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Abstract

We propose a novel spectral decomposition of a 4th-order covariance tensor, S. Just as the variability of vector (i.e., a

1st-order tensor)-valued random variable is characterized by a covariance matrix (i.e., a 2nd-order tensor), S, the

variability of a 2nd-order tensor-valued random variable, D, is characterized by a 4th-order covariance tensor, S.
Accordingly, just as the spectral decomposition of S is a linear combination of its eigenvalues and the outer product

of its corresponding (1st-order tensors) eigenvectors, the spectral decomposition of S is a linear combination

of its eigenvalues and the outer product of its corresponding 2nd-order eigentensors. Analogously, these eigenvalues

and 2nd-order eigentensors can be used as features with which to represent and visualize variability in tensor-valued

data. Here we suggest a framework to visualize the angular structure of S, and then use it to assess and characterize

the variability of synthetic diffusion tensor magnetic resonance imaging (DTI) data. The spectral decomposition

suggests a hierarchy of symmetries with which to classify the statistical anisotropy inherent in tensor data. We also

present maximum likelihood estimates of the sample mean and covariance tensors associated with D, and derive formulae

for the expected value of the mean and variance of the projection of D along a particular direction (i.e., the

apparent diffusion coefficient or ADC). These findings would be difficult, if not impossible, to glean if we treated 2nd-order

tensor random variables as vector-valued random variables, which is conventionally done in multi-variate statistical

analysis.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Methods to characterize the variability of scalar
and vector-valued random variables are well estab-
lished. Sample covariance matrices can be analyzed
e front matter r 2006 Elsevier B.V. All rights reserved
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using a variety of methods, such as Principal
Component Analysis (PCA) (originally proposed
by Pearson [1], and developed by Hotelling [2]),
Factor Analysis [3], and Independent Component
Analysis (ICA) [4–7]. However, how does one
characterize the variability of a tensor-valued
random variable? Presently, no analogous statistical
analysis framework exists [8]. Yet, tensor-valued
random variables are ubiquitous in the physical and
.
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Nomenclature

x normal random vector, i.e., N-dimen-
sional 1st-order tensor

M 2nd-order symmetric covariance matrix
(N�N)

D 3-D, 2nd-order symmetric tensor ran-
dom variable

S 3-D, 4th-order covariance tensor
(3� 3� 3� 3)

S 3-D, equivalent 2nd-order covariance
tensor (6� 6)

xTS�1x quadratic function of elements of x, i.e.,
0th-order tensor

D:S�1:D quadratic function of elements of D,
i.e., 0th-order tensor

p(x) normal multi-variate pdf of x

p(D) normal tensor-variate pdf of D

D̄ mean tensor of D
~D 2nd-order symmetric tensor random

variable written as a 6� 1 vector
L(p(D)) likelihood function of p(D)
dij

3 Kronecker delta or 3-dimensional iden-
tity matrix (3� 3)

dij
6 Kronecker delta or 6-dimensional iden-

tity matrix (6� 6)
sk kth Eigenvalue of S or S

ei
k kth Eigenvector of S (6� 1)

Ek kth 2nd-order Eigentensor of S (3� 3)
gi

k ith Eigenvalue of Ek

ni
k ith Eigenvector of Ek (3� 1)

lj jth Eigenvalue of D

Zj jth Eigenvector of D (3� 1)br unit radial direction vector
r 3-D position vector
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imaging sciences. For instance, in diffusion tensor
magnetic resonance imaging (DTI or DT-MRI), a
symmetric 2nd-order diffusion tensor is statistically
estimated in each voxel within an imaging volume
[9,10].

Specifically, we would like to extract useful
features that describe the variability of the estimated
diffusion tensor in each voxel within an imaging
volume. In particular, we would like to segment
regions of interest (ROIs) in which diffusion
properties are similar, and ultimately compare their
features to those in other ROIs in the same subject
(e.g., in a longitudinal study) or in different subjects
(e.g., in a multi-site study). Efforts to advance these
activities have been stymied by the dearth of
adequate statistical analysis methods to describe
the inherent variability of tensor and tensor field
data.

To address these limitations, we propose a
framework to characterize the covariance structure
of random 2nd-order tensor variables. We present
expressions for the sample mean and covariance
tensors associated with a 2nd-order tensor random
variable, and show that the covariance tensor is a
positive definite 4th-order tensor, which can be
decomposed as a linear combination of eigenvalues
and the outer product of their corresponding
eigentensors. We suggest how to classify this
4th-order covariance tensor according to its
symmetry properties and its distinct spectral fea-
tures. We also propose a new way to visualize
angular or orientational features of the 4th-order
covariance tensor using the spectral decomposition
framework.

An interesting application of this framework is to
analyze DTI data. Using Monte Carlo methods, we
generate ideal DTI data (with Johnson or thermal
background noise added) assuming properties of
neural tissue found in human brain.

2. Background

The variability and common features embedded
within vector-valued data or image arrays are
often extracted using a spectral expansion, often
referred to as a Karhunen-Loéve decomposition,
which determines distinct ‘‘modes’’ in random
signals. In PCA, one identifies and retains the
dominant modes by truncating this series. In this
work, we primarily focus on obtaining and analyz-
ing the entire spectral expansion; we ignore the issue
of data reduction or compression, but these also can
be addressed using the methodology we present
below.

To perform a spectral analysis on vector-valued
data, one first obtains a (sample) covariance matrix,
S, and then expands it as a linear combination
of eigenvalues and the outer product of their
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1In this context, S is usually referred to as a matrix, but it

transforms as an N-dimensional 2nd-order tensor.

P.J. Basser, S. Pajevic / Signal Processing 87 (2007) 220–236222
corresponding eigenvectors (e.g., see [11]). There
are, however, many data types, such as 2nd- and
higher order tensors, for which this approach is
problematic. Although it is always possible to
write these tensors as vectors (e.g., see [12,13]),
repacking tensor elements in this way obscures
certain intrinsic algebraic relationships among them
(e.g., failing to distinguish between diagonal and
off-diagonal tensor elements). Specifically, while it is
straightforward to expand a 2nd-order tensor in its
‘‘native’’ form in terms of its eigenvalues and
eigenvectors, or to apply to it an affine transforma-
tion (e.g., rotation, dilation, or shear), these
operations are unwieldy when the tensor is written
as a vector [14]. Representing 2nd-order tensors as
vectors also obscures their intrinsic geometric
structure. For example, while we can readily
represent quadratic forms associated with 2nd-order
symmetric tensors graphically as 3-dimensional
ellipsoids, paraboloids, or hyperboloids, we lose
this ability to represent geometric features when
writing these tensors as 6-dimensional vectors. By
preserving the form of a tensor random variable, we
retain our ability to perform algebraic operations
and interpret their underlying intrinsic geometric
structure.

A case in point is DTI. It was previously shown
that a normal multi-variate distribution could
describe the distribution of a 2nd-order diffusion
tensor (measured in the laboratory coordinate
system) if one rewrites this tensor as a 6-dimensional
vector [15]. This distribution allowed us to
characterize the uncertainty and correlation
among tensor elements, and even predict the
distribution of an important tensor-derived
quantity, Trace(D) [16]. However, using this vector
form, one cannot easily assess how rotating the
laboratory coordinate system affects the distribu-
tion of these tensor elements or even determine the
variability of the projection of this tensor along a
particular direction (i.e., the apparent diffusion
coefficient or ADC). Moreover, writing the 2nd-
order diffusion tensor as a vector also complicates
attempts to obtain a distribution of other tensor-
derived quantities, such as its eigenvalues and
eigenvectors [17].

