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A macroscopic cable equation, which describes the passive linear (“electrotonic”) response
of a myelinated axon, was previously derived from a segmented cable equation using
Keller’s two-space homogenization method [Basser, PJ, Med. and Biol. Comput., 1993,
Vol. 31, pp. S87–S92]. Here we use the space and length constants of this averaged cable
equation to predict classical scaling laws that govern relationships among the inner and
outer diameters of the axon’s myelin sheath and the distance separating adjacent nodes
of Ranvier. These laws are derived by maximizing the characteristic speed of an electrical
disturbance along the axon, i.e., the ratio of the characteristic length and the characteristic
time constants of the macroscopic cable, subject to the constraint that the nodal width is
constant. Using this result, it is also possible to show that all myelinated axons are equally
fault tolerant. No free parameters were used in this analysis; all variables and physical
constants used in these calculations were taken from published experimental data.

Keywords: Scaling; axon; myelin; cable; model; equation; two-space method;
homogenization.

1. Introduction

In 1951, Rushton explained that the inner and outer diameters of an axon’s myelin
sheath maintain a fixed proportion independent of axon size in order to maximize the
space constant of the myelinated portion of the axon for any given outer diameter [1].
Rushton also introduced the notion that corresponding parts of different myelinated
axons are isopotential (i.e., the principle of “corresponding states”) to explain why
the ratio of the distance between adjacent nodes of Ranvier and the outer diameter
of the myelin sheath is constant among axons of different sizes. However, Rushton
did not derive this constant of proportionality [1].

FitzHugh [2] and Goldman [3] showed that the principle of corresponding states
implied that cable equations describing the dynamics behavior of myelinated axons
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are dimensionally similar. In particular, dimensionless groups appearing within them
must have the same value for myelinated axons of different sizes. This argument finds
its basis in the principle of “dynamic similarity” that has been widely used in fluid
dynamics.

An alternative approach, suggested by FitzHugh, is to derive Rushton’s scaling
relationships from a maximum principle, by supposing that the myelinated axon
optimizes certain desirable attributes, such as its conduction velocity, fault toler-
ance and energetic efficiency [2]. However FitzHugh did not attempt to construct
such a multi-attribute objective function. Below, it is shown that by maximizing
a simple objective function — the characteristic speed of a weak electrical distur-
bance along a macroscopic cable — one can derive Rushton’s scaling relationships.
A prerequisite, however, is to obtain the form of a cable equation that describes the
spatial and temporal evolution of the electrical potential and current distribution
along a segmented myelinated axon, which predicts its passive electrical response.

This paper has two purposes: to recapitulate expressions for the macroscopic
space constant and time constant of a myelinated axon, and to use these to derive
several useful scaling laws of the axon without invoking Rushton’s principle of corre-
sponding states. Accordingly, this paper is divided into two main parts. In Section 2,
we review how the two-space method of Keller [4] can be used to derive a homoge-
nized cable equation that describes the sub-threshold dynamic behavior of a myeli-
nated axon. In Section 3, we use the expressions for the space and time constants of
the composite passive electrical cable to derive Rushton’s scaling laws from the phys-
ically reasonable proposition that an optimally designed myelinated axon maximizes
the characteristic speed of a weak electrical disturbance.

2. Motivation for the Two-Space Method

Peripheral myelinated axons conduct electrical impulses toward muscles from the
brain or spinal cord (motor fibers) or transmit sensory impulses toward the brain or
spinal cord (afferent fibers) [5]. A schematic diagram of a myelinated axon is given
in Fig. 1. It contains segments with active membranes called nodes of Ranvier that
are each δ wide and spaced a distance L apart. The nodes are joined by membranes
insulated by myelin sheaths.

