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In typical applications of diffusion tensor imaging (DTI), DT-
derived quantities are used to make a diagnostic, therapeutic,
or scientific determination. In such cases it is essential to char-
acterize the variability of these tensor-derived quantities. Para-
metric and empirical methods have been proposed to estimate
the variance of the estimated DT, and quantities derived from it.
However, the former method cannot be generalized since a
parametric distribution cannot be found for all DT-derived
quantities. Although powerful empirical methods, such as the
bootstrap, are available, they require oversampling of the dif-
fusion-weighted imaging (DWI) data. Statistical perturbation
methods represent a hybrid between parametric and empirical
approaches, and can overcome the primary limitations of both
methods. In this study we used a first-order perturbation
method to obtain analytic expressions for the variance of DT-
derived quantities, such as the trace, fractional anisotropy (FA),
eigenvalues, and eigenvectors, for a given experimental design.
We performed Monte Carlo (MC) simulations of DTI experi-
ments to test and validate these formulae, and to determine
their range of applicability for different experimental design
parameters, including the signal-to-noise ratio (SNR), diffusion
gradient sampling scheme, and number of DWI acquisitions.
This information should be useful for designing DTI studies and
assessing the quality of inferences drawn from them. Magn
Reson Med 57:141–149, 2007. Published 2006 Wiley-Liss, Inc.†
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The number and scope of diffusion tensor imaging (DTI)
applications have increased dramatically since this tech-
nique was first introduced. In a critical-care context, DTI
can be used to provide maps of the average apparent dif-
fusion coefficient (mean ADC) or trace-weighted images,
which are both helpful for managing acute stroke (1).
Other tensor-derived quantities, such as the fractional an-
isotropy (FA), are used to assess white matter (WM) in-
volvement in chronic stroke (2), multiple sclerosis (3,4),
and other neurodegenerative diseases (5). WM tracts visu-
alized with the use of color-coded maps (6) or by following
the direction of maximum diffusivity (7) are helpful for
planning neurosurgical procedures (8) and inferring ana-
tomical connectivity between different brain regions (9).
Multicenter studies are now being undertaken that use DTI
data to construct brain atlases of normal and abnormal

human brains (10). Typically, each of these applications
uses a particular set of DT-derived quantities to make a
diagnostic, therapeutic, or scientific determination.

Each application of DTI also has an optimal or near-
optimal experimental design. For instance, when estimat-
ing the mean ADC or trace of the DT in acute stroke, it is
desirable to use the fewest possible diffusion-weighted
(DW) images to minimize the acquisition time (11). In
tractography it is prudent to acquire 30 or more DW images
whose diffusion gradient orientations are isotropically ar-
ranged on a spherical shell (12). For a longitudinal study
using DTI, a robust protocol with high reproducibility of
DW imaging (DWI) data is desired. A multicenter prospec-
tive study using DTI requires an experimental design with
high sensitivity and low interobserver variability. Charac-
terizing the variability of tensor-derived quantities is crit-
ical to each application. Knowledge of this variability will
help determine, among other things, whether using a
scheme with more gradient directions or using repeated
measurements along each gradient direction is desired for
a multicenter study.

Several approaches have been proposed to estimate the
variance of the DT itself, and quantities derived from it.
Pajevic and Basser (13) showed that for a signal-to-noise
ratio (SNR) greater than 5, and more than seven DWI
acquisitions, a multivariate Gaussian distribution ade-
quately describes the variability of the estimated DT. This
parametric distribution was also used to derive the distri-
bution of trace that is also normally distributed (14).

Pajevic and Basser (13) also showed that this multivar-
iate Gaussian distribution could be recast as a normal
distribution of a second-order tensor random variable. In
certain circumstances, it can be used to predict the distri-
bution of the eigenvalues of the estimated DT (assuming an
unweighted linear model). However, to date it has not
been possible to use it to derive the parametric distribution
of other widely used tensor-derived quantities, such as the
FA, relative anisotropy (RA), or eigenvectors of the DT.

Empirical statistical distributions have also been used to
characterize variability in the DTI experiment. Pierpaoli et
al. (15) used Monte Carlo (MC) methods to simulate the
variability of ideal DTI data when only Gaussian noise is
added to each RF channel in quadrature. Subsequently,
Pajevic and Basser (13) showed that the bootstrap method
could be used to estimate the distribution of the DT itself
and of tensor-derived quantities from actual DTI data.
Although such empirical methods are powerful, they re-
quire the acquisition of additional DW images, which is
onerous for many biological and clinical applications.

