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A Normal Distribution for Tensor-Valued Random
Variables: Applications to Diffusion Tensor MRI

Peter J. Basser* and Sinisa Pajevic

Abstract—Diffusion tensor magnetic resonance imaging D:A:D Quadratic function of elements .
(DT-MRI) provides a statistical estimate of a symmetric, p(z) Normal probability density function (pdf) af.
second-order diffusion tensor of water,D, in each voxel within (D) normal pdf ofD
an imaging volume. We propose a new normal distribution, i

0
p(D) x exp(—1/2 D: A : D), which describes the variability 2 Mean tensor oD.

of D in an ideal DT-MRI experiment. The scalar invariant, D D (written as a vector).

D : A: D, is the contraction of a positive definite symmetric, A Lamé constant and scalar parameter used in
fourth-order precision tensor, A, and D. A correspondence is isotropic A.

estab_llsh_ed betweeID:A:D an_d the elas_tl_cstraln energy density m Shear modulus and scalar parameter used in
function in continuum mechanics—specifically betweenD and . .

the second-order infinitesimal strain tensor, and betweemd and isotropic A. . .

the fourth-order tensor of elastic coefficients. We show thatA  9ij Kroneker delta (3x 3), and isotropic second
can be further classified according to different classical elastic order tensor.

symmetries (i.e., isotropy, transverse isotropy, orthotropy, planar -, ith eigenvalue ofD.

symmetry, and anisotropy). When A is an isotropic fourth-order € ith eigenvalue oD(3 x 1).

tensor, we derive an explicit analytic expression fop(D), and for

the distribution of the three eigenvalues ofD, p(~1, 2, 3 ), Which Vi “whitened” ith eigenvalue o).

are confirmed by Monte Carlo simulations. We show howA can i ith eigenvalue of precision matrix.
be estimated from either real or synthetic DT-MRI data for any X Experimental error covariance matrix.
given experimental design. Here we propose a new criterion for an bi; b-matrix summarizing effects of pulse gradients

optimal experimental design: that A be an isotropic fourth-order

. o > i on nonmagnetic resonance (NMR) signal.
tensor. This condition ensures that the statistical properties ofD 9 ( ) sig

(and quantities derived from it) are rotationally invariant. We also A(b) NMR signal _|ntenS|ty for given b—_matrlx.
investigate the degree of isotropy of several DT-MRI experimental B Design matrix for DT-MRI experiment.

designs. Finally, we show that the univariate and multivariate

distributions are special cases of the more general tensor-variate |. INTRODUCTION

normal distribution, and suggest how to generalizep(D) to treat

normal random tensor variables that are of third— (or higher) IFFUSION tensor magnetic resonance imaging
order. We expect that this new distribution, p(D), should be (DT-MRI) [1] provides a measurement of a sym-

;Jse“” in lzefature extraction; ig dlevel_cf>>|lqing a_hypgghesis testing metric second-order translational diffusion tensor of water,
ramework ror segmentlng ana classitying noisy, Iscrete tensor e : : :
data; and in designing experiments to measure tensor quantities. D, for each .voer.W|th|n an imaging vplume. R(_acently, I Wa?
_ o _ _ shown that in an ideal DT-MRI experiment, noise in the esti-
f '”t‘:]ex JermGS—COYa“ance‘ dl'St”bUt_'O_”v eXpeg'“g?i‘,ft‘ta' dej'gnr mate of diffusion tensor element data is distributed according
ourth-order, Gaussian, normal, precision, probability, random L ; I ; ;
variable, second-order, strain-energy, tensor. to a multivariate Gauss_lan _dlstr_lbutlon [2], [3]. In thl_s analysis,
second-order symmetric diffusion tensors were written as 6
1 vector random variables.
NOMENCLATURE However, writing a tensor as a vector fails to preserve certain
intrinsic algebraic relationships among its elements and their

T Vector random variable. ! ; i : . .

D Second-order symmetric tensor random variabl@&ometric relationships with the laboratory coordinate systemin
M Precision matrix. which the tensor elements are measured. For example, algebraic
A Fourth-order symmetric precision tensor. operations naturally performed dn (e.g., decomposing it into

2T Mz Quadratic functionform) of elements of:. its eigenvalues and eigenvectors), or geometric operations (e.g.,

projecting it along a particular direction, or applying an affine
transformation to it), are unwieldy whdis written as a vector.
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tensor random variable and, thus, our ability to perform variogsalar function that contains all possible linear combinations of

algebraic and geometric operations on it. these tensor elements is
The key idea motivating this work is intuitive. Just as vector-
valued data are written in vector form in the exponent of a D AijmnDimn ()

multivariate normal distribution [4], second- (and higher) order

tensors should be written in tensor form in the exponent of"&this caseD; Aijmn Dmn IS @ scalar contraction of the fqurth-
tensorvariate normal distribution. order tensorA, and a second-order tensd?, The result is a