A neurologist is often interested in measuring macroscopic properties of axons
in vivo, such as their conduction velocity [6], or related physical quantities such as
the current that must flow through an inductive coil [7] or trans-cutaneous electrode
sufficient to elicit stimulation [8]. To meet these needs, models have been proposed
to explain how the applied electric field distributions induced by current-carrying
coils [9, 10] or transcutaneous electrodes [8, 11, 12] stimulate myelinated nerves.
The characteristic length of these applied electric fields is usually on the order of
the diameter of the stimulating coil or the electrode separation, which are typically a
few centimeters [10]. The characteristic dimension of the internode is at most 0.2 cm,
while the characteristic dimension of the node of Ranvier is its width, taken to be
0.00015 cm [13]. Because of the more than 10,000-fold difference between the largest
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Fig. 1. A schematic diagram of a myelinated axon. The axonal membrane contains active regions,
nodes of Ranvier, which are joined by passive segments insulated by myelin. Nodes are spaced a
distance L apart and are δ wide. The outer diameter of the axon is do; its inner diameter di.

and smallest length scales, it is imprudent to describe the effect of macroscopic
applied electric fields on an axon using a microscopic length scale. This would be
akin to using a micrometer to measure the dimensions of a room. To address this
problem, we have used the two-space perturbation method of Keller [4, 14] to develop
a macroscopic description of a composite cable equation of a myelinated axon that
appropriately balances the contributions from the nodal membranes and the insu-
lated myelinated portions. This approach provides a macroscopic description of the
current and electrical potential distribution along the axon, while preserving the
microscopic electrical properties and dimensions as parameters within the govern-
ing equation [15].

Although the homogenized cable model is valid when the radius of the current-
carrying coil or the separation between stimulating electrodes is much greater than
the separation between nodes of Ranvier, it is also valid for sub-threshold nodal
stimulation [16].

Previously, this averaged or homogenized cable equation was used to predict the
response of myelinated nerves to electromagnetic and electrical stimulation in the
subthreshold regime. It was also shown that this cable equation adequately predicted
threshold behavior when it was compared with numerical solutions of the non-linear
Hodgkin-Huxley cable equations adapted to a myelinated axon [17]. In particular, it
was shown that a strength-duration curve for the myelinated axon could be predicted
using the average, passive macroscopic cable model [17].

2.1. Composite cable equation of a myelinated axon

An equation of a segmented cable is written in a new form, which makes it amenable
to simplification, by the two-space method:

∂2V

∂x2
= (1 − M(x))
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Above, V = V (x, t) is the distribution of transmembrane potential along the com-
posite cable with respect to the axon’s rest potential (which is assumed to be uniform
and equal in both domains), and τm, λm, τn, and λn are the myelin and nodal time
constants and space constants, respectively. The function, M(x), contains anatom-
ical information about the axon. As shown in Figure 1, M(x) is a train of boxcars
that are δ wide and spaced L apart. It can be synthesized by superposing Heaviside
functions of unit height, H(x), i.e.,

M(x) =
n=∞∑

n=−∞

[
H

(
x − nL +

δ

2

)
− H

(
x − nL − δ

2

)]
. (2)

The function, M(x), determines the transmembrane current at each value of x. For
example, when x lies within a node of Ranvier, M(x) = 1; the transmembrane
current arises from the second and third terms on the right hand side of Eq. (1).
Conversely, when x lies within the internodal region, M(x) = 0; the transmembrane
current arises from the first and third term on the right hand side of Eq. (1).

The conditions of continuity of axial current and transmembrane potential at the
boundaries between nodal and myelinated elements are implicit in Eqs. (1) and (2),
unlike FitzHugh’s [18] and Andrietti and Bernadini’s [16] segmented cable equations.
For completeness, the contribution of the active transmembrane ionic current, Φion,
is included in Eq. (1), but hereafter is set to zero because it can be shown not to
contribute significantly to the transmembrane current in the subthreshold regime.
The cable equation, Eq. (1), also contains a source term, f(x, t). For electromagnetic
stimulation of a nerve fiber, f(x, t) = ∂εx(x, t)/∂x where εx(x, t) is the component
of the net applied electric field along the direction of the nerve fiber axis [10, 15]. For
electrical stimulation, f(x, t) = −∂2Ve(x, t)/∂2x where Ve(x, t) is the applied extra-
cellular potential distribution [8, 12, 19]. The source of transmembrane potential
acts in both the nodal and internodal regions.