These considerations led us to propose a normal
distribution for 2nd-order (and higher order) tensor
data [17], which generalizes the normal multi-
variate distribution. In order to preserve the
form of the tensor random variable in this new
distribution, we replaced the familiar mean vector,
m, in the multi-variate normal distribution, with
a 3-dimensional 2nd-order mean tensor, D̄, and
replaced the covariance matrix, S, in the multi-
variate normal distribution, with a 3-dimensional
4th-order covariance tensor, S. However, in
considering the properties of this new distribution,
and in particular, in extracting useful features
from S, we were led to examine the spectral
expansion of S, i.e., a decomposition of S into a
linear combination of eigenvalues and eigentensors.
We will see that this spectral decomposition
yields insights into the behavior of 2nd-order tensor
random variables, producing a myriad of
new features with which to classify and cluster
tensor data, and a means to visualize these features
in 3-dimensions.
3. Theory

3.1. The normal distribution for 2nd-order tensor

random variables

Recall that the exponent of a multi-variate
normal probability density function, p(x), contains
the quadratic form, ðx� mÞTM�1ðx� mÞ, of an N-
dimensional normal random vector, x, its mean
vector, m, and the inverse of an N�N covariance
matrix, M [18,19]:

pðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jM�1j

ð2pÞN

s
e�ð1=2Þðx�mÞ

TM�1ðx�mÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jM�1j

ð2pÞN

s
e�ð1=2Þðxi�miÞ

TM�1
ij ðxj�mjÞ, ð1Þ

where we use the Einstein summation convention in
the second expression above. The exponent ðxi �

miÞ
TM�1

ij ðxj � mjÞ is a scalar contraction of two N-
dimensional 1st-order tensors, xi � mi and xj � mj

and the inverse of the N-dimensional 2nd-order
covariance tensor,1 Mij. Using either convention,
the exponent is a sum of quadratic functions
containing products of components of x�m
weighted by the respective elements of M�1.

However, the interpretation of the random vector
and covariance matrix as tensors of 1st- and 2nd-
order, respectively, suggests how to generalize
the multi-variate normal distribution to tensor-
variate normal distribution for a 2nd-order random
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tensor, D,2

pðDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
jS�1j
8p6

s
e�ð1=2ÞðD�D̄Þ:S�1:ðD�D̄Þ

¼

ffiffiffiffiffiffiffiffiffiffiffi
jS�1j
8p6

s
e�ð1=2ÞðDij�D̄ij Þ:S�1ijmn:ðDmn�D̄mnÞ. ð2Þ

Above, D̄ is the mean tensor, and ðDij � D̄ijÞ :
S�1ijmn : ðDmn � D̄mnÞ is a scalar contraction3 of the
inverse of the 3-dimensional 4th-order covariance
tensor, Sijkl, and two 3-dimensional 2nd-order
tensors, ðDij � D̄ijÞ and ðDmn � D̄mnÞ [17]. Analo-
gously, the resulting exponent is a linear combina-
tion of quadratic functions formed from products of
elements of D, ðDij � D̄ijÞ ðDmn � D̄mnÞ, weighted by
the appropriate coefficients, S�1ijmn.

A few points need to be made to clarify the
meaning of Eq. (2). First, we use the tensor ‘‘double
dot product’’ operator above in Eq. (2) as defined in
[20]. Formally, in the expression D : S�1 : D ¼

DijS�1ijklDkl , sums are taken over all values of the
four indices, i, j, k, and l. The meaning of the inverse
4th-order tensor, S�1, also merits some explanation.
S and S�1 are both 4th-order tensors related to the
symmetric 4th-order identity tensor, Y, by

SijklS�1klmn ¼ S�1ijklSklmn ¼ Y ijmn ¼
1

2
ðdimdjn þ dindjmÞ.

(3)

Finally, the definition of the determinant of the
4th-order tensor, jS�1j, appearing in Eq. (2), is
given below in Eq. (13), and will be used below to
explain the differences in normalization constants
appearing in Eqs. (1) and (2).

3.2. Symmetry properties of the 4th-order covariance

tensor, S

When D is a symmetric 2nd-order tensor, S will
inherit symmetries such that certain elements are
unaltered by the exchange of particular pairs of
indices of D. For simplicity, we will set the mean
tensor, D̄, to zero for now. Since the product of two
2N.B. The tensors we consider here are Cartesian, so that it is

not necessary to distinguish between covariant and contravariant

indices.
3N.B. The contraction appearing in the exponent of Eq. (2)

should be unitless. Therefore, whatever physical units the 2nd-

order tensor may possess, the 4th-order covariance must be the

square of this. So, if one measures D in dimensions of length2/

time (L2/T), then for consistency, the dimensions of S would be

L4/T2.
elements of the 2nd-order tensor commute in the
scalar contraction, DijS�1ijmnDmn, i.e., DijDmn ¼

DmnDij, the corresponding coefficients of S are
indistinguishable and must be the same, i.e.,
Sijmn ¼ Smnij. In addition, since D is symmetric,
i.e., Dij ¼ Dji and Dmn ¼ Dnm, we require that
Sijmn ¼ Sjimn and Sijmn ¼ Sijnm, respectively. These
symmetries, which are well-known in the continuum
mechanics literature, reduce the possible number of
independent elements required to specify S from 81
(i.e., 34) to 21 [21].

In fact, we can adopt the schema used to classify
symmetries in 4th-order elasticity tensors appearing
in the theory of continuous media (e.g., [22]) for this
statistical application. The general linear elastic
model, aelotropic or triclinic, requires specifying all
21 independent constants [23]. Other models require
fewer independent constants (e.g., see [23]). These
include the cases of planar symmetric or monoclinic,
requiring 13 coefficients; orthotropic, requiring 9
coefficients; transverse isotropic, requiring 5 coeffi-
cients; cubic orthotropy, requiring 3 coefficients [24];
and isotropic, requiring only 2 coefficients.4 See
Sutcliffe [25] for examples of different materials
whose 4th-order elasticity tensors exhibit these
various symmetry conditions.

It is not a coincidence that 21 independent
elements are also required to specify each element
of the symmetric covariance matrix, S. In fact, any
3-dimensional 4th-order tensor, S, satisfying the
symmetry properties given above, can be mapped to
a 6-dimensional 2nd-order tensor, S, (represented as
a symmetric 6� 6 matrix), containing the same 21
independent coefficients (e.g., see [13,23,26]).

To do this, we first note that the scalar contraction,
DijS�1ijmnDmn, above can also be written as a quadratic
form, ~DrS

�1
rt
~Dt, in which the random 2nd-order

tensor, Dij, is written as a 6-dimensional column
vector, ~D, where ~D ¼ ðDxx;Dyy;Dzz;

ffiffiffi
2
p

Dxy;
ffiffiffi
2
p

Dxz;ffiffiffi
2
p

DyzÞ
T. The factors of

ffiffiffi
2
p

premultiplying the off-
diagonal elements of Dij ensure that the matrix
multiplication operation between ~D and the 6-dimen-
sional 2nd-order tensor, S, is isomorphic to the tensor
double dot product operation between the 2nd-order
tensor D, and the 3-dimensional 4th-order tensor, S.
More about this issue can be found in [27,28].