In this paper, we propose the form of a normal distributiolin€ar combination of quadratic functions formed from products

for a symmetric second-order tensor random varig®), in  °f the elements oD, D;; Dy, each weighted by the corre-
which we introduce a positive definite symmetric fourth-ordefPonding elements of, Ay,

precision tensorA, as a parameter. We apply symmetry ar- We propose the normal distribution for a second-order tensor
guments to simplify the form off, and suggest how to clas-fandom variableD, of the form

sify A according to different classical elastic symmetries (i.e., 1

isotropy, transverse isotropy, orthotropy, planar symmetry, and p(D) = cexp <—§Diinjmann> 3)
anisotropy). The case in whicl is an isotropic fourth-order

tensor is of particular importance, since it implies that the stathereA is a fourth-order precision tensor ands the normal-
tistical properties op(D) are independent of the choice of thezation constant to be determined below.

coordinate system in which the tensor components are mea-

sured. For this case, we derive explicit expressiong(fd), and A. Analogies Betweeb);; A; ., Dm, and the Elastic Strain

for the distribution of the three eigenvaluesl®f p(v1,v2,vs), Energy Density

which are confirmed by Monte Carlo (MC) simulations. We also The exponentin (3)-1/2 Di;j A; jmn Dmy has the same form
propose an expression that can be used to obtain sample gfithe strain energy density;, (e.g., see [5]) that appears in the
mates ofA, which one can calculate frol? data. Using MC  theory of linear elasticity.Specifically, there is a direct analogy
simulated DT-MRI experiments, we generate sample estimaiggweenD and the infinitesimal strain tensor, and betwetn

of A for typical values ofD found in gray matter, white matter, 3nd the fourth-order tensor of elastic coefficients.

and cerebrospinal-fluid-filled regions of the brain. Finally, we | the theory of elasticityd must be positive definite to ensure
show how this statistical framework can be used to aid in thgat the material is elastically stable, i.e., that stresses developed

design of optimal DT-MRI experiments. within the sample always act to return the object to its equilib-
rium configuration [6]. In this statistical application, the same
Il. THEORY requirement must apply to ensure that the variances of the com-

The scalar exponent of a multivariate normal pdf;), con- Ponents ofD are all positive.
tains a quadratic formg” Mz, of an N-dimensional normal The fourth-order precision tensad, shares other proper-

random vectorg, and the precision (or inverse covariance) mdies with the tensor of elastic coefficientd also possesses
trix. M symmetries, which are reflected by its value being unaltered

by the exchange of certain pairs of indexes. For example,
since the product of two elements of the second-order tensor
) commutes inDiinjmann (i.e., Diijn = DmnDij)y the
corresponding coefficients oA should also be the same
M| 1 (i.e., Aijmn = Amnij). Moreover, sinceD is symmetric (i.e.,
<_§wiMiiwi) @) D;; = Dj;andD,,,, = D,,,), we require thatl; .., = Ajimn
andA;jmn = Aijnm, respectively. Owing to these symmetry
where|M| is the determinant of the matrid/. In tensor par- conditions, there are at most 21 independent elememstioat
lance zI Mz is ascalar contraction—a linear operation that re- We must specifya priori [8], or estimate from sample data.
duces one or more higher order tensors to a zeroth-order tensdp the theory of elasticity, these symmetry conditions arise
(or scalar). In this case;; M;;=;1 above is a scalar contrac-becauséV should be independent of the coordinate system in
tion of a second-order precision tensal/, and the first-order Which the components of the strain tensor are measured (e.g.,
tensor.z. The result is a linear combination of quadratic funcsee [8]). This requirement applies equally wellgtdD). The
tions formed from the products of the elementsof;z;, and probability that a particular tensor arises is an intrinsic property
the corresponding elements &f, M. that should be independent of the coordinate system in which
In generalizing the multivariate normal distribution to & is written. This requirement, thd : A: D is a rotationally
tensorvariate normal distribution, we seek tansor analog invariant quantity, also ensures thdtis a fourth-order tensor,
to the quadratic fornxT Mz above containing terms that arePy @ simple application of the Quotient Rule Theorem [9].

products of the elements dd, D,,D,,,. The most general The theory of elasticity also provides us with a scheme to
classify fourth-order tensors of elastic coefficients according
IWe use the Einstein summation convention in which indexes that are re-
peated in the expression are summed over the range of their allowable value3li” measures the amount of internal energy stored as a homogeneous elastic
So, for examplez; M;;z; meansy ;| >3 | wi Mija;. body deforms.
2M is usually referred to as a matrix, but it actually transforms as a second-4lt is known that a fourth-order tensor possessing these symmetry properties
order tensor. given above is self-adjoint (e.g., see [7]).




BASSER AND PAJEVIC: A NORMAL DISTRIBUTION FOR TENSOR-VALUED RANDOM VARIABLES: APPLICATIONS TO DIFFUSION TENSOR MRI 787

to the number, types, and degrees of symmetries they posse&se, the tensor dot product “:” denotes the contraction of

The most general linear constitutive law of an elastic solgecond-order tensors with the fourth-order precision tenfor.

corresponds taanisotropy (or aeolotropy, requiring all 21 the random tensor has a nonzero mean terd3%ywe can al-

constants to specify the form of the tensor of elastic coefficientsys center the distribution about its mean udihg: D — D°.

[5]. Other models of elastic behavior require fewer constarithien, the distribution becomes

(e.g., see [5]). These include the casesplainar symmetry . .

requi_ring 13_ glastic coefficier_ltsorthotropy_ _requ_iring nin_e }: / / exp (—EY:A:Y> dY )

elastic coefficientsfransverse isotropyrequiring five elastic c 2

coefficients; andsotropy, requiring only two elastic coefficients.

