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“Squashing Peanuts and Smashing Pumpkins”: How
Noise Distorts Diffusion-Weighted MR Data

Derek K. Jones™ and Peter J. Basser

New diffusion-weighted imaging (DWI) methods, including
high-b, g-space, and high angular resolution MRI methods,
attempt to extract information about non-Gaussian diffusion in
tissue that is not provided by low-b-value (b ~ 1000 s mm3)
diffusion or diffusion tensor magnetic resonance imaging (DT-
MRI). Additionally, DWI data with higher spatial resolution are
being acquired to resolve fine anatomic structures, such as
white matter fasciculi. Increasing diffusion-weighting or de-
creasing voxel size can reduce the signal-to-noise ratio so that
some DWI signals are close to the background noise level. Here
we report several new artifacts that can be explained by con-
sidering how background noise affects the peanut-shaped an-
gular apparent diffusion coefficient (ADC) profile. These include
an orientationally dependent deviation from Gaussian behavior
of the ADC profile, an underestimation of indices of diffusion
anisotropy, and a correlation between estimates of mean diffu-
sivity and diffusion anisotropy. We also discuss how noise can
cause increased gray/white matter DWI contrast at higher b
values and an apparent elevation of diffusion anisotropy in
acute ischemia. Importantly, all of these artifacts are negligible
in the b-value range typically used in DT-MRI of brain (b ~
1000 s mm2). Finally, we demonstrate a strategy for ameliorat-
ing the rectified noise artifact in data collected at higher b
values. Magn Reson Med 52:979-993, 2004. Published 2004
Wiley-Liss, Inc.t

Key words: diffusion-weighted; DWI; MRI; ADC; noise; artifacts;
trace; FA; DT-MRI

INTRODUCTION

Sensitizing the MR signal to the diffusion of water mole-
cules provides useful information about tissue character-
istics in vivo (1), ranging from changes in acute ischemia
(2) through characterization of anisotropic structures (e.g.,
3,4) to reconstructions of white matter pathways through-
out the brain (e.g., 5). Such information has been obtained
mostly using diffusion-weighted (DW) image data with
moderate resolution (e.g., 2.5 mm X 2.5 mm X 2.5 mm)
and moderate diffusion weighting (b ~ 1000 s mm™) so
that the diffusion displacement profile in each voxel can
be adequately described by a Gaussian function (6). For
example, the diffusion characteristics of a voxel contain-
ing a single fiber population can be characterized by a
tensor whose associated ellipsoid is prolate. In voxels
containing multiple fiber populations (e.g., fibers cross-
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ing), the diffusion characteristics observed at low b values
can still be described by a single tensor, but the diffusion
ellipsoid may be less prolate and may become spherical or
even oblate (7). In such cases, the tensor model does not
adequately reflect the underlying tissue microstructure,
which can be problematic for applications such as tractog-
raphy (5).

Several groups (7-17) have proposed methods for eluci-
dating complex tissue microstructure by studying the non-
Gaussian diffusion behavior that only becomes apparent at
higher b values (6,8). For example, Frank’s spherical har-
monic approach (9) collects DW data at b = 3000 s mm?,
whereas diffusion spectrum imaging (DSI) (11) (closely
related to g-space imaging) (12) attempts to infer the dif-
fusion displacement probability profile directly from dif-
fusion-weighted data collected at very high b values (up to
20,000 of each DW image).

It is well known that noise in complex MR data are
normally distributed, whereas the magnitude is Rician
distributed (18,19). Consequently, in the absence of any
true signal, the mean (n) and SD (o,) of the magnitude—
reconstructed signal are given by the following:

s -~ ey
(o2 Eand 0g,=0 Z_E’ [1]

respectively, where o is the SD of the MR signal (18). Thus
rectification of a noisy signal gives rise to a minimum
signal measurable, which we refer to as the rectified noise
floor. At low SNR, this has deleterious consequences for
DWI data (20). The amplitude of the DW signal is overes-
timated (due to the rectified noise floor), but the estimate
of the non-DW signal (being far from the noise floor) is
unaffected. Therefore the apparent diffusion coefficient
(ADC) computed from the two signals will be underesti-
mated (20). Another effect of noise relevant to DT-MRI is
eigenvalue repulsion (21), which leads to the well-docu-
mented overestimation of diffusion anisotropy at low SNR
(e.g., 22).

Here we report several new artifacts of noise that are
particularly relevant in DWTI at high diffusion weightings
or at low SNR. We show that under certain conditions, the
diffusion anisotropy of the effective diffusion tensor, D,
can be underestimated due to the presence of noise. We
also show how artifactual correlations between diffusion-
related parameters can be introduced by the presence of
noise and how Gaussian diffusion characteristics can ap-
pear non-Gaussian solely as a result of the rectified noise
floor. Finally, we propose a strategy that serves to amelio-
rate the problems associated with the rectified noise floor.

n =

METHODS

Monte Carlo simulations were performed to investigate
the effect of noise on diffusion-derived parameters. Diffu-
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sion tensors were simulated with characteristics similar to
those of brain white matter (i.e., constant trace (Tr(D) =
2.1 X 107® mm? s™') (6) but varying fractional anisotropy
(FA) (23). Simulations were performed in two dimensions
(2D) for graphical representations and three dimensions
(3D) for quantitative studies. Appendix A shows how the
diffusion tensors (for a given Trace and FA) and b matrices
were defined for each case.

Investigating the Effect of the Noise Floor on the ADC
Profile

For the noise-free diffusion tensors, the ADC was plotted
as a function of angle with respect to the principal eigen-
vector of the tensor (i.e., the eigenvector associated with
the largest eigenvalue). In 2D, this is a simple polar plot; in
3D it is a plot in spherical coordinates. If the direction is
given by the unit vector, g, then the ADC along that direc-
tion, ADC,, is given by the projection of D along g as
follows:

ADC, = g"Dg. (2]

Next, the noise-free DW intensity along the direction, g,
was computed as follows:

DWI, = I, exp(—bADG,), [3]

where b is the scalar magnitude of the diffusion weighting,
I, is the un-weighted signal (arbitrarily set to 1000 units),
and DWI, is the diffusion-weighted intensity along g.
Noise was then added in quadrature to both I, and DWI,.
Noisy estimates of the ADC along the direction g, (ADC;],
were then computed using the following:

r
>, (4]

b\ DWI

1
ADCg =1 1n<
where I; and DWI; are the noise-contaminated un-
weighted and diffusion-weighted signals, respectively.®
For each sampling orientation, 500 noisy estimates of
ADCy were obtained, their mean, (ADC;), computed, and
their distribution plotted.