To convert between the 6-dimensional 2nd-order
covariance tensor and the 3-dimensional 4th-order
4Hexagonal and tetragonal cases, each requiring 6 or 7

independent parameters, can also be considered.
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covariance tensor representations, we use
¼

Sxxxx Sxxyy Sxxzz

ffiffiffi
2
p

Sxxyy

ffiffiffi
2
p

Sxxxz

ffiffiffi
2
p

Sxxyz

Sxxyy Syyyy Syyzz

ffiffiffi
2
p

Syyxy

ffiffiffi
2
p

Syyxz

ffiffiffi
2
p

Syyyz

Sxxzz Syyzz Szzzz

ffiffiffi
2
p

Szzxy

ffiffiffi
2
p

Szzxz

ffiffiffi
2
p

Szzyzffiffiffi
2
p

Sxxxy

ffiffiffi
2
p

Syyxy

ffiffiffi
2
p

Szzxy 2Sxyxy 2Sxyxz 2Sxyyzffiffiffi
2
p

Sxxxz

ffiffiffi
2
p

Syyxz

ffiffiffi
2
p

Szzxz 2Sxyxz 2Sxzxz 2Sxzyzffiffiffi
2
p

Sxxyz

ffiffiffi
2
p

Syyyz

ffiffiffi
2
p

Szzyz 2Sxyyz 2Sxzyz 2Syzyz

0BBBBBBBBBB@

1CCCCCCCCCCA
. (4)
Again, factors of 2 and
ffiffiffi
2
p

premultiplying
different 3� 3 ‘‘blocks’’ of the S matrix ensure that
this object transforms as a 6-dimensional 2nd-order
tensor (see [29,30]) and that the mapping between S
and S and the corresponding multiplication opera-
tions is an isomorphism. In other words, the set of
4th-order symmetric covariance tensors, with the
column operation, ‘‘:’’, is isomorphic to the set of
2nd-order covariance tensors and the matrix multi-
plication operation. In this way, the inverse of the
4th-order tensor can be obtained from S�1, which
exists since S in Eq. (4) is symmetric and positive
definite.
3.3. Determining the eigenvalues and eigentensors

of S

Just as one can determine the eigenvalues and
eigenvectors of a 2nd-order tensor, one can deter-
mine the eigenvalues, s2, and 2nd-order eigenten-
sors, E, of a 4th-order tensor [20,24,31]. The
fundamental equation is given below [12]:

S : E ¼ s2E, (5)

where we have used the tensor double dot product
‘‘:’’ to signify the tensor product operator.5 Re-
grouping terms we obtain

ðS� s2Y Þ : E ¼ 0, (6)

where Y is a 4th-order identity tensor defined in
Eq. (3) above. Just as with square matrices,
this equation has a ‘‘non-trivial’’ solution for E if
5In the case of tensors of the same order, S and T, the tensor

dot product is given by

S : T ¼ TraceðSTTÞ ¼ SijTkjdik ¼ SijTij .

This expression also reduces to the familiar vector dot

product, ‘‘ . ’’ for tensors of order one since Trace(S TT) ¼

Trace(TT S) ¼ T .S.
and only if:

jS� s2Y j ¼ 0. (7)

The six roots of the characteristic equation for s2i
are the six eigenvalues of S associated with the six
eigentensors, Ei, which form an orthogonal basis
for S.

Practically, we perform this spectral (or eigen-
tensor) decomposition by exploiting the correspon-
dence between the 4th-order tensor, S, and the 6� 6
matrix, S, as in Eq. (4) [12]. First, we find the
eigenvalues and eigenvectors of S in Eq. (4). The
eigenvalues of S and S are the same. We construct
the 2nd-order eigentensors of S from the 6� 1
eigenvectors of S, using the following assignment:

Ei ¼

�ixx
1ffiffi
2
p �i

xy
1ffiffi
2
p �i

xz

1ffiffi
2
p �i

xy �i
yy

1ffiffi
2
p �iyz

1ffiffi
2
p �i

xz
1ffiffi
2
p �i

yz �i
zz

0BBB@
1CCCA, (8)

where �i ¼ ð�i
xx; �

i
yy; �

i
zz; �

i
xy; �

i
xz; �

i
yzÞ

Tis the ith normal-
ized eigenvector of S.

The six 3� 3 eigentensors, Ei, are symmetric and
mutually orthogonal, satisfying

Ei : Ej ¼ d3ij, (9)

where dij
3 is the familiar Kronecker delta or 3-

dimensional 2nd-order identity tensor. This expres-
sion is equivalent to the orthonormality condition
for the six 6� 1 eigenvectors of the corresponding
covariance matrix, S:

�i � �j ¼ d6ij (10)

where dij
6 is the Kronecker delta or 6-dimensional

2nd-order identity tensor.6
6The superscripts appearing on the Kronecker delta, d6ij and d3ij ,
are not standard but are used as an aid to the reader to

distinguish between the 3-dimensional and 6-dimensional 2nd-

order tensors.
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7Generally, there is a third term appearing in the expression for

an isotropic 4th-order tensor, which contains an anti-symmetric

tensor, but this term can be safely ignored when D is a symmetric

2nd-order tensor.
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3.4. The spectral decomposition of S

It is possible to decompose the 4th-order positive
definite symmetric tensor, S, into a linear combina-
tion of six positive eigenvalues, s2k, multiplied by the
outer product of their respective six 2nd-order
eigentensors, Ek � Ek, i.e.,

Sijmn ¼ skEk
ijE

k
mnsk or S ¼ skEk � Eksk, (11)

which we refer to as the spectral decomposition of a
4th-order covariance tensor. Interestingly, the
mathematical underpinnings of this spectral decom-
position are due to Lord Kelvin [24,31] who used it
originally to identify normal mechanical modes of
deformations of linearly elastic media, and to
classify various material symmetries in anisotropic
media.

S is positive definite, possessing six positive real
eigenvalues (although some may be degenerate (i.e.,
may repeat (see [13]))), and six corresponding real-
valued 2nd-order eigentensors.

The formula above also provides a convenient
method for calculating the inverse of the covariance
tensor, S�1ijmn, found in Eq. (2):

S�1ijmn ¼ s�1k Ek
ij Ek

mns
�1
k or S�1 ¼ s�1k Ek � Eks�1k ,

(12)

which we have previously called the 4th-order
precision tensor, A [17]. A clear and concise
summary of this eigentensor decomposition can
also be found in [30].

Moreover, this tensor decomposition provides a
simple expression for the determinant of the 4th-
order tensor, jSj, i.e.,

jSj ¼
Y6
k¼1

s2k and jS�1j ¼
Y6
k¼1

s�2k , (13)

which can be used in computing the normalization
constant in Eq. (2) above, and explain the multi-
plicative factor of 23/2 between the normalization
constants in Eqs. (1) and (2). This factor is simply
the ratio of determinants of jMj in Eq. (1) and jSj ¼
jSj in Eq. (2) or, equivalently, is the Jacobian of the
transformation between ~D and D.