Below, we analyze the most tractable and important caseTihe exponent in the integrand can be rewritten as a quadratic

detail, isotropy. form, where the coefficients of the quadratic termsYinare
contained in the matrix(

(6)

B. Relationship Between the Fourth-Order Precision Tensor, 1 s 3 ~ R ~
A, and the 6x 6 Precision Matrix,M - = / / exp <——YTMY> dy

The scalar contraction));; A;jy,n Drnn, @bove can also be
recast as a quadratic forn), M,..D,, in which the random whereY = (Yi.,Yyy, Y2, Yoy, Ve, Yy2 )T and (7), shown at
second-order tensaR, is rewritten as a six-dimensional (6-D)the bottom of page, holds. The mtegral in (6) is known from the
column vector,D,. = (D, Dy, D.., Dsy, D..., D,.)T, and theory of multivariate normal distributions (e.g., see [11]); the
M is a 6 x 6 symmetric matrix. An |mportant result that isnormalization constant is readily obtained fran
often used in continuum mechanics, and which we also exploit
here, is that any fourth-order tensdr, satisfying the symmetry o= |M | 1 \/M @)
properties given in the previous section, can be mapped to a (2m)5 ~ (2r)?
6 x 6 symmetric matrixM. Both A and M contain the same
21 independent coefficients (e.g., see [5], [7], and [10]). Th
correspondence allows us to construct a ® precision ma- 7 7
trix, M, from any fourth-order precision tensat, and, thus, ”.‘e”'c (Le.,l‘ = I' and¥ = v7), we can write| M| in (8)
to construct a corresponding multivariate normal distributio%Irnply in terms of these four block matrices
directly from a tensor-variate normal distribution. Below, we M| = |- 50157 9)
use this correspondence to calculate the normalization constant
for the tensor-variate distribution using the mathematical m&9, the tensor-variate normal distribution with precision tensor,

Bsy writing M as four (3x 3) square block matrices, as shown
n (7), and by noting that the diagonal block matrices are sym-

chinery developed for multivariate distributions. A, and mean tensof)’,

- ”w—l sea
C. Normalization Constant for the Tensor-Variate Normal p(D
Distribution

_ o X exp( (D — DY) Aijimn (Dun D?m)) . (10)
We obtain the normalization constant of the tensor-variate 2

norma] pdf by integrating the distribution over_the entire range The distribution in (10) possesses the basic form and prop-
of all six independent elements of the symmetric tenBoThis - g rjes of a normal distribution. Sincd is positive definite,
integration is carried out in the following way. We require that, . 4 . pis always nonnegative, and > p(D) > 0. Also

the exponent in (10) is a quadratic function of the random vari-

s x able (in this case, a tensor random variable) whose mean and

1= / / cexp ( =D AijmnD ) dD precision tensors appear in the exponent in an analogous way to
the mean vector and precision matrix of the multivariate normal

. distribution.
=c / te / €xp <_§D:A:D> dD. (4) 5In the case of tensor products between tensors of unequal order, sich as
o o andA, we use the definitionD: A = D;; Arimndindji = DijAijimn

TTITT TTYYy rTrZZ 2Ammmy 2Ammzz 2Amzyz

A A A
Avayy  Ayyyy  Ayyze 24yyey  24ayy 24y,
A, A

M = szzz Yyyzz zzzz 2Axyzz 2Azzzz 2Ayzzz _ ( r (7)
2A’I”I”I‘y 2A.T,Jyy 2ATyzz 4ATyTy 4A’I‘y’I’Z 4ATyyz —

ZA’I‘TTZ 214rzyy 2A.T,zzz 4A’I’y’1‘2 4Amzmz 4Amzyz
2Amzyz 2Ayyyz 2Ayzzz 4Azyyz 4Aa:zyz 4Ayzyz

S|
N———



788 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 7, JULY 2003

In fact, we can exploit the formal correspondence betwe€Hearly, since the block matrix’, is not diagonal, the three
the tensor-variate normal distribution in (10) and the multdiagonal elements ab are mutually correlated. However, the
variate normal distribution in (1) to obtain many properties dftructure ofl” implies that coupling amon@yy, Dy, andD,,
the tensor-variate normal distribution by using mathematicial independent of their size and of the particular choice of the
tools and approaches that have already been developed:tg, andz axes in the laboratory coordinate frame. Sifite-
analyze multivariate distributions (e.g., see [11]). 0, diagonal elements db are not correlated with off-diagonal

elements ofD. However, sinceal = 4ul, wherel is the 3
D. p(D) whenA is a General Isotropic Fourth-Order Tensor . 3 jgentity matrix, the three off-diagonal elementsfare
We now derive the explicit form gf( D) for the case in which mutually uncorrelated, and have equal variances.
Ais ageneral isotropic fourth-order tensdt;°. In this context, Using (15),p(D) simplifies to

!sotrppy means that the precision tensor is rotatlorlallymvangntp(D) = p(Dys, Dy, D.., Duy. Da., D,.)

i.e., its form is unchanged under any proper rotation, reflection,

or inversion of coordinates in which the componentdoére = P(Das Dyys D22 )p(Day )p(Daz)p(Dy2) (16)
measured. _ where