In Eq. (1), the space constant of the internodal region, λm, is defined as

λm = di

√
ρm

8ρa
ln
(

do

di

)
(3)

and the time constant, τm, by

τm = ε0κmρm, (4)

where ρm and ρa are the resistivities of myelin and axoplasm, respectively; κm is
the dielectric constant of myelin; ε0 is the permittivity in vacuo; do is the outer
diameter of the myelin sheath; and di is the inner diameter of the myelin sheath.

Analogously, the space constant of the node, λn, is defined by

λn = di

√
ρn

8ρa
ln
(

di + 2h
di

)
≈ di

√
ρn

8ρa

2h
di

(5)
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Table 1.

Physical Variables
x distance along the nerve fiber axis cm
t time sec
V (x, t) transmembrane potential mV

Nerve Model
ENa sodium Nernst potential at 37◦C 35.35 mV
EL leakage Nernst potential at 37◦C −80.01 mV

gNa sodium conductance 1, 445 mS/cm2

gL leakage conductance 128 mS/cm2

cn nodal capacitance per unit area 2.5 µF/cm2

ρa resistivity of axoplasm 5.47 × 10−2 kOhm-cm

ρm resistivity of myelin 7.4 × 105 kOhm-cm
κm dielectric constant of myelin 7

ρn resistivity of nodal membrane 6.9 × 105 kOhm-cm
κn dielectric constant of nodal membrane 7

ε0 permittivity of a vacuum 8.85 × 10−8 µF/cm

δ width of node of Ranvier 1.5 × 10−4 cm

di inner diameter of axon membrane 2 to 20 × 10−4 cm

do outer diameter of myelin sheath 3 to 30 × 10−4 cm

h thickness of the nodal membrane 5 × 10−7 cm

L distance between nodes of Ranvier 3 to 30 × 10−2 cm

where h is the thickness of the nodal membrane, which is of the order of nanometers.
The time constant, τn, is given by

τn = ε0κnρa, (6)

where κn is the dielectric constant of nodal membrane. An axon with do = 0.0014 cm
and di = 0.00085 cm, and material parameters given in Table 1, has the following
space and time constants: λm = 0.55 cm, τm = 460µs, λn = 0.0077 cm, τn = 61µs.

2.2. Deriving a macroscopic cable equation of a composite

myelinated axon

Keller illustrated the use of the two-space method [4] to calculate the effective ther-
mal conductivity of a composite medium from the steady-state heat equation. Here,
it is used to derive a time-varying macroscopic cable equation of a composite, myeli-
nated axon. In Keller’s example [4], the thermal conductivity is varied as a function
of axial length while the transverse conductivity remained constant. In this example,
the axial electrical conductivity is constant but the membrane impedance varies as
a function of axial distance.

First, two length scales are identified: x′, which describes the large-scale
variations on the order of the applied field, and y(x′) = x′/ε, which describes vari-
ations on the scale of the nodal width, δ. For example, in electromagnetic stimula-
tion, 0 < ε ∼ O(10−5) � 1 for an axon with an outer diameter of 0.001 cm. The
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transmembrane potential is assumed to depend upon both of these length scales.
Equation (1) can then be rewritten in the following form:

∂2V (x′, x′
ε , t)

∂x2
= h

(
x′,

x′

ε
, t

)
= h(x′, y(x′), t). (7)

If x′ and y(x′) are treated as independent variables, then the chain rule requires that
the partial differentiation operator with respect to x be replaced by the following
operator in x′ and y:

∂

∂x
≡ ∂

∂x′ +
1
ε

∂

∂y
. (8)

Therefore Eq. (7) above becomes:(
∂2

∂x′2 +
2
ε

∂

∂y

∂

∂x′ +
1
ε2

∂2

∂y2

)
V (x′, y, t) = h(x′, y, t). (9)

The transmembrane potential is expanded as a power series in the perturbation
parameter, ε:

V (x′, y, t, ε) = v0(x′, y, t) + v1(x′, y, t)ε + v2(x′, y, t)ε2 + O(ε3) . . . (10)

Each function vi(x′, y, t) is assumed to be bounded. Substituting Eq. (10) into Eq. (9)
and grouping terms with like powers of ε, we get:

ε−2:
∂2v0(x′, y, t)

∂y2
= 0 (11a)

ε−1:
∂

∂y

∂v0(x′, y, t)
∂x′ +

∂2v1(x′, y, t)
∂y2

= 0 (11b)

ε0:
∂2v0(x′, y, t)

∂x′2 + 2
∂

∂y

∂v1(x′, y, t)
∂x′ +

∂2v2(x′, y, t)
∂y2

= h(x′, y, t). (11c)

Integrating the ε−2 equation, Eq. (11a), with respect to y we obtain:

v0(x′, y, t) = v0(x′, y0, t) + (y − y0)
∂v0(x′, y, t)

∂y

∣∣∣∣
y=y0

(12)

where y0 is an arbitrary constant of integration. Since v0 is bounded for all values
of y and t, including the limit as y approaches infinity, the second term on the right
hand side of Eq. (12) must vanish. Therefore the derivative must vanish, i.e.,

∂v0(x′, y, t)
∂y

∣∣∣∣
y=y0

= 0 (13)

which implies that

v0(x′, y, t) = v0(x′, t). (14)

This means that the lowest order term in the perturbation expansion is only a
function of the macroscopic length variable and time, but does not depend on the
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small scale variable, y. With the help of Eq. (14), integration of the ε−1 equation,
Eq. (11b), with respect to y yields:

v1(x′, y, t) = v1(x′, y0, t) + (y − y0)
∂v1(x′, y, t)

∂y

∣∣∣∣
y=y0

. (15)

For v1(x′, y, t) to be bounded, we also require that:

∂v1(x′, y, t)
∂y

∣∣∣∣
y=y0

= 0 (16)

or

v1(x′, y, t) = v1(x′, t) (17)

Finally, with the help of Eqs. (14) and (16) integration of the ε0 equation (Eq. (11c))
with respect to y yields:

1
y − y0

∂v2(x′, y, t)
∂y

∣∣∣∣
y

y0

= −∂2v0(x′, t)
∂x′2 +

1
y − y0

∫ y

y0

h(x, u, t)du (18)

where u is a dummy variable. In the limit as y approaches infinity, the term on
the left hand side of Eq. (18) vanishes by the assumption of the boundedness of v2.
Therefore, the equation for the lowest order term in the perturbation expansion,
Eq. (10), is given by:

∂2v0(x′, t)
∂x′2 = lim

y→∞
1

y − y0

∫ y

y0

h(x′, u, t)du = <h(x′, t)> . (19)

The integral in Eq. (19) is the familiar ergodic mean of h(x′, y, t) over the small-scale
variable, y. Thus, <h(x′, t)> no longer explicitly depends upon y. This is the desired
simplification: Small-scale variations in nodal impedance have been eliminated by
integration although their effect has been preserved.

In the cable model, the function h(x′, y, t) in Eq. (7) can be rewritten in terms
of x′ and y:

h(x′, y, t) = (1 − M(y))
(

τm

λ2
m

∂v0(x′, t)
∂t

)
+

v0(x′, t)
λ2

m

+ M(y)
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λ2
n
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∂t

)
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n

+ f(x′, t), (20)

where

M(y) =
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+
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2

)
− H

(
y − nL

δ
− 1

2
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. (21)
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The function, M , is now expressed in terms of y so that h(x′, y, t) is continuously
differentiable with respect to x′, a requirement of the two-space method [14]. Because
M(y) is also periodic, i.e., M(y) = M(y + L), <h(x′, t)> in Eq. (19) reduces to:

<h(x′, t)> =
δ

L

∫ L
2δ

− L
2δ

h(x′, t, u)du (22)

After grouping terms in Eqs. (20) and (21), homogenization or spatial averaging
results in a macroscopic cable equation for v0 of the form:

∂2v0(x′, t)
∂x′2 =

τ

λ2

∂v0(x′, t)
∂x′2 +

v0(x′, t)
λ2

+ f(x′, t) (23)

in which the effective space and time constants, λ and τ , are functions of the space
and time constants of the myelinated and nodal membranes, respectively. These, in
turn, are functions of the internodal distance, nodal width, and other microstructural
parameters:

λ =
[(

1 − δ

L

)
1

λm2

+
δ

L

1
λn2

]− 1
2

(24)

τ = λ2

[(
1 − δ

L

)
τm

λ2
m

+
δ

L

τn

λ2
n

]
. (25)

Equations (24) and (25) derived above are consistent with formulae for λ and τ

obtained from a discrete model of a segmented cable (e.g., [16]).
Although Andrietti and Bernadini [16] showed good agreement between analyti-

cal solutions to Eqs. (23), (24), and (25) and numerical solutions of their segmented
cable model for both nodal current and transmembrane potential stimuli for a spe-
cific set of parameters, they were unable to show that Eqs. (23), (24) and (25) for-
mally approximated their segmented cable equations. Using the two-space method,
it was shown previously that Eqs. (23), (24) and (25) are the lowest order approxi-
mation to the full segmented cable equation. In principle, the two-space method also
permits higher-order terms to be calculated in the perturbation expansion (Eq. (10))
and more importantly, can be extended to include non-linear membrane kinetics.

One goal of this paper is to use the macroscopic space and time constants, λ and
τ , above to derive scaling relationships for myelinated axons. Below, λ and τ from
Eqs. (24) and (25) are written in terms of di, do, δ and L, and material constants
given in Table 1 for use in the next section:

λ = 103di


 8.8

ln
(
1 + 1.24 10−6

di

) δ

L
+

1.18919

ln
(

do
di

) (1 − δ

L

)
−1
2

cm (26)

τ = λ2 10−8

d2
i


 0.53737

ln
(
1 + 1.24 10−6

di

) δ

L
+

0.547265

ln
(

do
di

) (
1 − δ

L

) sec. (27)
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For example, an axon with do = 0.0014 cm and di = 0.00085 cm, and material
parameters given in Table 1, has the following macroscopic space and time con-
stants: λ = 0.217 cm and τ = 123µs. Note, these equivalent cable parameters are
intermediate between the nodal and internodal space and time constants.

3. Derivation of Rushton’s Scaling Laws

Rushton [1] proposed scaling relationships for myelinated axons of different diame-
ters, which have since been verified experimentally [3]. One law is that the ratio of
the inner and outer diameters of the myelin sheath is constant, i.e.,

di

do
= exp

(−1
2

)
= 0.6065 . . .. (28)

Goldman and Albus [3] argue that this ratio maximizes the myelin space con-
stant, λm, with respect to di for a fixed do. A plot of the normalized myelin space con-
stant, λm/do vs. the ratio of inner and outer diameters, di/do is given in Fig. 2. Using
Eq. (3), it is easy to verify that the maximum in λm/do occurs at di/do = 0.6065
for do constant. Subsequently, FitzHugh [2] argued that this ratio of inner and outer
diameters maximizes the “safety ratio” of an axon for a given outer diameter.

The second of Rushton’s scaling laws is that the distance between nodes of
Ranvier varies linearly with axon outer diameter. Rushton’s data obtained from
axons of cats and kittens is replotted in Fig. 3. The node spacing is approximately
87 times the outer diameter [1], i.e.,

L

do
= 87. (29)

Fig. 2. Space constant of a myelinated membrane normalized by axon outer diameter, λm/do, vs.
the ratio of inner and outer diameters, di/do, calculated from Eq. (5). The maximum occurs at
di/do = 0.6065.
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Fig. 3. Outer membrane diameter, do, vs. distance between nodes, L, for axons from cats and
kittens (replotted from [1]).

