations. This
diagram indicates that:

Multiplicities Interpretation

0..1 Zero or one instance. The notation n..m indicates n to m
instances.

0..* or * Zero to many; No limit on the number of instances (including
none). An asterisk (*) is used to represent a multiplicity of many.

1 Exactly one instance

1..* At least one instance to many

Table A.1 Commonly used multiplicities

Appendix A: UML Modeling

69

a. One or more Sequences is associated with a Clone;

b. The Clone is contained in a Library, which comprises one or more
Clones; and

c. The Clone may have one or more Traces.

Only the relationship between the Library and the Clone is an aggregation. The
others are simple associations.

Generalization – Generalization is an inheritance link indicating that one class
is a subclass of another. Figure A.6 depicts a generalization relationship
between the SequenceVariant parent class and the Repeat and SNP classes.
Classes participating in generalization relationships form a hierarchy, as
depicted here.

In generalization, the more specific element is fully consistent with the more
general element (it has all of its properties, members, and relationships) and
may contain additional information. Both the SNP and Repeat objects follow
that definition.

The superclass-to-subclass relationship is represented by a connecting line with an
empty arrowhead at its end pointing to the superclass, as shown in the
SequenceVariant-to-Repeat and SequenceVariant-to-SNP relations of Figure A.6.

Figure A.6 Generalization relationship

In summary, class diagrams represent the static structure of a set of classes. Class
diagrams, along with use-cases, are the starting point when modeling a set of classes.
Recall that an object is an instance of a class. Therefore, when the diagram references
objects, it is representing dynamic behavior, whereas when it is referencing classes, it
is representing the static structure.

Sequence Diagrams

A sequence diagram describes the exchange of messages being passed from object to
object over time. The flow of logic within a system is modeled visually, validating the
logic of a usage scenario. In a sequence diagram, bottlenecks can be detected within
an object-oriented design, and complex classes can be identified.

Figure A.7 is an example of a sequence diagram. The vertical lines in the diagram with
the boxes along the top row represent instantiated objects. The vertical dimension
displays the sequence of messages in the time order that they occur; the horizontal
dimension shows the object instances to which the messages are sent. The diagram is
read from left to right, top to bottom, following the sequential execution of events.

caArray 1.6 Technical Guide

70

The DTO sequence diagram (Figure A.7) includes the following:

The application client sets user-entered values in the ProtocolData Transfer
Object.

The client application then invokes the EJB method to add protocol, sending the
Transfer Object by value.

The EJB method then retrieves all user-entered values from the Transfer Object, and
begins business processing.

Figure A.7 DTO sequence diagram

71

A P P E N D I X

B
CAARRAY REFERENCES

Background Information
MAGE: http://mged.sourceforge.net

MIAME: http://www.mged.org/Workgroups/MIAME/miame.html

MAGE-ML: http://www.mged.org/Workgroups/MAGE/mage-ml.html

MGED Ontology: http://mged.sourceforge.net/ontologies/MGEDontology.php

MAGE-OM: http://www.mged.org/Workgroups/MAGE/mage-om.html

MAGE-OM model: http://www.omg.org/cgi-bin/doc?dtc/02-09-06

caArray Tools
Data Management tools: https://caarraydb.nci.nih.gov/caarray/index.jsp

Data Analysis tools: http://caarray.nci.nih.gov/caARRAY/data_analysis

caAMEL Material

caAMEL documentation: https://caarraydb.nci.nih.gov/caamel/

caBIG Material
caBIG: http://cabig.nci.nih.gov/

caBIG Compatibility Guidelines: http://cabig.nci.nih.gov/guidelines_documentation

caCORE Material
caBIO: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO

caDSR: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

EVS: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary

Software Products
Struts: http://struts.apache.org/ and http://struts.apache.org/userGuide/index.html l