Statistical perturbation methods contain elements of
both parametric and empirical approaches (16–18). They
allow errors in the DT to be propagated through to errors in
the DT-derived quantities using the analytical expressions
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relating them. Perturbation analysis overcomes the pri-
mary limitation of the parametric approaches described
above, since analytic or approximate relationships can be
established between the DTs and any of the aforemen-
tioned tensor-derived quantities. It also overcomes the pri-
mary limitation of empirical statistical approaches, such
as the bootstrap, since no additional DW images are re-
quired for the particular experimental design to estimate
the variance of a tensor-derived quantity.

First-order matrix perturbation analysis was first used in
DTI to examine uncertainty in the eigenvalues and eigen-
vectors, with the goal of estimating the variance of the fiber
orientation (16). Subsequently Anderson (17) proposed
using second- and higher-order perturbations to determine
the uncertainty in various quantities derived from the DT,
such as its eigenvalues, eigenvectors, and trace.

Skare et al. (20) employed error propagation analysis to
determine how noise in DWI data affects the uncertainty in
the estimated ADCs (19) and in diffusion anisotropy mea-
sures. Another recent study used singular-value decompo-
sition to determine the tensor variance and the error prop-
agation method to derive the uncertainty in diffusion an-
isotropy measures such as FA and RA, but neglected the
covariance terms between the DT elements in its formulae
(18).

We used a first-order perturbation method to obtain
estimates of the variance of the DT, eigenvalues, and eig-
envectors, and the error propagation method to determine
other tensor-derived quantities, such as the trace, FA, and
RA, for a given experimental design. We performed MC
simulations of DTI experiments to validate these formulae,
and to determine their applicability over a broad range of
experimental design parameters, including SNR, number
of diffusion gradient directions, number of DWI acquisi-
tions, etc. This information should be useful for designing
DTI studies and assessing the quality of inferences drawn
from DTI studies.

MATERIALS AND METHODS

Review of Log Linear Model Tensor Estimation

Let y � {ln(S1), . . . , ln(SN)}T, where Si represents the ith

DWI magnitude signal intensity in a DTI acquisition, and �
� {Dxx, Dyy, Dzz, Dxy, Dxz, Dyz, ln(A0)}T are the DTI model
parameters, where Dij are elements of the DT, and A0 is the
echo intensity with no applied gradients (21). To first
order, the log linear model can be written as y � B� � e,
where the jth row of B contains b-matrix entries of the jth

DWI acquisition �{bxxj, byyj, bzzj, 2bxyj, 2bxzj, 2byzj,
�1}, and e is the error vector. The diagonal elements of the
covariance matrix of e equal the signal variance divided by
the signal intensity, i.e., [�e]ii � �i

2/�Si�
2, where �Si�

denotes the expectation of random variable Si , and �i
2 is

the intensity variance. Measured y data are assumed to be
independent, so the off-diagonal elements of the covari-
ance matrix of e are zero, i.e., [�e]ij � 0, where i 	 j. The
weighted least-squares solution using the linear model is
given by (21):

� � 
BT�̃e
�1B��1
BT�̃e

�1�y [1]

where �̃e is the diagonal matrix that can be obtained using
the measured signal intensities and given noise variance,
and matrix B is given by the experimental design (22).

Assuming that the estimation of the covariance matrix of
the measured data is accurate (i.e., �̃e � �e), the covari-
ance matrix of the estimated tensor will be given by

�� � ��T� � 
BT�̃e
�1B��1. [2]

Matrix Perturbation and Error Propagation Theory

Let D0 be a real, symmetric 3  3 unperturbed DT matrix,
and let �D be a real, symmetric 3  3 perturbation matrix
corresponding to it; then the estimated tensor, D � D0 �
�D. Using first-order matrix perturbation analysis
(16,23,24), one can estimate the variance of three eigenval-
ues and eigenvectors of DTs directly from the estimated
tensor D using Eq. [1] and its estimated perturbation ma-
trix �D, which contains the standard errors of each com-
ponent of D using Eq. [2]. Similarly to expressions shown
by Anderson (17), the mean square diagonal elements of
�D are [�D]ii

2 � �(D � D0)ii
2 � � [��]ii (i � 3). To be more

specific, we can write �xxxx
2 � [�D]00

2 � [��]00, �yyyy
2 �

[�D]11
2 � [��]11, �zzzz

2 � [�D]22
2 � [��]22. The covariance

terms of tensor elements can be computed using �xxyy
2 �

�yyxx
2 � [�D]01

2 � [��]01, �xxzz
2 � �zzxx

2 � [�D]02
2 � [��]02,

and �yyzz
2 � �zzyy

2 � [�D]12
2 � [��]12. Note that if the signal

variance is assumed to be a constant in the image, one can
write �� � �̃e(BTB)�1 and derive the relationship between
the variance of each tensor element and the squared SNR,
which can be defined as �Si�

2/�2.
Let �i be the ith eigenvalue and �i be its corresponding

eigenvector. Let the uncertainty of �i be ��i and the un-
certainty of �i be ��i. One can compute the uncertainty for
each eigenvalue, ��i

2 , using the first-order correction
(23,24) (see also Appendix A for a brief description):

��i

2 � ���i
2� � �
�i

T�D�i�
2�. [3]

If we assume that the three sorted eigenvalues of D0 have
�1 � �2 and �1 � �3, it can also be shown that the pertur-
bation of the eigenvector associated with the largest eigen-
value is given by

��1 � ��1
T�D�2

�1 � �2
��2 � ��1

T�D�3

�1 � �3
��3. [4]

The angle � between the perturbed principal eigenvector of
D, �1 � ��1, and the estimated eigenvector �1, can be
approximated by � � tan�1(���1�). Using the small angle
approximation (i.e., � � ���1�) and noting that the eigen-
vectors of D are mutually orthogonal, one can derive the
root mean squared angular deviation from Eq. [4] (see
Appendix B):

�RMS � ���2� � �����1�2� � ���1
T�D�2

�1 � �2
�2

� ��1
T�D�3

�1 � �3
�2

, [5]

given �1 � �2 and �1 � �3.
One can compute the uncertainty of other tensor-de-

rived quantities, such as the trace, FA, and RA, by apply-
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ing error propagation theory (25). The variance of the
Trace can be written as

�Trace
2 � �xxxx

2 � �yyyy
2 � �zzzz

2 � 2�xxyy
2 � 2�xxzz

2 � 2�yyzz
2

Exactly the same formula is obtained when it is assumed
that the elements of the DT are distributed according to a
multivariate Gaussian (14). Alternatively, we obtain:

�Trace
2 � ��1

2 � ��2

2 � ��3

2 � 2��12

2 � 2��13

2 � 2��23

2 . [6]

The variance of each eigenvalues, ��1

2 , ��2

2 , and ��3

2 , can be
computed using Eq. [3] directly or obtained from the co-
variance matrix of eigenvalues, ��. However, the variance
of covariance terms of eigenvalues, ��12

2 , ��13

2 , and ��23

2 must
be obtained from �� which one can compute by applying
the transformation matrix, R, to the covariance matrix of
tensors, i.,e., �� � RT��RT (17,23). To be more specific,
we write ��1

2 � [��]00, ��2

2 � [��]11, ��3

2 � [��]22, ��12

2 �
[��]01, ��13

2 � [��]02, and ��23

2 � [��]12. Note that we dis-
agree with the covariance terms of eigenvalues derived in
Ref. 17. Also, in contrast to the error propagation formulae
presented in Ref. 18, the covariance terms that represent
dependences between the difference eigenvalues appear in
our formulae.

The variance of the FA can now be estimated by

�FA
2 � ��1

2 ��FA
��1

� 2

� ��2

2 ��FA
��2

� 2

� ��3

2 ��FA
��3

� 2

� 2��12

2
�FA
��1

�FA
��2

� 2��13

2
�FA
��1

�FA
��3

� 2��23

2
�FA
��2

�FA
��3

[7]

where

FA �
1

�2 �
�1 � �2�
2 � 
�1 � �3�

2 � 
�2 � �3�
2

�1
2 � �2

2 � �3
2 .

And the uncertainty of the RA can be estimated by

�RA
2 � ��1

2 ��RA
��1

� 2

� ��2

2 ��RA
��2

� 2

� ��3

2 ��RA
��3

� 2

� 2��12

2
�RA
��1

�RA
��2

� 2��13

2
�RA
��1

�RA
��3

� 2��23

2
�RA
��2

�RA
��3

[8]

where

RA �
1

�2

�
�1 � �2�
2 � 
�1 � �3�

2 � 
�2 � �3�
2

�1 � �2 � �3
.

Complete derivations of these expressions are provided in
Appendix C.

