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Abstract 

A long-standing problem in Magnetic Resonance Imaging (MRI) is the noise-induced bias in the 

magnitude signals. This problem is particularly pressing in diffusion MRI at high diffusion-

weighting. In this paper, we present a three-stage scheme to solve this problem by transforming 

noisy nonCentral Chi signals to noisy Gaussian signals. A special case of nonCentral Chi 

distribution is the Rician distribution. In general, the Gaussian-distributed signals are of interest 

rather than the Gaussian-derived (e.g., Rayleigh, Rician, and nonCentral Chi) signals because the 

Gaussian-distributed signals are generally more amenable to statistical treatment through the 

principle of least squares. Monte Carlo simulations were used to validate the statistical properties 

of the proposed framework. This scheme opens up the possibility of investigating the low signal 

regime (or high diffusion-weighting regime in the case of diffusion MRI) that contains potentially 

important information about biophysical processes and structures of the brain.  
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I. INTRODUCTION 

Magnetic resonance imaging (MRI) (1) is a rapidly expanding field and a widely used medical imaging 

modality—possessing many noninvasive techniques capable of probing functional activities (2) and 

anatomical structures (3-10) of the brain in vivo. In quantitative MRI, important parameters of 

biophysical relevance are typically estimated from a collection of MR signals that are related to one 

another through a function of one or more experimentally controlled variables. As ever higher sensitivity 

and specificity to biophysical processes are achieved in MRI through improved spatial or temporal 

resolution, the adverse effect of noise on the overall accuracy of MRI-based quantitative findings also 

increases. 

MR signals are complex numbers where the real and imaginary components are independently 

Gaussian distributed (11). The phase of the complex MRI signal is highly sensitive to many experimental 

factors, e.g., see  (11,12), and as such, the magnitude of the complex MR signal is used instead in most 

quantitative studies. Although several techniques have been proposed to correct the phase error (12-15), 

the magnitude of the complex MR signal (hereafter, magnitude MR signal) remains the most commonly 

used measure in MRI.  While the magnitude MR signal is not affected by the phase error, it is not an 

optimal estimate of the underlying signal intensity when the signal-to-noise ratio is low (11) because it 

follows a nonCentral Chi distribution (16,17) rather than a Gaussian distribution. We should note that the 

Rician distribution (18,19) is a special case of the nonCentral Chi distribution. It is also well known that 

a Rician distribution (20) reduces to a Rayleigh distribution when the underlying signal intensity is zero, 

and the first moment of a Rayleigh distribution is usually known as the “noise floor” (21).   

 It is increasingly apparent that a resolution of the noise-induced bias in the magnitude MR signals 

could make it possible to gain further insights into the low signal regime that contains potentially 

important information about intrinsic functional activity (22) and tissue microstructure (3-9). Although 

several correction methods have been proposed (11,16,19,23,24) to address this problem, these methods 

do not produce corrected data that are Gaussian distributed.  
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  A simple means of assessing Gaussianity in the corrected data when the noisy magnitude signals 

are drawn from the same distribution, e.g., see Figure 1, is to check if the corrected data follow a 

Gaussian distribution. In practice, this type of data is rare. Rather, we usually have MRI data that are 

drawn from a family of distributions all of which are characterized by different location parameters (e.g., 

the location parameter of a Gaussian distribution is the first moment and the location parameter of a 

nonCentral Chi distribution will be pointed out later). For example, each of the noisy magnitude signals 

of interest may be acquired under a slightly different experimentally controlled condition so that each 

noisy magnitude signal is actually drawn from a slightly different distribution. The proposed scheme is 

the first method capable of obtaining corrected data that are distributed evenly in both the positive and 

negative axes when the signal-to-noise ratio is very close to zero, which is a very important but simple 

criterion for testing the accuracy or lack thereof of a correction scheme. We should point out that none of 

the previously published methods (11,16,19,23,24)  satisfies this criterion because these methods cannot 

produce corrected data that have negative values. 

  In this work, we present a framework for making the magnitude signals Gaussian-distributed. A 

simple example illustrates the idea behind the proposed framework: suppose the noisy magnitude signals 

are drawn from a family of nonCentral Chi distributions all of which are characterized by different 

location parameters but with the same scale parameter. The proposed framework attempts to transform 

the noisy magnitude signals such that each noisy transformed signal may be thought of as if it were 

drawn from a Gaussian distribution with a different mean but the same standard deviation. Note that the 

location and scale parameters that characterize a nonCentral Chi distribution are exactly the mean and the 

standard deviation of the Gaussian distribution that characterize the transformed signal.  

  Three important considerations will have to be taken into account in order to construct such a 

framework. First, we need a method that can find an estimate of the first moment of a nonCentral Chi 

distribution from which the datum is drawn. Second, we need a method that can find an estimate of the 

first moment of the Gaussian distribution if an estimate of the first moment of a nonCentral Chi 
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distribution is provided. Third, we need a method that can find a noisy Gaussian-distributed signal for 

each of the magnitude signals if the first moment of the nonCentral Chi distribution, the first moment and 

the standard deviation of the Gaussian distribution are provided. Each consideration above constitutes a 

separate procedure or stage. 

  Therefore, it is necessary to have a procedure in the first stage that can find an “average value” for 

each datum. In other words, the first moment of a nonCentral Chi distribution from which the datum is 

drawn is estimated in the first stage. Once an estimate of the first moment of a nonCentral Chi 

distribution is known, a procedure in the second stage must be able to produce the “average value” of the 

underlying signal intensity, which is an estimate of the first moment of a Gaussian distribution. A 

procedure in the third stage must be able to use each original noisy datum, which is nonCentral Chi-

distributed, to find the corresponding transformed noisy signal that is Gaussian-distributed. The 

schematic representation of the three stages of the proposed framework is shown in Figure 1A.  