Tiles: http://struts.apache.org/userGuide/dev_tiles.html

OJB: http://db.apache.org/ojb

http://mged.sourceforge.net
http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MAGE/mage-ml.html
http://mged.sourceforge.net/ontologies/MGEDontology.php
http://www.mged.org/Workgroups/MAGE/mage-om.html
http://www.omg.org/cgi-bin/doc?dtc/02-09-06
http://caarraydb.nci.nih.gov/caarray/index.jsp
http://caarray.nci.nih.gov/caARRAY/data_analysis
http://cabig.nci.nih.gov/
http://cabig.nci.nih.gov/guidelines_documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://struts.apache.org/, http://struts.apache.org/userGuide/index.html
https://caarraydb.nci.nih.gov/caamel/
http://struts.apache.org/userGuide/dev_tiles.html
http://db.apache.org/ojb
http://struts.apache.org
http://struts.apache.org/userGuide/index.html
https://caarraydb.nci.nih.gov/caarray/index.jsp

caArray 1.6 Technical Guide

72

R: http://www.r-project.org/

Modeling Concepts

OMG Model Driven Architecture (MDA) Guide Version 1.0.1: http://www.omg.org/docs/omg/
03-06-01.pdf

Object Management Group: http://www.omg.org/

UML tutorial: http://dn.codegear.com/article/31863

http://www.r-project.org/
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/
http://dn.codegear.com/article/31863

73

A P P E N D I X

C
CAARRAY GLOSSARY

Term Definition

{jboss-home} The base directory where JBoss is installed on the server

AOP Aspect Oriented Programming

API Application Programming Interface

caAMEL caArray MAGE-ML Loader

caArray cancer Array Informatics

CRUD Create, Read, Update, Delete

caBIG cancer Biomedical Informatics Grid

caBIO Cancer Bioinformatics Infrastructure Objects

caDSR Cancer Data Standards Repository

caCORE cancer Common Ontologic Representation Environment

CDE Common Data Elements

CGH Comparative Genomic Hybridization

CSM Common Security Model

CVS Concurrent Versions System

DAO Data Access Object

DDL Data Definition Language

DTO Data Transfer Object

EA Enterprise Architect

Eclipse Eclipse is a universal tool platform - an open extensible IDE http://
www.eclipse.org/

Table C.1 Terms related to caArray or microarray technology

caArray 1.6 Technical Guide

74

EJB Enterprise JavaBeans

GenePix GenePix AutoProcessor (GPAP) is an automated and customizable
application which is used to correct, filter and normalize raw
microarray data and identify differentially expressed genes. Primary
microarray data are captured using GenePix to generate a GenePix
Results File (GPR). GPR files obtained from analyzing biological or
technical replicates of the same treatment or time point can be
processed using GPAP.

GPR GenePix Results File

GUI Graphical User Interface

JAR Java Archive

JAAS Java Authentication and Authorization Service

Javadoc Tool for generating API documentation in HTML format from doc
comments in source code (http://java.sun.com/j2se/javadoc/)

JDBC Java Database Connectivity

JMS Java Messaging Service

JNDI Java Naming and Directory Interface

JSP JavaServer Pages

JUnit A simple framework to write repeatable tests (http://
junit.sourceforge.net/)

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

MAGE Microarray and Gene Expression

MAGE-ML Microarray and Gene Expression Markup Language

MAGE-OM Microarray Gene Expression - Object Model

MAGE-stk MAGE Software Toolkit is a collection of Open Source packages that
implement the MAGE Object Model in various programming
languages (http://www.mged.org/Workgroups/MAGE/magestk.html)

MDA Model Driven Architecture

MDB Message-Driven Bean

MGED Microarray Gene Expression Data (http://www.mged.org)

MIAME Minimum Information About a Microarray Experiment

Term Definition

Table C.1 Terms related to caArray or microarray technology (Continued)

http://java.sun.com/j2se/javadoc/
http://junit.sourceforge.net/
http://junit.sourceforge.net/
http://www.mged.org

Appendix C: caArray Glossary

75

MO MGED Ontology - MGED has generated a set of guidelines called
the MAGE-OM and has created the MO to provide the semantics for
MIAME and MAGE. MO provides terms for the annotation of
microarray experiments through classes, properties, and instances
to describe the design, biological materials, and technical elements
of a microarray experiment. MO also provides a framework to
reference terms from external ontologies to take advantage of
existing ontologies. In principle, MO can be extended to describe
additional types of functional genomics experiments.