MC Methods

Single Tensor Simulation

Simulations were performed following the approach pre-
viously described in Ref. 15 to obtain empirical estimates
of the variance of various DT-derived quantities. The re-

sults were compared with the analytically derived values
obtained with our method. Briefly, we simulated the effect
of thermal noise in the DW signal intensities by generating
complex random numbers whose real and imaginary parts
were Gaussian-distributed with mean of 0 and standard
deviation (SD) scaled to the desired SD of the signal. We
then added the noise-free signal to the real part of the
complex noise, and took the magnitude of this complex
number to generate the noisy amplitude signal. DTs were
computed from 16384 realizations of such noisy signals.
We addressed several possible scenarios. We simulated
cylindrically symmetric anisotropic DTs with diffusivity
in the x direction set to two, three, five, and seven times
the diffusivity in the y and z directions. The Trace of the
DTs was representative of the Trace in brain parenchyma
(2.1  10–3 mm2/s). A study by Jones et al. (26) showed
that the sampling scheme plays an important role in de-
termining the uncertainty of the estimated tensors, and
that at least 30 unique sampling orientations are required
for rotationally invariant statistical properties of the esti-
mated DT-derived quantities. Therefore, we tested the
Jones 30 direction scheme with 35 b-values (five with b �
0, and 30 with b � 1000 s/mm2) and different SNRs rang-
ing from 5 to 100. The SNR is defined as the signal inten-
sity in a b � 0 image divided by the signal SD. We also
tested the same scheme with two, four, and eight replicates
(70, 140, and 280 b-values). To validate the formulae using
different gradient direction schemes, we tested six, 12, 20,
30, and 60 diffusion sampling directions with 65 b-values
(five with b � 0, and 60 with b � 1000 s/mm2). As indi-
cated in Ref. 27, the tensor orientation affects the uncer-
tainty measurement of tensor-derived quantities. There-
fore, we tested three tensor orientations: the principal
basis (i.e., three eigenvectors, one lying on each axis (x, y,
z)), rotation around the y-axis at 45° from the principal
basis, and rotation around the x-axis at 45° from the prin-
cipal basis. The three eigenvalues in this simulation were
set at 1500, 300, and 300 �m2/s, with the SNR equal to 5,
10, and 20, respectively.

Brain Tissue Tensor Simulation

We also performed simulations to assess the validity of our
analytic estimation of uncertainty in a situation represen-
tative of a clinical DTI scan of the brain. We collected a
very high-quality DTI data set in the brain of a healthy
male volunteer. Images were acquired with a DW-EPI se-
quence with 2  2  2 mm3 resolution and eight b-values
ranging from 3 to 1200 s/mm2. For each b-value, different
directions were sampled following the “repulsion”
scheme proposed by Jones et al. (26). The b-value (s/mm2)/
number of directions scheme was as follows: 3/3, 10/6,
65/10, 113/12, 350/16, 570/18, 850/20, and 1200/22. Each
direction scheme was repeated seven times, and 749 DWI
volumes per slice location were acquired (26,28). The total
scan time was about 4 hr 40 min. All images were coreg-
istered (29) and the RESTORE tensor fitting approach (30)
was used to obtain a robust estimation of all tensor ele-
ments. We considered the DT computed at each voxel
location in the brain from this high-quality data set to be
an error-free measurement of water diffusivity. From this
DT and a given experimental design (an assumed set of
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b-matrices), we then produced noise-free synthetic DW
images and computed the signal intensity in each voxel
using the formula (21): S(b) � S(0) � exp(�b : D), where D
is the DT, b is the desired b matrix, and S0 is the amplitude
image intensity.

For this simulation using human brain data we tested
only Jones 30 gradient direction scheme: with b � 1000
plus five non-DW images. We also added Gaussian-distrib-
uted noise in quadrature to simulate images with an SNR
of 20 measured in the thalamus of the b � 0 image. We
then computed the DT using the synthetic human brain
data created by nonlinear regression. We repeated this
procedure 500 times and used the results to estimate the
uncertainty of the DT and its derived quantities in each
voxel. We also created 20 replicates of such data set to be
used for bootstrapping for cross-validation. We computed
the DT 1000 times to obtain the SD for the DT-derived
quantities.

RESULTS

Figure 1 shows the SDs of Trace (�Trace), the root mean
square (RMS) angular deviation (�RMS), the coefficient of
variation (COV) of the largest eigenvalue (��1

