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Abstract. We construct atomic spaces S ⊂ L2(Rn, T 1
1 ) that are appropriate

for the representation and processing of discrete tensor field data. We give
conditions for these spaces to be well defined, atomic subspaces of the Wiener
amalgam space W (C,L2(Rn, T 1

1 )) which is locally continuous and globally L2.

We show that the sampling or discretization operator R from S to l2(Zn, T 1
1 )

is a bounded linear operator. We introduce the dilated spaces S∆ = D∆ S
parametrized by the coarseness ∆, and show that the discretization operator
is also bounded with a bounded inverse for any ∆ ∈ Zn. This allows us to
represent discrete tensor field data in terms of continuous tensor fields in S∆,
and to obtain continous representations with fast filtering algorithms.

.

1. Introduction

Modern imaging systems, (e.g., Magnetic resonance image scanner) acquire
discrete sets of data and store them as arrays of numbers. In many new imaging
modalities, the acquired images are no longer a set of scalar values representing the
gray levels voxels (spatial positions on some three dimensional lattice). Instead,
the images are vector or tensor-valued functions. Prototypical example (and the
motivation behind this mathematical development) is Diffusion Tensor Magnetic
Resonance Imaging (DT-MRI) which provides a measurement of the effective diffu-
sion tensor of water in each voxel of an image volume (see Figure 1). These tensor
images can be used to elucidate the three dimensional fiber architectural features
of anisotropic fibrous tissues and organs in vivo, and provide microstructural infor-
mation noninvasively and nondestructively in materials sciences applications [4, 3].
However, the measured tensor in each voxel is inherently a noisy, discrete, and
volume-averaged quantity. Thus, one goal of this work is to develop mathematical
methods to ameliorate these problems. More generally, we are interested in devel-
oping a general mathematical framework that enables us to analyze, process and
compress these data sets. We show we can do this by constructing a smooth, con-
tinuous representation of the diffusion tensor field. Moreover, the algorithms that
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implement the mappings between the tensor data and their continuous representa-
tions must be fast and efficient, since the size of a typical tensor images in a single
experiment may be large - on the order of 16,777,000 tensors - which represents a
monumental data processing effort.

To address the aforementioned problems, we propose a mathematical frame-
work for representing discrete tensors that is suited to the post-processing appli-
cations, such as pattern recognition, registration and geometric transformations
in general. In Section (2), we introduce the atomic tensor-field spaces S that we
use to approximate these tensor fields. We give the necessary and sufficient condi-
tions for these spaces to be well defined subspaces of the Wiener amalgam space
W (C,L2(Rn, T 1

1 )) which is locally continuous and globally L2. We show that the
sampling (or restriction) operator R from S to l2(Zn, T 1

1 ) is a bounded linear op-
erator. We then introduce the dilated spaces S∆ = D∆ S parametrized by the
coarseness ∆, and give a condition on S that guaranties that the discretization op-
erators R∆ (which takes tensor fields from S∆ defined on Rn and restrict them on
Zn) are bounded with bounded inverse for any ∆ ∈Zn. This allows us to generate
discrete tensor field spaces Sd

∆ that are useful for the representing and approximat-
ing tensor field data. In Section 3, we study the problem of approximating a set
of discrete tensor data Φ by a continuous tensor field G≈

∆ ∈ S∆ that minimizes
the l2-error between the data and its sampled approximation. We then show the
link between the approximation problems and the filtering paradigm in signal and
image processing, , which leads to fast filtering implementations.

2. The atomic Wiener amalgam spaces

2.1. Atomic tensor fields spaces. The collected data that we consider con-
sists of a set of discrete tensors {Φ(k)}k∈Zn that are obtained by sampling a tensor
field F (·) defined on Rn. The sampling grid is a regular lattice that, without loss
of generality, we identify with Zn. Our first goal is to consider tensor spaces de-
fined on Rn that will be used to approximate the original tensor field F (·) from the
knowledge of its samples Φ = F |Zn . For this purpose, we consider atomic tensor
field spaces of the form [1]

S(B) =

G(x) =
∑
j∈Λ

∑
k∈Zn

cj(k)Bj(x− k) : c ∈ l
(r)
2

(2.1)

where Λ = {1, . . . , r} is an index set, c := (cj)j∈Λ is a vector of sequences, l(r)2 :=
l2⊕· · ·⊕l2 is the direct sum of r copies of l2, and is endowed with the natural norm,
and B = (Bj)j∈Λ is vector of tensor functions (which will also be considered as a
rectangular matrix of functions. For the space S to be well defined, the generating
tensors {Bj ; j ∈ Λ} cannot be chosen arbitrarily. In particular, if the tensors in S
are square integrable, then the generating tensors {Bj ; j ∈ Λ} must also be square
integrable: ∥∥Bj

∥∥
L2(R n,T 1

1 )
=

∫
R n

||Bj(x)||2dx,(2.2)

where ||·|| is the Frobenius pointwise norm of the finite dimensional space of tensors
T 1