MVC2 Model View Controller 2

NCI National Cancer Institute

NCICB National Cancer Institute Center for Bioinformatics

OJB ObjectRelationalBridge is an Object/Relational mapping tool that
allows transparent persistence for Java Objects against relational
databases (http://db.apache.org/ojb/)

OMG Object Management Group

ORM Object Relational Mapping

POJO Plain Old Java objects

R R is a language and environment for statistical computing and
graphics

RDBMS Relational Database Management System

RMI Remote Method Invocation

RUP Rational Unified Process

SQL Structured Query Language

UCSF University of California San Francisco

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locators

WAR Web Application Archive

WSDL Web Services Description Language

XMI XML Metadata Interchange (http://www.omg.org/technology/
documents/formal/xmi.htm) - The main purpose of XMI is to enable
easy interchange of metadata between modeling tools (based on the
OMG-UML) and metadata repositories (OMG-MOF) in distributed
heterogeneous environments

XML Extensible Markup Language (http://www.w3.org/TR/REC-xml/) -
XML is a subset of Standard Generalized Markup Language
(SGML). Its goal is to enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML

Term Definition

Table C.1 Terms related to caArray or microarray technology (Continued)

http://db.apache.org/ojb/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/TR/REC-xml/

caArray 1.6 Technical Guide

76

XP Extreme Programming

Tiles Tiles builds on the "include" feature provided by the JavaServer
Pages specification to provide a full-featured, robust framework for
assembling presentation pages from component parts. Each part
("Tile") can be reused as often as needed throughout your
application. This reduces the amount of markup that needs to be
maintained and makes it easier to change the look and feel of a
website.

Term Definition

Table C.1 Terms related to caArray or microarray technology (Continued)

77

INDEX
A
access privileges 33
Affymetrix 15
Agilent 15
AOP, description 12
API

caAMEL service interface 14
caArray EJB 53
example code, caAMEL 61
introduction to caAMEL 59
MAGE-OM 41
MAGE-OM directory structure 42
service API, caAMEL 60

architecture
caArray 11
design 11
MAGE-OM 44

Array Design Manager access 34
Aspect Oriented Programming See

AOP 12
association, described 67
authorization

create 35
create CRUD 35
read 35
update/delete 35

B
bin directory 54
BioMaterial Manager access 34
business layer 13
BusinessDelegate 22

C
caAMEL

before coding for API 62
elements of service API 60
example serviceAPI code 61
introduction to service API 59
Service API description 14

caArray
APIs 53
architecture 11
composite design pattern 18
data sources 32
database 5
database schema 32
database tier 32
description 1
design 17
download site 39
EJB APIs 53
implementation 13
introduction 1
key features 9
lazy materialization 31
local database deployment 7
overview 9
portal 10
portal description 39
Presentation layer 13, 17
programmatic Interfaces 14
properties files 55
roles 33
Submission Portal 14
submission portal 14
Technical Guide description 1
technologies used in 12
testing EJB APIs 56
User’s Guide text conventions 2

caBIG
compatibility guidelines 6
compliance 6
defined 6
programmatic interface 7

caBIO, description 6
caCORE

description 5
plugging caArray into API 24

caDSR, description 6
Cancer Array Informatics Project See

caArray 1

caArray 1.6 Technical Guide

78

Cancer Bioinformatics Infrastructure
Objects See caBIO 5

cancer Biomedical Informatics Grid
See caBIG 5

cancer Common Ontologic
Representation Environment See
caCORE 5

Cancer Data Standards Repository
See caDSR 5

capturing system requirements 64
CGH 40
class diagrams

described 66, 67
fundamental elements 66
naming conventions 67
private feature 67
public feature 67

composite design pattern 18
conf directory 55
constants, for roles 33
conversion, DTO - MAGE-stk 26
converting, SearchCriteria 50
CRUD

authorization 35
description 35

curator access 34

D
data classes 19
Data Definition Language See DDL

32
data management tools 9
Data model 32
Data Owner access 34
Data Transfer Objects See DTOs 19
database