/��1�), and the
COV of the FA (�FA/�FA�), computed using MC methods
and the analytic formulae (AF) given in Eqs. [3] and
[5]–[7], for different SNRs (ranging from 5 to 100) and with
different anisotropic DTs (the ratio of �1:�2:�3 � 2:1:1,
3:1:1, 5:1:1, and 7:1:1, which has FA � 0.41, 0.60, 0.77,
and 0.84, respectively). The Trace in the simulation was
set to 2.1  10–3 mm2/s, which is representative of the
trace of brain parenchyma. The 30-gradient scheme with
b � 1000 s/mm2 and five non-DW images was used. The
trends of SD in the MC and AF are consistent for all

estimated parameters. The difference in �Trace between the
MC and AF is negligible, with an error of �5% in all of the
anisotropic cases we tested when the SNR is greater than
10. The difference of �RMS is negligible, with an error of
�5% when the SNR is greater than 20. The differences of
the COV of FA and the largest eigenvalue are negligible
with error less than 3% and 5%, respectively, when the
SNR is greater than 15. For SNR � 5, the error will be
larger and sensitive to the degree of anisotropy. Both em-
pirical and analytical methods predict a power law scaling
relationship: �Trace � SNR–1, ��1

� SNR–1, �FA � SNR–1,
and �RMS � SNR–1. These scaling results are generated
using the MC method, but are analytically derivable from
the formulae given in the previous section.

Figure 2 shows that the estimated �RMS decreases as
more DW images are used, and again the trends for the MC
and AF are consistent. The results shown here are for an
anisotropic tensor with �1:�2:�3 � 1500:300:300 �m2/s.
Both approaches also predict a power law scaling relation-
ship, �RMS � N–1, where N is the number of DW replicates.
Other tensor-derived parameters, such as the Trace, prin-
cipal eigenvalue, and FA, also exhibit the same trend (data
not shown here).

Figure 3 shows the estimated SD of the FA for selected
slices in human brain using MC (upper panel) and AF (mid-
dle panel). The lower panel is the absolute difference map
between the MC and AF estimates. The AF provides a precise
uncertainty estimation of FA in most brain areas, especially
in high anisotropic areas. The difference between AF and MC
is higher in isotropic areas, such as the CSF-filled ventricles.
Given the SNR � 20 in this example, the estimate of �FA from
the AF is 23.5% on average, which is lower than the estimate
of �FA from MC in the selected CSF region shown in Fig. 3.
The SD maps of the trace using MC and AF are very similar,

FIG. 1. (a) The SD of trace; (b) the RMS of
the perturbed first eigenvector, �RMS; (c) the
COV of the first eigenvalue, �1; and (d) the
COV of FA, computed using MC methods
and AF for different SNRs with various pre-
defined anisotropic DTs (�1:�2:�3 with
trace � 2100 �m2/s) and 35 b-values (5 with
b � 0 and 30 with b � 1000 s/mm2).
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with a maximum error of �5% (data not shown here). The
results of bootstrapping are consistent with the results of the
MC simulation.

Figure 4 shows the estimated SD of the FA and RA, the
ratio �FA/�RA, and the ratio SNR(FA)/SNR(RA) � (FA/
�FA)/(RA/�RA) using the AF for different SNRs with dif-
ferent degrees of anisotropy ranging from 0 to 1. The mea-
sure used to quantify diffusion anisotropy is Clinear, pro-
posed by Westin et al. (31), which is defined as Clinear

�
�1 � �3

�1 � �2 � �3
, where �1, �2, and �3 are the rank-sorted

eigenvalues of the DT. The estimated �FA and �RA both
decrease as the SNR is increased. The estimated �FA de-
creases as Clinear increases, while the estimated �RA in-
creases as Clinear increases. However, consistent with the

result reported in Ref. 32, the ratio �FA/�RA and SNR(FA)/
SNR(RA) are both independent of SNR. Figure 4 also dem-
onstrates that the FA has superior noise immunity relative
to the RA. Note that the predictions of our AF agree exactly
with the formula given by Hasan et al. (32), who derived
the relationship between the ratio of FA and RA, and the
ratio of �FA and �RA. However, Hasan et al. (32) did not
provide individual expressions for �FA or �RA. We show in
Fig. 4a and b that our AF yield �FA and �RA directly. In Fig.
4c and d, the ratio �FA/�RA and SNR(FA)/SNR(RA), com-
puted exactly from the data provided in Fig. 4a and b, are
identical to Hasan et al.’s (32) formulae: �FA/�RA � (1/
3)(FA/RA)3 and SNR(FA)/SNR(RA) � 1 � RA2 (32).

Figure 5 shows the estimate of �FA for various numbers
of gradient directions. Given the same tensor orientation
(the diagonal tensor in this example), the same number of
images for each scheme (60 DW images and five b � 0
images in this example), and the same SNR, the gradient
direction scheme has very little effect on the uncertainty
measurement of FA. Other diffusion-derived quantities,
such as the trace and RA, behave similarly (data not shown
here).