3.5. The spectral decomposition when S is an

isotropic 4th-order tensor

A particularly interesting special case is one in
which S is an isotropic 4th-order tensor, Siso. This
guarantees that S has no orientation dependence,
making it important in optimal experimental design
where one would like to eliminate any orientational
sampling or estimation bias [17]. When D is a
symmetric 2nd-order tensor, Siso must have the
form (e.g., see [21,26,30])7

Siso
ijkl ¼

wk
3

dijdkl þ wm
1

2
ðdikdjl þ dildjkÞ �

1

3
dijdkl

� �
,

(14)

where wk and wm are constants that, in classical
elasticity theory, are related to the bulk and shear
moduli [22].

The spectral decomposition of Siso has the
following eigenvalues:

s21 ¼ wk; s22 ¼ s23 ¼ s24 ¼ s25 ¼ s26 ¼ wm (15a)

and their corresponding normalized eigentensors
are

E1 ¼ 1ffiffi
3
p

1 0 0

0 1 0

0 0 1

0B@
1CA; E2 ¼ 1ffiffi

6
p

1 0 0

0 �2 0

0 0 1

0B@
1CA;

E3 ¼ 1ffiffi
2
p

1 0 0

0 0 0

0 0 �1

0B@
1CA; E4 ¼ 1ffiffi

2
p

0 1 0

1 0 0

0 0 0

0B@
1CA;

E5 ¼ 1ffiffi
2
p

0 0 1

0 0 0

1 0 0

0B@
1CA; E6 ¼ 1ffiffi

2
p

0 0 0

0 0 1

0 1 0

0B@
1CA:
(15b)

In applied mechanics, these eigentensors are
principal strain tensors that correspond to distinct
modes of deformation. Eigentensor E1 corresponds
to pure dilatation (i.e., volumetric expansion or
reduction) with no shape change, whereas all
other eigenmodes are iso-volumic (i.e., because
Trace(E) ¼ 0) but result in a shape change. E2 can
be produced by a two-unit compressive strain along
y and unit extensional strains along x and z,
whereas E3 is produced by a unit compressive strain
along z, a unit extensional strain along x, and zero
strain along y. E4, E5, and E6 all correspond to pure
shear deformations: E4 corresponds to pure shear
strain parallel to the x– y plane, E5 corresponds to
pure shear strain parallel to the x– z plane, and E6

corresponds to pure shear strain parallel to the y– z
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plane. While the statistical interpretation of these
‘‘modes’’ of Siso is less concrete, they nonetheless
epitomize distinct paradigmatic classes or types of
coupling between and/or among different elements
of the 2nd-order tensor random variable, D.

Note that the symmetric eigentensors in Eq. (15b)
are not generally full Rank or even positive definite.
In fact, only E1 is Rank 3 and positive definite. With
the exception of E1, none of the other eigentensors
of Siso could be interpretable as a proper diffusion
tensor.8

It is worth noting that the cubic orthotropy tensor,
a, which is described by only three parameters, a, b,
and c, such that in the principal coordinate frame,
Sxxxx ¼ Syyyy ¼ Szzzz ¼ a, Sxxyy ¼ Sxxyy ¼ Syyzz ¼ b,
Sxyxy ¼ Sxzxz ¼ Syzyz ¼ c, shares the same eigenten-
sors as the isotropic tensor (Eq. (15b)). However, the
eigenvalues of the isotropic tensor have a 5-fold
degeneracy (Eq. (15a)), while the eigenvalues of the
cubic orthotropic tensor have 2-fold and 3-fold
degeneracy. This renders the cubic orthotropy tensor
rotationally variant.
3.6. Scalar Invariants of S

The six coefficients of the 6th-order characteristic
equation above in Eq. (7) are each scalar invariants
of S. In principle, these (or functions of them) can
be used as a set of coordinate-free quantities with
which to segment or classify different statistical
‘‘modes’’ that one observes.

The simplest way to obtain these invariants, I1
through I6, is by expanding the characteristic
equation (Eq. (7)) wherein (b) ¼ (s)2:

ðb� s21Þðb� s22Þðb� s23Þðb� s24Þ

ðb� s25Þðb� s26Þ ¼ 0, ð16Þ

collecting the coefficients with like powers of s, and
writing these coefficients in terms of the six roots or
eigenvalues of S:

b6 � I1b
5
þ I2b

4
� I3b

3
þ I4b

2
� I5bþ I6 ¼ 0,

(17)
8N.B. It is important to ensure that the routines used to

perform the eigen decomposition provide an orthonormal basis,

particularly when the eigenvalues are repeating. Currently,

MathematicaTM produces a basis that is linearly independent,

but a subsequent Gram–Schmidt procedure is required to make

the eigenvectors mutually orthogonal.
where

I1 ¼ s21 þ s22 þ s23 þ s24 þ s25 þ s26, (18a)

I2 ¼ s23s
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2
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2
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2
2 þ s21s

2
3
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2
4 þ s21s

2
5 þ s21s

2
6, ð18bÞ

I3 ¼ s23s
2
4s
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2
4s
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2
5s
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5s
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2
4s
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þ s22ðs
2
3 þ s24 þ s25 þ s26ÞÞ, ð18cÞ
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6 þ s22ðs
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2
4 þ s25 þ s26ÞÞÞ, ð18dÞ

I5 ¼ s22s
2
3s

2
4s

2
5s

2
6 þ s21ðs

2
3s

2
4s

2
5s
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6 þ s22ðs

2
4s

2
5s
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6

þ s23ðs
2
5s
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6 þ s24ðs

2
5 þ s26ÞÞÞÞ, ð18eÞ

I6 ¼ s21s
2
2s

2
3s

2
4s

2
5s

2
6. (18f)

The first invariant, I1, is the Trace of S. The last
invariant, I6, is its Determinant. The other invar-
iants represent different combinations of eigenva-
lues, which can be thought of as distinct features of
a 6-dimensional ellipsoid.

These invariants are independent of the coordi-
nate system in which the components of D and Ek

are measured, and are intrinsic features of S. These
invariants are also independent of the order in
which the eigenvalues of S are sorted (permutation
invariant).

Additional intrinsic features of S can also be
obtained from the invariants of the eigentensors, Ek

themselves, which are also easily obtained from the
coefficients of the characteristic equations for each
of the Ek.

3.7. Visualizing Angular Features of S

Can we visualize features of S in 3-dimensions?
Clearly, such prospects appear dim if we represent S
as S, a 2nd-order tensor in a 6-dimensional vector
space. Alternatively, we propose reducing the
dimensionality of S by using its spectral decom-
position, and visualize features of its eigentensors,
Ek, in a 3-dimensional space.
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To do this, we first form a scalar contraction of S
with the unit dyadic tensor, r̂r̂T,

r̂r̂T : S : r̂r̂T ¼ ðr̂� r̂Þ : S : ðr̂� r̂Þ, (19)

where r̂ is a unit direction vector. Eq. (19) represents
the projection of the 4th-order tensor along the ray
or orientation specified by r̂ and � r̂. Fig. 1(a) shows
3-dimensional plots of such projections for the 4th-
order isotropic and identity tensors. As expected, no
angular dependence is seen for either one. In
Figs. 1(b) and (c), two different cases of a cubic
orthotropic tensor are shown with different para-
meters a, b, and c.9

Now, we perform a spectral decomposition of S,
i.e.,

r̂r̂T : skEk � Eksk : r̂r̂T, (20)

and then parameterize r̂ using spherical coordinates,
y and f:

r̂Tðy;fÞ ¼ ðsin y cos f; sin y sin f; cos yÞ. (21)

The unit 2nd-order dyadic tensor r̂r̂T is then given
by

cos2 f sin2 y cos f sin2 y sin f cos y cos f sin y

cos f sin2 y sin f sin2 y sin2 f cos y sin y sin f

cos y cos f sin y cos y sin y sin f cos2 y

0B@
1CA.