This linear relationship does not hold for axons whose diameters are less than
0.0004 cm [1, 20]. Although Rushton argues that L and do should be linearly related
according to the principle of corresponding states, he does not derive the constant
of proportionality. FitzHugh [2] and Goldman [3] also clarified why L is directly
proportional to do, but do not predict the constant of proportionality. What physical
principle could explain this result? It is likely that there are two competing physical
effects at work.

One could suppose that the observed value of L maximizes λ for a constant do.
However, as shown in Fig. 4, λ(di, L)/do increases monotonically with L. Although
Fig. 4 is calculated for do = 0.0014 cm and δ = 0.00015 cm, this result holds for all
values of do within the physiological range. Therefore, maximizing λ(di, L)/do with
respect to L leads to the erroneous conclusion that the optimal node separation is
infinite. In addition, because λm is independent of L, no optimum exists for λm with
respect to L.

The membrane time constant, τ , measures the time for the transmembrane
potential to reach its steady-state value after small perturbations in current or volt-
age have been applied [21]. Figure 5 shows a plot of the effective membrane time
constant, τ , as a function of the inner diameter of the axon, di, and internodal dis-
tance, L, for do = 0.0014 cm and δ = 0.00015 cm using Eq. (26). It is important to
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Fig. 4. Macroscopic space constant of the homogenized axon, λ, vs. the inner diameter, di, and
internodal distance, L, for do = 0.0014 cm and δ = 0.00015 cm.

Fig. 5. Membrane time constant, τ , vs. internodal distance, L, and inner diameter, di, for
do = 0.0014 cm and δ = 0.00015 cm. The time constant is a monotonically increasing function
of L and exhibits a shallow minimum with respect to di.
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note that τ is a monotonically increasing function of L but exhibits a minimum with
respect to di for L constant. For L = 100 do the minimum occurs at di/do = 0.367 for
do = 0.0014 cm; di/do = 0.1 for do = 0.0004 cm; and di/do = 0.5 for do = 0.002 cm.
In all physiological cases, the minimum in τ lies below di/do = 0.606. In addition,
in the three limiting cases:

lim
di→0

τ = lim
di→do

τ = lim
L→∞

τ = τm = 0.46ms. (30)

A simple physical interpretation of the last limit is that the farther apart the nodes
lie for a given outer diameter, the more the whole nerve resembles the myelinated
segments and the more time it takes to charge the membrane.

It is then reasonable to speculate that one can derive the scaling relationships,
Eqs. (28) and (29), by requiring that electrical disturbances attain the greatest
spatial extent, λ, in the least time, τ . The simplest objective function is their ratio, c,

c =
λ

τ
. (31)

which has units of speed.
Although it is not meaningful to speak of a phase, group, or conduction velocity

along a passive, lossy electrical cable, it is still possible to ascribe physical signifi-
cance to c by studying physiologically relevant solutions to the macroscopic cable
equation, Eq. (25). For example, it is possible to represent a nodal excitation as a
step in transmembrane potential applied at x = 0 and t = 0. Then, the normalized
transmembrane potential distribution, V (x, t), is given as:

V (x, t) =
1
2

exp
(−|x|

λ

)(
1 − erf

(
|x|
2λ

√
τ

t
−
√

t

τ

))

− 1
2

exp
( |x|

λ

)(
1 − erf

(
|x|
2λ

√
τ

t
+

√
t

τ

))
(32)

[21–23] where erf is the standard error function. Figure 6 depicts V (x, t) as a function
of x/λ and t/τ . Using Eq. (32), one can show that transmembrane potential reaches
0.635 ≈ 1 − 1/e of its steady-state value at t = τ and x = λ. The same qualitative
behavior is observed if a step in transmembrane current were applied at x = 0 and
t = 0 [21, 22]. In these physiological cases, c can be interpreted as a characteristic
speed of an electrical disturbance along the cable. By “characteristic speed” we
simply mean the speed by which all disturbances can be scaled or normalized. Its
use is not meant to conjure up the notion of a traveling wave, such as in the “method
of characteristics”. Figure 7 shows a plot of c as a function of di and L for do =
0.0014 cm and δ = 0.00015 cm. For all values of do in a physiological range, c exhibits
a global maximum where the fractional change in λ equals the fractional change
in τ . This is a simple consequence of logarithmic differentiation of c, i.e., d ln(c) =
d ln(λ) − d ln(τ) = 0.