  Specifically, in the first stage, a data smoothing or fitting method may be used to obtain the 

average values of the noisy magnitude signals. The data may be fitted with some parametric functions 

(single exponentially or bi-exponentially decaying functions) or smoothed with a variety of smoothing 

methods. Although a comparison of various fitting or smoothing methods is of interest, such a 

comparison, if thoroughly investigated, would take us too far afield. Here, we use a penalized or 

smoothing spline model (25,26), to obtain the “average values”. The penalized spline model is chosen for 

its ease of implementation and use.  The degree of smoothness is selected based on the method of 

generalized cross-validation (GCV) (26,27). Again, other methods may be used to select the degree of 

smoothness, see e.g., (28). 

 In the second stage, we propose an iterative method that takes in an “average value” of a noisy 

magnitude signal as an input and returns an “average value” of the underlying signal intensity as an 

output. This iterative method is closely related to but different from our previously proposed fixed point 

formula of the signal-to-noise ratio (SNR) because it is a fixed point formula of the underlying signal 
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intensity, see Figure 1B. Specifically, the present iterative method treats the estimations of the underlying 

signal intensity and of the Gaussian noise standard deviation (SD) separately rather than simultaneously. 

The key advantage of such an approach is that there exists excellent methods for estimating the Gaussian 

noise SD from a much larger sample (29,30). Consequently, a more precise estimate of the Gaussian 

noise SD will result in a more precise estimate of the underlying signal intensity.  

In the third stage, the corresponding noisy Gaussian signal of each of the noisy magnitude signals is 

found through a composition of the inverse cumulative probability function of a Gaussian random 

variable and the cumulative probability function of a nonCentral Chi random variable. Both the inverse 

cumulative probability function of a Gaussian random variable and the cumulative probability function of 

a nonCentral Chi random variable depend on the “average value” of the underlying signal intensity and 

the Gaussian noise SD. The third stage is exactly a Gaussian random number generator if the input data 

are Rician-distributed.   

The statistical properties of the proposed framework is investigated using Monte Carlo simulations. 

Experimental data is also used to illustrate the proposed framework. 
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II. METHODS 

Since the first stage of the proposed scheme is readily available (25,26), our focus in this paper will be on 

the latter stages. For completeness and notational consistency, we have included a brief discussion of 

one-dimensional penalized splines in Appendix A, and of spherical harmonics splines in Appendix B. 

These spline models share the same matrix structure, and therefore, the computation of this matrix 

structure is briefly touched on in Appendix C.  

  

A. Theoretical preliminary 

The probability density function (PDF) and the cumulative distribution function (CDF) of a nonCentral 

Chi random variable, m , are needed respectively in the second and third stages of the proposed scheme. 

It is known that magnitude MR signals obtained from an N-receiver-coil MRI system follow a nonCentral 

Chi, χ~ , distribution of 2N degrees of freedom and the corresponding PDF can be expressed as (16,17):  

dm
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where the PDF is zero when 0<m , η  is the underlying (combined) signal intensity (also known as the 

location parameter of the nonCentral Chi distribution), gσ  is the Gaussian noise standard deviation, and 

kI  is the kth-order modified Bessel function.  

  The corresponding (CDF) can be expressed as: 

∫ ση=σηα
α

χχ
0

~ ),,|(),,|(~ dmNmpNP gg .                                                                                           (2) 

In  practice, it is more convenient to compute Eq.(2) in terms of series representations of the generalized 

Marcum-Q function (31), NQ . It can be shown that Eq.(2) can be simplified to: 

∫ ση−=σηα
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where the definition of the generalized Marcum-Q function is: 

 ∫ λ−=γλ
∞
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λ − dssIsQ N
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N N )()exp(),( 12

1 22

1 .                                                                                     (4) 

When the underlying signal is zero, i.e., 0=η , the PDF and the CDF are given by (30): 
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where the incomplete Gamma function is defined as ∫ −=Γ
∞

−

x

N dtttxN )exp(),( 1 . The complete Gamma 

function is )0,(NΓ  and is typically written simply as )(NΓ .  

 

B. Fixed point formula of the underlying signal intensity 

The derivation of the fixed point formula of the underlying signal intensity, η , which is needed in this 

work, is closely related to that of the fixed point formula of the signal-to-noise ratio, gση≡θ / , shown in 

our previous work (16). The main difference is in the separation of the underlying signal intensity and the 

Gaussian noise SD, gσ . This separation is conceptually very important because the Gaussian noise SD, 

gσ , is held as a fixed constant  during the iterative process of successively estimating η . The key 

advantage of this approach is that the precision in the estimate of η  is higher than its counterpart through 

our previous approach because the estimate of gσ  computed from a much large sample is less variable. 

  Here, we present the derivation of the fixed point formula of η . We begin with the first two 

moments of a nonCentral Chi distribution, Eq.(1), and they are given by:   

))2/(,,2/1( 22
11 gNg NFm ση−−βσ= ,                                                                                                              (7) 

and 
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222 2 gNm σ+η= ,                                                                                                                                       (8) 

respectively, where 
)!1(2

!)!12(
12/

−
−

−π=β
N

N
N N , the double factorial is defined as: �×−−= )4)(2(!! nnnn , and 

11 F  is the confluent hypergeometric function.  

The variance of a nonCentral Chi random variable is defined as: 

2222~ ),|( gg Nmm σσηξ=−≡σχ ,                                                                                         (9) 

where the scaling factor, ξ , is given by: 

[ ]222
112

2

))2/(,,2/1(2),|( gN
g

g NFNN ση−−β−
σ
η+=σηξ .                                                                                  (10) 

 The fixed point formula of the underlying signal intensity can be obtained by substituting the 

expression in Eq.(8) into Eq.(9). This leads to the following expressions: 

[ ] 22 2),|(),,|( ggg NNmNmg σ−σηξ+≡ση=η .                                                                                (11) 

 Note that the implementation of the fixed point formula of η , which is based on Newton’s method of 

root finding and is described in Appendix D, has important differences compared to that of the fixed 

point formula of gση≡θ /  (16). 