(22)

It is easy to verify that the tensor in Eq. (22) has
Rank ¼ 1, so it is line or ray-like, having a distinct
orientation but no preferred direction. Eq. (20) can
be further simplified using a few lines of algebra:

r̂r̂T : skEk � Eksk : r̂r̂T ¼
X6
k¼1

ðskr̂TEkr̂Þ2. (23)

The term r̂TEkr̂ above represents the projection of
Ek, along r̂. Eq. (23) shows the angular structure of
S as the weighted sum of the projections of these six
eigentensors.

Moreover, each eigentensor, Ek, can be further
decomposed into a sum of its three eigenvalues, gi

k,
and three corresponding eigenvectors , ni

k:

X6
k¼1

ðskr̂TEkr̂Þ2 ¼
X6
k¼1

X3
i¼1

skr̂Tgk
i n

k
i n

k
i

T
r̂

 !2

¼
X6
k¼1

X3
i¼1

skgk
i ðr̂ � n

k
i Þ

2

 !2

. ð24Þ
9Since all of the eigenvalues are positive, all of the ‘‘blobs’’

depicted in these figures represent positive contributions.
To understand the meaning of Eq. (24), consider
the contribution to the sum solely due to eigenten-
sor E4, given in Eq. (15b). E4 has three eigenvalues:
g41 ¼ 1; g42 ¼ �1; g43 ¼ 0; and three corresponding
orthogonal eigenvectors: n41 ¼ 1=

ffiffiffi
2
p
f1; 1; 0gT; n42 ¼

1=
ffiffiffi
2
p
f1;�1; 0gT; n43 ¼ f0; 0; 1g

T. Thus, E4 is a 2nd-
order tensor whose Range lies in the x– y plane and
whose Kernel (or Null Space) lies along the z-axis.
Substituting the eigenvalues above into the 4th term
of the sum in Eq. (24) for E4, we obtain,X3
i¼1

ðs4g4i ðr̂ � n
4
i Þ

2
Þ
2
¼ s24ðg

4
1ðr̂ � n

4
1Þ

2
þ g42ðr̂ � n

4
2Þ

2

þ g43ðr̂ � n
4
3Þ

2
Þ
2
¼ s24ððr̂ � n

4
1Þ

2
� ðr̂ � n42Þ

2
Þ
2. ð25Þ

Therefore, when r̂ lies within the x– y plane, and is
oriented parallel or anti-parallel to eigenvectors
n41 or n

4
2, there will be a positive contribution in Eq.

(25) proportional to s24, otherwise its contribution will
be close to zero. Also, if r̂ is oriented along or near the
z-axis, the sum in Eq. (25) will also be close to zero.
The graphical representation of the squared projection
of E4 along r̂ (in Eq. (25)) will consist of a quatrefoil-
shaped pancake that lies predominantly in the x�y

plane, whose lobes are symmetrically oriented along
the lines y ¼ �x. Fig. 2a depicts this object.

We can perform a similar algebraic and graphical
analysis of the contributions from all six eigenten-
sors of S. Fig. 2a shows the individual and
composite 3-dimensional representations of the
outer product of each eigentensor, Ek � Ek, con-
tracted with r̂r̂T. In general, when the orientation of
r̂ and one of the eigenvectors of Ek closely overlap
then there will be a contribution in the sum in
Eq. (24), which will be weighted by the product of
the square of the eigenvalues of S and of Ek, ðskgk

i Þ
2.

Otherwise, the contribution will be negligibly small.
Figs. 2b and 2c show the angular structure of the
4th-order identity and cubic orthotropic tensors.

This simple interpretation of the contraction of
r̂r̂T and S also provides insight into the action of a
2nd-order full Rank tensor (i.e., Rank 3) on S or
S�1, specifically, in the expression appearing in the
exponent of Eq. (2):

ðD� D̄Þ : S�1 : ðD� D̄Þ

¼ ðD� D̄Þ : s�1k Ek � Eks�1k : ðD� D̄Þ. ð26Þ

We can now expand D� D̄ spectrally in terms of
its three eigenvalues, li, and three corresponding
orthogonal eigenvectors, Zi, (as in [32]) i.e.,

D�D ¼ li Zi Z
T
i . (27)
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Fig. 1. Radial or angular projection of various 4th-order tensors,

S, using Eq. (19) or Eq. (23) for (a) both isotropic and unit

tensors, and (b) and (c) two different 4th-order cubic tensors. All

isotropic tensors (including the identity tensor) exhibit a spherical

profile for all admissible values of the parameters wk and wm. For
cubic orthotropy, projections are obtained using cubic 4th-order

covariance tensors with parameters (b) a ¼ 80, b ¼ 100, c ¼

50mm4=s2 and (c) a ¼ 300, b ¼ 50, c ¼ 40mm4=s2.

Fig. 2. Visualization of the radial projections of the six

orthogonal eigentensors of various 4th-order tensors plotted

using Eq. (23) (left) along with the ‘‘composite’’ 4th-order

covariance tensor plotted (right). Different colors are used to

depict the different 2nd-order eigentensors or eigenmodes. Shown

are (a) isotropic (Siso), (b) unit, Y, and (c) cubic tensors. In (a)

and (c), the sphere associated with the isotropic eigentensor E1 is

not shown since it dominates the angular dependence.
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This produces an expression similar to Eq. (24):

ðD� D̄Þ : s�1k Ek � Eks�1k : ðD� D̄Þ

¼
X6
k¼1

X3
i¼1

li

sk

ZTi EkZi

 !2

¼
X6
k¼1

X3
i;j¼1

ligk
j

sk

ZTi n
k
j n

k
j

T
Zi

 !2

; ð28Þ
which can be further simplified:

ðD� D̄Þ : s�1k Ek � Eks�1k : ðD� D̄Þ

¼
X6
k¼1

X3
i;j¼1

ligk
j

sk

ðZi � n
k
j Þ

2

 !2

. ð29Þ

The term in parenthesis on the right-hand side of
Eq. (29) measures the statistical coherence or
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similarity between D� D̄ and the various eigenten-
sors, Ek. This coherence is determined by the
relative size of the eigenvalues, ðligk

j =skÞ, and the
degree of collinearity of their corresponding nor-
malized eigenvectors, ðZi � n

k
j Þ

2.
Clearly, the qualitative and quantitative analyses

performed above would not be feasible using the
conventional multi-variate normal distribution in
Eq. (1) in which the 6� 6 matrix, S, describes the
uncertainty associated with a 2nd-order normal
tensor random variable that is represented as a
vector. Our analysis is also made possible by
viewing both the random variable and the para-
meters appearing in the distribution as tensors, and
by employing the spectral decomposition of S.