DDL 32
dump file 39
schema 32
security 32
tier 32

DataConverter 28
DDL 32, 39
declarative security 35
delete authorization 35
deploying, caArray database 7
Desc classes 19
design challenges 14
directionality See navigability 67
directionality, described 67
directory

bin 54

conf 55
directory structure

caArray 54
MAGE-OM API 42

document
conventions 2
interfaces 14

downloading caArray files 39
DTO

MAGE-stk conversion 26
XML mapping 27

DTOs
benefits 20
description 12
design 19
levels 19
retrieving data 25
sequence diagram 20

E
EJB

API description 14
description 12
layer 20
security 35, 36
SecurityManager 25

EJB APIs
description 53
interaction with DTOs 19

Enterprise JavaBeans See EJB 7
Enterprise Vocabulary Services See

EVS 6
EVS, description 6
Experiment Manager access 34

G
GenePix 15, 40
generalization, inheritance link 69
generating, session ID 50

H
hybridization files, storage 32

I
Illumina 15
Imagene 15
implementation of caArray 13
import, MAGE-ML 14
initializing arrays 28
interfaces

caArray 14
document 14

Index

79

J
J2EE 13
JAAS 36
JAR 54
Java Authentication and

Authorization Service See JAAS 36
Java Database Connectivity See JDBC

29
Java documents 39
Java Messaging Service See JMS 12
Java Naming and Directory Interface

See JNDI 45
Java Transaction API See JTA 21
Java Virtual Machine See JVM 45
JDBC 29, 30
JMS

description 12
purpose in caArray 13
service components 21

JNDI 45
JSP 54
JSP tag library 18
JTA 21
JVM 45

L
lazy loading See lazy materialization

31
lazy materialization 31
LDAP, description 12
Lightweight Directory Access

Protocol See LDAP 12

M
MAGE Manager 25
MAGE-ML 7, 9

file storage 32
import 14
import/export description 14
importing into caArray 59
purpose in caArray 13

MAGE-OM 9, 44
API description 41
directable 50
domain objects 44
OJB repository 50
production server 43
queries 48
RMI connection 43
RMI ports 56
search criteria 44
security 47

testing production server 43
MAGE-OM API 14

annotation 32
architecture 42
directory structure 42
download site 40
implementation objects 41
installation instructions reference 40
MAGE-Compliant objects 41
middleware 45

MAGE-stk
business objects 25
description 26
DTO conversion 26
purpose in caArray 13

ManagerDB 29
mapping DTO to XML 27
metadata

description 6
for interoperability 7

MGED 7, 9
MIAME 7, 9
Microarray and Gene Expression

Markup Language See MAGE-ML
7

Microarray and Gene Expression
Object Model See MAGE-OM 7

microarray files 39
Microarray Gene Expression Data

See MGED 7
Model View Controller 2 See MVC2

17
multiplicity 68
MVC2 17

N
naming conventions, class diagrams

67
navigability See directionality 67
NCICB, description 5
null lists 28

O
Object Relational Mapping See ORM

12
ObjectRelationalBridge See OJB 12
OJB

as ORM tool 28
description 12
in MAGE-stk 26
performing ORM 50
purpose in caArray 13
repository in MAGE-OM 50

caArray 1.6 Technical Guide

80

ORM
description 12
OJB performing for MAGE-OM 50
tool for OJB 28
use in MAGE-stk 13