To find the fixed point estimate, denoted by η̂ , in Eq.(11) , m  and gσ  are replaced by their 

corresponding estimates, denoted by m̂  and gσ̂ , respectively. In general, m̂  may be taken to be the 

smoothed estimate obtained from the smoothing spline and gσ̂  may be taken to be the estimated 

Gaussian noise SD obtained through various techniques mentioned above  (11,29,30,32,33).  

 In short, the fixed point formula maps m̂  to η̂ . Fixed point formulae are powerful methods of 

successive approximation because their convergence can be tested under a very simple and general 

assumption (34). Specifically, let η̂  be the fixed point that satisfies Eq.(11), i.e., η=ση ˆ),ˆ,ˆ|ˆ( Nmg g  , and 

0η  be the initial approximation, if both 0η̂  and η̂  belong to an interval in which 1||
),ˆ,ˆ|(

<η
ση

d
Nmdg g  for all η  
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in that interval then 0η  will always converge to η̂ . In the context of Eq.(11), the interval does not have to 

be specified because η̂  is always less than m̂ , and therefore, the iteration with m̂0 =η  as the initial 

approximation will always be convergent if m̂  is exactly at or above the level of the noise floor, i.e., 

gNm σβ≥ ˆˆ . Due to statistical variations, however, m̂  may occasionally be below the noise floor. If this is 

the case, then η̂  is set to δη− ˆ  where δη̂  is the fixed point estimate derived from a new estimate of m , 

which is defined by δ+σβ=δ gNm ˆˆ  with mgN ˆˆ −σβ=δ . This particular choice is needed to ensure the 

symmetry of the resultant distribution of η̂  at a zero signal-to-noise ratio. Finally, an implementation of 

the fixed point formula is provided in Appendix D. 

 

C. Mapping nonCentral Chi to Gaussian signals 

Mapping a nonCentral Chi random variable, m , to a Gaussian random variable, x , can be achieved by a 

composition of the inverse cumulative distribution function of a Gaussian random variable and the 

cumulative probability function of a nonCentral Chi random variable, i.e., 

),|),,|(( ~
1

ggG NmPPx σηση=
χ

− ,                                                                                         (12) 

where the inverse cumulative distribution function of a Gaussian random variable is given by 

)12(2),|( 11 −σ+η=ση −− yerfyP ggG .                                                                                      (13) 

Note that 1−erf is the inverse of the error function. We should mention that, in practice, an outlier-

rejection step is recommended in Eq.(12). Specifically, we shall identify x  in Eq.(12) as an outlier if  the 

following inequalities do not hold: )2/(1),,|()2/( ~ α−<ση≤α
χ

NmP g  where α  may be between 0 and 1 

inclusively but it is usually set to a user-specified value of 0.005, 0.001 or 0.0005.  

 The method of mapping an arbitrary distribution to a Gaussian distribution is well known, e.g., 

(35,36). In general, however, this type of mapping is of limited value without a priori knowledge of both 

η  and gσ , except for those that map from a Gaussian-derived distribution to a Gaussian distribution in 
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which η  and gσ  may be estimated through the proposed technique. Therefore, in the context of the 

present work, the parameters, η  and gσ , in Eq.(12) are replaced by their corresponding estimates, η̂  and 

gσ̂ , which can be obtained through the techniques discussed in the previous section and in (30), 

respectively. 
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III. RESULTS 

The validity of the proposed scheme is analyzed with several simulation tests. 

A. NonCentral Chi random samples drawing from the same distribution  

We will begin with the simplest case—that is, the mapping of noisy nonCentral Chi signals, which are 

drawn from the same distribution characterized by constant η  and gσ , to noisy Gaussian signals. 

Without loss of generality, we take N to be unity.  

  This type of data in which samples are drawn from the same distribution is rare in practice but is 

useful for illustrating the basic idea of the mapping between nonCentral Chi and Gaussian distributions. 

Note that this type of data is not an ordered sequence, and therefore, does not require a smoothing spline 

to estimate the “average value”—the sample mean of the data is sufficient in this case.  

  We should also note that the Gaussian noise SD cannot be estimated from this type of data using the 

noise variance estimation techniques discussed in (11,29,30,32,33) because there is no “background” in 

this type of data to estimate noise variance. Fortunately, other approaches can estimate both the 

underlying signal intensity and the Gaussian noise SD. Here, we note two approaches—our previously 

proposed analytically exact scheme (16), and the maximum likelihood approach as discussed in (37). One 

of the notable differences between these two approaches is that the former is a 1-D optimization 

procedure while the latter is a 2-D optimization procedure.   

  In this example, we will use the analytically exact scheme  (16) to estimate both the underlying 

signal intensity and the Gaussian noise SD. Figure 2A shows the histogram of 20000 random samples 

that were drawn from a Rician distribution with 25=η  and 50=σg  (or 5.0/ =ση g ). The sample mean 

and the standard deviation of these random samples were 66.727 and 34.729, respectively. The 

magnitude SNR was 66.727/34.729 = 1.921, which corresponded to an estimated SNR, gση ˆ/ˆ , of 0.515. 
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The estimated underlying signal intensity and the estimated Gaussian noise SD were found to be 

74.25ˆ =η  and 98.49ˆ =σg , respectively.  

  Based on the estimated values of η  and gσ , the noisy Rician samples were then transformed to 

noisy Gaussian samples through the third stage of the proposed scheme. The histogram of the 

transformed signals is shown in Figure 2B. The sample mean and the standard deviation of these random 

transformed samples were 25.72 and 50.01, respectively.  

