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A brief personal history is given about how information theay can be applied to binding
sites of genetic control molecules on nucleic acids. The pnary example used is ribosome
binding sites in Escherichia coli. Once the sites are aligned, the information needed to de-
scribe the sites can be computed using Claude Shannon’s meth This is displayed by a
computer graphic called a sequence logo. The logo represesnan average binding site, and
the mathematics easily allows one to determine the compontsof this average. That is, given
a set of binding sites, the information for individual binding sites can also be computed. One
can go further and predict the information of sites that are not in the original data set. Infor-
mation theory also allows one to model the flexibility of ribcsome binding sites, and this led
us to a simple model for ribosome translational initiation in which the molecular components
fit together only when the ribosome is at a good ribosome bindig site. Since information the-
ory is general, the same mathematics applies to human spliggnctions, where we can predict
the effect of sequence changes that cause human genetic dises and cancer. The second ex-
ample given is the Pribnow ‘box’ which, when viewed by the inbrmation theory method,
reveals a mechanism for initiation of both transcription and DNA replication. Replication,
transcription, splicing, and translation into protein represent the central dogma, so these
examples show how molecular information theory is contribting to our knowledge of basic
biology.
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In 1978 | went to graduate school with the explicit intentafrfinding a mathematics that de-
scribes living things. Living things are too beautiful fbiein not to be described by mathematics.
In the University of Colorado, it is the practice for studetd do rotations in various labs before
setting down in one lab. At the same time we all took a ‘corairse covering the fields of the
Department of Molecular, Cellular and Developmental BgyloIn his lectures, Larry Gold pre-
sented translational initiation which he was elegantlgelesing by using the powerfuj, genetics
of bacteriophage T4.

By 1961 ther, region had been used in remarkable genetic experimentsdncisr Crick,
Sydney Brenner and their colleagues to prove that the genetie is read in steps of three
[Crick et al., 1961]. David Pribnow, who had identified thelO region of bacterial promoters
while at Harvard [Pribnow, 1975], was hard at work with Sidirfédling and others in Larry
Gold’s lab sequencing the old T4 mutations and showing inecwhr detail what had only
been inferred by elegant genetics before. Many cute maequizzles were revealed about
translational initiation [Singeet al., 1981, Shinedlingt al., 1987]. Larry presented to my class
the Shine and Dalgarno (SD) region which is about 10 basesomt Df the initiation codon
[Shine & Dalgarno, 1974]. The SD is similar to Pribnow’s ‘b@s both are about 10 bases up-
stream of the initiation point of translation and transtap, respectively. It was known that thé 3
end of the 16S rRNA, which forms the main skeleton of the 30&usit of the ribosome, bound
to the SD. The initiation codon is the first codon translated @& is usually AUG but sometimes
GUG, rarely UUG and perhaps one CUGHncoli. The SD is a pattern in the mRNA and so
one challenge was to characterize the pattern since it islwalys a perfect complementary match
to the 16S rRNA. However, the problem that intrigued me wasd& for other SD-like patterns
around the initiation codon. | never found anything, buauriched my career.

Working on this problem meant that we had to gather sequesioes GenBank—the in-
ternational repository of genetic sequences at the Ndtibimary of Medicine in Bethesda,
Maryland—did not exist yet. So we typed the sequences of knéwcoli genes into the com-
puter.

| immediately realized that | had a problem. If | typed onlypsle parts that | was interested
in—the regions just around the ribosome binding site (RB&)e-later decided that | wanted a
bigger or different region, then | would have lots of detdind tricky editing to do. With only
4 letters, DNA is hard to read and errors would abound! So veaddd to enter entire published
sequences. But this led to another problem: how to extrattthe sequences | needed for a
particular problem? From this need was born Delila—DEdgmniucleic acid LIbrary LAnguage.
Delila is a small computer language specifically develope@xktracting a set of sequences from a
library of sequences [Schneidearal., 1982, Schneidest al., 1984, Schneider, 2082 With this
tool in hand, we could investigate ribosome binding sited, af course, work on many other
problems.

By this time Gary Stormo and Jeff Haemer had joined the eff@eff, a brilliant geneti-
cist, slowly transformed himself into a computer scientistrom Jeff | learned the powerful
Unix idea of building good tools that each do one job well. Egample, Jeff's elegant trans-
lation of the atchange program into Perl made atchange igenarally useful automation tool
[Schneider, 200]. Together Jeff and | realized that the output of Delila ddchave the same
format as its input. This allowed us to gather BEllcoli DNA sequences into one database and
then to extract just those sequences that represented mRiA. we used Delila a second time
to extract the regions around ribosome binding sites, tlhiasamteeing that our analysis was only
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with sequences that the ribosome could come in contact with.