Investigating the Effect of The Noise Floor on Diffusion
Tensor Estimates

To characterize the effects of noise in DT-MRI experi-
ments, two approaches were used. These are described in
Appendix B.

Investigating the Effect of Sampling Scheme and Fitting
Procedure

As stated in Footnote 1, in the literature the “two-point”
approach (i.e., using DW data collected at just two b val-
ues) is commonplace. However, collecting data at more b

"Note that this “two-point” approach (i.e., characterizing diffusion using data
collected at two diffusion-weighting amplitudes, as opposed to using multiple
diffusion-weighting amplitudes) is the approach most commonly adopted in
the DWI community.
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values allows greater choice of strategies for estimating the
ADC (i.e., linear fitting, weighted linear fitting, nonlinear
fitting). The final part of this study therefore investigated
the effect on the noisy ADC profile of (a) different sampling
schemes and (b) different ADC estimation strategies. First,
tensors with a given anisotropy and trace were chosen as
described above (and in Appendix A). Next, for a given
SNR? a set of noisy DW intensities was computed for
different numbers of equally spaced b values between the
minimum (zero) and a maximum specified b value, b, ..
We refer to the number of unique b values between zero
and b,,,, inclusive as N, Five different fitting proce-

max unique*

dures were employed as follows:

1. Two Point Method.

This fitting approach was already described. Of the set of
DW intensities simulated at different b values, only the
intensities simulated for zero diffusion weighting and the
maximum diffusion weighting were used to estimate the
ADC along each sampling orientation, using the model in
Eq. [3].

2. Unweighted Linear Fit.

All the simulated intensities collected at different b val-
ues were used to estimate the ADC from the model in Eq.
[3], using linear regression but assuming that the SD asso-
ciated with each log-transformed DW intensity was the
same.

3. Weighted Linear Fit.

This method also used linear regression, but differed
from Method 2 in that the SD of each log-transformed DW
intensity, o,,(DWI), was approximated by the following
(24):

Tlaowy = o/DWI, (5]

where o is the SD of the (non-log-transformed) diffusion-
weighted intensity, DWI. In the linear regression, each
observation was weighted by the SD, o,y

4. Nonlinear Fit.

This method involved fitting all the simulated DWIs to
the model in Eq. [3] using Levenberg—Marquardt nonlinear
regression.

5. Nonlinear Fit with Noise Estimation.

In this method a noise parameter was estimated as part
of the fitting procedure. The noisy diffusion-weighted in-
tensity was modeled according to the following:

1
DWIy = (DWI§; + &9z, [6]

where DWI; and DWI are the noisy and noise-free dif-
fusion-weighted intensities respectively and £ is the noise-
parameter to be estimated. Again, Levenberg—Marquardt
nonlinear regression was used for the fitting procedure.
Estimating the noise parameter introduces an extra de-
gree of freedom, which necessitates the collection of more
data to achieve the same reliability as a model with fewer
parameters. Furthermore, the robustness of this last fitting

2Note: For the remainder of the methods and results section, SNR is taken to
mean the SNR of the b = 0 images.
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procedure is likely to be increased if the data contain
multiple points at which the signal is predominantly
noise. Such data could be obtained in practice on an MR
scanner by employing extremely high b values (e.g., b =
40,000 s mm™?). However, there are two problems associ-
ated with this approach. First, if there is true restricted (as
opposed to hindered) diffusion, then the noise-free DW
signal at high b values may be nonzero. Second, acquiring
many samples at high b values unacceptably increases the
acquisition time. An alternative approach is to obtain mul-
tiple measurements of the signal outside of the brain (i.e.,
in the background and in regions where there are no
phase-encode artifacts) and then assign these values to be
the diffusion-weighted intensities at the high b values.
This approach provides a large number of estimates of the
signal obtained at extremely high b values without increas-
ing scanning time. We refer to these measurements as
“extreme b-value measurements.” To reproduce this ap-
proach in the Monte Carlo simulations, we simply ob-

,'7(391011121: 12 3 4 5 6 7 8 9 10 11 12

tained Ny eme eStimates of the rectified signal in the ab-
sence of any true signal and equated these measurements
with those obtained at a series of N .eme €qually spaced b
values between 40,000 s mm™ and 10,000 s mm™. To
quantify the efficacy of this last approach, the mean dif-
ference between the noise-free ADC profile and the ADC
profile obtained using this last fitting approach was com-
puted. A number of ADC profiles were then obtained using
the five different estimation procedures for data simulated
with different numbers of unique b values, (Nypique), and

different numbers of extreme b value measurements,
(N

extreme) N

RESULTS

The effect of the rectified noise floor on the diffusion-
weighted signal attenuation is shown in Fig. 1, where
results are shown for two diffusivities: 0.1 X 10~° mm? s™
and 1.0 X 10~ ® mm? s™". These values are representative of
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FIG. 2. a shows the ADC profile obtained for a 2D tensor with mean diffusivity = 0.7 X 107 mm? s™

and fractional anisotropy = 0.9. The

signal-to-noise ratio was set to 15:1 and the b value set to 2500 s mm™. The dotted line corresponds to the noise-free ADC profile predicted
by Eq. [12], whereas the solid line corresponds to the mean of the noisy estimates of ADC at each projection, 6, to the major axis of the
peanut. The diffusivities along the major and minor axes of the peanut correspond to the major and minor eigenvalues of the diffusion
tensor. The asterisks mark the predicted points at which the noisy profile should deviate from the noise-free profile. b and ¢ show the
distribution of the ADCs measured at 6 = 90° and 0° respectively. Note that the histograms are plotted with different scales to allow the

detail of the plots to be fully appreciated.

the largest and smallest eigenvalues of a diffusion tensor
with Trace = 2.1 X 10" > mm? s (4) and FA = 0.9. In Fig.
1A, the ADC is sufficiently low that the DW intensity never
reaches the noise floor. Consequently, over the b-value
range shown, the plot of log-transformed intensity versus b
(Fig. 1B) has a constant slope, indicating that the estimated
diffusivity is independent of b and will therefore be deter-
mined accurately. Conversely, in Fig. 1C, the DW intensity
begins to approach the noise floor within the range of b =
1000 s mm™ to 2000 s mm™>. In this range, the slope of the
log-transformed intensity versus b becomes nonlinear (Fig.
1D) and as b is increased further, the DW intensity agrees
well with the theoretical value of the noise floor (dotted
line) predicted by Eq. [1].