DISCUSSION

The results show the proposed AF accurately estimate the
uncertainty of the tensor and its derived quantities over a
useful range of SNRs and experimental designs. However,
for extremely low SNRs (�5), reliable results are not ex-
pected because at low SNR, several of the simplifying
assumptions may not hold. For example, when the SNR is
low, the angular excursion about the mean eigenvector is
large, so the small angle approximation will no longer be
satisfied. The assumptions of the first-order perturbation
theory (e.g., that the SD is small compared to the mean
tensor) may also not be satisfied. As indicated by Jones
(33), when the diffusion attenuation is high (b � 3000
s/mm2) and/or the SNR is low (�5), the noise floor is
sampled, which creates artifacts in the DW image. These
AF are therefore not recommended when the DWI exper-
iments are potentially prone to this artifact. As shown in
Figs. 1–3 and 5, the AF and simulations give similar re-
sults in estimating the uncertainty in tensor-derived indi-
ces with SNR � 10 and a clinical b-value (b � 1000 s/mm2)
regardless of the gradient sampling scheme used and the
number of replicates acquired.

The AF are useful for designing DTI experiments for
certain applications and for analyzing the DTI data. Al-
though the MC simulation has similar applications, it is
time-consuming and may not be practical for clinicians.
For example, to obtain a reliable estimate of Trace with a
95% confidence interval (CI) from a stroke patient, would
a six-gradient direction scheme with b � 1000 s/mm2 and
one b � 0 image be sufficient? Assuming that the measured
SNR in the thalamus of the b � 0 image is about 20, the
answer is no, since only a 90% CI on the Trace is achieved.
Then the question would be, how many replicates should
be acquired or how should a scheme with more gradient
directions be used instead? The answer using the AF is
straightforward: either four replicates should be acquired
if the six-gradient-directions scheme with one b � 0 is
used, or the 30-gradient-directions scheme with three b �

FIG. 2. (a) The RMS of the perturbed angle, �RMS, and (b) the
logarithmic transform of �RMS, log2(�RMS), using MC methods and
AF for different SNRs with predefined anisotropic DTs (�1:�2:�3 �
1500:300:300 �m2/s) and different numbers of replicates (one rep-
licate consists of five b � 0 and 30 b � 1000 s/mm2).

Variance of DTI-Derived Parameters 145



0 images should be used. Another example is to quantify
the reliability of tractography findings. It is known that the
computed trajectory always deviates from the true trajec-
tory due to noise. This has been demonstrated with the use
of simulation (34,35) and bootstrapping (27,36). Although
the cone of uncertainty map (36) and the confidence map
(27) constructed using bootstrapping can quantify the un-
certainty of an eigenvector in each voxel and assign con-
fidence to the tracking result, they may not be practical for
clinical studies. It is also difficult to determine how large
the superset should be and how small the subset should be
to reach a reliable assessment. The AF provide a novel way

to construct such maps explicitly and obtain an overall
notion of the reliability of estimated parameters. However,
it should be noted that these formulae were derived from
the linear least-squares model, and only the Gaussian RF
noise was taken into account. In reality, physiological
artifacts, such as subject motion or cardiac pulsation, ed-
dy-current distortion, and phase error, could affect the
uncertainty measurement and cause higher uncertainty in
measured quantities in general. Empirical methods, such
as the bootstrap, would be more suitable and valuable for
dealing with uncertainty when such artifacts are present in
data.

FIG. 3. The estimated SD of FA of selected slices
of human brain using MC (Row 1) and AF (Row 2).
The lower panel is the absolute difference map
between MC and AF. A square region marked in
the last image of the lower panel indicates that a
larger error (23.5%) occurred in the CSF-filled area
(the color bar applies only to the Row 3).

FIG. 4. The estimated SD of (a) FA and (b)
RA using the proposed AF, (c) the ratio of
�FA/�RA using the AF and Hasan et al.’s (32)
formula �FA/�RA � (1/3)(FA/RA)3, and (d) the
ratio of SNR(FA)/SNR(RA) using AF and
Hasan et al.’s (32) formula SNR(FA)/
SNR(RA) � 1 � RA2 (32) for different SNRs
with various anisotropic DTs (Clinear � 0–1).
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As indicated in Fig. 3, the AF for the uncertainty of FA
are more susceptible to error in isotropic regions (e.g.,
CSF-filled ventricles) because eigenvalues and eigenvec-
tors become singular as the condition for isotropy is ap-
proached. However, since these quantities are typically
important primarily where the degree of diffusion anisot-
ropy or FA is high, such as in WM pathways, in practice
this inaccuracy may not matter.