P
performing ORM 50
PersistenceBrokerManager 30
presentation layer 17
private feature 67
problems, OJB inheritance 51
programmatic

interface 7, 14
security 35

properties files
caarray.properties 32
LDAP 25
SecurityCommon.properties 25

protection element 37
Protocol Manager access 34
public feature 67
public group, description 34
public user, description 34

Q
queries, MAGE-OM 48

R
RDBMS, description 12
read authorization 35
reading materials 2
Relational Database Management

System See RDBMS 12
Relationships in class diagrams

aggregation 68
association 67
directionality 67
generalization 69
multiplicity 68

Remote Method Invocation See RMI
41

Resources, caArray 2
RMI

connection information, production
server 43

description 41
use as MAGE-OM middleware 45

role names, defined 67
roles in caArray 33
RUP 75

S
SearchCriteria 50
SearchCriteriaHandler 45
SecuredElementItf 37
security

architecture 12
declarative 33, 35
EJB 35, 36
filtering objects 48
implementing 36
MAGE-OM 47
programmatic 33, 37
secure session classes 49

security database 32
SecurityManager EJB 25
semantic interoperability 6
Sequence diagrams

described 69
DTOs 20
example 69

ServiceLocator 21
SessionFaçade 23
SQL 39, 54
starting, secure session 47
Struts 12

components 18
framework 17

T
test cases, MAGE-OM 43
testing, caArray EJB APIs 56
text conventions in user guide 2
tiles in Struts framework 18
toXML 44
TransactionHandler 30
troubleshooting

JBoss 53
JNDI 53
null 28
OJB classes 31

U
UCSF Spot to GenePix utility 40
UML

caBIO 6
class diagrams 66
introduction 63
sequence diagrams 69
tutorial 63
types of diagrams 63
use-case diagram 65
use-case document 64

Index

81

unauthenticated user access 34
Unified Modeling Language See

UML 6
update, authorization for 35
Use-case

diagram 65
document 64

user access 33
User Manager access 34

V
view classes 19
VocabManager 24
Vocabulary Manager access 34

X
XML 24

caArray 1.6 Technical Guide

82

	Credits and Resources
	Table of Contents
	Using the caArray Technical Guide
	Introduction to caArray
	Purpose of this Manual
	Recommended Reading
	Organization of the Manual
	Document Text Conventions

	caCORE and caBIG Overviews
	NCICB caCORE Infrastructure Overview
	caBIG Compliance
	caBIG Architectural Principles
	caBIG-Compliant Data Standards
	caArray at caBIG Cancer Centers

	Overview of caArray
	caArray Architecture
	caArray Architecture Diagram
	caArray Technologies
	caArray Interfaces

	caArray Design
	Web Tier
	Model View Controller 2
	Composite View
	Struts

	Application Tier
	Data Transfer Objects
	EJB Layer
	MAGE Manager
	MAGE-stk
	Object Relational Mapping

	Database Tier
	caArray Database
	Security Database
	File Share

	caArray Data Access Security
	Access Privileges
	CRUD Permission Levels
	Security EJB
	Enabling Security
	EJBs
	Programmatic Security

	caArray Download Site
	caArray Portal
	caArray MAGE-OM API

	MAGE-OM API
	MAGE-OM API Introduction
	MAGE-OM Directory Structure
	Accessing the MAGE-OM Production Server
	Testing the MAGE-OM Production Server
	MAGE-OM Architecture
	Domain Objects
	SearchCriteria
	RMI

	MAGE-OM Security
	Client-side Security
	Server-side Security

	Directable
	Persistence

	caArray APIs
	caArray EJB API
	Directory Structure
	Testing caArray EJB APIs

	caAMEL Service API
	Introduction to the caAMEL API
	caAMEL Service API Code Example
	Considerations Before Coding for caAMEL Service API

	UML Modeling
	UML Modeling
	Use-case Documents and Diagrams
	Class Diagrams
	Relationships Between Classes
	Sequence Diagrams

	caArray References
	caArray Glossary
	Index