By setting the diffusion-weighted intensity in Eq. [4] to
the mean background signal, n, we can obtain an order of
magnitude estimate for ADC,,,,, the maximum expected
value of the diffusivity that can be measured without suc-
cumbing to the squashed peanut effect, for a given b value,
unweighted signal, and level of background noise, that is,

1. (I,

The asterisk in Fig. 1D shows the point at which Eq. (7)
is satisfied. Note, however, that v only represents the mean
of the rectified noise signal and, as shown by the error bars
in Figs. 1A and 1C, the noise floor influences the estima-
tion of the ADC even when the DW signal is significantly
greater than m. Figures 1E and 1F show the same data
analyzed as a “g-space” experiment (12), where E(q) is

ADC o = (7]

et}

plotted versus “q” and where we have taken “q” to be
proportional to the square root of b (see Appendix C).
Figure 2 shows the noise-free and noisy ADC profiles
obtained for a 2D tensor with FA = 0.90, Trace = 2.1 X
107° mm? s, and SNR = 15:1 (where the SNR is the
signal-to-noise ratio in the image obtained with no diffu-
sion weighting). As others have shown (7,8,25,26), the
mean ADC profile assumes the shape of a peanut when the
diffusion ellipsoid is prolate. The diffusivities along the
major and minor axes of the peanut are equal to the major
and minor eigenvalues (A, and \,) of D. The analytical
form for this ADC profile is given by the following (26):

D, = \,cos? § + \,sin® 0, [8]

where D, is the diffusivity along the projection at angle 6 to
the major eigenvector of the diffusion tensor. Note that the
noisy ADC profile deviates from the theoretical (noise-free)
profile, with the former appearing “squashed” along its
long axis. This deviation is attributable to the underesti-
mation of the higher diffusivities observed along that axis.
The data in Fig. 1 correspond to the diffusivities observed
along the major and minor axes of the peanut presented in
Fig. 2. Clearly, along the minor axis, the effect of the noise
floor is insignificant and so the profile of the peanut is
unaffected along that axis. At some polar angle to the long
axis of the peanut, 65, the profile begins to deviate signif-
icantly from that predicted by Eq. [7]. Again, it is possible
to obtain an order of magnitude estimate of this breakpoint
by combining Egs. [7] and [8], that is:
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FIG. 3. ADC profiles for tensors with fractional anisotropy ranging from 0 to 1 and mean diffusivity = 0.7 X 10~ mm? s™'. Ten ADC profiles
are shown for each tensor, corresponding to b = 1,000; 2,000; 3,000; 4,000; 5,000; 6,000; 7,000; 8,000; 9,000; and 10,000 s mm™. The
outermost profile corresponds to b = 1000 s mm™2, whereas the innermost corresponds to b = 10,000 s mm™.

o =

N,c08% 05 + N\,sin® 0 = + ln<f>,

which is readily solved for 65:

, [10]

in which \; > \,. The asterisks on Fig. 2 correspond to the
“breakpoint” angles, 65, computed from Eq. [10]. The as-
terisks do not correspond exactly to the points where the
noisy and noise-free ADC profiles appear to deviate from
each other. This is to be expected, as Eq. [10] is a liberal
measure that assumes that only the mean noise floor af-
fects the estimate of the ADC.

A statistical framework is useful for understanding the
cause of the squashed peanut. Figures 2B and 2C show the
distribution of ADC measurements at two sampling angles,
6 = 90° and 6 = 0°, respectively. Figure 2B appears to be
Gaussian, whereas Fig. 2C appears skewed and non-Gaus-
sian. The ADC distributions were compared with Gaussian

distributions using the Kolmogorov—Smirnoff function test
in MATLAB (The Mathworks, Natick, MA) using an «
value of 0.001. The distribution of ADC values sampled
across the neck of the peanut (6 = 90°) was found to be
Gaussian, but the distribution at 6 = 0° was non-Gaussian.
The crosses in Fig. 2 indicate the points on the ADC profile
at which the transition from Gaussianity to non-Gaussian-
ity occurred, as determined by the Kolmogorov—Smirnoff
test. As the Kolmogorov-Smirnoff test considers the entire
distribution of ADC values, rather than just the mean (as in
Eq. [10]), this measure will be a more sensitive indicator of
peanut squashing than Eq. [10].

Figure 3 shows the noisy ADC profiles for six tensors
with FA ranging from 0 to 1 and for b values ranging from
1000 s mm™ to 10,000 s mm™>. In general, as the b value is
increased, the peanuts are increasingly squashed along the
long axis. However, as predicted from Fig. 1 (i.e., low
diffusivities are not affected by the noise floor, while high
diffusivities are), below a certain SNR threshold and for a
given Trace, the relative signal loss (and therefore squash-
ing of the peanut) depends on the anisotropy. Further-
more, the amount of squashing also varies according to the
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FIG. 4. Relationship between estimated fractional anisotropy and signal-to-noise ratio for a simulated diffusion tensor whose true fractional
anisotropy is 0.7 (represented by the horizontal dotted line) for four different b values: (a) 1000 s mm™; (b) 3000 s mm™; (c) 5000 s mm>;
and (d) 7000 s mm™. The circles show the mean of 10,000 estimates, whereas the error bars show the SD.

orientation. For example, for FA = 0, the reduction in the
measured ADC is the same in all directions and so the
anisotropy (i.e., zero) remains the same for all b values.
Nevertheless, the mean ADC is reduced by the presence of
noise. Assuming a constant Trace, as D becomes increas-
ingly anisotropic, the diffusivity along the long axis of the
peanut increases while in the orthogonal direction it de-
creases. Consequently, the ADC profile becomes more
squashed along the long axis of the peanut and less
squashed along the orthogonal axis. A result of this differ-
ential quashing is that the ADC profile becomes increas-
ingly circular (less peanut-shaped) as the b value is in-
creased, therefore leading to an underestimation of anisot-
ropy.

The effect of the rectified noise floor on the relationship
between measured FA and SNR is shown in Fig. 4 for four
different b values. In the low b domain (b ~ 1000 s mm™),
the familiar pattern of overestimation of the anisotropy at
low SNR and convergence to the true anisotropy at high
SNR (22) is observed. At b = 3000 s mm™?, the estimates of
FA appear to be relatively unbiased and insensitive to the
SNR. However, as the b value is increased further, the
anisotropy becomes underestimated.