1 generated by the Frobenius natural inner product (also called Euclidian or Schur
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inner product)

traceCD∗ =
m∑
i=1

m∑
j=1

Ci,jDj,i,(2.3)

where C and D are m × m tensors’ matrices, with components Ci,j , and Dj,i (
m×m is the dimension of the tensor space T 1

1 ), and where z denotes the complex
conjugate of z1. Using the Frobenius inner product in T 1

1 , the inner product in
L2(Rn, T 1

1 ) associated with the norm (2.2) is defined by

〈F,G〉 =
∫
R n

trace(F (x)G∗(x))dx.(2.4)

Clearly, choosing tensors {Bj ; j ∈ Λ} that are square integrable is not sufficient
for S(B) to be a subspace of L2(Rn, T 1

1 ). In fact, we need even more restrictions
on the tensors {Bj ; j ∈ Λ}, since we want S(B) to satisfy other properties. In
particular, since we will be interested in using the space S(B) as an approximation
space for our tensor data, we want to choose {Bj ; j ∈ Λ} so that S is closed.
Moreover, we want to compute and describe the approximations in S(B) using
efficient stable algorithms. One way of enforcing this requirement is to choose the
set

{
Bj(x− k) : j ∈ Λ, k ∈Zn

}
to be a Riesz basis of S(B), i.e., we want

a1 ‖c‖2

l
(r)
2

≤

∥∥∥∥∥∥
∑
j∈Λ

∑
k∈Zn

cj(k)Bj(x− k)

∥∥∥∥∥∥
2

L2(R n,T 1
1 )

≤ a2 ‖c‖2

l
(r)
2

∀c ∈ l
(r)
2(2.5)

for some positive constants 0 < a1 ≤ a2. To achieve all the requirements above, we
use the following theorem by S. L. Lee and W. S. Tang [13].

Theorem 2.1. Let U = (U1, . . . ,Un), be an ordered pair of n-tuple of distinct
commuting unitary operators on a complex Hilbert space H, and let Y = {y1, . . . , yr}
be a finite subset of H.
Consider the set UZ

n

(Y ) =
{

Uk yj : k ∈Zn, j ∈ Λ
}
, and let Â(ν) be the r×r matrix

function defined by

Âp,q(ν) =
∑
k∈Zn

〈
yp,Uk yq

〉
ei2πν·k, (p, q) ∈ Λ × Λ(2.6)

then the following conditions are equivalent
(1) UZ

n

(Y ) is a Riesz basis for its closed linear span.
(2) There exist positive constants a1 and a2 such that

a1Ir ≤ Â(ν) ≤ a2Ir.(2.7)

Special cases of this theorem can also be found in [1, 11, 14].
Let H = L2(Rn, T 1

1 ) be the space of square integrable tensor fields on Rn, with
the inner product defined by (2.4). Clearly, the shift operator

Ui(G)(x1, . . . , xi, . . . , xn) = G(x1, . . . , xi − 1, . . . , xn)

is a unitary operator, and Ui commute with Uj for any i, j. Hence, as a corollary
of Theorem 2.1 we get

1For real valued symmetric tensors, the Euclidian or Schur inner product reduces to the
familiar tensor double dot product (see for example [16]), which have been used previously as an
inner product for discrete diffusion tensors [5, 3]
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Corollary 2.2. The space S is a well-defined, closed subspace of L2(Zn, T 1
1 )

with
{
Bj(x− k) : j ∈ Λ, k ∈Zn

}
as its Riesz basis if and only if, for almost all

ν ∈ Q = [0, 1]n there exist two positive constants 0 < a1 ≤ a2 < ∞ such that the
smallest and largest eigenvalues λmin

(
Â(ν)

)
and λmax

(
Â(ν)

)
of the r× r positive

self-adjoint matrix Â(ν) satisfy:

a1 ≤ ess inf
ν∈Q

(
λmin

(
Â(ν)

))
≤ ess sup

ν∈Q

(
λmax

(
Â(ν)

))
≤ a2.(2.8)

Remark 2.3. The entries Âi,j(ν) of Â(ν) in (2.6) are the multivariate Fourier

series of the discrete functions α(k) =
〈
yi,Uk yj

〉
. In particular, for the space

S(B), the matrix-function Â(ν) is the Fourier series of the matrix-sequence

(Ai,j) (k) :=
(〈
Bi(x), Bj(x− k)

〉)
.