. WhenD is a symmetric tensor, the most general forn6f DD Do) = 4p2(2u + 3X)

is (e.g., see [8] and [10]) P(Dazs Dyy, D) = 7(2703

ﬁv(?um = /\5ik6mp + M((SLm(Skp + 6ip6km) (11)

wherep, and A\ are as yet undetermined constaetandd is

|
5

|
o

1 _
X exp (—5 (DM — Dyo, Dy,

the second-order isotropic tensor. This choide= A™° also 20+ A A A Dyw — Dy
corresponds to the tensor of elastic coefficients for a general X A 20+ A A Dy, — Dy, )
isotropic linearly elastic solid. A A 20+ A D..-D..
The scalar contraction of the exponent of the tensor-variate (17a)
normal distributionD : A™°: D, becomes and
. Aiso — Do (\Sin 4 . , 20 —
D;; zkmepm Dy (A61k6mp + N/(ézm(skp + 5zp5km)) D(pfé) p(Dry) = - eXp(—?,lL(Dmy — ny)2)
In Appendix A, we show that this expression reduces to a linear 20 —
combination of two scalar invariants &4, i.e., p(Daz) = o exp (=24 Daz — Dy2)?)
. Also _ 2 2 2 —
D:A®°:D = XA(Trace(D))” + 2uTrace(D”). (13) p(Dy.) = - /?“ exp(=2u(Dy- — D2 )%) (17b)

The distributionp(D) must assume the same form under any
proper rotation, reflection or inversion of laboratory coordinatedsIstributions above
because it depends only on functionsdthat are rotationally Thus. a meaﬁingful distinction between the new

. . 2 . .
invariant, Trace( D) andTrace(D"). Thus, we find thatisotropy tensor-variate and multivariate normal distributions is the

of A '”‘_p"es rotational invariance qf(.D)' way in which their covariances are characterized. WHi,
If D is atensor whose meani¥, it is also easy to show that _. . : . ;
given in (11), is an isotropic fourth-order tensor, the corre-

the tensor contraction in (13) becomes spondingM matrix for the multivariate distribution, given in

here it is assumed that the meandfis given byD in the

(D - D°):A*:(D - D°) = X\ (Trace(D — DO))2 (15) has a nonintuitive block form, which is clearly not a 6-D
0.2 isotropic precision matrix. Only in the special case in which
+2p Trace ((D -D") ) (14) )\ = 0, when all elements ab are independently distributed,

o ) ) o is M a diagonal matrix. Even then, all of its diagonal ele-
so thatp(D — D") is also rotationally invariant in this more nents are still not equal. Clearly, the relationship between the
general case. _ o ~ tensor-variate and multivariate normal distributions is not a

To obtain the form ofp(D) using A*° in (11), we again tjvial one.
write D as a vectorD = (D, Dyy, D2, Day, Daz, Dy2)", In the subsequent sections, we will use the new tensor-variate
a~an rewrite the scalar contraction in (13) as a quadratic forgistripution forA = A to obtain an analytical expression for
DT MD. Then, the precision matrbd, from (7) becomes  he distribution of the eigenvalues &, and to design optimal

A+2pn A A 0 0 0 DT-MRI experiments.

A A+ 2u A 0 0 0 o ) o
M A A A+20 0 0 0| ( r 5) E. The D|str|put|on of the Eigenvalues bffor A = A
o 0 0 0 4 0 0| \ET @ For A = A™° in (12) we can immediately obtain the joint
0 0 0 0 4p O probability distribution ofyy, 2, and+ys, the three eigenvalues
0 0 0 0 0 4u of D. The distributionp(vy1,v2,73) is a special case gf( D)

(15) in (17a) and (b), obtained by performing a principal coordinate
6In continuum mechanicg, andy correspond to the Lamé constant and shedfansformation in Wh'c_h the three diagonal _elememmre
modulus of the isotropic material, respectively. mapped to the three eigenvalueslafintegrating over all pos-
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sible values of the off-diagonal elements, and substituting Interestingly, v; is proportional toTrace(D), which mea-
v2, andvs for D, D,,, andD. . in the distribution above, we sures the average size of the isotropic partlof The other

obtain two variables,y} and ~4, characterize the anisotropic part
2 of D. Specifically, ¥4 measures the difference between the
4p2 (21 + 3X) . i L

p(V1,72,73) =4 ————=— predominant eigenvalue and the average of the two remaining

3
27) eigenvalues, while}, measures the difference between the two

X exp _}(71 Ny, Y8 — Ty Vs —Ta) latter eigenvalues. Togethey;, ~5, and 45 represent novel
2 v 2 3 parameters with which to characterize the size and shape of the
24 A A A probability ellipsoid® one can construct from(D).
X A 2+ A A More importantly, the coefficients and A in the isotropic
A A 20+ A fourth-order precision tensor can easily be related to the vari-
!/ !/ / 1
v — 71 ances 0@(717’}/27 VB) In (19)
— = 1 1
X Y2 12 (18) O'% = —— and 0'% = — (21)
Y3 — V3 2+ 3\ 24

where?,, 7,, and7y; are the three mean eigenvalues. Equivaxhove, the variancess? and o2, correspond roughly to the
IentIy, we can obtain the resultin (18) by Substituting the expresrrace” and the “Skewness” of the uncertainty Bf respec-
sions, Trace(D) = 71 +72+73 andTrace(D?) = 7{ +75+73  tively, as in (20). Since2 ando? can be estimated statistically

into (13), and by collecting terns. from sample datay and A can now be expressed in terms of
The joint distribution of the eigenvalues @ is character- measurable parameters;% ando?