Another way to investigate the influence of noise on FA
and Trace measurements is to keep the SNR fixed (in the
b = 0 image) and vary the b value. Typical results obtained
from this type of simulation are presented in Fig. 5, in
which the FA of the tensor has been estimated for b values
in the range of 50 s mm™ to 10,000 s mm™. The degree of

squashing of the peanut, for a given SNR and b value,
depends on the FA as seen in Fig. 3. Further, as FA in-
creases, the deviation of the noisy profile from the ideal-
ized peanut is reduced across its neck (i.e., in the direction
perpendicular to the long axis). Because the Trace is equal
to the sum of the diffusivities in the orthogonal directions,
it is reasonable to expect that the Trace will be progres-
sively underestimated as anisotropy increases which is
confirmed in Fig. 6. For example, at b = 2500 s mm™>, there
is approximately a 10% difference in the estimated Trace
for a tensor with zero FA and a tensor with FA close to
unity. This effect becomes more pronounced as the b-
factor is increased.

Figure 7 shows the estimated FA as a function of true FA
(i.e., anisotropy in the absence of noise) for the same range
of b values. Note that at all b values greater than approxi-
mately 1500 s mm™>, the true anisotropy is underesti-
mated—and the underestimation becomes progressively
worse at higher b values. However, the shapes of the
curves also change at higher b values such that the low
anisotropies become progressively more underestimated
compared to higher anisotropies as the b factor is in-
creased.

The effect of reducing the Trace on the estimated FA is
shown in Fig. 8 for a diffusion tensor with an initial mean
diffusivity of 0.7 X 107® mm? s and a (noise-free) FA of
0.75 [values which are representative of deep white matter
(4)]. At b = 1000 s mm™?, there appears to be little corre-
lation between Trace and estimated FA. However, as the b
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FIG. 5. Relationship between estimated fractional
anisotropy and b value for a fixed signal to noise
ratio of 20:1 and a noise-free “true” fractional an-
isotropy of 0.9 (shown by the horizontal dotted
line). The error bars show the SD in the estimates
of anisotropy at each b value.

Estimated FA

0.4

1
0 1000

factor is increased, the estimated FA progressively in-
creases as the mean diffusivity is reduced (e.g., at b =
2500 s mm™), a 30% reduction in mean diffusivity leads to
a 7% increase in FA, whereas at b = 3000 s mm™?, the same
reduction in mean diffusivity leads to more than a 15%
increase in FA.

The final part of this study investigated the effect of
different acquisition and estimation strategies on the ADC
profile. Figure 9 shows a typical result obtained for a
simulated tensor with FA = 0.9, mean diffusivity = 0.7 X
10~° mm? s, at a signal-to-noise ratio of 20:1. Data were
simulated for eight equally spaced b values between zero
and a maximum b value of 3000 s mm™ and 100 extreme
b values equally spaced between 4000 s mm™ and 10,000

1 1 1 1 1 1
2000 3000 4000 5000 6000 7000 8000 9000 10000

B-value (s mm3?)

s mm™. Clearly the peanut is most squashed when using
the commonly employed two-point fitting approach.
When the multiple data points are fitted using linear re-
gression assuming equal variance in each of the log-trans-
formed intensities, the peanut is marginally less squashed
than the two-point approach, as would be expected. The
ADC profile obtained using linear regression with appro-
priate weightings (Eq. [5]) markedly improves the fit. The
artifactual reduction in anisotropy is certainly diminished
compared with the two-point fit. The profile looks decep-
tively Gaussian and, on first glance, one might assume that
the profile could be fitted by the zero- and second-order
spherical harmonics. However, only the true ADC profile,
shown by the black line, can be represented by the zero

0.75 T T T T T
1000,1500
~ 070 0
[
g 08BF 2500
£
o 060F :
e 3000
X 055¢ 7 FIG. 6. Relationship between estimated mean dif-
2 3500 fusivity versus noise-free fractional anisotropy for b
% 0.50 7 values in the range b = 1000 s mm to b = 10000
g 4000 s mm™. The b value corresponding to each plot is
[a) Uor 500(; shown on the right side. (Note that the plots for b =
g 040l i 1000 s mm™ and 1500 s mm™ cannot be resolved
g ’ in the figure.) The noise-free diffusivity is 0.7 X
-3 2 o1
B 035f 6000 10" mm* s™.
®
7000
E o3} J
2 8000
0.25 9006
\m\o o
020 1 L 1 1 L L 1 1 1
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- anisotropy versus “true” (noise-free) fractional an-
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e to b = 10000s mm™. The b value corresponding to
each plot is shown on the right side. (Note that the
. plots for b = 1000 s mm™, 1500 s mm2, and
2000 s mm™ cannot be resolved in the figure.) The
q noise-free mean diffusivity is constant and equal to
0.7 X 107 mm? s

0 0.2 0.4 0.6 0.8
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and second-order harmonics. The profile obtained using
nonlinear fitting provides a good approximation to the
noise-free profile, but, nevertheless, is still noticeably
squashed along the long axis of the peanut which, once
again, means that higher-order spherical harmonics would
be needed to fully describe it. Finally, the result obtained
using the proposed fitting method in which a noise param-
eter is included in the fitting procedure provides the most
accurate reconstruction of the noise-free ADC profile.
With simulated data for which b,,,, = 3000 s mm™,
SNR = 20:1, FA = 0.9, and mean diffusivity = 0.7 X 10~°
mm? s !, increasing N, ,ique reduced the overall deviation
between the noise-free ADC profile and the fitted ADC
profile (see Fig. 10). Moreover, as b, is increased, N,,ique

must be increased to achieve the same level of accuracy
(see Fig. 10). The fitting procedure was unstable for N,,,,;,ue
< 5, by which we mean that at least one of the projected
ADCs was overestimated by an order of magnitude or
greater. As the b value was increased, the minimum value
of unique b values needed for a stable estimate of the ADC
profile also increased. For example, for values of b, ,, of
3000 s mm™?, 4000 s mm™2, and 5000 s mm™?, the minimum
number of unique b values was 5, 6, and 7 respectively.