Jon McCabe and Stephen O’Haire of the computer science tdegratrwrote a searching pro-
gram, and Gary Stormo set out to determine ‘rules’ (regutgressions) for finding the Shine-
Dalgarno. He discovered that no single set of rules wouldkw8tormoet al., 1982D]. This
lesson is still not understood by most molecular biologistiay! The lesson is: don't use rules
and don’t use consensus sequences. Consensus sequeracesoale of the binding site usually
created by taking the most frequent base at each positidreddite. At that time, it was not clear
how to replace consensus sequences or rules with betterismafda@nding sites. In this paper |
will briefly describe how neural nets and later informatibadry elegantly filled that niche.

Fortunately Andrzej Ehrenfeucht, a computer scientigggssted to us to try a simple neural
network—the perceptron. This worked beautifully, andngdbelila and other programs that he
built, Gary was able to find weight matrices that separatedtiown 124 ribosome binding sites
from the 78,000 possible ribosome binding sites in our mRN#aly [Stormoet al., 19823]. To
my knowledge, this was the first use of a neural net in whatrnecte field of bioinformatics,
though we didn’t call it that at the time.

So the perceptron replaced rules and we could identify aivesbinding sites. For example,
translational fusions dfacZ to theuncB gene had the odd property of giving a high signal if the
fusion was early in the gene, but after a certain point furth@vnstream the signal dropped. |
thought that there might be an internal ribosome binding sibd found one by using the percep-
tron. We then confirmed this experimentally [Matttral., 1998].

Two lessons came from results like this. First, we couldridesm the physicists the idea of
doing both theory and experiments. At that time, and to a goaent this is still true today, most
molecular biology is entirely experimental. However, theallows one to guide experiments and
to identify anomalies. Physicists have come to accept tleapproaches, and to appreciate the
tension between them that spurs further work. This has yett¢ar in molecular biology. If one
makes a prediction in a submitted paper, one may get the @amjrlom a reviewer that it should
be tested by experiment before publication. If an experinsetione, then the complaint is that one
doesn’t need theory! Yet when theory and experiment go hadtndind, we often discover things
that go unnoticed by others [Schneigeal., 1986, Schneider & Stormo, 1989, Pagil., 1993,
Lyakhovet al., 2001, Schneider, 2001]. The second lesson is that one csheutareful not to
look under the lamppost all the time. Everybody ‘knows’ tebsome binding sites are at gene
starts, but they could be in other places too. If one buildsdetools that are too rigid, the others
won't be found. This is quite common these days with ‘generfigdorograms that do not identify
alternative splice junctions. We frequently find good spjienctions in places that ‘they shouldn’t
be’ and sometimes we can demonstrate that these cryptichstee interesting effects which can
explain genetic diseases [Rogetral., 1998].

Being able to find binding sites did not help me to understahdtwhe sites are like. | wanted
to see more than just strings of letters, as shown in Fig. Jarited to get an intuitive feeling for<Fig 1
their characteristics. Although one can easily see the ATtAainitiation codon in the figure at
positions 0 to 2, the SD—in the region ef9—is difficult to pick out unambiguously. We had
realized by this time that one could count the number of eade lat each positidnin the sites,
and these could be normalized to give the frequencies ofskatseach position. | presented my
work about the frequencies of bases around ribosome bisttiegito Andrzej Ehrenfeucht’s group.
Afterwards, when everyone else had left, he asked in his edualdthick accent “Why don’t you



try the information transform?” “What'’s that?” | asked. Hedbably!) wrote:

—> plnp 1)

on the blackboard. “What does that mean?” | inquired. “Gdlgaip!” So, like a good Zen
master, he gave me a virtual kick in the pants and launchedameec

Three quarters of a year later | was working on a program almt@fpoint in the code | had
access to the number of each base at each position arounthdseme binding sites. | decided
to try the ‘information transform’ and soon recognized thaétad to compute information as a
difference. In modern terms (which took years to understamdi develop!), | had to compute
two uncertainties and subtract them to get the informatiime first uncertainty is what bases a
ribosome sees as it scans the mRbgfore binding. There are four bases and the ribosome does
not know which will be available next as it moves by randomvn@n motion along an mRNA
before it finds a ribosome binding site where it can startdietion into protein. Indeed, it must
be prepared for anything. So the ribosome is ‘uncertain’mg jpossibility in four for each base it
encounters.