ized by only two parameterg, and . While the eigenvalues

are correlated, their coupling is independent of their order or o= % and )\ = ! (LZ — %) (22)
assignment (which is not the case for eigenvalues of random 205 3\op 0%

matrices described by a Wishart distribution [4]). This findingpis result allows us to write’*° in (12) explicitly in terms of
follows because(D) with its exponent given in (13), depends 2

ando?

only on Trace(D?) and (Trace(D))?, scalar invariants oD, T S
which are inherently insensitive to the order of the eigenvaluegiso _ 1 <i _ L) S+ 1 (Sombkp + 506km)
Thus, permuting the eigenvalue order will always leave this dis- 0% o) TP 20 TR TR
tribution unchanged. o 3

We can uncorrelate or “whitens(vi,72,7s) by diag- Notethatln de_rlvmga(y{,yg,yg),wg_makg no epr.|C|tass',l.Jmp-
onalizing I in (15) and (18) using its three eigenvaluest,'on_ t_hat aII_ elgenv_glues are positive, i.e., tHatis posltlve
Bi = 3\ +2u B = 2u, andfB; = 2u; and its three definite. Thls co_nd!tlon_ could be a(_jde_d as a constraint to the
corresponding normalized  eigenvectorg /v/3)(1, 1,1), tensor—va_rlate dlstrlbut_|on but the.d|str|but|on_quuld no I(_)nger
(1/v/2)(0,1, 1), and\/2/3(1, —1/2, —1/2). In the principal be Gausaa_n. As an asu;tép) provides no epr|C|t|nfoirS|11at|on
frame of I, p(~}, 74, 4) is simply the product of three inde-about the distribution of eigenvectors BfwhenA = A™°.
pendent univariate normal distributions

ikpm 3

F. MC Simulations of(v1,v2,73)

(7)) =4 /M exp <_ (M) %2) In Fig. 1, we plot MC estimates afr andog versus their
2 2 theoretical values obtained from (21). First, MC estimates of
n_ M ,2 D are generated from a multivariate normal distribution with
p(2) = \/jeXp (_‘WZ ) the precision matrix given in (15). Then, the eigenvalugs,
, m 2 ~v2, and~s are computed for eacl?, and an empirical dis-
p(ys) = \/jeXP (—le ) 19) tribution, p(+v4,v%,7%). is constructed, from whichr andos

are estimated. Agreement between the analytical distribution in

when we use the transformed random variables (18) and MC simulated data is excellent. Valuegi@&nd\ are

1 L. . . .
= %(71 + 92 +73) chosen randomly within their allowable range (as described in
f footnote 9), but so that the distributions of distinct eigenvalues
A = — —_ «
T2 = \/Q (72 73) 8Surfaces of constant probability are obtained for the distribution of the eigen-
values ofD above by setting the exponent to a constant, e.g.,
r_ ]2 (72 +73) 20+ A A A ~
V3 = 3 Y1 — 9 "
(71572, 7s) A 2p+ A A v | =1
or 1 1 1 A A 21+ A V3
'y’l V3 \{5 \/f Y1 This quadratic form can be represented by a cylindrically symmetric, pancake-
/ _ 0 —= —= 2 or cigar-shaped, three—dimensional ellipsoid (e.g., see [12]) whose three prin-
’Y% 5 ‘/? ‘/? 72 (20) cipal axes are -, o5, andos.
73 3 "6 6 73 9N.B. In order for the exponent of the tensor-variate cumulative distribution

to be unitlessp andA must be in units that are the inverse square of the eigen-
“N.B. The theoretical distributiom(~1, 2. vz ), may not always conformto values’ units, consistent with and A being inverse variances. To ensure pos-
an empirical distribution obtained, e.g. by using MC simulations, because of ftige definiteness of the covariance matrix, we also require that 0 and
well-known sorting artifact that occurs when one orders calculated eigenvalugs> —24/3.
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Mean Tensor Eigeavalues: {1200, 700, 200} where X is the error covariance matrix, andB is
soFTT T T T T 4 the experimental design matrix whose ith ro®! =
- / - // i (b;wavy?biwz_b;y./2b.§m2bfvzl), contains the b-matrix el-
60} T K L S / 4 ements associated with the ith gradient acquisition [20].
/! It is reasonable to assume that experimental variances are
I / I | uncorrelated in the MR experiment, so thatis diagonal