 

B. Medium samples generated from a 1-D exponentially decaying model with a large number of repeated 

measurements.  In this and the next examples, we investigate the statistical properties of the proposed 

scheme with data generated from a simple exponentially decaying model of the following form, bDes −
0 , 

taken from diffusion-weighted MRI. The b -value is an experimentally controlled variable that 

determines the level of diffusion weighting, which affects the level of attenuation of the non-diffusion-

weighted signal, and D  is the unknown diffusion coefficient. 

 Data generated from an exponentially decaying model are particularly useful for testing the proposed 

scheme because each measurement obtained at a different b-value is in fact drawn from a different 

distribution. Since there is only one measurement at each b-value, using the sample mean as the “average 

value” at each b-value would be too variable. Therefore, the “average value” at each b-value has to be 

estimated from a smoothing method such as the penalized spline where a collection of measurements at 

different b-values is treated as a whole to estimate the “average values” at all b-values.   

  Here, we generated 50000 sets of 30 measurements (Rician signals) from the following expression 

2
2

2
10 ))exp(( ε+ε+−bDs  with 10000 =s , smmD /101.2 23−×= , and ε ’s are the Gaussian random variables 

with mean zero and standard deviation of 100.  

  The 30 measurements are sampled uniformly from b-value of 50 s/mm2 to 1993 s/ mm2 with a gap of 

67 s/ mm2. Figure 3A shows the sample mean and the sample standard deviation of the 50000 
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measurements at each b-value. The error bar denotes one standard deviation away in both directions from 

the sample mean. The blue curves in Figures 3A and 3B are the expected value computed from the first 

moment of the Rician random variables.  

  Each set of 30 measurements is analyzed through the proposed scheme using the penalized spline 

with truncated polynomial basis of degree 4 and with 3 knots at {452, 988., 1457} s/ mm2. The results of 

these 50000 sets for each stage of the proposed scheme are shown in Figures 3B, 3C and 3D. Figures 3B 

and 3C show the sample mean and the sample standard deviation of the spline estimates and of the fixed 

point estimates, respectively. The red curves in Figures 3C and 3D are the ground truth, i.e., )exp(0 bDs − . 

Figures 3D and 3E show the sample mean and the sample standard deviation of the transformed signals 

obtained through the proposed framework and the method of Gudbjartsson and Patz (19), respectively. 

  In Figure 3D, it is clear that the sample mean at each b-value is close to the ground truth value but 

the variance (or SD) increases as the SNR decreases. The increase in SD is mainly due to a lack of 

sufficient samples because the ideal or expected behavior is that the variance should be constant (Figure 

1B). As an example, we compare the result from the above simulation to that of another simulation in 

which the number of sampling points on the b-value axis was increased to 98, see Figure 4. It is clear 

from Figure 4 that the Gaussian noise SD estimates of the 98-point fit are collectively much closer to the 

ground truth value of 100 (arbitrary unit) that those of the 30-point fit.  

 

C. Large samples generated from a 1-D exponentially decaying model without repeated measurements.   

The same exponentially decaying model in diffusion-weighted MRI and the same set of parameters, 

smmD /101.2 23−×=  and the Gaussian noise SD of 100, are used in this example. Here, we have only one 

set of 2476 measurements sampled from 50 s/mm2 to 5000 s/mm2 with a gap of 2 s/mm2. The penalized 

spline with a truncated polynomial basis of degree 4 and with 5 knots at {872, 1698, 2524, 3348, 4174} 

s/ mm2 was used in this example.  

  The goal of this example is to show the qualitative features of the noisy Rician signals and of the 
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transformed signals obtained through the proposed framework and the method of Gudbjartsson and Patz 

(19). We also compare and contrast the results from the parametric fits (mono-exponential and bi-

exponential fits) to both the noisy signals and the transformed signals.  

  Figure 5A shows the noisy Rician signals. Figures 5B and 5C show the transformed signals obtained 

through the proposed framework and the method of Gudbjartsson and Patz (19), respectively. The results 

of both a mono-exponential fit and a bi-exponential fit to the noisy Rician signals are shown in Figure 

5D. It is interesting to note that a bi-exponential model fits the noisy Rician signals rather well—the bi-

exponential model is almost superimposed upon the expected curve. Figure 5E shows the result of a 

mono-exponential fit to the transformed signals obtained through the proposed framework; the resultant 

curve is close to the ground truth. The results of both a mono-exponential fit and a bi-exponential fit to 

the transformed signals obtained through the method of Gudbjartsson and Patz (19) are shown in Figure 

5F. The estimates of the parameters, ( 0s , D ), obtained through a mono-exponential fit of the noisy 

Rician signals, the transformed signals based on the proposed framework, and the corrected signals based 

on the method of Gudbjartsson and Patz (19) were found to be (597.4, 7.3�10-4 mm2/s), (966.4, 2.0�10-3 

mm2/s), and (774.3, 1.3�10-3 mm2/s), respectively. In the bi-exponential fit of the noisy Rician signals 

and of the corrected signals based on the method of Gudbjartsson and Patz (19), we found ( 5.1036ˆ0 =s , 

5
1 108.1ˆ −×−=D mm2/s, 3

2 107.2ˆ −×=D mm2/s, 0.11) and ( 9.1040ˆ0 =s , 5
1 100.3ˆ −×−=D mm2/s, 

3
2 107.2ˆ −×=D  mm2/s, 0.087), respectively. Note that the last item in each of the lists above is the 

(volume) fraction associated with 1D̂ .  

   

D. Medium samples generated from a 3-D exponentially decaying model with a large number of repeated 

measurements. 

In this example, we will illustrate the proposed scheme with data sampled on a unit sphere. The spherical 

harmonic spline model will be used to transform the nonCentral Chi signals to Gaussian signals. A brief 
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introduction to the spherical spline is provided in Appendix B.  