Rushton claimed that if the principle of corresponding states were true, then the
nodal width should be constant, independent of axon size [1]. Constancy of nodal



July 9, 2004 18:22 WSPC/179-JIN 00042

Scaling Laws for Myelinated Axons 239

Fig. 6. Normalized transmembrane potential, V (x, t), as a function of normalized axial distance,
x/λ and time, t/τ calculated from Eq. (29).

Fig. 7. Average speed, c, as a function of inner diameter, di, and internodal distance, L, for
do = 0.0014 cm and δ = 0.00015 cm.

width δ is used here as a constraint in optimizing c. This is not unreasonable since
the surrounding Schwann cell tightly regulates this dimension. The particular value
of the node width that is used agrees with measurements of nodal capacitance per
unit area made by Ritchie [20] and restated by Sweeney [24] for an axon whose outer
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diameter is 0.0014 cm,

δ = 0.00015 cm. (33)

Using Eq. (33) as a constraint equation, c is maximized using the method of
Lagrange. The objective function, E, is written as a linear combination of c and
the constraint equation:

E(di, do, L, δ, µ) = c(di, do, L, δ) + µ(δ − 0.00015) (34)

where µ is a Lagrange multiplier. For a particular outer diameter, do, the conditions
for maximizing E are as follows:

∂E

∂di
=

∂E

∂L
=

∂E

∂δ
=

∂E

∂µ
= 0. (35)

These four non-linear simultaneous equations are solved numerically using Newton’s
method using values of do ranging from 0.0004 to 0.0020 cm.

For the set of variables, {dopt
i , Lopt, δopt, µopt}, which solve Eq. (35) for a partic-

ular value of do, E attains a maximum when dopt
i /do = 0.604. A plot of dopt

i vs. do,
given in Fig. 8, has a slope of 0.604. This calculated ratio is close to the value
predicted by Rushton [1]. The optimal ratio of inner and outer diameters is fairly
insensitive to changes in electrical parameters so, for instance, frog and rabbit nerve
parameters produce the same value of dopt

i /do.
The optimal ratio of internodal length and outer diameter, Lopt/do, however,

is quite sensitive to the choice of material parameters. The objective function, E,
attains a maximum when Lopt = 97do as shown in Fig. 9.

Although c does not represent the conduction velocity of an action potential
along the axon, it also increases linearly with the axon’s outer diameter [25].

It is also seen that the τopt (calculated from Eqs. (27) and (35)) is a constant,
independent of do. This result follows directly from the constrained optimization of

Fig. 8. Inner diameter, di vs. outer diameter, do, calculated numerically from Eq. (31). The slope
of di vs. do is 0.6065.
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Fig. 9. The distance between nodes, L vs. outer diameter, do, predicted by a numerical solution
of Eq. (31). A linear relation is predicted in which L = 97do.

c but it had to be assumed by Rushton as an axiom in the principle of corresponding
states.

The success of the optimization method in obtaining many of Rushton’s scaling
results suggests that although energetic considerations may ultimately determine
the width of the nodes and its channel density, once these quantities are prescribed,
the remaining geometric relationships between inner and outer diameters and intern-
odal length seem to be explained simply by maximizing the characteristic speed of
transmission.

3.1. Fault tolerance of the myelinated axon

Using Eqs. (26) and (35), it can also be shown that Lopt/λopt is independent of axon
diameter, i.e.,

Lopt = 0.636 λopt ≈ (1 − 1/e)λopt. (37)

This means that myelinated axons of all sizes should be equally fault tolerant. We
can use this relation and Eq. (32) to predict how many inactive nodes must be
placed adjacent to one another in order to block transmission of an action potential.