To pick one thing out of two equally likely events takes 1 Bitrdormation. Following earlier
work by Hartley, Claude Shannon, father of information tiyeargued that information should
be additive and so must be based on the logarithm of the nuaflpassibilities [Shannon, 1948,
Pierce, 1980, Schneider, 1995]. That is,l8g- 1 bit. It takes one yes-no question and an answer
of either ‘heads’ or ‘tails’ to specify the state of a coinkéwise, to pick one base out of the four
in DNA takes log 4 = 2 bits. For example, if the bases are arranged in a squaretwoeuestions
will pick out one of them: ‘Is it on the top?’ and ‘Is it on theghit?’

Why did Shannon use the logarithm? Suppose that we have tlep@mdent communication
channels, one with symbolsandt (a coin) and the other withA, C, G, andT (DNA). Together
these channels can senc 2 = 8 possible symbol pairs-kA, hC, hG, hT, tA, tC, tG, andtT.
Each symbol pair would carry lg@ = 3 bits of information. The information is additive since
log, 2+ 10g9,4 =10g,(2 x 4) = log, 8.

So before a ribosome binds to a binding site, it sees all fasebs and iancertain by log,4 =2
bits. After binding the ribosome sees various frequencfdsases. The initiation codon AUG,
GUG, and rarely UUG or CUG, always has a U in the second and al@ithird position. (When
DNA is copied—transcribed—into RNA, U replaces T.) Therensy one possibility for the second
position, so logl = 0 bits. The information that the ribosome gains is the défifee between its
uncertainty before (2 bits) and its uncertainty after (8)}pMvhich is 2 bits.

| cannot overemphasize the important concept that infaonahust always be computed as a
difference. This was the way Shannon did it, but the litewats littered with failed attempts to use
information theory in molecular biology because authodsrit realize this.

Sometimes the uncertaindgter is not zero and so the information is lower. This correspaads
noise in a communications channel, and Shannon called @h®ocation. It represents sequence
variations that the ribosome does not care about. If a DNAlibopprotein accepted two possible
bases, T or C in its binding sites, the uncertainty after wdod 1 bit and the information at that
position would be 2- 1 = 1 bit. In the extreme, if the ribosome doesn’t care about &ipasas
when it is outside the binding site, then all four bases dmvald and the uncertainty after is 2
bits. So the information is 2 2 = 0 bits.

A more complicated example is the first base of the initiatiotion, which has the frequencies:
A: 3551, C: 1, G: 298, and T: 50. How can the uncertainty be ageq? Shannon recognized that
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theaverageis the important quantity to compute:

M
uncertainty=H = — Z pilog, pi  bits/symbol (2)
i=

See my information theory primer for how this can be deriveditively [Schneider, 1995]p; is

the probability of thé™" symbol out oM possible symbols. For ribosomes we know the frequencies
of based € {A,C,G, T} of each positionl(, which we can write a$(b,!). The frequencies are
an estimate of the probability of the bases, so pluggingities(2) gives:

Hatw ()=~ 5 f(b,l)log; f(b,1) bits/base (3)
be{AC.G,T}

Frequencies are only astimate of the probabilities and a correction (not shown) must beenad
to account for this, especially when there are few sequdismmeideret al., 1986].

Before binding, for simplicity, we will assume all bases aggially likely. This is true foE.
coli, but see reference [Schneider, 1999] for a discussionM~er4 equally likely bases, equation
(2) collapses to

Hbefore =100,4 =2  bits/base 4)

Showing that this is indeed the case is a worthy exerciséntoraader.
The information at is the decrease of uncertainty that the ribosome expeence

Rsequence(l) = Hpefore — Hafter (I)  bits/base (5)

Following ShannonR stands for the rate of information transmission, bits psebathis case. The
perceptive reader will notice that the uncertainty (equrafR)) corresponds to the entropy and that
the information represents a decrease of the entropy. Tagoreship between entropy, uncertainty
and information has been discussed in reference [Schpé@@ib], but that fascinating topic is
beyond the scope of this paper.

Fig. 2 shows the information curve for ribosome bindingssiteE. coli. Note that the initiation «<Fig 2
codon shows up as a peak at positions 0, 1 and 2. Since informatadditive for independent
systems, and since the positions of ribosomes are indepebgeur measurement of correlations
[Stephens & Schneider, 1992], one can compute the totainrgton as:

The total information is a nice additive measure of sequenoservation for biology. The implica-
tions of this important number are beyond the scope of ttpepa@riefly, however, one can use the
size of the genome and the number of sites to predict how rmiohmation is needed to find the
binding sites. This is often close Rquence [Schneideret al., 1986, Schneider & Stormo, 1989,
Herman & Schneider, 1992, Schneider, 2000].