3.8. Expected value of the mean and variance of the

ADC, r̂TDr̂

Frequently, it is useful to obtain estimates of
projections of D along a particular direction, r̂, i.e.,
r̂TDr̂. For example, in DTI, this scalar quantity
represents the ADC that one measures along
directions r̂ or �r̂. Thus, it is important to know
the expected value of the first and second moments
of r̂TDr̂ [33].

The expected value of r̂TDr̂ is given by

Eðr̂TDr̂Þ ¼ r̂TEðDÞr̂ ¼ r̂TD̄r̂. (30)

Therefore, the mean ADC along direction r̂ is just
the projection of the mean tensor, D̄ along r̂. In
DTI, the angular distribution of r̂TD̄r̂ is often
plotted in 3-dimensions, exhibiting a profile that can
be ‘‘peanut’’ or ‘‘discoid’’ shaped in brain white
matter [34,35].

The variance of the ADC indicates the thickness
of the cloud of uncertainty (or ‘‘peach fuzz’’)
surrounding the mean ‘‘peanut’’, ‘‘discoid’’ or
‘‘sphere’’ calculated above in Eq. (30). The expected
value of the variance of this ADC is given by

Varðr̂TDr̂Þ ¼ Eððr̂TDr̂� Eðr̂TDr̂ÞÞ2Þ

¼ Eððr̂TDr̂� r̂TD̄r̂Þ2Þ, ð31Þ

which can be written as:

Varðr̂TDr̂Þ ¼ r̂TEððD� D̄Þr̂r̂TðD� D̄ÞÞr̂. (32)

Thus, the variance of the ADC measured along
the direction, r̂, is not simply the projection of a
2nd-order covariance matrix, EðD2Þ � D̄

2
, along r̂;

it also depends on r̂Tr̂. It is not clear how to evaluate
the expression in Eq. (32) using standard multi-
variate statistical methods. However, using the 4th-
order covariance tensor framework developed
above, we can rewrite this equation in an equivalent
form:

Varðr̂TDr̂Þ ¼ r̂r̂TEððD� D̄Þ � ðD� D̄ÞÞr̂r̂T. (33)

We now recognize the term in parenthesis above
in Eq. (33) as the expected value of S (see Eq. (A.3)
below). Therefore, we obtain the same expression
for the variance of the ADC that we did in Eq. (19):

Varðr̂TDr̂Þ ¼ r̂r̂T : S : r̂r̂T. (34)

So, the variance of the ADC along r̂ equals the
projection of the 4th-order covariance tensor, S,
along r̂Tr̂. This is the first closed-form expression for
Var(ADC) as a function of orientation that we are
aware of.

Fig. 3 shows a way to visualize the orientational
structure of the variance of the ADC. It shows a
cut-away of a diffusion ‘‘discoid’’ obtained from
Eq. (30) in a hypothetical brain white matter region
along with two additional bounding surfaces
depicting one standard deviation greater and
smaller than the mean. The standard deviation is
obtained by taking the square root of Eq. (34).

3.9. Applications to directional statistics

Eq. (19) above also suggests a possible angular
distribution for directional data, which does not
appear to have been proposed previously. One
could construct a Gaussian distribution for the unit
dyadic r̂r̂T of the form

pðr̂r̂Tðy;fÞÞ ¼ e�ð1=2Þðr̂r̂T�r̂r̂TÞ:S�1d :ðr̂r̂T�r̂r̂TÞ
.

Z 2p

0

Z p

0

e�ð1=2Þðr̂r̂T�r̂r̂TÞ:S�1d :ðr̂r̂T�r̂r̂TÞ sin ydydf, ð35Þ

where r̂T is again parameterized by y and f as above
in Eqs. (21) and (22). This distribution has a

mean dyadic, r̂r̂T, and a general 4th-order covar-
iance tensor, Sd, both of which admit many types of
angular distributions (e.g., polar, girdle). A more
compact representation of the distribution in
Eq. (35) can be obtained by using the result in
Eq. (23):

pðr̂r̂Tðy;fÞÞ ¼
e
�ð1=2Þ

P6
k¼1

ðs�1
k
ðr̂�r̂ÞTEk

d
ðr̂�r̂ÞÞ2

R 2p
0

R p
0 e
�ð1=2Þ

P6
k¼1

ðs�1
k
ðr̂�r̂ÞTEk

d
ðr̂�r̂ÞÞ2

sin ydydf

.

(36)
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Fig. 3. Three-dimensional angular dependence of the mean ADC, r̂TD̄r̂, bounded by its standard deviation (std.dev.). The middle iso-

surface (Green) corresponds to the mean ADC, and the two bounding surfaces are placed at the mean ADC+sADC (Blue) and the mean

ADC–sADC (Red). The mean ADC and sADC are obtained using Eqs. (30) and (34).
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A study of the properties of this distribution will
hopefully be the subject of future work.

4. Results

We introduce noise into diffusion tensor data
using Monte Carlo methods (as in [36]), in which
normally distributed white noise is added to both
the real and imaginary channels of the MR signal
obtained from a diffusion weighted MR sequence.
The resulting magnitude diffusion weighted signals
are distributed according to the Rician distribution
[37]. Such measurements are made with diffusion
gradient vectors applied along at least six non-
collinear and non-coplanar directions. Non-diffu-
sion weighted signals are also obtained. From this
data, we can estimate the diffusion tensor using
linear or non-linear regression [10]. How many
diffusion gradient directions to use and how to
orient them to obtain an optimally designed DTI
experiment are active areas of research [38–41].

Using the tensor-variate normal distribution in
Eq. (2), we previously argued that an optimal
experimental design should produce an isotropic
4th-order covariance tensor [17], as in Eq. (14), or a
close approximation to it. If the models in DTI were
linear, the simplest scheme that produces an
isotropic 4th-order covariance tensor is a scheme
in which the diffusion gradient vectors form the
vertices of an icosahedron. When the six non-
collinear vertices are also pair-wise antipodally
symmetric, we call it an icosahedral acquisition
scheme. In our simulations, we use an icosahedral
scheme with four repetitions, meaning that four
measurements are made along each gradient direc-
tion in addition to 4 non-diffusion weighted images.
From these 28 measurements, we estimate a
diffusion tensor.

Although, different experimental designs and differ-
ent paradigmatic tissue types found in human brain
were used in our simulations, we show here only results
obtained using the icosahedral acquisition scheme and
two different tissue types: one with isotropic diffusion
properties (characteristic of gray matter) with all
principal diffusivities equal to 700mm2/s, and another
with anisotropic diffusion properties (characteristic of
white matter), with principal diffusivities equal to 1000,
700, and 400mm2/s. In each case, we obtained 1000
diffusion tensor replicates from which the sample 4th-
order covariance tensor is estimated directly using Eq.
(A.14), except that we replace the factor of ‘‘N’’
appearing in the denominator with ‘‘N�1’’. We then



ARTICLE IN PRESS
P.J. Basser, S. Pajevic / Signal Processing 87 (2007) 220–236 231
perform a spectral decomposition of the 4th-order
sample covariance tensors. The projections of the
eigentensor components are shown for the isotropic
diffusion case in Fig. (4a) and for the anisotropic
diffusion case in Fig. (4b). The former case results in a
4th-order covariance tensor whose pattern of degen-
eracy more closely resembles the isotropic 4th-order
tensor with eigenvalues {89.1, 50.6, 50.1, 49.5, 41.1,
37.8}mm4/s2 than the latter, with eigenvalues {81.5,
54.5, 49.6, 44.5, 23.0, 16.8}mm4/s2.