Let D∆ be the dilation operator by a factor ∆ = (∆1,∆2, . . . ,∆n), where
∆i > 0, i = 1, . . . , n:

(D∆ G)(x) = (∆1∆2 · · ·∆n)1/2G
( x

∆

)
∀G ∈ L2(Rn, T 1

1 ),

where x = (x1, . . . , xn), and x
∆ =

(
x1
∆1

, . . . , xn

∆n

)
. Using the dilation operator, we

define the space S∆ = D∆ S which can also be described as

S∆(B) =

G(x) =
∑
j∈Λ

∑
k∈Zn

cj(k)Bj
( x

∆
− k

)
: c ∈ l

(r)
2

(2.9)

where, B∆ = (Bj
∆), and Bj

∆ = D∆ Bj . Since, the dilation operator is unitary (recall
that ∆i 	= 0 for i = 1, . . . , n), the space S∆ is isomorphic to the space S. Thus,
if S is closed, then S∆ is also closed. Moreover, if

{
Bj(x− k) : j ∈ Λ, k ∈Zn

}
is

a Riesz basis of S, then the set
{
Bj(x/∆ − k) : j ∈ Λ, k ∈Zn

}
is a Riesz basis of

S∆.
The space S∆ can be viewed as a copy of S at a different resolution. Given a

continuous tensor field, we can approximate it by a tensor field G≈
∆ ∈ S∆, and con-

trol the resolution of the approximation by controlling the parameter ∆. However,
the collected data Φ ∈ l2(Zn, T 1

1 ) consists of samples of a noisy version of the tensor
field F . For this purpose, we introduce the discretization operator R∆ which takes
a tensor field defined on Rn and restricts it onto the lattice Zn (we will use R for
the discretization operator on S). Using the discretization operator, we define the
space

Sd
∆ = R∆ S∆(2.10)

which is obtained by sampling the space S∆ on the regular grid Zn. However,
for the definition above to be meaningful, we need extra conditions to ensure that
the discretization is well defined. In particular, the space S∆ should consist of
continuous tensor fields. Moreover, the space S∆ should be sufficiently small for the
discretization operator R∆ to be bounded. These requirements can be achieved by
choosing generating tensor fields {Bj , j ∈ Λ} that are continuous and are sufficiently
regular. Specifically, we will require the entries Bj

p,q of the generating tensors Bj

to belong to the Wiener amalgam space W (C,L1) [9].
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A continuous function g belongs to the Wiener amalgam space Wp = W (C,Lp)
if its localization

Fh(g)(x) = sup
ξ∈R n

|h(ξ − x)g(ξ)|,(2.11)

by the window function h(ξ − x) ∈ D(Rn) is globally Lp (Here, D(Rn) is the usual
space of compactly supported, C∞ test functions):

‖g‖pWp
=

∫
R n

|Fh(g)(x)|p dx < ∞.(2.12)

The spaces Wp = W (C,Lp) is a proper subspace of C ∩ Lp.
It turns out that an equivalent characterization of Wiener amalgam spaces can

be obtained by a discrete form of (2.12) and gives the equivalent norm

‖g‖pWp
≈

∑
l∈Zn

|Fh(g)(l)|p,(2.13)

e.g., if the set {h(x− l)}l∈Zn forms a Bounded Uniform Partition of Unity (BUPU),
i.e.,

∑
l h(x− l) = 1 [8]. An important feature of both descriptions of these spaces

is the fact that they do not depend on the choice of the window function h ∈ D(Rn),
i.e., changing h will simply change the norm of the spaces to an equivalent norm
[9].

Using the definition of the scalar Wiener amalgam space Wp, we can define
Wiener amalgam spaces W (C,Lp(Rn, T 1

1 )) of tensors as follows: A continuous ten-
sor field G belongs to W (C,Lp(Rn, T 1

1 )) if

‖G‖W (C,Lp(R n,T 1
1 )) =

∫
R n

|Fh(G)(x)|p dx < ∞,(2.14)

with

Fh(G)(x) = sup
ξ∈R n

|h(ξ − x)| ‖G(ξ)‖ ,(2.15)

where ‖·‖ is the Frobenius norm of the finite dimensional space T 1
1 . The expected

relation between a tensor field G ∈ W (C,Lp(Rn, T 1
1 )) and its components Gi,j is

stated in the following Lemma below.

Remark 2.4. 1. The Frobenius norm for T 1
1 used in (2.15) can be replaced

by any norm for T 1
1 since, for finite dimensional spaces, all norms are equiv-

alent.
2. We abuse notation and use the same symbol Fh(·) to describe the operator

in (2.11) and the operator in (2.15). However, the distinction should be clear
from the context.

Lemma 2.5. A tensor field G belongs to W (C,Lp(Rn, T 1
1 )) if and only if its

components Gi,j belong to the scalar Wiener spaces Wp = W (C,Lp), and we have

‖Gi,j‖Wp
≤ ‖G‖W (C,Lp(R n,T 1

1 )) ≤
∑
i,j

‖Gi,j‖Wp
.(2.16)

Moreover, a tensor field G belongs to Lp(Rn, T 1
1 ) (a function h from Zn to T 1

1

belongs to lp(Zn, T 1
1 )) if and only if its components Gi,j (hi,j) belong to Lp(Rn)
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(lp(Zn)), and we have

‖Gi,j‖Lp
≤ ‖G‖Lp(R n,T 1

1 ) ≤
∑
i,j

‖Gi,j‖Lp
.(2.17)

‖hi,j‖lp(Zn) ≤ ‖h‖lp(Zn,T 1
1 ) ≤

∑
i,j

‖hi,j‖lp(Zn) .(2.18)

Proof. For any ξ ∈ Rn, we have the pointwise estimate

|Gi,j(ξ)| ≤ ‖G(ξ)‖ ≤
∑
i,j

|Gi,j(ξ)|.