7 [20]. However, Batchelor further assumes that all experimental
variances are equ#l. Then, (25) become& = ¢2I, and
MP*? = (1/052)BTB. Moreover, it is sometimes possible to
design MR sequences in whidh « G;Gy, whereG; andGy
represent the peak magnetic field gradients (diffusion gradients)
applied along the jth and kth coordinate directionsandx,
respectively! In the special case in which all gradients used
in an experiment have the same magnitude ((&.= Gy)
Fig. 1. Three-hundred points from MC simulations of second-order tensthen by o x;xx. Under these restricted assumptiofgr e
ety HC shives v 05 T ors s ok (19, pra,Proportional to heean normal matrMA ) used by
and accurately predicts the uncertainty of the estimated eigenvalus of atchelot? [22]. To compare our predictions with those of
Batchelor, we will first consider experimental designs in which
o ] ] all these simplifying assumptions have been applied.
do not overlap, thus avoiding a known “sorting” artifact that gaichelor proposed that an MR acquisition scheme in which
would bias the estimates ofr andos (see [13]). diffusion gradients were oriented at vertices of an icosahedron
possessed orientationally (i.e. rotationally) invariant statistical
G. Optimal Experimental Design—The Rotational Invariancgroperties of the estimated diffusion tensor by showing that the
Principle MNM for this scheme is the same as tMeN M obtained

Several groups have proposed methods for optimaNyhen using a gradient sampling scheme with an infinite number
designing DT-MRI experiments in which independent exper@f gradient vectors that are uniformly distributed on the surface
mental variables, such as the number of gradient acquisitiofé@ unit sphere [22].
the gradient directions, and gradient strengths, are chosen tdVithin the context of the tensor-variate distribution we can
minimize some objective or performance measure [15]-[19]nderstand Batchelor's notion of rotational invariance: his
Skareet al. have proposed minimizing the condition number oMNM = MP*? has the same form alf**°, the precision
the covariance matrix of the estimated diffusion tensor elemeiifi@trix associated witd™* in (11) with A = . Choosing an
[15], while Jones and Papadakis minimize the orientationi@ptropic fourth-order tensoA™ with A\ = p = 1/15, we
dependence of the variance of the fractional anisotropy (FAJ€ able to reproduce Batchelodg N M exactly for an isoc-
[16]-[19]. ahedral gradient scheme, and for a gradient sampling scheme

Here, we propose thatreecessargondition for an optimally With an infinite number of gradient vectors that are uniformly
designed DT-MRI experiment is tha be an isotropic fourth- distributed on a unit spheie[22]. This is shown in Fig. 2.
order tensorA™° of the form given in (11). Sincel describes  In fact, many other gradient schemes can be constructed
the observed variations ab due to background noise inthat satisfy this rotational invariance requirement. The simplest
the measurements, this condition will ensure th@), and rotationally invariant gradient scheme uses only six gradient
consequently all tensor-derived quantities (e.g., FA, Trace, agigections. It consists of gradient vectors whose coordinates
the relative anisotropy), have orientationally invariant statisticare the noncollinear vertices of an icosahedron. This scheme is
properties. Certainly, the constraint thdt be an isotropic identical to one proposedin[23], andis givenin Table I. Interest-
fourth-order tensor can be used in conjunction with othd&®gly, one finds that gradient designs using the ten noncollinear
objective functions or performance measures. vertices of a dodecahedron (the dual regular polyhedron of

To analyze different DT-MRI experimental designs we firsthe icosahedron), an icosidodecahedron (polyhedron obtained

consider the log-linear form of the basic model relating they adding a tetrahedron on each of the faces of the dodeca-
NMR signal to the diffusion tensor [20] hedron), a Buckminster “Fullerene,” as well as other patterns

(i.e., those of Jones [16] and Muthupallai [23]) produce rota-
tionally invariant experimental designs with the same values

MC Estimate
’J_‘-\
T
I

0 L 1 . 1 . I L I " ! . 1 . ! .
0 20 40 60 80 20 40 60 80

Theoretical Theoretical

A(b
In (ﬁ) = —byw Doz — byyDyy — b..Dyy — 2b2y Doy
—2b,. D, 2byzD1'z (24) _ 10It'is important to note that this assu_mption was not made in [20],
in which a first-order correction was applied to account for the effect of
. ) . the log-linear transformation on the variance of the measured signal.
WhereA(b)/A(O) is the measured echo mtensmjjs are the 11This assumes that there are no cross-terms arising from imaging gradients
elements of the symmetric b-matrix constructed from all appli¢ai].

gradient waveforms. The predicted form of the precision matrix'?M"** = (1/0*)B"B ~ NMNM where N is the number of

for this model is given by acquisitions. _ _ ,
13Note, the matrix ‘A” used in Batchelor is a special case of the matis
used in [20] and should not be confused with our useldds a fourth-order

Mpred — BTZ_lB (25) tensor.
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Fig. 2. Elements of the predicted precision matridfP*¢, obtained Fig. 3. AMvr=d obtained for the Papadakis scheme. This scheme has 12
for experimental designs whose gradient vectors lie on the vertices of @Rections but they are not vertices of icosahedron, although it resembles
icosahedron, dodecahedron (the dual regular polyhedron of the icosahedrgn)the afrred s approximately isotropic, but not exactly isotropic. It is
an icosidodecahedron (polyhedron obtained by adding a tetrahedron on eacih@hined by minimizing the variance in the element&ofPapadakis, personal

the faces of the dodecahedron), a Buckminster “Fullerene,” and the polyg@@snmunication).
of Jones [16] and Muthupallai [23]. ThidZP*<¢ is also proportional to the
M N M matrix obtained for the infinite uniform directional gradient sampling
scheme described by Batchelor [29] design deviates from statistical isotropy. One way is to measure
the mean-squared deviation betwegrior a particular exper-
TABLE | imental design and an isotropic fourth-order precision tensor
DIFFUSION GRADIENT VECTORSWRITTEN IN TERMS OFTHEIR =, y, AND = A'°, but many other such measures can be contemplated.