  For simplicity, the noisy Rician signals will be generated from a single tensor model according to the 

following expression, 2
2

2
10 ))exp(( ε+ε+− DggTbs  where 10000 =s , D  is the diffusion tensor, g  is a unit 

gradient vector, T denotes matrix or vector transposition, and ε ’s are the Gaussian random variables with 

mean zero and SD of 100. Further, the synthetic tensor is given by:  

smm /10
8.45.06.1
5.07.61.1
6.11.15.9

24−×
















−−
−
−

=D . 

  For visualization purposes, we first parametrize the unit gradient vector in terms of spherical 

coordinates, i.e., T)]cos(),sin()sin(),cos()[sin( θφθφθ=g . With this parametrization, we can plot the 

underlying signal intensity and the expected value of the Rician random variables as functions of the 

spherical coordinates. Figure 6A shows the underlying signal intensity as a function of the spherical 

coordinates at a b-value of 3000 s/mm2, and Figure 6B is the corresponding expected value in magnitude 

obtained from the known Gaussian noise SD of 100. 

  Similar to the one-dimensional case, we chose 30 unit gradient vectors that are uniformly distributed 

on the sphere (based on the electrostatic repulsion scheme (38)), and the spherical coordinates of each of 

the gradient vectors are color-coded in Figure 6C.  Figure 6D shows the color-coded underlying signal 

intensity in ascending order and their respective expected values (the first moment of the Rician random 

variables) with a Gaussian noise SD of 100. There are 50000 sets of 30 measurements and each 

measurement in the set is a sample on the unit sphere obtained through one of the gradient vectors. The 

sample mean and the sample SD of the noisy Rician signals of all the spherical coordinates are shown in 

Figure 6E. Finally, each set of measurements is analyzed through both the proposed scheme using the 

spherical spline with spherical harmonics of even degree up to 6=l  and the method of Gudbjartsson and 

Patz. The results are shown in Figures 6F and 6G, respectively. 

  It is clear from the results shown in Figure 6F that the sample means are close to the ground truth 
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values but the variance increases slightly as the SNR decreases.  The increase in variance is to be 

expected since only 30 gradient directions are used. More importantly, we can expect the variance to get 

closer to a constant value that is independent of the SNR level as the size of the samples becomes larger.  

  

E. Illustration using experimental data. 

We illustrate the performance of our approach on an excised rat hippocampus data set. The data set 

contains a series of diffusion-weighted images obtained by varying the diffusion gradient strength. The 

rat was perfusion-fixed with 4% paraformaldehyde in phosphate buffered-saline (PBS), the hippocampus 

was dissected and kept in fixative for more than 8 days. Prior to imaging, the sample was washed 

overnight in PBS. The imaging was performed using a 14.1T narrow-bore spectrometer where a pulsed 

gradient stimulated echo pulse sequence was employed. The imaging parameters were: TE=12.6ms, 

TR=1000ms, resolution=(78x78x500)�m3, matrix size=(64x64x3), number of repetitions=4, diffusion 

gradient pulse duration (�)=2ms, and diffusion gradient separation (�)=24.54ms. The data set contains a 

total of 33 images with different diffusion gradient strengths increasing from 0 to 2935mT/m in steps of 

91.75mT/m. One diffusion weighted image is shown in Figure 7A.  

  Four neighboring pixels indicated with a red square were selected for further analyses. The noisy 

magnitude signals and the noisy transformed signals of each of the pixels as a function of b-value are 

shown in Figures 7B-7E as blue and red dots, respectively. The blue curve in each of the panels is 

obtained through a least squares fit of a bi-exponential function to the noisy magnitude signals. The red 

curve in each of the panels is obtained through a least square fit of a bi-exponential function to the noisy 

transformed signals produced by the proposed framework. Note that the penalized spline with a truncated 

polynomial basis of degree 4 and with 4 knots was used in this example. The estimated Gaussian noise 

standard deviation was 0.88. Further, the estimated parameters obtained from a least squares fit of a bi-

exponential function to both the noisy magnitude signals and noisy transformed signals are shown below: 

Bi-exponential fit to the noisy 
magnitude signals 

0ŝ  1D̂  2D̂  Volume fraction associated with 1D̂  
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(a.u.) (�10-5 mm2/s)  (�10-4 mm2/s) 
Fig. 7B 62.48 0.82 5.3 0.027 
Fig. 7C 63.10 2.0 6.2 0.037 
Fig. 7D 64.28 0.81 6.0 0.026 
Fig. 7E 64.36 1.4 5.5 0.027 

Bi-exponential fit to the noisy 
transformed signals 

    

Fig. 7B 62.6 9.0 5.5 0.060 
Fig. 7C 63.3 10.9 6.6 0.077 
Fig. 7D 64.4 11.3 6.2 0.056 
Fig. 7E 64.4 9.9 5.7 0.048 

   

  If both the estimated Gaussian noise SD and each of the red curves are assumed to be the ground 

truth values then the expected value (or the first moment) of a Rician distribution as a function of b-value 

can be computed and is shown in dark gray; these expected values are in good agreement with the blue 

curve, which is an indication that the red curve is a good approximation of the underlying signal 

intensities. 
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IV. DISCUSSION 

In this work, our main objective is to demonstrate that nonCentral Chi signals can be transformed into 

Gaussian signals and present as clearly as possible the basic ideas as well as the nuts and bolts of the 

proposed scheme.   

  This paper can be thought of as a sequel to but independent of our recent paper on the probabilistic 

and self-consistent approach to the identification and estimation of noise (PIESNO) (30) because the 

noise estimate on which the proposed framework depends can estimated through other techniques. The 

fixed point formula of the underlying signal intensity and the technique proposed in (30) represent our 

major attempt to decouple the fixed point formula of SNR (16) into two self-consistent approaches for 

estimating the underlying signal and the Gaussian noise SD.  