Thus, we get the pointwise estimate

Fh(Gi,j)(x) ≤ Fh(G)(x) ≤
∑
i,j

Fh(Gi,j)(x),

from which we get (2.16). The proof of the second part of the Lemma is similar.

We are now ready to state the conditions under which our atomic space S defined
by (2.1) consists of continuous tensor fields.

Theorem 2.6. If Bj ∈ W (C,L1(Rn, T 1
1 )) for j ∈ Λ, and Condition (2.8) is

satisfied, then the space S consists of continuous tensor fields and the L2(Rn, T 1
1 )-

norm is equivalent to the W (C,L2(Rn, T 1
1 ))-norm, i.e., there exist positive constants

0 < a1 ≤ a2 such that

a1 ‖G‖W (C,L2(R n,T 1
1 )) ≤ ‖G‖L2(R n,T 1

1 ) ≤ a2 ‖G‖W (C,L2(R n,T 1
1 )) ∀G ∈ S(2.19)

Remark 2.7. If Bj ∈ W (C,L1(Rn, T 1
1 )) for j ∈ Λ, then, using Lemma 2.5,

each of its components Bj
p,q belongs W1 = W (C,L1). Therefore, each component

Bj
p,q also belongs to W2 = W (C,L2) [8]. We conclude, using Lemma 2.5, that

Bj ∈ W (C,L2(Rn, T 1
1 )) for j ∈ Λ.

Proof of Theorem 2.6. (Right inequality.) For a scalar functions g ∈ W2 =
W (C,L2), it is always true that ‖g‖L2

≤ a2 ‖g‖W2
for some constant a2 [8]. Using

Lemma 2.5 it follows that each component Gp,q of a tensor field
G ∈ W (C,L2(Rn, T 1

1 )) satisfies a similar bound. Thus, using Lemma 2.5 once
more, the right inequality follows.

(Left inequality.) Let D(Rn) denotes the usual Schwartz space of compactly
supported, C∞(Rn) test functions. We choose a bounded uniform partition of
unity {h(x − l)}l∈Zn generated by a function h ∈ D(Rn) such that |h(0)| = 1,
|h(x)| ≤ |h(0)|,∀x ∈ Rn, and h(x) = 0 for |x| ≥ ρ. For a function G(x) =∑
j∈Λ

∑
k c

j(k)Bj(x− k), and any l ∈Zn, we have that

Fh(Gp,q)(l) = sup
x∈R n

|h(x− l)Gp,q(x)|

≤
∑
k∈Zn

r∑
j=1

∣∣cj(k)
∣∣ sup
x∈R n

∣∣h(x− l)Bj
p,q(x− k)

∣∣
≤

∑
k∈Zn

r∑
j=1

∣∣cj(k)
∣∣Fh

(
Bj

p,q

)
(l − k).

(2.20)
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Since each component Bj
p,q belongs to W1 for j ∈ Λ, we use the norms equivalence

(2.13) of the Wiener spaces to conclude that the sequence Fh

(
Bj

p,q

)
(k) belongs

to the sequence space l1, and that
∥∥Bj

p,q

∥∥
W1

≈
∥∥Fh

(
Bj

p,q

)∥∥
l1

. From this fact, Eq.
(2.13), the last inequality of (2.20), Young’s inequality for convolutions, and Lemma
2.5 we obtain

‖G‖2
W (C,L2(R n,T 1

1 )) ≤ a1 max
j∈Λ

(∥∥Bj
∥∥
W (C,L1(R n,T 1

1 ))

) r∑
j=1

∥∥cj∥∥2

l2
.(2.21)

This last inequality together with the left inequality of (2.5) imply that S is con-
tinuously embedded in W (C,L2(Rn, T 1

1 )), which completes the proof.

Under the conditions of the theorem above, the tensor fields in the space S are
continuous. Therefore, they can be sampled. In fact, if we sample G ∈ S, we
obtain a discrete tensor field Γ = G |Zn that belongs to l2(Zn, T 1

1 ). Moreover, the
samples depend continuously on G:

Theorem 2.8. Let Bj belong to W (C,L1(Rn, T 1
1 )) for each j ∈ Λ. Further-

more, assume that the set
{
Bj(x− k) : j ∈ Λ, k ∈Zn

}
satisfies Condition (2.8).

Then, for any ∆ ∈ Nn, the discretization operator R∆ : S∆ ← l2(Zn, T 1
1 ) (also

called sampling operator) is a bounded linear operator.

Recall that in the theorem above ∆ = (∆1, . . . ,∆n) must also satisfy ∆i > 0
for i = 1, . . . , n.