COMPONENTS { G, Gy, G,}. THE SIX VECTORSABOVE LIE ON AN
ICOSAHEDRON ALTHOUGH IT HAS TWELVE VERTICES THE | COSAHEDRON

IS ANTIPODALLY SYMMETRIC, SO ONLY SiX DISTINCT ORIENTATIONS H. EstimatingA From Simulated DT-MRI Data
ARE INDEPENDENT. THE QUANTITY f, IS FIBONACCI'S GOLDEN RATIO, pred . . . .
Fo = (V5 — 1)/2 ~ 0.61803. THIS ACQUISITION SCHEME IS Note thatM formalism assumes a linear relationship
IDENTICAL TO WHAT WAS PROPOSEDPREVIOUSLY IN [23] between the measured MR signal and the unknown diffusion

tensor elements with additive Gaussian noise. In the MR
experiment, however, this relationship is nonlinear, and, if the

G, G, G, log-linear form as in (24) is used, the noise is not additive

1 f, 0 [24]. Thus, the actual precision matrix obtained by using the

1 - f, 0 least-square solution will differ frond?™¢. However, we

0 1 f defer these issues for another paper and here we just report MC
y simulations of DT-MRI experiments that yield an “isotropic”

0 1 - f, A

f, 0 1 We performed MC simulations [13] to synthesize noisy

-1, 0 1 replicates of diffusion tensord), typical of those measured

in isotropic gray matter regions of the human brain with
DT-MRI using experimental parameters provided in [25].

of A and . MP™%or these designs is shown in Fig. 2. IfFrom these MC data, we obtained sample estimatedfof
Fig. 3, we consider the gradient scheme of Papadakis [1@hd A using formulae described in Appendix B. Estimated
Interestingly, we find that it is approximately, but not strictlyprecision matrices using (B.2) for simple schemes like the one
isotropic. shown in Table I, do not produce isotropic precision matrices

The advantage of using this new tensor-variate distributi@s predicted by (25) due to the log-linear transformation of the
framework to design DT-MRI experiments is that we caMR signal data. However, we found that when using a large
consider gradient schemes having different numbers of gradienimber of directions, we can obtain approximately isotropic
acquisitions, gradient strengths and gradient magnitudes rattiesigns, but withA not necessarily equal to. Fig. 4 shows
than those with uniform gradient strength. We can also udé displayed as a %6 matrix with coefficients organized as
this framework to show that any combination of rotationalljn (7). Such a relationship holds rather well in the case of
invariant experimental designs (with arbitrary rotations aridotropic diffusion and a large number of gradient directions
scaling factors) will produce a rotationally invariant exper(= 50 or more); for the data shown in Fig. 4 the number of
imental design, so that these designs can be concatenatictions was 60. The two matrices displayed show results for
producing a combined design that is also rotationally invariathe cases when no nondiffusion-weighted (non-DW) images
When combining these different designs, the constant wkre used in the simulation, and where ten non-DW images
proportionality changes, but the precision matrix with= 1 were used. Although the actual values;ofand A, and their
remains isotropic in form. Moreover, we are not limited to ongatio, depend on the number of non-DW images, the isotropic
particular choice of\ = p to produce a rotationally invariant form appears to hold up to 20 non-DW images. However, in the
DT-MR experiment. case of anisotropic diffusion the log-linearization introduces a

Additionally, our statistical framework also provides a naturalependence aMf on the mean values db. Investigating this
way to assess the degree of rotational invariance of any expamblem and other problems of optimal design will be a subject
imental design, or rather, the degree to which an experimentélanother paper.
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a) b)
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0O 0 0 -3 -3 100 -1 -1 -1 -3 =3 100

Fig. 4. Elements of the estimated precision malx organized as in (7), and obtained using (B.2) on MC replicates of a simple acquisition scheme consisting
of three-fold repetitions of the gradients, which are the vertices of a dodecahedron. In (a) no nondiffusion-weighted images were used whegzas in (b)
nondiffusion-weighted images were used in the experimental design. The elements in the lower diagonal positiong.dgiskdsy to see that = 25 in

both cases, and(0) = —8, X\(10) = 8; hence A + 2u should assume values 42 and 58, respectively, which is close to the actual values of the three diagonal
elements in the upper diagonal matrices.

Note that the formulae given in Appendix B can also be usagstem is that of the covariance matr¥;—the tensor-variate
to obtain estimates oA from empirically estimated data on a distribution refers the components & and A explicitly to
voxel by voxel basis, using Bootstrap methods to resample tite reference or laboratory coordinate system.

set of acquired diffusion weighted images [3]. However, because we have also shown how to convert be-
tween vector- and tensor-variate Gaussian distributions, we can
IIl. DISCUSSION employ all of the mathematical and statistical machinery devel-

oped for multivariate Gaussian distributions (e.g., see [11]) to

DT-MRI applications require a r_lormal dlstr|bu_t|on for 4 alyze tensor data without having to rederive these findings
tensor-valued random variable. While the multivariate normgﬂd results

distribution per se can describe the variability of individual .eIe- The tensor formalism also allows us to view univariate and