DISCUSSION

We have seen various ways in which noise affects mea-
surements in DWI experiments. The rectified noise floor
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FIG. 8. The effect of reducing the mean diffusivity
on the estimated anisotropy of a diffusion tensor
with mean diffusivity of 0.7 X 107® mm?s™" and
fractional anisotropy of 0.75. The graph shows the
changes in mean diffusivity and anisotropy as per-
centage changes, for four different b values:
1000 s mm™, 2000 s mm2, 2500 s mm™2, and
3000 s mm™.
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FIG. 9. Noisy ADC profiles estimated using five different fitting procedures. The noise-free ADC profile (for FA = 0.9 and mean diffusivity =
0.7 X 1073 mm?s™") is shown in black. Data were simulated for an experiment in which the maximum b value, b, was 3000 s mm™ and
the number of unique b values, N,,nq.e: Was 8. The most squashed profile results from the two-point fitting approach (light blue). The profile
is only marginally less squashed when fitting all eight data points using unweighted linear regression, but when each data point is
appropriately weighted (Eq. [10]) following the log-transform of the data (dark blue line), the profile appears less squashed and more
peanut-shaped. A much better approximation, however, to the noise-free profile is obtained with nonlinear fitting (green line), but the profile
is still marginally squashed along the long axis. The proposed fitting technique (red line) provides the most accurate reconstruction of the

ADC profile.

creates artifacts in any single DWI in which the diffusion
attenuation is sufficiently high and/or the SNR is suffi-
ciently low that the noise floor is sampled. Hence, all
techniques that incorporate high b-value/low SNR DW
data, ranging from the simplest high b value unidirectional
DWI experiments to high angular resolution diffusion
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FIG. 10. Demonstration of the effect of increasing the number of
unique b values, N,,iquefinfg, ON the mean error between the noise-
free ADC profile and the profile obtained using fitting method 5 (in
which noise is included in the model). The assumed tensor had a
fractional anisotropy of 0.9 and mean diffusivity of 0.7 x 1072
mm?2s™’, and the SNR was 20:1. Results are shown for three differ-
ent b values. The general trend is a reduction in the mean error as
the Nynique increases. However, as the b value increases, N,nique has
to increase to achieve the same accuracy. Note that results for
Nunique < 6 and Nnique < 7 are not shown for b, = 4000 and
brax = 5000, respectively, as the fitting routine was unstable for
these conditions.

(HARD) sampling techniques (7—11,28-30) are potentially
prone to this artifact.

Non-Mono-Exponential Decay—Implications for Restricted
Diffusion and g-Space Studies.

The first effect noted was the nonlinear dependence of
the log-transformed DW intensity with increasing diffu-
sion weighting (Fig. 1D) that is solely a result of noise.
Similar deviations from a log-linear relationship between
DW intensity and increasing diffusion weighting have
been reported previously and have been attributed to re-
stricted diffusion (e.g., 31). In those cases, however, dif-
fusion is restricted in a direction perpendicular to the long
axis of the anisotropic fibers, which is presumed to be due
to the presence of impermeable axonal membranes. How-
ever, in Fig. 1, panel C corresponds to the diffusivity
perpendicular to the long axis of a tensor with FA of 0.9,
whereas panel D corresponds to the diffusivity along the
long axis of the peanut. Therefore, the axis of apparent
restriction that results as an artifact of the noise floor in our
experiments is orthogonal to that expected if true restric-
tion were to occur.

Figures 1E and 1F showed the effect of the noise floor on
g-space type analyses. The E(q) versus “q” plot in Fig. 1F
has a constant term which, on average, w1ll lead to an
artifactual spike near the zero displacement in the average
propagator that is obtained by taking the Fourier transform
of E(q) (12). In an actual DW experiment, in which the
sampled background noise is variable, the Fourier trans-
form of the background noise will give rise to an average
propagator of an object exhibiting restricted diffusion but

3Sgrland and Aksnes (32) have pointed out that similar deviations from a
log-linear relationship can be observed in diffusion-weighted imaging exper-
iments in which bipolar gradients are used, due to unwanted coherence
transfer pathways being introduced.
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having a complex multilobular structure, similar to those
observed in Diffusion Spectrum Imaging (DSI) (11) studies
of gray matter in brain tissue.

Implications for Spherical Harmonic Fitting Approaches

Pajevic and Basser (27) recently demonstrated that for
(SNR > 5) and for b values used in typical neurologic
DT-MRI experiments (b ~ 1000 s mm™?), the distribution of
diffusion tensor elements in DT-MRI experiments was
multivariate Gaussian. Because the ADC is a projection of
the tensor along a specific direction (see Eq. [2]), it is
expected that the probability distribution of ADCs in all
directions would also be Gaussian. However, surprisingly,
at higher b values, we found significant deviations from
the Gaussian model using the Kolmogorov—Smirnoff test.
We showed that the distribution of individual ADC mea-
surements about the mean is Gaussian only up to a certain
point along the neck of the peanut, but at some angle 6 to
the long axis, it becomes non-Gaussian. At this transition
point, the observed profile begins to deviate from the the-
oretical noise-free (i.e., peanut-shaped) profile.

Frank (9) showed that the orientational ADC profile for
single fiber populations can be adequately described by
the zero- and second-order spherical harmonics. However,
to describe the ADC profile arising from multiple fiber
populations, higher-order spherical harmonics must be
invoked, which is taken to indicate increasing tissue com-
plexity (10). However, in this study we have seen that even
for a single fiber population, which is perfectly described
by a single tensor in the absence of noise, the effect of the
rectified noise floor is to squash the ends of the ADC
profile causing it to deviate from the peanut-shape ex-
pected in a single fiber. (We note that in Fig. 2 of Hirsch et
al. (30), although not commented upon, there is also evi-
dence of squashing of the peanut along the long axis, but
not the short axis.) In such cases, the profile will not be
adequately described by only the zero- and second-order
spherical harmonics—higher-order harmonics are re-
quired.

Without attending to the sources of deviation from the
Gaussian peanut profile, (which also include other sources
such as misregistration of DW images, uncorrected pulsa-
tility artifacts, and eddy-current distortions in addition to
the noise effect reported here), one could erroneously as-
cribe more structural complexity to tissue than physically
exists. The effect of increasing b value on the squashing of
the peanut is clearly seen in Fig. 3. At b ~ 1000 s mm™
(which is typical of the b values used in most DT-MRI
experiments), the shape of the ADC profiles agree well
with the noise-free profile for all levels of anisotropy, and
(although we have not verified it experimentally) it is
expected that the ADC profile could be adequately de-
scribed by the zero- and second-order spherical harmonic.
However, as the b value is increased further, the ADC
profile begins to deviate significantly from the noise-free
profile, with this effect being most marked in the more
anisotropic media. This should be a major concern for
those approaches that utilize b values greater than, say,
1500 s mm™ and analyze the angular profile of either the
ADC or the DW intensity. One may naively think that the
solution might be to employ the high-angular resolution
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sampling techniques with relatively low b values. How-
ever, in the low b-value domain, diffusion in tissue can
always be adequately characterized by a single effective
diffusion tensor (6), necessitating the use of larger b values
to detect non-Gaussian diffusion. Indeed, Frank (7)
showed that at low b values, the ADC profile for two
orthogonal fibers could be adequately characterized by a
single oblate tensor, but this was not the case at b = 3000 s
mm ™. Hence, for the approaches that aim to extract more
information than that provided by a single diffusion tensor
model, the problem of the rectified noise floor is inescap-
able. However, to the best of our knowledge, its effect has,
so far, not been accounted for.