Ten years after starting this work, in 1990, Mike Stephensiga school student at that time)
and | invented a way to show the patterns [Schneider & Stepl€90]. Fig. 3 shows the sequence-Fig 3
logo for the curve of Fig. 2. The logo consists of stacks délstrepresenting the DNA bases. The
height of each stack is the information in bits. The heightath letter is proportional to the



frequency of the corresponding base, and the bases ard sofat the most frequent one on top.
With sequence logos, one can finally see the patterns inrmrsiies.

How can we see what individual binding sites look like? Agdhe approach begins with
Shannon’s uncertainty equation, (2), which we can rewste a

M
H= Zpi(—log2 pi)  bits/symbol (7)
i=

From this viewpoint, the uncertainty can be seen as the gearbthe function
ui =—log, pi bits/symbol (8)

This quantity was recognized by Tribus in 1961 and calledstiverisal [Tribus, 1961]. With this
in mind, we can look at the sequence logo (Fig. 3) and receghat it is representing threverage
of many ribosome binding sites.

We know that the ‘area’ under the log8sequence, IS the average sequence conservation. Sup-
pose that we could assign to each ribosome binding site andodl information, so that the aver-
age of these iBsequence. It turns out that this is easy [Schneider, 1893chneider & Rogan, 1999].
The state change is from being anywhere on the sequencerig aea specific location, so we
compute the difference between the averbgiere surprisal (the uncertainty) arafter surprisal:

Ri(b,1) =2—(—log, f(b,l)) bits/base 9

This forms a matrix of 4 by numbers, as shown in Fig. 4. A specific sequence will pick oet a=Fig 4
number at each of thiepositions [Stormat al., 1982, Schneider, 1994. Add these together to
get the individual information of the sequeng&g, It can be shown that the average of these over all
of the input sequences is indeed the t&®akhuence. JOhN Spouge proved that formula (9) is unique;
there is no other way to compute the individual informatiSolineider, 199.

Using this method, we can represent individual bindingssitgéh a computer graphic called
a sequence walker (Fig. 5). These walkers correspond toGhgequences in Fig. 1. Unlike=Fig 5
the logo, a walker consists of only one letter per positi@gaduse it is an evaluation of a single
sequence by an individual information weight matrix. Thegheof each letter in a walker gives the
information weight of the base according to equation (9)sitRe values represent good binding
(AG < 0) while negative values represent bases that are not A& > 0) [Schneider, 19%,
Schneider, 199].

With the advent of the sequence logo, individual informatiand sequence walker techniques
we can finally avoid using neural networks. The advantagéas there is no training process
to compute the information, and one can build a model dydatim sequences known to bind.
In neural net training one needs examples of sequences dhabtcbind to the recognizer and,
generally, good data are not available. Often people waliaee that there are no sites near to the
known ones, which experience has shown us is a bad assurbpttanse there are often important
sites near by [Schneider, 199MHengeret al., 1997], or worse, they make up data for training!
With information theory we can gain a theoretical underdiiag of the data.

From the logo (Fig. 3) we can immediately see that the SD isvant big. It is only a small
lump to the left of the initiation codon. The SD does not shqwwell in the walkers either
(Fig. 5). Since we aligned the sequences by the initiatiatoopthe SD are not well aligned and

6



their patterns are spread out, making the picture of the 8bdal. The reason is that in different
genes the 3end of 16S rRNA binds at different distances from the inibiatcodon. We have
recently shown that this variable distance can be nicelp@aaied for by using information theory
[Shultzabergeet al., 2001].

To dissect the ribosome binding sites into their SD andahdn region (IR) parts, we need to
align the SD region. An extremely clean way to do this is to iméze the information content. The
method is simple [Schneider & Mastronarde, 1996]. The Shoregare first isolated away from
the IR by embedding them in random sequences. Then the S2rssegiare shuffled back and
forth while the total information contefRsquence is computed. With a few tricks, such as making a
look-up table for computing-f (b,1)log, f (b,|) because there are a finite number of frequencies,
this method is very fast. Fortunately binding sites arettegiough that we can avoid introducing
gaps, which would make the alignment problem explode expioally in the number of sequences
and number of allowed gaps. To our delight this multipleraingnt process converged nicely. The
left side of Fig. 6 shows the sequence logo for the aligned Siultzabergeet al., 2001]. The «<Fig 6
pattern that appears matches thed of the 16S rRNA. This is remarkable because we did not
use the 16S sequence to do the alignment. The correlatiosti®@g confirmation that the SD
exists and is bound by the 16S. Thus, for the first time, we \able to create an unbiased picture
of what the SD ‘looks like'.