5. Discussion

One is often interested in determining the
statistical properties of 2nd-order tensor fields,
Fig. 4. Sample 4th-order covariance tensors obtained using

Monte Carlo simulations of DTI experiments. An icosahedral

gradient sampling scheme described in [17] is used with four

repetitions and four non-diffusion weighted images, S/N ¼ 20.

Isotropic diffusion tensors are used with mean diffusivity ¼

700mm2/s; anisotropic diffusion tensors are drawn with principal

diffusivities: 1000, 700, 400mm2/s. Projections of the individual

eigentensors of the sample 4th-order covariance tensor for the

isotropic diffusion case is shown in (a) as six individual

eigentensor projections along with a composite tensor. Similarly,

the spectral components of the sample 4th-order covariance

tensor are shown in (b) for the anisotropic diffusion case.
which are measured or sampled discretely within a
spatial domain or imaging volume. To do this, we
must distinguish between the different types of
variability in tensor data. Sampled tensor data
can vary within a particular voxel in an imaging
volume solely because of background MR noise.
Also, the mean and covariance tensors can them-
selves vary with position within the imaging volume
since tensor fields can be heterogeneous (i.e., with
the mean tensor explicitly varying with position)
and/or anisotropic (i.e., exhibiting directional
bias in the mean tensor) as is clearly demonstrated
in [42].

Naı̈vely, one could treat the problem of char-
acterizing noisy, heterogeneous, anisotropic tensor
fields by determining a joint probability distribu-
tion, pðD1;D2;D3; . . . ;DN Þ, of 2nd-order tensors,
D1,y,DN, sampled at different points throughout
the imaging volume or domain. These tensors are
assumed to be correlated because of the spatial
structure inherent in either continuous or piece-wise
continuous tensor fields. This approach, unfortu-
nately, is inefficient, leading to a proliferation of
free parameters without providing information
about the spatial variability of the statistical
parameters of the underlying tensor field.

If we are assured that the tensor field is every-
where described by the normal tensor-variate
distribution, then a more pragmatic approach is to
characterize noise, heterogeneity and anisotropy
together using Eq. (2) with the mean and covariance
tensors of this distribution given explicitly as
functions of the position vector, r, within the
imaging volume (or spatial domain), i.e.:

pðDðrÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
jS�1j
8p6

s
e�ð1=2ÞðDðrÞ�D̄ðrÞÞ:S�1ðrÞ:ðDðrÞ�D̄ðrÞÞ

¼

ffiffiffiffiffiffiffiffiffiffiffi
jS�1j
8p6

s
e�ð1=2ÞðDij ðrÞ�D̄ij ðrÞÞ:S�1ijmnðrÞ:ðDmnðrÞ�D̄mnðrÞÞ.

ð37Þ

Above, pðDðrÞÞ represents the pdf of DðrÞ.
In applications, such as DTI of the brain,

diffusion properties are generally continuous on a
macroscopic length scale except at tissue boundaries
(for instance between sub-cortical white matter and
cortical gray matter, between cortical gray matter
and cerebrospinal fluid (CSF), and between white
matter and CSF-filled ventricles in the brain). While
in gray matter and CSF-filled regions the diffusion
tensor field is approximately homogeneous and
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isotropic, in many white matter areas, it is hetero-
geneous and anisotropic [43].

Even so, it is our goal to find a piece-wise
continuous approximation to D̄ðrÞ and SðrÞ within
the imaging volume [46]. This information would be
useful in segmenting gray matter, white matter, and
CSF in DTI brain data to facilitate comparisons
among different brain regions within the same
subject and among multiple subjects based on
differences in their statistical properties.

Within certain domains, e.g., along white matter
fascicles or nerve bundles, in which the underlying
D̄ðrÞ and SðrÞ tensor fields are assumed continuous,
it may be possible to obtain a piece-wise continuous
approximation to the three individual eigenvalue
and eigenvector fields of D̄ðrÞ and the six individual
eigenvalue and eigentensor fields of SðrÞ, i.e.,

D̄ðrÞ ¼ liðrÞZiðrÞZ
T
i ðrÞ;

SðrÞ ¼ skðrÞE
kðrÞ � EkðrÞskðrÞ. ð38Þ

This information could enable us to classify or
segment different tissue types according to their
underlying symmetries (multiplicities of eigenva-
lues) and properties of their eigentensors (e.g.,
Rank, mode type). While similar classification
schema are employed in applied mechanics [14,27],
we are not aware that this has been done in
statistical applications.

In fact, methods to obtain a continuous approx-
imation to D̄ðrÞ have already been developed [42,44].
The theoretical framework presented in [45] and
subsequently implemented in [42] can be extended
to obtaining continuous approximations to 4th-
order and higher order tensor fields.

An interesting issue arises when one obtains a
continuous approximation for a discrete, sampled
tensor field, D̄ðrnÞ, that is presumed to be positive
definite. It has been proposed that interpolating or
approximating sampled tensor data should be
performed within a manifold of positive definite
tensors (i.e., a ‘‘symmetric space’’) [47], a notion
recently promulgated by Batchelor and colleagues
(see [48,49]) and further elaborated upon by groups
at INRIA [50,51]. The positive definiteness con-
straint, however, is not used above to derive the
form of the normal tensor-variate distribution given
in Eq. (2), nor was it imposed previously to
determine a continuous approximation to the
diffusion tensor field given in [42]. Future work will
focus on establishing the exact relationship between
the Riemannian (or symmetric space) representation
and the Euclidean space representation of the
tensor-variate distribution, and determining what
errors, if any, might be introduced when one obtains
an approximation to these tensor fields on a
Euclidean rather than a Riemannian manifold.
One would expect that when the mean tensor is
positive definite and the covariance tensor is
sufficiently ‘‘compact’’ (so that the majority of
2nd-order random tensors generated by such a
distribution are still predominantly positive defi-
nite), the tensor manifold will be locally ‘‘flat’’, and
the normal tensor-variate distribution should suf-
fice. This is likely to be the situation in most current
DTI applications in which the signal-to-noise ratio
(SNR) of the diffusion weighted image data is
sufficiently high (420/1) and the measured mean
diffusion tensor components are sufficiently large
that the overwhelming majority of estimated diffu-
sion tensors are positive definite without the need to
impose a positive-definiteness constraint explicitly
when estimating them statistically.

Because of known physical constraints and
additional a priori information, it is sometimes
possible to establish bounds or limits on the
coefficients of the 4th-order tensor describing the
properties of elastic media when developing con-
tinuum mechanical models of materials, in addition
to those imposed by the various material symme-
tries described above. In materials engineering and
continuum mechanics, much has been written about
establishing bounds on the 4th-order elasticity
tensor [52] using a priori information about the
physical system under study. It is reasonable to
propose that constraints and other a priori informa-
tion could also restrict the form of S in the context
of applying Eq. (2) above, and in particular,
developing models of covariance. This appears to
be a rich area for further inquiry.