A New Effect of Noise on Anisotropy Measurements

In 1996, Pierpaoli and Basser reported the effect of noise
on different measures of diffusion anisotropy (22). One of
their findings was that the degree of anisotropy becomes
progressively overestimated (i.e., the estimates are biased)
as the SNR decreases. These experiments were performed
with b < 1000 s mm™ and, in this range, our results (see
Fig. 4A) duplicate their findings. However, the results also
show that had Pierpaoli and Basser considered experi-
ments with higher b values, they might have concluded
that noise has a different effect on anisotropy measures.
Indeed, if their experiments had been performed with b ~
3000 s mm™, they might have concluded that FA values
were relatively unbiased (see Fig. 4B). As the b factor is
increased further (i.e., b > 3000 s mm™), the anisotropy
becomes underestimated for all levels of SNR greater than
approximately 7:1.

Two competing mechanisms can explain the depen-
dence of FA on SNR seen in Fig. 4. The first is eigenvalue
repulsion (21) for moderate b values (by which we mean
the range of b values in which the DW intensity does not
approach the rectified noise floor); the second is squashing
of the peanut, which begins to dominate as the b value is
increased (and/or SNR is decreased). These competing
mechanisms are evident in Fig. 5, which shows the esti-
mated FA as a function of b value. There are three distinct
regions in the plot. First, in the range of b ~ 1000 s mm?,
the SNR of the DW images will be high. However, the most
biased estimates of anisotropy (i.e., overestimated anisot-
ropy) are found in this domain. This is probably attribut-
able to the diffusion weighting being insufficient to obtain
a good estimate of the diffusivity along each sampling
orientation. (It has been shown that the optimal diffusion
weighting for diffusivity measurements is b = 1.11 / ADC
(33).* The second phase in the plot (b ~ 1100 s mm™ to b ~
3000 s mm™) shows a gradual rise in the estimated FA,
which is most likely attributable to eigenvalue repulsion
effects (21). As the b value is increased, the SNR of the DW
image will decrease and, as Pierpaoli and Basser (22)
showed, this leads to increasing overestimation of the

“4Although it should be noted that this calculation was performed neglecting
the associated T, decay associated with diffusion-weighted spin-echo exper-
iments. By including transverse relaxation in the optimization of diffusion-
weighted sequences, Jones et al. (34) have shown that the optimal b factor is
approximately 30% less than this in a typical diffusion-weighted MRI exper-
iment.
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anisotropy. The third phase of the plot shows a gradual
decline in the estimated anisotropy. During this phase, the
squashed peanut mechanism dominates. Frank (7) pro-
posed an anisotropy measure based on the variance of a set
of ADC measurements obtained along a large number of
directions. The key idea was that in regions where fibers
cross, for example, while measures such as FA and relative
anisotropy (23) would be low, the variance of the ADC
measurements would be large. Although this overcomes
this problem in principle, the variance of the ADC mea-
surements as a measure of anisotropy is also susceptible to
the squashed peanut artifact, that is, as the peanut be-
comes increasingly squashed, the ADC profile becomes
increasingly spherical and hence reducing its variance and
the computed anisotropy.

Artifactual Correlations between Trace and Anisotropy

The effect of the noise floor is to introduce an artifactual
correlation between mean diffusivity and anisotropy (see
Fig. 6). If not accounted for, this can bias results of exper-
imental studies that assume independence of Trace and
FA. Just how important this artifactual correlation is when
performing independent statistical tests of anisotropy and
mean diffusivity data obtained from the same voxel is
worthy of further investigation. We have also shown that
the estimated Trace in tissue is dependent on the SNR and
the b value used. Although the noise sensitivity of anisot-
ropy measurements has been previously documented, to
date, the Trace has been assumed to be relatively noise-
insensitive (22). Our results suggest that it would be good
practice (for direct comparisons of Trace values obtained
from studies performed at different b values, image reso-
lutions, and SNRs) for authors to include the SNR of their
experiments when reporting their findings.

Artifactual Increase in Gray Matter/White Matter Contrast
and Underestimation of Anisotropy at Higher b Values

A further consequence of the relationship between Trace
and FA shown in Fig. 6 is that, for a given brain, the
contrast between gray and white matter in DWI or in mean
diffusivity maps will increase as the b factor increases. In
mean diffusivity maps, white matter would appear in-
creasingly hypointense compared to gray matter as the b
factor is increased. This effect arises because white matter
has higher anisotropy than gray matter and hence experi-
ences more “squashing of the peanut” as the b factor is
increased. De Lano et al. (13) and Yoshiura et al. (15) have
reported this trend between increased b factors and in-
creased white matter/gray matter contrast. However, they
suggested multiexponential diffusion behavior as the un-
derlying mechanism causing this phenomenon. We are not
suggesting that the squashed peanut phenomenon alone
produced the patterns noted by these groups, but it may
have contributed to the gray matter/white matter contrast
they observed. We suggest, however, that this new mech-
anism be considered in future studies before conclusions
regarding multiexponential diffusion are drawn.

Apparent Elevation of Anisotropy in Acute Ischemia

Undoubtedly the most useful application of DWI to date
has been in the study of acute ischemia (e.g., 2). Within the
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first few hours after the onset of ischemia, there is a de-
crease in the mean diffusivity of the ischemic tissue of
approximately 30%. It is not difficult to envisage that this
reduction in mean diffusivity will tend to increase the
apparent anisotropy in a high b-value/low SNR experi-
ment. If, prior to the ischemic reduction in diffusivity, the
rectified noise floor is sampled, then the true anisotropy
will be underestimated (see Fig. 3). During the ischemia,
the 30% reduction in diffusivity will result in less squash-
ing of the peanut along its long axis—and hence there will
be an apparent increase in the anisotropy of the tensor.
This is confirmed in Fig. 8, which shows the effect exac-
erbated at higher b values. At b = 1000 s mm?, the anisot-
ropy remains approximately constant as the diffusivity is
reduced. Note, however, that at b = 3000 s mm?, a reduc-
tion of 30% in mean diffusivity gives rise to a 15% in-
crease in the estimated anisotropy.