The right side of Fig. 6 is the initiation region where the tfitRNA delivers the N-
formylmethionine to initiate translation. The middle okthigure shows the relative distribution
of distances between the SD and the IR. How can we take tlusactount when computing the
individual information?

Using information theory, the solution is, again, quite giea We have a distribution of dis-
tances produced during the multiple alignment processs fdrims the probability distribution
shown in Fig. 6. The uncertainty of any probability disttiom can be computed from equation
(2). Therefore, the surprisal for each individual distaoae be computed from equation (8). The
total information for a single ribosome binding site can bmputed by adding the individual infor-
mation of the SD and IR and subtracting the spacing surpig#h this parameter-free approach,
we were able to model the majority of ribosome binding sids icoli [Shultzabergeet al., 2001].

How can we see what one site looks like with this flexible m8dé&lig. 7 shows examples
of flexible sequence walkers. The model is searched acrosguesce, with all SD-IR distances
allowed and the ones with the highest information conteatdasplayed. In most cases the SD
shows up as a distinct lump of information at various dis¢srfcom the initiation codon.

The SD lump is about 10 or 11 bases away from the initiatioronpavhich suggested to
us a simple model for translational initiation [Shultzajeset al., 2001]. Since 11 bases is a
single twist of double helical RNA, the idea is that the deubtlix formed by the SD and the
mRNA and the interaction of the initiation fMet-tRN&" with the first codon may form a sin-
gle structure that nestles onto the surface of the 30S subtlihe sinusoidal shape of the logo
suggested that the SD helix is bound on one side, as we hadvedder DNA-protein interac-
tions [Pappet al., 1993, Schneider, 2001]. Since the 30S and 50S ribosomahgstare compact
objects [Nissert al., 2000, Baret al., 2000, Wimberlyet al., 2000], we proposed that the recog-
nition of the SD might occur by the double helix fitting into latson the 30S subunit surface. If
the SD in the mRNA does not match the 18%®8d well, then the helix would not fit into the slot.
When there is a good fit, all the parts come together companththis would be the initiation con-
figuration. Three-dimensional X-ray crystals with and withthe mRNA were obtained by Harry
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Noller’s laboratory [Yusupovat al., 2001]. They observed that the SD helix is indeed enclosed in
a cleft, with the N terminus of protein S8 pointing into thejorgroove. These results account for
the sequence logo and support the idea that initiation sdmyria a compact bound state.

I'd like to end this essay by returning to the Pribnow ‘box’hieh resembles the SD in that
it is also 10 bases upstream of the point of initiation, buttfanscription instead of translation.
The sequence that David Pribnow observed is often calledTAAR consensus [Lewin, 1997]
since those are the most frequent bases. But the logo resealsthing very different (Fig. 8)«<Fig 8
[Schneider, 2001]. What's going on here? The logo showghin@é of the middle bases are far less
conserved than conventionally understood. The highlyexesl T on the right side at positier/
is in the region opened by RNA polymerases during transongt initiation (shown by the solid
and dashed boxes). The bases to the left of positi®mre outside the opened region. We propose
that after sigma factor binding, the initiation is accorapéd by swinging the T at position7
out of the DNA. This ‘base flipping’ has been observed in X-caystal structures of protein-DNA
complexes [Roberts, 1995, Roberts & Cheng, 1998] and we image similar observations with
sequence logos in several other systems which are knowretoDNA [Schneider, 2001].

These observations led us to perform experiments and th&ga@sdicate that bacteriophage
P1 probably uses base flipping to initiate its DNA replicatjbyakhovet al., 2001]. It is likely
that base flipping is a general mechanism used to open DNAtatenboth RNA transcription and
DNA replication, as predicted by Rich Roberts [Roberts,5]9Fhis discovery was possible only
because sequence logos give such a clear picture of binid&sg s

This paper is a brief introduction to the field | call Moleaulaformation Theory. | have
mentioned only a few of the results. Notably missing is ourkm@ith human splice junctions,
which has led to a form of medical diagnosis [Roghal., 1998]. What does the future hold?
Shannon not only worked out how to measure information, budlso derived an equation for the
maximum information that can be transmitted over a chanrtak channel capacity can be linked
to fundamental thermodynamics and molecular biology [8aer, 1994, Schneider, 1994] and
from this connection many new discoveries are coming.