This new statistical methodology could be applied
in various disciplines. In imaging sciences and signal
processing, the most obvious uses are in feature
detection, pattern classification, and segmentation
of diffusion tensor MRI data, and for a variety of
clinical, biological, and materials sciences applica-
tions. In physics, chemistry, applied physics, and
materials sciences, quantities such as the moment of
inertia tensors, rotational diffusion tensors, and
elastic coefficient tensors (e.g., of elastic media,
nematics, crystals) [53] are routinely measured, as
well as permittivity and permeability tensors. In
continuum mechanics and materials engineering
applications, tensor quantities are ubiquitous in
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constitutive equations that describe charge, mass,
momentum, and energy transport. These include the
Reynolds’ stress tensor, the translational diffusion
tensor, the particle dispersion tensor, the fabric
tensor, the electrical conductivity tensor, the heat
conductivity tensor, the thermal expansion tensor,
and the hydraulic permeability tensor [54]. In
hydrodynamics, oceanography, and meteorology,
velocity fields are routinely sampled from which
shear-rate tensors can be estimated and analyzed
using these approaches. Finally, in geophysics, the
magnetic susceptibility tensor is often measured and
analyzed from core samples [55,56].

In the potential applications listed above, one
may be presented with data in which a 2nd-order
tensor or a discrete, noisy tensor field is measured.
To characterize features of the governing statistical
distribution, particularly the 2nd-order mean and
4th-order covariance tensors, we could now adopt
and use a schema similar to that described in
Dellinger et al. [28], originally proposed to classify
anisotropic solids. We could establish a hierarchy of
possible covariance models (or forms) based on the
various symmetries exhibited by the 4th-order
covariance tensor (e.g., isotropy, transverse isotro-
py). As discussed in [28] and in Helbig [57], the
pattern of the eigenvalues could be used to
determine the type of symmetry exhibited by the
4th-order covariance tensor. A 6-fold degeneracy
{A, A, A, A, A, A} indicates the identity tensor
(with a scale factor A); the pattern {A, B, B, B, B,
B} indicates an isotropic tensor; {A, B, B, C, C, C}
indicates cubic orthotropy; {A, B, C, C, D, D}
indicates transverse isotropy, etc. When the
experiment is noisy, of course, this degeneracy
will only be approximate, so determining the
underlying type of symmetry must be performed
statistically, at a prescribed confidence level. Using
this idea, one can try to obtain the most parsimo-
nious description of S, i.e., the model of statistical
anisotropy that provides the best fit to the experi-
mental data using the fewest free parameters.
This approach would allow us to represent the
dependencies among tensor variables using a
small number of free parameters, and classify the
type of statistical anisotropy observed in tensor
measurements.

6. Concluding remarks

We have seen that preserving the algebraic form
of a 2nd-order random tensor, D, and its related
statistical parameters (i.e., its 2nd-order mean and
4th-order covariance tensors, D̄ and S) leads
naturally to considering the properties and eigen-
structure of S. In particular, in generalizing the
spectral decomposition from matrices or 2nd-order
tensors to S, we obtain new and useful features with
which to represent and visualize 2nd-order tensor
data, and a hierarchy of possible symmetries
with which to classify them. These properties
and features would be difficult, if not impossible,
to glean if we treated 2nd-order tensor random
variables as vector-valued random variables,
as is the convention in multi-variate statistical
analysis.
Acknowledgments

We gratefully acknowledge Liz Salak for editing
this document. We would also like to thank Evren
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Appendix A

Expectations of moments of tensor random variables

The expected value of the 2nd-order random
tensor is given by

EðDÞ ¼ D̄. (A.1)

For the normal tensor-variate distribution, this
quantity would be computed as follows:

EðDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
jS�1j
8p6

s ZZZZZZ
D e�

1
2
ðD�D̄Þ:S�1:ðD�D̄Þ dD.

(A.2)

The maximum likelihood estimate of D̄ will be
discussed below.

The expected value of the 4th-order covariance
tensor is:

EððD� D̄Þ � ðD� D̄ÞÞ

¼ EðD�D�D� D̄� D̄�Dþ D̄� D̄Þ, ðA:3Þ

which simplifies to

¼ EðD�DÞ � ðD̄� D̄Þ. (A.4)



ARTICLE IN PRESS
P.J. Basser, S. Pajevic / Signal Processing 87 (2007) 220–236234
This would be computed in the following way
from the tensor-variate distribution:

EðSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
jS�1j
8p6

s ZZZZZZ
ððD� D̄Þ � ðD� D̄ÞÞ e�

1
2ðD�D̄Þ:S�1:ðD�D̄Þ dD,

ðA:5Þ

which simplifies to

EðSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
jS�1j
8p6

s ZZZZZZ
D�De�

1
2
ðD�D̄Þ:S�1:ðD�D̄Þ dD� D̄� D̄. ðA:6Þ

Maximum likelihood estimates of moments of a

normal tensor random variable

The method for obtaining population estimates of
the sample mean and covariance tensors associated
with a 2nd-order tensor random variable is analo-
gous to that for a multi-variate distribution. If we
assume an experiment in which there are N

independent, identically distributed (IID), 2nd-
order normal random tensors, D, with mean tensor,
D̄, and covariance tensor, S, then the log-likelihood
function for the nth trial, Ln, is given by

Ln ¼ � lnðpðDnÞÞ ¼ � ln

ffiffiffiffiffiffiffiffiffiffiffi
jS�1j
8p6

s0@ 1A
þ

1

2
ðDn � D̄Þ : S�1 : ðDn � D̄Þ. ðA:7Þ

Thus, for an experiment with N trials, the log-
likelihood function is given by

LN ¼ � ln
YN
n¼1

pðDnÞ

 !
¼ �N ln

ffiffiffiffiffiffiffiffiffiffiffi
jS�1j
8p6

s0@ 1A
þ

1

2

XN

n¼1

ðDn � D̄Þ : S�1 : ðDn � D̄Þ. ðA:8Þ

The maximum likelihood estimate for the popu-
lation mean tensor, D̄, is given by the condition

qLN

qD
¼

q
qD̄

XN

n¼1

ðDn � D̄Þ : S�1 : ðDn � D̄Þ ¼ 0.

(A.9)

This simplifies toXN

n¼1

S�1 : ðDn � D̄Þ ¼ S�1 :
XN

n¼1

ðDn � D̄Þ ¼ 0,

(A.10)
which is satisfied for all admissible S�1 only whenXN

n¼1

ðDn � D̄Þ ¼ 0. (A.11)

This leads to

D̄ ¼
1

N

XN

n¼1

Dn or D̄ij ¼
1

N

XN

n¼1

Dn
ij , (A.12)

which simply states that the arithmetic mean of the
sampled D data is the maximum likelihood estimate
of the population mean tensor, D̄.

The maximum likelihood estimate of the popula-
tion covariance tensor, S, can be obtained from

qLN

qS�1
¼ 0. (A.13)

Following a derivation similar to that used for
multi-variate distributions, e.g., see [19], we obtain

S ¼
1

N

XN

m¼1

ðDm � D̄Þ � ðDm � D̄Þ or

Sijkl ¼
1

N

XN

m¼1

ðDm
ij � D̄ijÞðD

m
kl � D̄klÞ. ðA:14Þ

Although S�1 must be obtained to specify the
normal distribution for D, it is not required to
expand the sample 4th-order covariance tensor
using the generalized spectral decomposition. How-
ever, S�1 is readily computed by converting S into
an equivalent 6-dimensional inverse covariance
tensor, S, inverting it, and then reassigning the
elements of S�1 to those of S�1.
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