For a rabbit myelinated axon, the duration of the action potential is 3 ms, which
is approximately 25 τopt. Therefore, the transmembrane potential distribution in
Eq. (32) can be approximated by steady-state distribution. If an action potential
were produced at the origin, x = 0, the transmembrane potential will have decayed
by a factor of 0.5294 at x = L, by 0.28 at x = 2L, and by 0.148 at x = 3L, i.e.,

lim
t→∞V (L, t) = 0.5294; lim

t→∞V (2L, t) = 0.280; lim
t→∞(3L, t) = 0.148.

If one node at x = L were not excitable, the action potential at x = 0 would
have to be at least 3.57 (≥ 1/0.280) times larger than threshold potential in order
to stimulate the adjacent node at x = 2L. In rabbit myelinated axons, resting
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potential ≈− 80 mV, peak transmembrane potential during depolarization ≈30 mV
and threshold potential ≈30 mV [26]. Therefore, the peak amplitude of an action
potential, 110 mV, is approximately 3.67 times larger than threshold potential, sug-
gesting that a malfunctioning node located between two excitable nodes will not
block conduction — a claim supported by Stämpfli [27].

However, an action potential is likely to be blocked by two (or more) adjacent
inexcitable nodes. Stimulation of the nearest excitable node requires an action poten-
tial at least 6.75 (≥ 1/0.148) times larger than threshold potential. This prediction
is supported by Tasaki’s classical experiments [13]. This analysis also suggests the
importance of the resting transmembrane potential and its contribution to the fault
tolerance of the nerve.

The well-known advantage of this redundant design is that even if a particular
node were inactive, the action potential could still jump to the next active node,
allowing the nervous impulse to continue propagating along the axon. If we assume
that the probability of a spontaneous failure of a node, p, is small (say ∼10−5), then
the probability of failure of two consecutive nodes, assuming independence, would
occur with probability p2 (∼ 10−10), which is much smaller than p.

4. Conclusions and Summary

Two important new developments are putting scaling principles in a new light. The
first is that as our ability to control gene and protein expression increases, so does
our ability to create mutants (e.g., knock-outs or knock-ins) whose nerve fibers have
different dimensions, distribution of electrical properties and material composition,
and micro and macro-architectures. It may be possible to perturb nerve properties in
controlled ways and examine their functional consequences, and even to test whether
these classical scaling laws are “optimal”, for example, in terms of fault tolerance
or maximizing the speed of information transfer along the axon.

Second, in this era of regenerative medicine, in which many are trying to coax
the body to recapitulate events occurring in development to repair or regrow tissue,
it is prudent to revisit classical scaling rules as a means to assess whether the new
“engineered” tissue is competent to perform its intended function. For this purpose,
it is important to have a conceptual framework with which to consider optimal
performance of regenerated tissue. Having simple “engineering” principles in mind
when “designing” or regenerating replacement nerve fibers is required for neural
“tissue engineering” to live up to its name, i.e., to be a true engineering discipline.

Scaling arguments in biology are considered by some to be teleological. Here, no
teleological reasoning or motives should be inferred. It is fair to say, however, that
the design of nerve fibers according to the empirical rules discovered by Rushton and
Tasaki are consistent with our notions of natural selection, i.e., neural architectures
allowing nerves to perform their signal transmission functions optimally will likely
be selected over sub-optimal designs during the course of evolution.
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Finally, it is reasonable to extend this formalism to predict an optimal distri-
bution of axon diameters within white matter fasciculi. A prudent starting point is
that the optimal axon diameter distribution maximizes the channel capacity or rate
of information transfer for a given total area of a fasciculus.

A macroscopic distributed cable equation has been derived from a continuum
model of a myelinated axon using the two-space perturbation method. The macro-
scopic space and time constants of this simplified equation were used to derive two
of Rushton’s scaling rules by maximizing their ratio, the characteristic speed, while
constraining the width of the node. Using this result, it was also possible to explain
a well-known result about the fault tolerant behavior of myelinated axons. It should
be noted that no free parameters were used in this analysis. Variables and physical
constants used in these calculations were taken from published experimental data.
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