  The advantage of this decoupling is substantial because the estimation of the Gaussian noise SD can 

be obtained from a much larger collection of samples (30). As a consequence, the precision of the 

Gaussian noise SD estimate will be significantly increased, and in turn, the precision of the underlying 

signal intensity estimate will also be increased. As discussed above, the decoupling is more useful and 

practical than the fixed point formula of SNR because we do not usually have many data that are drawn 

from the same distribution, Fig 1B. It is interesting to note that the way in which the present scheme is 

realized is due in part to this practical constraint.  

  The combination of these stages presented here is, to the best of our knowledge, unique and novel. 

Moreover, the formulation of the second stage is conceptually very different from our previous approach 

(16), see Figure 1B.  

 The first and third stages of the proposed scheme are well known but these stages, alone or 

together, are not sufficient for mapping nonCentral Chi signals to Gaussian signals without the second 

stage. The three stages used in the proposed scheme in a sense form an irreducible set of steps that is 

necessary to map noisy nonCentral Chi signals to noisy Gaussian signals. While different fitting or 

smoothing methods may be used in the first stage, the last two stages are strictly mathematical and fixed 
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even though there exists several different iteration scheme for finding the fixed point of the underlying 

signal intensity, see Appendix D.  

  In the second stage, we should point out that the suggested modification to the fixed point formula of 

the underlying signal intensity for the special case in which the “average value” of the magnitude signals 

is below the noise floor can be further improved. Although we have provided a theoretical justification 

for this modification, we believe further studies are needed to investigate other approaches to find the 

fixed point estimate for this particular situation.  

 The examples illustrated above clearly show the feasibility and effectiveness of the proposed scheme 

in mapping noisy magnitude signals to noisy signal intensities. The proposed scheme can be extended to 

transforming any Gaussian-derived noisy signals, e.g., Rayleigh, Rician, nonCentral Chi, and nonCentral 

Chi-squared distributed signals, to noisy Gaussian signals by finding the specific fixed point formula 

used in the second stage.    

 The basic idea of our approach is general and can be easily adapted to many MRI and non-MRI 

applications, e.g., the Laser Interferometric Gravitational Wave Observatory (LIGO) (39,40) and 

communication systems (31) , by selecting an appropriate data smoothing method that is optimal for the 

application-specific sampling space. For example, the penalized spline model or the wavelet smoothing 

spline may be useful in the analysis of functional MRI data while spherical splines are particularly useful 

to diffusion tensor imaging and high angular diffusion imaging techniques (3-9,21). We should also point 

out that some algorithms of least squares estimation may need to be modified in order to handle negative 

values in the transformed data. For example, the nonnegative least squares approach, e.g., (41), may be 

needed to analyze the transformed signals.  

 Spline models are known for their flexibility in capturing unknown trends in the data but they 

come at the cost of slightly higher susceptibility to noise such as spurious oscillatory trends in the spline 

estimates. Therefore, optimal performance cannot be expected of any spline or regression models when 

the number of samples is very small, and simulation studies may be needed to get an initial assessment of 
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the number of samples needed for a particular experimental design. In this work, the GCV function was 

used as a smoothing criterion because it has several desirable properties, the most notable of which is that 

as the number of samples increases, the spline estimate obtained via the GCV becomes closer to the 

estimate that is obtained by minimizing the mean square error between the estimate and the unknown 

ground truth (27). Finally, the spurious trends in the spline estimates mentioned above can be partially 

removed if the transformed signals are fitted with some parametric functions based on a priori physical 

or mathematical model that is less flexible than the smoothing spline, e.g. mono-, bi- or tri-exponential 

functions for the one-dimensional diffusion data or the diffusion tensor model for the three dimensional 

diffusion data. 

 In quantitative MRI, anatomically or physiologically relevant parameters are usually estimated from 

a least squares model. As noted in the introduction, the Gaussian-distributed noisy signals are of interest 

here rather than the Gaussian-derived random signals because the Gaussian-distributed noisy signals are 

generally more amenable to statistical treatment based on the principle of least squares, e.g., (42-44). It is 

important to point out that one of the basic assumptions in a least squares model is that random errors 

follow a Gaussian distribution. The principle of least squares is very powerful because of its 

mathematical tractability not only in parameter estimation but also in hypothesis testing and confidence 

interval estimation. Further, the least squares and maximum likelihood estimators are equivalent under 

the assumption of normality of random errors (45).  

  In this work, we have presented a novel approach for transforming noisy nonCentral Chi signals to 

noisy Gaussian signals, thus making least squares approaches uniformly applicable for analyzing MRI 

data. The present approach is a major advance in facilitating and improving all subsequent data analysis 

and processing steps in a quantitative MRI pipeline. 
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APPENDIX A 

PENALIZED SPLINE 

A penalized spline function with a truncated polynomial basis (25) of degree p   and K   knots at 

},,{ 1 Kκκ �  is given by: 

 ∑ κ−β∑ +β+β=
=
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0 )()( ,                                                                                                      (A1) 

where the operation, +)(x , returns x  if 0>x , and zero otherwise, p
jx +κ− )(  are the spline basis functions 

and jκ  are the knots.  

  If there are n  observations, },,{ 1 nyy � , sampled at },,{ 1 nxx � , then Eq.(A1) can be expressed in 

matrix notation as follows: 

�Xy = ,                                                                                                                                                     (A2) 

where the design matrix, X , is given by: 
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In practice, we usually normalize the coordinates, },,{ 1 nxx � , by the maximum of the absolute value of 

the elements in },,{ 1 nxx �  to avoid numerical instability associated with the QR decomposition of X . 

Therefore, the construction of X  is based on the normalized coordinates, and so are the knots. Therefore, 

the knots reported in the Results section have to be scaled accordingly. 