It should be noted that covariance terms arising in the
error propagation formula should not be ignored. In gen-
eral, the first two terms (see Eq. [C1]) dominate the uncer-
tainties; however, in previous studies the covariance terms
were neglected (18,37). When fluctuations in the measured
quantities are uncorrelated, the covariance terms are ex-
pected to vanish. However, if the fluctuations in the mea-
sured quantities are correlated, it is unclear what bias will
arise from neglecting those covariance terms. In fact, the
covariance terms often make significant contributions to
the uncertainties in parameters determined by fitting
curves to data by the least-squares method (25). The ten-
sor-fitting procedure uses the least-squares approach, and
the derived eigenvalues are not independent. The error
propagation approach used here to derive the uncertainty
of other tensor indices, such as the trace and FA, takes the
covariance terms into account but neglects higher-order
terms in the Taylor expansion, as shown in Appendix C.
When the errors are large, at least the second partial de-
rivatives and partial cross derivative must be included.
This may partly explain why the current results are so
robust. We observed from the simulations that the uncer-
tainty measurements on the FA and RA were about 7–10%
lower when the covariance terms were ignored.

The results presented in the previous section were ob-
tained with a diagonal tensor in both the simulation and
formulae. As indicated in Ref. 27, the tensor orientation
can affect the uncertainty measurement of tensor-derived
quantities to different degrees when different gradient

schemes are used. Previous studies (12,37,38) compared
the gradient sampling schemes for measuring DTI-derived
quantities with the use of simulations. In this work we
tested only a few tensor orientations and five different
gradient sampling schemes to demonstrate that the pro-
posed formulae take into consideration tensor orientation
or imaging gradient cross-terms, and are valid for different
gradient sampling schemes.

CONCLUSIONS

For any imaginable application of DTI, it is necessary to
assess the variance of the DT and tensor-derived quanti-
ties. The perturbation approach for estimating the uncer-
tainty in the DT and its derived quantities is a powerful
tool for DTI data analysis and experimental design. In this
study we validated the AF using MC methods, and com-
pared the results with previous findings.

Although the parametric statistical analysis described
by Pajevic and Basser (13) does provide a robust estimate
for the distribution of Trace, it only provides estimates of
the distribution of other tensor-derived quantities under
very restrictive assumptions, i.e., that the tensor is esti-
mated using an unweighted linear least-squares model
(which is not the case), and that an isotropic gradient
scheme is used to acquire the DWI data. Empirical meth-
ods, such as the bootstrap, can provide the distribution of
any tensor-derived variable or parameter of interest; how-
ever, such methods require additional DWI data and thus
can be prohibitively expensive or even unethical for treat-
ing certain patients.

We believe that analytical estimation of the uncertainty
of DTI-derived parameters is easy to implement and pro-
vides acceptable accuracy for many clinical DTI applica-
tions.
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APPENDIX A

Let D0 be a real, symmetric 3  3 matrix and let �D be a
real, symmetric perturbation matrix. Let �i and �i, {i � 1, 2,
3} be the eigenvectors and eigenvalues, respectively, of D0.
Assume that the �i are distinct. We wish to obtain a first-
order approximation of the eigenvectors and eigenvalues
of D in terms of the �i and �i, where D �D0 � �D, and D�
� �D. These may be obtained by retaining the terms of first
order or lower of the equation (D0 � �D) (�i � ��i) � (�i �
��i) (�i � ��i), where D0 �i � �i �i. The resulting equation
is

D0��i��D�i � �i��i � ��i�i. [A1]

To calculate ��i, we can premultiply Eq. [A1] by �i
T.

�i
TD0��i��i

T�D�i � �i
T�i��i � �i

T��i�i.

FIG. 5. The estimated SD of FA, �FA, using MC and AF for various
gradient direction schemes with SNR � 5, 10, and 20.
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Since �i
TD0 � �i�i

T, D0�i � �i�i, and �i
T�j � 0, we have

��i � �i
T�D�i. [A2]

Since �1, �2, and �3 form a complete set of basis vectors, we
can write ��i as a linear combination of the �j as follows:

��i � �
j�1

3

�ij�j, where �ij��j
T��i. [A3]

If we premultiply Eq. [A1] by �j
T and rearrange terms, we

obtain

�ij � � �j
T�D�i

�i � �j
for i � j

0 for i � j
[A4]

A similar derivation can be also found in Ref. 24.

APPENDIX B

From Eqs. [A3] and [A4], we have

��1 � ��1
T�D�2

�1 � �2
��2 � ��1

T�D�3

�1 � �3
��3, [B1]

where �1 � �2 and �1 � �3. The angle � between �1 � � �1

and �1, can be computed by � � tan�1(���1�). Using the
small angle approximation, one can rewrite the formula �
� ���1�. The root mean squared angular deviation from the
mean principal direction, �RMS, can be estimated by

�RMS � ���2� � �����1�2�

� �����1
T�D�2

�1 � �2
��2 � ��1

T�D�3

�1 � �3
��3� 2	 .