Remark 2.9. In general, sampling a continuous tensor field belonging to
L2(Rn, T 1

1 ) does not even guaranty that the samples belong to l2(Zn, T 1
1 ), even

if the continuous tensor G belongs to a well defined space S of the form (2.1).

Proof. We choose a bounded uniform partition of unity {h(x − l)}l∈Zn gen-
erated by a function h ∈ D(Rn) such that |h(0)| = 1, |h(x)| ≤ |h(0)|,∀x ∈ Rn, and
h(x) = 0 for |x| ≥ ρ. For G ∈ W (C,L2(Rn, T 1

1 )) we have the pointwise estimate

‖G(k)‖ = |h(0)| ‖G(k)‖ ≤ sup
x∈R n

|h(x− k)| ‖G(x)‖ = Fh(G)(k),(2.22)

which implies that
∑
k

‖G(k)‖2 ≤
∑
k

|Fh(G)(k)|2. Using the discrete norm in W2

defined by (2.13) for each component Gp,q together with Lemma 2.5, we get that∑
k

‖G(k)‖2 ≤ a1 ‖G‖W (C,L2(R n,T 1
1 )) for some constant a1 independent of G. Finally,

using the equivalence of the L2(Rn, T 1
1 ) and W (C,L2(Rn, T 1

1 )) norms (2.19) of
Theorem 2.6, we immediately obtain∑

k

‖G(k)‖2 ≤ a2 ‖G‖L2(R n,T 1
1 ) .(2.23)

If G∆ ∈ S∆ = D∆ S, then we can replace G by G∆ in the first part of this proof
to obtain

∑
k

‖G∆(k)‖2 ≤ a3 ‖G∆‖W (C,L2(R n,T 1
1 )). Using the fact that the dilation

operator is an isomorphism from W (C,L2(Rn, T 1
1 )) into itself, we conclude that for
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any G∆ ∈ S∆ = D∆ S, we have∑
k

‖G∆(k)‖2 ≤ a3 ‖G∆‖W (C,L2(R n,T 1
1 ))

≤ a4 ‖G‖W (C,L2(R n,T 1
1 ))

≤ a5 ‖G‖L2(R n,T 1
1 )

≤ a6 ‖G∆‖L2(R n,T 1
1 )

for some constant a6 independent of G∆.

The previous theorem states that, under the appropriate conditions, the discretiza-
tion operator produces discrete tensor fields of l2(Zn, T 1

1 ). Thus, the range of the
discretization operator, Sd

∆ = Range(R∆ D∆) is a linear subspace of l2(Zn, T 1
1 ).

The topological properties of this space and its structure are inherited from the
space S as well as from the properties of the discretization operator. In particu-
lar, under the appropriate conditions, the discrete linear space is closed, and has
an atomic structure generated by a Riesz basis. Specifically, defining the tensor
sequences

Θj
∆(·) := R∆ Bj

∆(·) = R∆ Bj
( ·

∆

)
,(2.24)

we get:

Theorem 2.10. If the discretization operator R from S to l2(Zn, T 1
1 ) is injec-

tive and its range is closed, then for any ∆ ∈ Nn the discrete tensor space Sd
∆ is

isomorphic to S.

Remark 2.11. The previous theorem states that if the space Sd produced by
sampling the space S is isomorphic to S, then any regular refinement of the sampling
also produces an isomorphic space Sd

∆.

As a corollary of the previous theorem we immediately get

Corollary 2.12. If the discretization operator R from S to l2(Zn, T 1
1 ) is in-

jective and its range is closed, then for any ∆ ∈ Nn the discrete tensor space Sd
∆ is

closed and the set
{

Θj
∆(l − ∆k) : j ∈ Λ, k ∈Zn

}
is a Riesz basis of Sd

∆.

As before, we have adopted the product convention ∆k = (∆1k1, . . . ,∆nkn).

Proof of Theorem 2.10. Clearly, if the operator R has an inverse R−1 from
Range(R) ⊂ l2(Zn, T 1

1 ) into S, and if the range is closed, then by the closed graph
theorem, the inverse R−1 is a bounded operator. Hence R is an isomorphism
between the Range(R) and S.

For an element Γ∆ = R∆ G∆ ∈ Sd
∆ where G∆ ∈ S∆ (recall that R∆ denotes

the sampling operator on S∆), there exists a unique element Γ = RG ∈ Sd (G ∈ S)
such that Γ∆ = Γ on the sublattice ∆Zn (G∆ = D∆ G). In fact, Γ is the restriction
of Γ∆ on ∆Zn, i.e., Γ(l) = Γ∆(∆l), ∀l ∈Zn. Thus we have that

‖Γ‖l2(Zn,T 1
1 ) ≤ ‖Γ∆‖l2(Zn,T 1

1 ) .(2.25)

Moreover, if R∆ G∆ = Γ∆, then G∆ = D∆ R−1(Γ). Thus, we get

‖G∆‖W (C,L2(R n,T 1
1 )) =

∥∥D∆ R−1 Γ
∥∥
W (C,L2(R n,T 1

1 ))
≤ a1

∥∥R−1 Γ
∥∥
W (C,L2(R n,T 1

1 ))