Several groups (e.g., 35,36) have reported elevated an-
isotropy in acute ischemia. Maier et al. (35) first suggested
that the elevated anisotropy might be explained by the
swelling of fibers causing further restriction of extracellu-
lar fluid in the direction perpendicular to the long axis of
the fiber. Sotak (37) in a recent review of the uses of
diffusion imaging in stroke also raised the possibility that
the elevation might somehow be related to cessation of
motion/flow or perhaps to the effect of SNR reported else-
where (22). [In the latter case, however, a reduced diffu-
sivity would lead to reduced signal attenuation in the DWI
and consequently higher SNR which, from the findings of
Pierpaoli and Basser (22), would lead to a reduction in the
estimated anisotropy]. In short, in acute ischemia studies
where the SNR is low, or the b value has been increased
(which is often done to increase the conspicuity of acute
ischemic lesions), elevated anisotropies should be inter-
preted extremely carefully.

Potential Remedies

Finally, having discussed all the artifacts introduced by
the squashed peanut phenomenon, what are the remedies?
One solution is, of course, to ensure that the SNR is suffi-
ciently high (even using the highest b values) and/or the
maximum b value sufficiently low, such that the rectified
noise floor is never sampled. SNR can be boosted, for
example, by using higher magnetic field strengths, surface
coils, and stronger gradients (resulting in shorter echo
times and therefore higher SNR per unit time for a given b
value). However, such approaches can be costly and/or
impractical. For a fixed SNR, it is therefore necessary to
ensure that the b value is sufficiently low to ensure that the
artifact does not manifest itself. In Appendix D, we show
how to compute an order of magnitude estimate of the
maximum b value that should be used for a given SNR,
Trace and FA. For brain parenchyma, assuming a Trace of
2.1 X 107 ° mm? s™* (4), a typical SNR of 20:1 and account-
ing for all possible anisotropies (ranging from 0 to 1), the
maximum b value that should be used is approximately
1300 s mm™>. It should be noted that in neonates, the mean
diffusivity is substantially higher than in the adult brain
(e.g., 38,39). In premature infants, for example, in the
centrum semiovale the mean diffusivity can be almost 3
times higher than in the adult brain (38). Consequently,
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the maximum b factor that should be used to avoid the
squashed peanut artifact will be reduced by a factor of
approximately 3 (i.e., 430 s mm™). We further note that
anisotropy is evident in certain structures, even in the
premature infant brain [e.g., centrum semiovale, genu, and
internal capsule (38)], where the problem of high attenu-
ation of the signal will be further exacerbated.

As stated above, to detect non-Gaussian behavior it is
often necessary to use b values that are much higher than
those used clinically (i.e., b ~ 1000 s mm™) (6—8). If such
high b-value data are acquired, then corrective strategies
must be adopted. Further, when performing clinical exam-
inations, there is a requirement to minimize the total scan
time. One strategy that is often adopted is to acquire large
numbers of low SNR diffusion-weighted EPI images,
which collectively increase the SNR per unit time. How-
ever, this exacerbates the problem of the squashed peanut
in each individual EPI image. Often in MRI (as in many
other areas of signal processing) the problems of low SNR
are handled by simply averaging multiple samples of the
signal. In this particular case, however, collecting multiple
averages of the magnitude-reconstructed data will not rem-
edy the squashed peanut problem. Averaging complex
data prior to magnitude reconstruction may offer a solu-
tion, but comes with the usual burden of handling com-
plex data (having both magnitude and phase information)
when the acquisition is sensitized to microscopic motion.
Phase disparities can be corrected prior to averaging com-
plex data using navigator phase correction techniques but
these obviously require modification of the pulse sequence
and additional processing times. Furthermore, to our
knowledge, the efficacy of navigator correction of data
acquired at very high b values has not been demonstrated.

We have shown that collecting DW data at more than
two b values and employing different fitting approaches
can be used to ameliorate the problems arising from the
rectified noise floor. In particular, the approach that in-
volved including a noise parameter as part of the fitting
procedure produces ADC profiles that are quite faithful to
the noise-free ADC profiles. Alternative approaches that
may also remedy the situation include maximum likeli-
hood estimation methods and fitting the expectation value
of an exponential model that is perturbed by various noise
sources. These are the subject of future investigations.

So far we have validated this approach using only Monte
Carlo simulations where the sole source of noise that was
modeled was Johnson RF noise. However, with in vivo
data, additional sources of noise are likely to be present,
including voluntary and involuntary patient motion. It
remains to be confirmed how effective the fitting proce-
dure proposed here will be when such sources of noise are
present. Nevertheless, for any model-based analyses, such
as the spherical harmonics approach (9,10), use of the
fitting procedure proposed here should improve the char-
acterization of diffusion-weighted data collected at high b
values. For model-free approaches, however, (e.g., 11), this
approach obviously cannot be used. Alternative strategies
therefore need to be employed to remedy the deleterious
effects of background noise. Several authors have sug-
gested correction schemes for low SNR images (e.g.,
19,20,40). However, Dietrich et al. (20) have shown that for
quantitative ADC measurements, the scheme proposed by
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Gudjbartsson and Patz (19) provides insufficient correc-
tion in the very low SNR domain and also pointed out that
the power image approach proposed by Miller and Joseph
(40) can only be used on non-averaged images. The scheme
proposed by Dietrich et al. (20) appears to provide good
correction of the noise-induced bias in ADC measure-
ments, but requires that the complex data (i.e., prior to
magnitude reconstruction) be available.

CONCLUSION

We have systematically studied the effect of the rectified
noise floor on measurements obtained from diffusion-
weighted image data, and have presented several new
findings. We have shown the rectified noise floor can give
rise to apparent non-mono-exponential (i.e., non-Gauss-
ian) decay of the diffusion-weighted signal, which could
be misinterpreted as evidence of restricted diffusion or
multiple compartments even when the underlying diffu-
sion process is Gaussian. We have seen how the noise floor
can confound techniques to characterize tissue complexity
by introducing an orientational bias in the ADC profile. We
have also shown how, at higher b values (above 1300 s
mm™?) and/or lower signal-to-noise ratios, artifactual cor-
relations are introduced between mean diffusivity and dif-
fusion anisotropy measurements that may adversely im-
pact studies that assume that these measures are statisti-
cally independent. This correlation could also lead to an
apparent increase in anisotropy in ischemic tissue unless
the effect of the rectified noise floor is correctly accounted
for. We have proposed and demonstrated a novel approach
for remedying the problem in Monte Carlo simulations.