� ���1
T�D�2

�1 � �2
� 2

� ��1
T�D�3

�1 � �3
� 2

[B2]

The eigenvalues and eigenvectors can be computed from
the data, and the perturbation matrix of tensors can be
estimated from the data as well. The approximation of �D
is described in Materials and Methods, and can also be
found in Ref. 17.

APPENDIX C

Suppose we want to determine a quantity x that is a
function of at least two measured variables, u and v:

x � f
u, �, . . . �.

.
The general form for the propagation of errors is


�x�
2 � �u

2� �x
�u�

2

� ��
2��x

���
2

� . . . � 2�u�
2 � �x

�u���x
��� � . . . .

[C1]

The definition of the scalar invariant indices can be writ-
ten as:

I1 � �1 � �2 � �3 � Trace
D�

I2 � �1�2 � �1�3 � �2�3

I3 � �1�2�3

I4 � �1
2 � �2

2 � �3
2.

By applying the error propagation formula (Eq. [C1]), one
can obtain the variance of trace:

�Trace
2 � ��1

2 � �I1

��1
� 2

� ��2

2 � �I1

��2
� 2

� ��3

2 � �I1

��3
� 2

� 2��1�2

2 � �I1

��1
�

� � �I1

��2
� � 2��1�3

2 � �I1

��1
�� �I1

��3
� � 2��2�3

2 � �I1

��2
�� �I1

��3
� [c2]

�Trace
2 � ��1

2 � ��2

2 � ��3

2 � 2��12

2 � 2��13

2 � 2��23

2 . [C3]

For FA and RA, a similar approach can be used. The FA
can be rewritten as

FA �
1

�2 �
�1 � �2�
2 � 
�1 � �3�

2 � 
�2 � �3�
2

�1
2 � �2

2 � �3
2 � �I4 � I2

I4
.

The estimated variance of FA is

�FA
2 � ��1

2 ��FA
��1

� 2

� ��2

2 ��FA
��2

� 2

� ��3

2 ��FA
��3

� 2

� 2��12

2
�FA
��1

�FA
��2

� 2��13

2
�FA
��1

�FA
��3

� 2��23

2
�FA
��2

�FA
��3

[C4]

where

�FA
��1

� ��1 �
�2 � �3

2 � 1

�I4
I4 � I2�
� �1

�I4 � I2

�I4
3

� �3�1 � I1

2 � 1

�I4
I4 � I2�
� �1

�I4 � I2

�I4
3

�FA
��2

� ��2 �
�1 � �3

2 � 1

�I4
I4 � I2�
� �2

�I4 � I2

�I4
3

� �3�2 � I1

2 � 1

�I4
I4 � I2�
� �2

�I4 � I2

�I4
3

�FA
��3

� ��3 �
�1 � �2

2 � 1

�I4
I4 � I2�
� �3

�I4 � I2

�I4
3

� �3�3 � I1

2 � 1

�I4
I4 � I2�
� �3

�I4 � I2

�I4
3 .

The RA can be rewritten as
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RA �
1

�2

�
�1 � �2�
2 � 
�1 � �3�

2 � 
�2 � �3�
2

�1 � �2 � �3
�

�I4 � I2

I1
.

The estimated variance of RA is

�RA
2 � ��1

2 ��RA
��1

� 2

� ��2

2 ��RA
��2

� 2

� ��3

2 ��RA
��3

� 2

� 2��12

2
�RA
��1

�RA
��2

� 2��13

2
�RA
��1

�RA
��3

� 2��23

2
�RA
��2

�RA
��3

[C5]

where

�RA
��1

� ���1 �
�2 � �3

2 � 1

I1�I4 � I2

�
�I4 � I2

I1
2 �

� ��3�1 � I1

2 � 1

I1�I4 � I2

�
�I4 � I2

I1
2 �

�RA
��2

� ���2 �
�1 � �3

2 � 1

I1�I4 � I2

�
�I4 � I2

I1
2 �

� ��3�2 � I1

2 � 1

I1�I4 � I2

�
�I4 � I2

I1
2 �

�RA
��3

� ���3 �
�1 � �2

2 � 1

I1�I4 � I2

�
�I4 � I2

I1
2 �

� ��3�3 � I1

2 � 1

I1�I4 � I2

�
�I4 � I2

I1
2 �
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