In the ordinary least squares estimation, the goal is to find � that minimizes 2
�Xy −  while, in the 

penalized spline estimation, the goal is to find �  that minimizes 

�D��Xy Tλ+− 2 ,                                                                                                                                  (A4) 

where T  denotes matrix or vector transposition, D  is a diagonal matrix whose first 1+p   diagonal 

elements are zero and the rest of the diagonal elements are unity and λ  is the penalty parameter (or the 
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smoothing parameter). The smoothed observation vector, λŷ , estimated from the penalized spline can be 

expressed as follows: 

ySy λλ =ˆ ,                                                                                                                                                 (A5) 

where  

TT XDXXXS 1)( −
λ λ+=                                                                                                                            (A6) 

is known as the smoother matrix. 

  The procedure presented thus far does not provide a means to find an optimal λ . Here, we use the 

GCV function (27) to select an optimal λ  , which will be denoted by GCVλ ; note that GCVλ  is a 

minimizer of the GCV function and the GCV function is given by: 

2)/)(1/()()( ntrRSSGCV λ−λ=λ S ,                                                                                                             (A7) 

where 2ˆ)( λ−=λ yyRSS  is the residual sum of squares, tr  denotes the matrix trace operation, and n  is 

the number of observations. For a numerically stable implementation of the penalized spline estimation, 

see Appendix C.  

 

 

 

 

 

 

 

 

 

 



 

 

 

ACCEPTED MANUSCRIPT 

 

 24 

APPENDIX B 

SPHERICAL SPLINE 

According to the expansion theorem of the spherical harmonics (46), any continuous function, ),( φθf , on 

the unit sphere together with continuous derivatives up to second order can be expanded in terms of the 

Laplace series of the spherical harmonics: 

∑ ∑ φθβ=φθ
∞

= −=0
),(),(

l

l

lm

m
l

m
l Yf                                                                                                                        (B1) 

where ),( φθm
lY  is the spherical harmonic of l th   degree and of m th order. The spherical harmonic can be 

expressed as a real rather than complex function, and this is given by (9,46): 
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Note that m
lP  is the associated Legendre polynomial of m th order, and the arguments of the spherical 

harmonic function are defined within these intervals: π<θ≤0  and π<φ≤ 20 . 

 The smoothing spherical spline (9,26) is built on the Laplace series with finite number of terms as 

well as on the following linear matrix structure: 

�Xy = ,                                                                                                                                                     (B2) 

where y  is an array of measurements sampled at )},(,),,{( 11 nn φθφθ � , and the design matrix, X , is made 

up of the spherical harmonics up to some maximum degree, maxl , and in a specific order that corresponds 

exactly to how the coefficients of the Laplace series are ordered in � , e.g., 

Tl
l ],,,,,,,,[ max
max

2
2

2
2

1
1

0
1

1
1

0
0 βββββββ= −−

��� .                                                                                       (B3) 

 The goal in the smoothing spherical spline estimation  (9,26) is to find �  that minimizes 

�D��Xy Tλ+− 2 ,                                                                                                                                   (B4) 

where D  is a diagonal matrix with each diagonal element takes on the value of 22 )1( +ll  where l  is the 
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degree associated with the corresponding element, m
lβ , in � . 

The solution of the above estimation has the same matrix structure as that of the penalized spline estimation in 

Appendix A. Note that in diffusion MRI, only spherical harmonics of even degree are of interest because of the 

assumption that the diffusion process has antipodal symmetry. Therefore, Eq.(B3) has to be modified accordingly. 
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 APPENDIX C 

A COMMON COMPUTATIONAL METHOD FOR THE PENALIZED AND SPHERICAL SPLINES 

The key computational problem in penalized spline estimation is to find an efficient matrix 

decomposition of the smoother matrix: 

TT XDXXXS 1)( −
λ λ+= .                                                                                                                          (C1) 

 Our approach in computing the smoother matrix is slightly different from that of (25) in that we use 

the QR decomposition to factor X  rather than the Cholesky decomposition to factor XXT .  

 Let the QR decomposition of X  be RQ  where Q  is an orthogonal matrix, i.e., IQQ =T , and R  is 

an upper triangular matrix. Note that I  is the identity matrix. Substituting RQ  into Eq.(C1), we have: 

TTT QRDRRRQS 1)( −
λ λ+=  

TT QDRRIQ 11)( −−−λ+= .                                                                                                                   (C2) 

At this stage, the singular value decomposition (SVD) of 1−−≡ DRR� T  is needed, which will be 

denoted by TV�U� ≡ . Note that �  is a diagonal matrix and its diagonal elements are the singular 

values of � . Further note that VU =  because �  is a symmetric matrix. Finally, the smoother matrix is 

given by: 

T)()( 1 UQ�IUQS −
λ λ+= , 

     TMWM= .                                                                                                                                   (C3) 

where UQM =  is an orthogonal matrix and W  is a diagonal matrix and its diagonal elements are 

defined by 
iiiiW ∆λ+= 1

1 . Since M  is an orthogonal matrix, )( λStr  is simply ∑= ∆λ+i ii
tr 1

1)(W . In practice, 

the factor M may be precomputed and only the diagonal matrix W  needs to be updated during the 

optimization search for GCVλ . 
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APPENDIX D 

AN IMPLEMENTATION OF THE FIXED POINT FORMULA OF THE UNDERLYING SIGNAL 

INTENSITY 

In this appendix, we provide an implementation of the fixed point formula of the underlying signal 

intensity, which is based on Newton's method of root finding. It begins with an iteration scheme of the 

following form: 

),ˆ,ˆ|(

),ˆ,ˆ|(
),ˆ,ˆ|(1 Nmf

Nmf
NmK

gk

gk
kgkk ση′

ση
−η=ση≡η + ,                                                                                      (D1) 

where η−ση=ση ),ˆ,ˆ|(),ˆ,ˆ|( NmgNmf gg , f ′  denotes the first order derivative of f  with respect to η , 

and g  is defined in Eq.(11).  The function, ),,|( NmK ση , can be further simplified to the following 

expression: 
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The basic algorithm of the above iteration is given in Table 1. It is clear from Eq.(D2) that the expression 

is different from that of (16). 