Finally, we note that we have only considered prolate
tensors (i.e., tensors in which \; > \, = \,), for which the
ADC profile is peanut-shaped. However, noise introduces
serious artifacts when the attenuation due to diffusion
exceeds a certain threshold. Hence, the problem is equally
relevant to tissue in which the diffusion tensor has an
oblate ellipsoid (N, = N\, > \;). The ADC profile associated
with this tensor is not peanut-shaped, but akin to that of a
pumpkin (see 19). In the high b-value/low SNR domain,
the pumpkin will also be squashed (or smashed) like the
peanut, hence the title.

ACKNOWLEDGMENTS

We thank Liz Salak for reviewing the manuscript and
Carlo Pierpaoli for suggesting the background intensities
as surrogates for the DW intensities at extremely high b
values.

APPENDIX A

In this appendix, we show how the noise-free tensors
were determined for a given trace and fractional anisot-
ropy and also how the b matrix was defined for both 2D
and 3D simulations. In the following notation, \, is the i
eigenvalue of the diffusion tensor, D, with Trace of Tr(D)
and fractional anisotropy of FA. Here FA is defined as
follows:
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In two dimensions
[A1] N = (Tr(D)/2)(1 — FA/(2 — FA)Y?), [A6]
N, = Tr (D) — \y, [A7]
where n is the dimensionality (i.e., n = 2 or 3). D - [ N O } (A8]
Let g; be the j™ component of the sampling vector g and 0 A |7
b represent the amount of diffusion weighting applied
along that direction. g
In three dimensions b = b[ g; gg‘?y ] [A9]
N = (Tr(D)/3)(1 + 2FA/(3 — 2FA%)Y?), [A2]
APPENDIX B
— — _ _ 2\1/2
Ao = A = (Tr(D)/3)(1 = FA/(3 = 2FATT), - [A3] For characterizing the effects of noise on diffusion ten-
sor experiments, two approaches were used. In the first,
Ay 00 500 diffusion tensor estimates were obtained, that is, one
D=1 0 X 0|, [A4]  for each of the 500 Monte Carlo iterations. For each itera-
0 0 X tion, a single ADC estimate, ADCg, was taken for each
sampling direction, g, and a set of simultaneous equations
s 8x8y 8x8- relating these projected ADC values to the diffusion tensor
b=0bl &8 & 88 [A5] established, that is,
88. 88, 8
(g(ll)z (g(l))z (g(ll]z zglllg(l] zgll)g(l) ng 1) D" ADC‘;,”
X Y Z X Oy X &5z y &z XX (
(g (g’ (g?)? 28”g” 287g 2gg” Dy, ADCye
: : : : : : D;, | _ : (B1]
: : : : : : Dy, | :
(g[m - 1))2 (g{m - 1]]2 (g(m — 1])2 m — 1]g{m -1) zg[m — l]g[m —-1) Zg(m - 1]g{m -1) Dny ADCH( ]
X v z X v X Z v Z Xz glm =1
(g;m]]z (g§/m])2 (g(zm])z zgf{m]gyn) zg;m)glzm] 2g§/m]g(zm) Dgz ADC;U,,J
where g'?) is the i'™ component of the p™ direction vector, is plotted against the wave vector q. Formally, g, is defined

ADCgw is the ADC along the p'™ direction vector and Diis
a component of the noise-contaminated diffusion tensor. If
we rewrite Eq. [B,] as

A.D = ADC, [B2]
where A corresponds to the first array in Eq. [B1] and D
and ADC correspond to the second and third arrays respec-
tively, then a sample estimate of the diffusion tensor can
be obtained from the following:

D = A"ADC, (B3]
where A" is the Moore—Penrose pseudo-inverse of A. In
this way, 500 noisy estimates of the diffusion tensor were
obtained and the trace and fractional anisotropy (23) of
each estimate were obtained. The second approach in-
volved computing a single diffusion tensor using the mean
of the 500 projected diffusion coefficients along each ori-
entation, (ADGCg).

APPENDIX C

In a g-space plot, the ratio of the signal intensity for a
given g divided by the signal intensity for ¢ = 0 [i.e., E(q)]

as follows:

vGd
9= 5 [C1]
where vy is the gyromagnetic ratio of the species under
investigation, G is the magnitude of the pulsed gradients,
and d is the duration of the pulses.

We can derive an approximate value of q from b using
the Stejskal-Tanner expression for the b factor, that is:

S
b= (VGS)Z(A - §>, [C2]
where A is the temporal separation of the gradient pulses.

If we assume that A>>3, then combining Eqgs. [C1] and [C2]
gives the following:

1
q= Jawa Vb, [C3]

i.e., q is proportional to the square root of the b factor. Hence
in Figs. 3E and 3F, we have plotted E(q) versus g, where we
have taken q to be proportional to the square root of b.
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APPENDIX D

In this Appendix, we show how to obtain an order of
magnitude estimate for the maximum b value that can be
used without the rectified noise floor being sampled.

First, we combine Egs. [1] and [7] to obtain an expres-
sion for the maximum diffusivity that can be reliably esti-

)

The term in the inner set of brackets, I /o, is the intrinsic
signal to noise of the non-diffusion-weighted images, SNR.
We can then rearrange Eq. [D1] to find the maximum value
of b for a given value of ADC and SNR, that is,

b= nf[2sNR
= apc, o\ \7SNR ).

For any tensor, the largest value ADC is equal to the largest
eigenvalue. Substituting N\, from Eq. [D1] for ADC,,,, in Eq.
[D2] gives the following:

8 (

- Tro)\ "

ADC,py = [D1]

[D2]

2FA

t g ZFAz)f 1n<\/iSNR>. [D3]
e

Equation [D3] gives an order of magnitude estimate of
the maximum b value that should be used when measuring
a diffusion tensor with a given trace, fractional anisotropy
and signal-to-noise ratio. It is useful to consider the two
limiting cases of diffusion anisotropy. For isotropic media
(FA = 0), we have the following:

ol )

Tr(D) ’

bmax

binax = [D4]

while in the most anisotropic media (FA = 1.0), we have

the following:
2
1n< \/78NR>
m

bmax = TI'[D)

[D5]

As an example, assuming an SNR of 20:1 and Tr(D) of
2.1 X 10> mm? s, b, computed according to Eqs. [D4]
and [D5] are 3957 s mm™ and 1319 s mm™ respectively.
These equations explicitly show the relationship between
SNR and the maximum b value that can be used to avoid
the squashed peanut artifacts. Interestingly, the log rela-
tionship means that to increase b,,,,, significantly, one has
to increase SNR by an order of magnitude.
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