≤ a1

∥∥R−1
∥∥ ‖Γ‖l2(Zn,T 1

1 ) .
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From the previous set of inequalities and (2.25), we immediately conclude that

‖G∆‖W (C,L2(R n,T 1
1 )) ≤

∥∥R−1
∥∥ ‖Γ‖l2(Zn,T 1

1 ) ≤
∥∥R−1

∥∥ ‖Γ∆‖l2(Zn,T 1
1 )

Since Γ is unique and R is injective, we conclude that R∆ is injective, and–using
the last inequality–it has a bounded inverse from Range(R∆). Thus, by the closed
graph theorem, Range(R∆) is closed. Therefore Sd

∆ = Range(R∆) is an isomor-
phism from S∆ = D∆ S to Sd

∆, and hence from S to Sd
∆ which concludes the

proof.

As a corollary we immediately obtain:

Corollary 2.13. If the discretization operator R from S to l2(Zn, T 1
1 ) is bi-

jective, then for any ∆ ∈ Nn we have the equivalence of norms

a1 ‖R∆ D∆ G‖l2(Zn,T 1
1 ) ≤ ‖G‖L2(R n,T 1

1 ) ≤ a2 ‖R∆ D∆ G‖l2(Zn,T 1
1 ) ,

i.e., 0 < a1 ≤ a2 are positive constants independent of G.

Thus, under the conditions of Corollary 2.13, the L2(Rn, T 1
1 )-norm of any tensor

field G ∈ S is equivalent to the discrete l2(Zn, T 1
1 )-norms of any sampling that is a

regular refinement of Zn.
Theorem 2.10, allows us to conclude that, for any ∆ ∈ Nn, the space Sd

∆

have the right structure to be an atomic space, without computing the associated
autocorrelation matrix

[(A∆)i,j ](l) =
〈
Θi

∆ (k) ,Θj
∆ (k − ∆l)

〉
d

=
∑
k∈Zn

trace
(
Θi

∆ (k) (Θj
∆)∗ (k − ∆l)

)
,

(2.26)

or showing that its Fourier transform Â∆ satisfies the requirement (2.7) of Theorem
2.1. In fact, all we need to know is that requirement (2.7) is satisfied for Â1 (here
the subscript 1 denotes ∆ = (1, 1, . . . , 1)) to conclude that it is satisfied for any Â∆

with ∆ ∈ Nn (see also Theorem 3.1):

Corollary 2.14. If the discretization operator R from S to l2(Zn, T 1
1 ) is bi-

jective (equivalently, if Â1 satisfies (2.7)), then for any ∆ ∈ Nn the autocorrelation
matrix function defined by (2.26) satisfies

a1 ≤ ess inf
ν∈Q

(
λmin

(
Â∆(ν)

))
≤ ess sup

ν∈Q

(
λmax

(
Â∆(ν)

))
≤ a2 a.e.(2.27)

for some positive constants 0 < a1 ≤ a2 independent of ν.

Remark 2.15. The fact that Â∆ satisfies (2.27) is crucial for computing con-
tinuous representations of discrete tensor data as will be discussed in the next
section.

Remark 2.16. We note that, all our results are also valid for more general
tensor field spaces, such as L2(Rn, T q

p ). In particular, the results are valid for
vector fields defined on Rn.

In summary, in this section we have shown how to construct atomic tensor
spaces that consist of contiunous tensor fields. We have also given conditions on
the generating tensors that guaranty that the discrete tensor field spaces generated
by any regular sampling of the continuous spaces are atomic and are isomorphic to
the continuous spaces.
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3. Representation and approximation

If the discretization operator R from L2(Rn, T 1
1 ) to l2(Zn, T 1

1 ) is bijective, then
the interpolation problem is solvable. In particular, given a set of discrete tensors
{Φ(k) : k ∈ Zn} ∈ l2(Zn, T 1

1 ), there exists a tensor field GI ∈ S that interpolates
Φ(k), i.e., we can find coefficients c ∈ l

(r)
2 such that

(GI(x) |Zn)(l) =
r∑

j=1

∑
k∈Zn

cj(k)Bj(l − k).

However, the collected data Φ is often perturbed by noise. Interpolating the data to
obtain a continuous representation would not be appropriate, since we would just
be finding a continuous representation of the noisy tensor data, rather than of the
underlying tensor field. Instead, we should approximate the data by a continuous
tensor field G≈ in such a way as to reduce the noise. One way of doing this is
by approximating the data by tensor fields in spaces that are coarser than S. In
particular, for ∆ ∈ Nn, the space S∆ is coarser than S. In fact, since S∆ is a dilation
of S by a factor ∆, we should be able to reduce the variance of an added white
noise by a factor proportional to the volume |∆| of ∆ (|∆| = ∆1∆2 · · ·∆r). Since
we collect discrete data, the norm measuring the error of approximation between
the data Φ and the continuous approximation G≈

∆ should be measured in terms of
the difference between the data and the discretized version (on the data’s lattice)
of the continuous representation:

P1 Approximation by a continuous tensor field:
Find G≈

∆ ∈ S∆ such that the error

E(k) = (R∆ G≈
∆ − Φ)(k)

is minimum in the l2(Zn, T 1
1 )-norm.