  We should note that there are other iteration schemes for finding the fixed point of the underlying 

signal. Here, we provide another iteration scheme also based on the Newton’s method: 
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The expression above is derived directly from Eq.(7). Note that Table 1 can be easily adapted for 

Eq.(D3) instead of Eq.(D2).  
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Fig. 1 (A) A schematic diagram of the proposed scheme. (B) A schematic diagram of the two possible approaches that can be 

used to map nonCentral Chi signals to Gaussian signals. The approach using the samples that are drawn from the same 

distribution (the bottom-left route) is based in part on (16) while the approach using the samples that are drawn from different 

distributions (the top-right route) is the proposed scheme. The former route is ideal for simulation studies where p can be made 

much greater than q, but it is not useful in practice because it is rare to have a large number of samples that are drawn from the 

same distribution. In fact, q is generally greater than p. Nevertheless, as the sample size increases we expect the two approaches 

to produce the same final results, which are the sample mean and the sample SD that are obtained from each column of 

transformed signals, g’s, above.  

 

Fig. 2. (A) Histogram of 20000 random signals generated from a Rician distribution. (B) Histogram of the transformed signals. 

 

Fig 3. (A) The expected value of the magnitude signal evaluated with a known Gaussian noise SD of 100 unit is shown as a blue 

curve, and the gray box and the error bar at each b-value represent the sample mean and the sample standard deviation that are 

obtained from each column of  noisy magnitude signals, m’s, shown in Figure 1B. (B) The sample mean and the sample standard 

deviation of the spline estimates. (C) The red curve is the ground truth, and the sample mean and the sample standard deviation 

of the fixed point estimates. The gray box and the error bar at each b-value represent the sample mean and the sample standard 

deviation that are obtained from each column of  transformed signals via the proposed method (D), g’s, shown in Figure 1B, and 

via the method of Gudbjartsson and Patz (19) (E). 

 

Fig 4. The estimated Gaussian noise SD as a function of b-value with two Monte Carlo runs under the same simulation 

conditions but with two different sample sizes—30 and 98.  

 

Fig 5. (A) A collection of 2476 noisy magnitude signals sampled from 50 s/mm2 to 5000 s/mm2 with a gap of 2 s/mm2. These 

noisy Rician signals are generated with a known Gaussian noise SD of 100. (B) The transformed signals obtained through the 

proposed method. (C) The transformed signals obtained through the method of Gudbjartsson and Patz (19). (D) The noisy Rician 

signals are fitted with both the mono-exponential and bi-exponential models, and the results are indicted in the panel above. The 

blue curve is the expected value. (E) The transformed signals obtained through the proposed method are fitted with a mono-

exponential model and the resulting curve is indicated above with an arrow. The red curve is the ground truth. (F) The 

transformed signals obtained through the method of Gudbjartsson and Patz (19) are fitted with both the mono-exponential and bi-

exponential models, and the results are indicted in the panel above. The red curve is the ground truth. 
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Fig 6. (A) The underlying signal intensity from a single tensor model as a function of spherical coordinates evaluated with a 

constant b-value of 3000 s/mm2. (B) The expected value of the Rician signals (with the known Gaussian noise SD of 100) as a 

function of spherical coordinates. (C) The contour plot of (A) and the color-coded spherical coordinates of all the unit gradient 

vectors. (D) The color-coded dots are those shown in (C) and are arranged in an ascending order of signal intensity. The blue 

dots are the corresponding expected value (first moment of the Rician distribution with a Gaussian noise SD of 100). (E) Those 

expected values shown in (D) are shown here as blue triangles, and the transparent box and the error bar at each b-value 

represent the sample mean and the sample standard deviation that are obtained from each column of  noisy magnitude signals, 

m’s, shown in Figure 1B. The transparent box and the error bar at each b-value represent the sample mean and the sample 

standard deviation that are obtained from each column of  transformed signals, g’s, via the proposed method (F), as shown in 

Figure 1B, and via the method of Gudbjartsson and Patz (19) (G). Each column of transformed signals in this case shares the 

same spherical coordinates. The color-coded dots are the ground truth values and are those shown in (C) and (D). 

 

 

Fig 7. Experimental data. (A) A diffusion-weighted image of a hippocampus with a red square indicating the four different pixel 

locations where the noisy magnitude signals of each pixel (with different b-values) are analyzed using the proposed method. The 

results are shown in (B), (C), (D) and (E). In each of the figures (B,C,D and E) above, the blue points are the noisy magnitude 

signals. Further, each of the blue curves is a smoothed curve obtained through a bi-exponential fitting to the noisy magnitude 

signals while each of the red curves is a smoothed curve obtained through a bi-exponential fitting to the transformed noisy 

signals (red points). Based on the estimated Gaussian noise SD and the assumption that each of the red curves is a ground truth 

curve, the expected value (or the first moment) of a Rician distribution as a function of b-values can be computed and is shown in 

dark gray. 

 

Table 1. The algorithm for finding the fixed point estimate of the underlying signal intensity. 
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____________________________________________

The algorithm for finding the fixed point 

estimate of the underlying signal intensity

The input variables are m, σ  , and N, and 

the out variable is η.

____________________________________________

1:   Procedure FixedPointFinder( m, σ  , N )
2:
3:   counter = 500
4:   eps     = 1.0 x 10
5:   delta   = β  σ   - m

6:  
8:   if (delta == 0) { return 0 }
9:
10:    if (delta > 0) { m = β  σ   + delta }
11:    else { m = m }
12:    
13:  t0 = m   
14:  t1 = K( t0 | m, σ  , N)

15:  while( | t0 - t1 | > eps ){
16:       t0 = t1
17:       t1 = K( t0 | m, σ  , N)

18:       counter = counter - 1
19:       if( counter == 0 ) break
20:  }  
21:  
22:  if ( delta > 0 ) { return -t1 } 
23:  else { return t1 }
_________________________________________________
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