21 Specificall Id like t dict how the distributi Multivariate normal distributions as special cases of the more
[2]. Specifically, we would like to predict how the distribu Ionegeneral tensor-variate distribution. The univariate distribution

of D would_change if the !aboratory coorplmate system_ WelBsults from the contraction of two zeroth-order tensor random
rotated, or if a general affine transformation were applied 1o}

D, for example, by applying shearing or dilatation operatio stribution results from the contraction of two first-order

required in image warping and registration applications [2 andom variables and a second-order precision tensor. In
It is also of interest to know how the first and higher momeng

e - ) . eneral, amth-order tensor-variate normal distribution can be
of the apparent diffusion coefficient behave. This quantity onstructed by contracting tweth-order random tensors and a

obtained by projecting the diffusion tensor along a partlcuI%zth—order precision tensor. In this way, we are able to generate

dlrgc_tl_on. It.'s also of interest .to !<now.how- the prllnmpal dn('d'stributions for random variables that are tensors of second
fusivities (<e_|ggnvalues) and principal directions ((_e|genvector§ d higher order.

of D are d|§tr|buted. Moreover, we would also like 2t° KNOW " There are anumber of disciplines to which this new statistical
the dlstrlzbutlon of scalar invariants d@ (e.g., Trace(D)" and methodology could be applied. In imaging sciences and signal
T.race.(D )) that characterize the type and degree of an'S()tr()pﬂ?ocessing, the most obvious application is to diffusion tensor
diffusion. MRI data [1], [20]. This new framework will help us estimate

: on :3rgolge fundametntal Ievetl, a tetn?_ort?valr late dd'ISt;'bUt' oments of the tensor-variate distribution, and perform nu-
IS needed because, at present no statistical mode escrm‘?ﬁous hypothesis tests for diffusion tensor-derived quantities
variability of second and higher-order tensors, which Woulﬂ

b ful i dicti timati filteri d hvooth in clinical, biological, and materials sciences applications.
€ uselul in prediction, estimation, 1Iternng, and Nypotnesis, y,q physical sciences, quantities such as the moment of

:es(;mg_ applu(:ja_tl(;ns ofttensor_datat, a_nd '? !mptrovmg ;het ablllnﬁertia tensors, rotational or spin-diffusion tensors, and elastic
0 design and Interpret expenments involving tensor data. . ficient tensors of elastic media, nematics, and crystals

A key attribute .Of using a fourth-order tensof, t.o chqr- [27] are routinely measured. In some cases, they may conform
acterize the covariance structure of the tensor-variate distri 4-2 normal tensor-variate distribution especially if they are

tion—rather than rewriting it as a vgctor—is that it PreseiVeReasured using regression methods (e.g., as in [20]). In the
:he fo:cm of tge _‘Ef_‘;‘” r?ndbom_ vanabllti_),, and ﬂ(:gtrua?"l('ty physics of continuous media, and in materials engineering,
0 perform admissiole algebraic operations on LUNIKE = 4o g0, guantities arise in constitutive equations that are used to
the multivariate distribution—whose only natural coord|nat8escribe charge, mass, momentum, and energy transport. These
include the translational diffusion tensor, the particle dispersion

_1*Algebraists say that two vector spaces of the same dimension §sor, the fabric tensor, the electrical conductivity tensor, the
“isomorphic,” but that the isomorphism is not “canonic.” in the sense th

the isomorphism is not uniquely prescribed. Such is the case with t?féermal conductivity fcgnsor, and the hydrau!|c permea_lb'“ty
vector and tensor-variate distributions. tensor. These quantities are measured using a variety of

riables and a zeroth-order precision tensor; the multivariate
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methods, and in some cases, their individual components nidye estimate of the fourth-order precision tensor can be
also conform to a normal distribution that could be describaxbtained through its relationship to the precision matiix,
using the formalism above. Finally, many input/output matrijsee (7)]. The estimate of the precision matrix is the inverse of
models used in engineering and in the social sciences may hthaunbiased estimate of the covariance matrix of the diffusion
coefficients that are also described by this new distribution. (column) vector,D

V. CONCLUDING REMARKS - 1 N — \T -1
. . . o M= (Du-D)(Du-D) | . ®2)
The idea of using the tensor contraction operation (in this N -1 =

case, applied to fourth- and second-order tensors) in the expo-

nent of a normal distribution appears to be novel to the theory phe resultinghf can then be used to obtain the elementsiof
statistical distributions, and significantly extends the scope agéing (7).
applicability of the normal distribution to accommodate many

types of high dimensional data.

In the near term, this new tensor-variate distribution should
improve our ability to estimat® and quantities derived from  The authors would like to acknowledge the late E. Turan Onat
it in DT-MRI studies. It should also lead to the development ¢¥f Yale University who counseled them about the properties of
hypothesis tests with which to analyirevivo DT-MRI data. fourth-order tensors and the various ways in which they can be
Finally, it should lead to improvements in the experimental déepresented. They would like to thank P. Munson, W. Jarisch,
sign of DT-MRI studies, providing a unifying framework foraﬂd A. Aldroubi who made thOUghthl comments and substan-

understanding the effect of changing independent experimeritg¢ editorial suggestions. They also acknowledge D. Jones who
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