As before, R∆ denotes the sampling operator on S∆. A related problem is given
by:

P2 Approximation by a discrete tensor field:
Find the best approximation Φ≈ of Φ in the space Sd

∆.

If they exist, then the solutions to problems P1 and P2 are related by

Φ≈ = R∆ G≈
∆.

If the discretization operator R is a bijection between S and l2(Zn, T 1
1 ), then

by Theorem 2.12 the space Sd
∆ is closed for any ∆ ∈ Nn. Thus the best ap-

proximation in this space is well defined. In particular, the error E = Φ≈ − Φ
must be orthogonal to the basis vectors

{
Θj

∆(l − ∆k) : j ∈ Λ, k ∈Zn
}

(recall that

Θj
∆(l) = Bj(x/∆)

∣∣
x=l

): 〈
(Φ≈ − Φ)(·),Θj

∆(· − ∆k)
〉
d

= 0,(3.1)

where, 〈·, ·〉d is the inner product in l2(Zn, T 1
1 ) defined by

〈Φ(·),Ψ(·)〉d =
∑
k∈Zn

trace(ΦΨ∗)(k).
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Since Φ≈ belongs to Sd
∆, it must be of the form

Φ≈(l) =
r∑

j=1

∑
k∈Zn

cj(k)Θj
∆(l − ∆k).

Combining this fact with equation (3.1), we get∑
p∈Zn

ci(p)
〈
Θi

∆ (· − ∆p) ,Θj
∆ (· − ∆l)

〉
= Γj(l),(3.2)

where the right hand side Γj(l) =
〈
(Φ)(·),Θj

∆(· − ∆l)
〉
d
. Using the r×r autocorre-

lation matrix-sequence A∆ defined by (2.26) we can rewrite (3.2) as the generalized
multivariate convolution equation

A∆ ∗n c = Γ.(3.3)

where c = (c1, . . . , cr)T , and Γ = (Γ1, . . . ,Γr)T , and where the generalized multi-
variate convolution equation in (3.3) is defined to be

r∑
q=1

∑
k∈Zn

(A∆)p,q(l − k)cq(k) = Γp(l).

A solution c of (3.3) exists and is unique if and only if the convolution inverse A−1
∆

exists, and it is a bounded operator from l
(r)
2 into itself, i.e., if there exists a matrix

sequence A−1
∆ such that

(A−1
∆ ∗n A∆)p,q(l) =

r∑
i=1

∑
k∈Zn

(A∆)p,i(l − k)(A∆)i,q(k) = δ0(l)I,

and if A−1
∆ ∗n • defines a bounded operator on l

(r)
2 (here I is the r × r identity

matrix, and δ0(0) = 1, δ0(k) = 0 for k 	= 0). Such a convolution inverse exists if
and only if the Fourier transform of A∆ is bounded and has a bounded inverse [1,
Theorem 2.2]. This is precisely the condition (2.27) of Corollary 2.14. Thus we
have

Theorem 3.1. Let Bj belong to W (C,L1(Rn, T 1
1 )), j ∈ Λ, and assume that the

set
{
Bj(x− k) : j ∈ Λ , k ∈Zn

}
satisfies condition (2.8) of Corollary (2.2). If the

discretization operator (or sampling operator) R from S to l2(Zn, T 1
1 ) is bijective

(equivalently, if Â1 satisfies (2.7)), then for each ∆ ∈ Nn, the operator A∆ has a
convolution inverse A−1

∆ that defines a bounded linear operator from l
(r)
2 to l

(r)
2 , and

the approximation problem in Sd
∆ has a unique solution.

The coefficients {cj(k) : j ∈ Λ, k ∈ Zn} which are solutions to Eq. (3.3)
are the coefficients of the basis

{
Θj

∆(l − ∆k) : j ∈ Λ, k ∈Zn
}

that give the best

approximation of the discrete data Φ by a tensor sequence Φ≈ in the space Sd
∆.

Thus, they give the unique solution to Problem P2. Hence, from our previous
discussion, these coefficients are also the coefficients for the continuous tensor field

G≈
∆(x) =

∑
j∈Λ

∑
k∈Zn

cj(k)Bj(
x

∆
− k)

that solves Problem P1. Thus, we have
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Corollary 3.2. Let Bj belong to W (C,L1(Rn, T 1
1 )), j ∈ Λ, and assume that

the set
{
Bj(x− k) : j ∈ Λ , k ∈Zn

}
satisfies condition (2.8) of Corollary (2.2). If

the discretization operator (or sampling operator) R from S to l2(Zn, T 1
1 ) is bijective

(equivalently, if Â1 satisfies (2.7)), then for each ∆ ∈ Nn, the solution to problem
P1 (or P2) exists and is unique.