Acknowledgments | thank Ryan Shultzaberger for creating Fig. 6; KrishnamaacAnnan-
garachari, Brent Jewett, Jerry Chandler, Ryan Shultzabeamd Jim Ellis for comments on the
manuscript.
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———————————— +++++
221111111112--------- +++++++++11111
109876543210987654321012345678901234

U00096 3734 + 1 tact t t tct t
U00096 8238 + 2 tottt tact at cat tt
U00096 12163 + 3 atatataogt ttt t t taatt
U00096 14168 + 4 tct ttt t t t
U00096 17489 + 5 t t t tct t
U00096 22391 + 6 t tctogat t t at
U00096 25826 + 7t t at t tgtct tctot
U00096 29651 + 8 tattctct tgttttoatt t
U00096 30817 + 9 gtaat t t t
U00096 49823 + 10 tttttttat tct t gat tctoatt

Figure 1: Some proven ribosome binding sites
The first 10 experimentally proven (‘verified’) ribosome diing sites in the EcoGene 12 dataset
[Rudd, 2000] are shown aligned by the initiation codon, whtovers positions 0 to 2. The se-
guences are writter’ ®n the left to 3 on the right and translation is to the right. The sequences
come from the complet&. coli genome, GenBank Accession U0O0096 [Blatteteal., 1997].
These particular example gene sequences are orientedv$eck-) on the genome, but about
half of all genes have the other orientation. Above the secgare coordinate positiomsyrit-
ten vertically. Color coding (or shading) helps one to setepas.
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tRs(l)
183 0.05
146 0. 02
159 0.06
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165 0.09
163 0. 07
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54 0.33
49 0. 45
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86 0. 06
188 0.14
183 0.04

Rs(I) = Reequence(l), Information in bits




baseb positionl
0 1 2
+1.84] -716 -7.16
~716 716 —7.16
~157 716 [+1.99
~3.57 [+2.00] -7.16

-0 0>

Figure 4: Initiation codon information weight matrii, (b, ).
The weights for the sequencéATG 3’ are boxed. The value 7.16 represents positions where
that base was not observed. Sinfgé,l) = 0 at these positions, equation (9) shows that such
weights could be set teco, but since there is only a finite sample of sequences, an&stinased
on the probability of observing that base is substitutetiffeeder, 1994d]. This prevents the model
from being overly reactive to new data.
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Figure 5. Sequence walkers for individual ribosome bindings (rbs).
These are the first 10 verified sites used in Fig. 1 evaluatatidyndividual information model
corresponding to Figures 2 and 3. The green (lightly shadezhviblack and white) box indicates
the scale, which runs from-3 to +2 bits. A purple (dark shaded when black and white) box
indicates that the information is less tha® bits. The information content of each site is given
followed by the coordinates on tlte coli genome [Blattneet al., 1997].
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Figure 6: Flexible ribosome binding site model: sequengeddor the SD and IR, and the distance
distribution between them.

Note how the SD sequence logo nicely complements then8 of the 16S rRNA, although
the 16S sequence was not used to align the SD. This demassttat the SD pattern ex-
ists independently of models for 16S binding. The smootlpshaf the information curve
indicates that not all positions are equally important. oAlshis sinusoidal shape is char-
acteristic of interactions in which nucleic acids are retpgd while in double helical form
[Pappet al., 1993, Schneider, 2001]. The peak of the spacing represetitgance of-9 bases
between the peak of the SD and the first base of the initiatboloic, with larger distances to the
left of the histogram [Shultzabergetral., 2001]. The number of ribosome binding sites at each
spacing is given above the distance numbers.
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Figure 7: Flexible ribosome binding site model: sequend&ava.
The first 5 sequences in Fig. 1 were analyzed by a flexible segusalker for ribosome binding
sites. Each flexible walker consists of two sequence walkensected by a linking bar that in-
dicates which SD is connected to which IR. (In this figureyehis only one case per sequence.)
After the bar the distance between the walkers and the auateliof the IR walker are shown,
along with the total information.
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PROKARYOTIC BACTERIAL PROMOTER:
291 -10 regions oE. coli promoters
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Figure 8: Sequence logo for the Pribnow ‘box’.
The arrow indicates start points for transcription. Theles and triangles are data that localize
the site [Schneider, 2001].
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