Remark 3.3. 1. If we change the discrete inner product 〈·, ·〉d in l2(Zn, T 1
1 )

to a new shift invariant inner product 〈Φ(·),Ψ(·)〉∼d
(i.e., 〈Φ(· − l),Ψ(· − l)〉∼d = 〈Φ(·),Ψ(·)〉∼d ) that induces an equivalent norm,
then all the results are still valid, but the matrix sequence A∆ in (3.3) must
be replaced by the matrix sequence Ã∆ that reflects the new discrete norm.

2. If instead we change the discrete inner product to a spatialy-weighted inner
product (for this case the inner product is not shift invariant, in general),
then all the results are still valid and problems P1 (or P2) have a unique
solution obtained by solving (3.2) directly (instead of (3.3) which is no longer
valid). Thus, for this case, the computational complexity for finding the
solution may be higher.

3.1. Fast filtering implementation. Because of the particular structure of
the spaces S∆, and Sd

∆, computing the solution to the approximation and interpo-
lation problems consists only of simple convolution and addition operations. These
linear operations have been studied extensively in signal and image processing be-
cause of their fast and efficient implementation and their satisfying interpretation
using linear systems theory. In particular, for data of length L the complexity
of the algorithms are of order L. Moreover, by using the present framework for
representing and approximating tensor data, many signal and image processing op-
erations can be performed digitally using fast filtering algorithms with a complexity
of Order L, e.g., rotation translation, dilation, affine transformation, and geometric
transformation in general [1, 2, 17, 18].

Remark 3.4. 1. An alternative method for approximating the noisy data
{Φ(k) : k ∈ Zn} ∈ l2(Zn, T 1

1 ) is to first interpolate it by a tensor field
GI ∈ S(BI), and then project GI onto a coarse space S∆(B) to obtain
the representation G≈

∆ (note that the generating tensor fields BI and B
need not be related). This method also produces a multivariate convolution
equation similar to (3.3), and therefore can also be solved with fast filtering
implementations.

2. We can also use a regularization operator to control the approximation G≈
∆.

For example, we can require the tensor field G≈
∆ to minimize the functional

‖R∆ G≈
∆ − Φ‖2 + λ

∫
R n

‖LG≈
∆(x)‖2

dx

where L is a linear differential operator. For this case, and under the appro-
priate conditions, we also obtain multivariate convolution equation similar to
(3.3), and solutions that can be implemented with fast filtering algorithms.

3.1.1. Choice of vector and tensor bases. As mentioned in Remark 2.16, our
results are valid for any tensor field space L2(Rn, T q

p ). In particular, the results
are valid for vector fields defined on Rn, including discrete measurements of ve-
locity fields, and chemical or optical spectra [7, 10, 6, 15]. For these cases, the
generating vectors can be chosen to be of the form B1(x) = b1(x)(1, 0, . . . , 0)T ,
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B2(x) = b2(x)(0, 1, 0, . . . , 0)T , ..., Bn(x) = bn(x)(0, . . . , 0, 1)T , where bj(x) are
scalar functions.

For DT-MR images, the representation spaces must consist of symmetric tensor
fields. For this case, we can choose generating tensor functions of the form

B1(x) = b1(x)

 1 0 0
0 0 0
0 0 0

 , B2(x) = b2(x)

 0 0 0
0 1 0
0 0 0



B3(x) = b3(x)

 0 0 0
0 0 0
0 0 1

 , B4(x) = b4(x)

 0 1 0
1 0 0
0 0 0



B5(x) = b5(x)

 0 0 1
0 0 0
1 0 0

 , B6(x) = b6(x)

 0 0 0
0 0 1
0 1 0


where, again, bi(x) are scalar valued functions.

For the choices of generating functions above, the matrix sequence A∆(k) in
(3.3) is a sequence of diagonal matrices. Thus, the convolution operator A∆ ∗n •
reduces to r independent scalar convolution operators. Hence, for these cases,
the approximation problems for vectors or tensors reduce to r scalar independent
approximation problems.

A further simplification is possible if we can use separable functions for the
bi(x) so that bi(x) = bi(x1) bi(x2) ... bi(xn). Then, the approximation problem for
vectors or tensors can be decoupled for each spatial dimension.

Choosing bi(x) to have compact support or at least exponential decay, is useful
for the digital implementation of image processing algorithms, e.g., polynomial
splines of order n. For example, the infinite sum

G≈(x0) =
∑
j∈Λ

∑
k∈Zn

cj(k)Bj(x0 − k)

for the evaluation of G≈ at an arbitrary sampling point x0 ∈ Rn becomes finite.
In summary, we have constructed Wiener amalgam tensor spaces

S∆ ⊂ L2(Rn, T 1
1 ) that are appropriate for multiresolution representation and pro-

cessing of discrete tensor and vector field data. The practical importance of this
work is that it enables one to represent and analyze an entire class of discrete data
sets to which these powerful methods have not been applied, and do so using fast
linear filtering algorithms.
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