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Summary. Diffusion Tensor MRI (DT-MRI) measurements are a discrete noisy
sample of an underlying macroscopic effective diffusion tensor field, D(x), of water.
This field is presumed to be piecewise continuous/smooth at a gross anatomical
length scale. Here we describe a mathematical framework for obtaining an estimate
of this tensor field from the measured DT-MRI data using a spline-based continuous
approximation. This methodology facilitates calculation of new structural quantities
and provides a framework for applying differential geometric methods to DT-MRI
data. A B-spline approximation has already been used to improve robustness of
DT-MRI fiber tractography. Here we propose a piecewise continuous approximation
based on Non-Uniform Rational B-Splines (NURBS), which addresses some of the
shortcomings of the previous implementation.

18.1 Introduction

Diffusion tensor MRI provides a measurement of an effective diffusion ten-
sor of water, Deff, in each voxel within an imaging volume [1]. These diffusion
measurements are inherently discrete, noisy and voxel-averaged. Here we treat
DT-MRI data as discrete noisy samples of an underlying macroscopic piece-
wise continuous diffusion tensor field, D(x), where, x = (x, y, z) are the spatial
coordinates in the laboratory frame of reference. This field is presumed to be
piecewise continuous or smooth at a gross anatomical length scale, an as-
sumption based on the known anatomy of many soft fibrous tissues, including
white matter, muscles, ligaments, and tendons. One of our objectives is to de-
velop a mathematical framework to estimate this piecewise continuous field,
D(x), from discrete noisy DT-MRI measurements. A reliable estimate of this
field enables us to use differential geometric methods directly. Additionally, it
enables computation and display of intrinsic architectural or microstructural
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MRI features based upon tissue fiber geometry [2, 2]. Some previously sug-
gested characteristics are curvature and torsion of the individual fiber tracts,
as well as the properties of the tangent field, e.g. twisting, bending, and di-
verging [4]. Here we focus on estimating curvature of the fiber tracts (tangent
field) but also show the architectural features of the tensor field itself. Esti-
mating such quantities accurately using measured diffusion tensor data and
interpolation is difficult, since their evaluation requires spatial differentiation
of noisy tensor quantities. Below we show that they can be calculated more
reliably and robustly using continuous tensor field approximation.

Originally, estimating the tensor field from sample tensor data was per-
formed using B-spline approximation [5]. It was used with DT-MRI data to
elucidate fiber tract trajectories, which can be done by integrating the fiber
direction (vector) field [9]. Other methods for fiber tracking at the time uti-
lized interpolation or directly followed the local fiber orientation [6, 7, 8],
with exception of Poupon et al. [11] who used a regularization method. In-
tegrating a noisy direction vector field can result in fiber trajectories that
wander off course. Using a smoothed representation of the direction field,
obtained from the continuous representation of D(x), however, can improve
the fidelity of tract following [9]. Establishing connectivity and continuity of
neural pathways can also benefit from the development of this specialized ten-
sor field processing methodology. These tasks require determining continuous
links between different regions of the brain, or assessing disjunctions between
them. Finally, there are a number of generic image processing tasks one would
like to perform on high dimensional DT-MRI data, since no signal processing
framework currently exists for these. These include: filtering noise, sharpen-
ing edges, detecting boundaries; compressing, storing and transmitting large
image files; interpolating and extrapolating tensor data; resampling data at
different resolutions (e.g., rebinning); extracting textural features, segment-
ing images, clustering data, and classifying tissues; and detecting statistical
outliers. The B-spline approximation provides the mathematical underpin-
nings for performing these tasks both rapidly and efficiently [10]. However,
the problem with it is that it introduces smoothing in the data uniformly
and isotropically and is incapable of dealing with discontinuities. The smaller
structures as well as sudden or rapid changes (edges, high curvatures, etc.) will
be distorted at the levels of approximation/smoothing required to alleviate the
noise effects. To achieve a more efficient approximation we use Non-Uniform
Rational B-Splines (NURBS). They allow for discontinuities and can describe
complex piecewise continuous geometrical shapes with many fewer parameters
than the original B-spline approximation.

Although there are other approaches for finding an approximate tensor
field, in this chapter we focus on a mathematical framework for continuous
approximation based on splines. A number of other methods for tensor field
approximation exist, for example see references [11, 12, 13, 14]. Also, Chap. 17
by Moakher and Batchelor and Chap. 19 by Weickert and Welk present
novel and sophisticated ways of interpolating and regularizing tensor fields.
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However, the goal of this chapter is not to review comprehensively the tensor
field approximation methods, instead, we describe and compare two different
spline methods for computing approximated tensor fields: (i) the previously
proposed method using B-splines and (ii) a new method that uses NURBS.

18.2 Continuous Approximation and Representation
of Discrete Tensor Data

The two approximation methods we focus on, (i) and (ii), have many com-
mon features which we generalize here. In both, to construct a continuous
approximation to a diffusion tensor field, we start with a set of basis functions
(approximants) whose linear combinations define an approximation space. In
[5], to make the approximation scheme practicable, we required it possess the
following properties: (P1) The set of basis functions must be sufficiently rich
to represent the diffusion tensor field precisely and accurately; (P2) The math-
ematical description of the approximation space is computationally tractable;
(P3) The approximation of the diffusion tensor field is implemented using al-
gorithms that are fast, robust, and accurate. In this chapter we also require
(P4) the approximation scheme must be able to produce a piecewise contin-
uous representation. We will see later that this can be done using NURBS,
which will provide even richer set of basis functions (strengthening P1), how-
ever, the requirement for speed in P3 will have to be relaxed.

To meet these requirements in general, we use atomic spaces [16], which are
a generalization of shift invariant spaces. In particular, we choose an atomic
space, SA(x, B), such that any function in that space, T (x) is of the form

T (x) =

Nr∑

i=1

Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

Pm(i, j, k)×Bm(x,Qi,j,k) (18.1)

In other words, each approximant in the approximation space, T (x), is a
weighted sum of a finite number of tensor field generators , Bm(x,Qi,j,k), m =
1, . . . , Nr. The Pm(i, j, k) are the coefficients for the total of NrNxNyNz basis
functions and are the first set of parameters of the approximation model. The
other parameters that describe the basis functions are lumped into Qi,j,k, and
can be different for different basis functions as indicated.

We showed previously that finding the tensor field generator could be
reduced to finding a continuous representation of each of its individual tensor
components [10]. To represent the field of the symmetric diffusion tensor, we
proposed the following six orthogonal tensor-field generators used in (18.1) to
define the tensor approximation space:
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B1(x)= b1(x)




1 0 0
0 0 0
0 0 0


, B2(x)= b2(x)




0 0 0
0 1 0
0 0 0


, B3(x)= b3(x)




0 0 0
0 0 0
0 0 1




B4(x)= b4(x)




0 1 0
1 0 0
0 0 0


, B5(x)= b5(x)




0 0 1
0 0 0
1 0 0


, B6(x)= b6(x)




0 0 0
0 0 1
0 1 0




(18.2)
Each tensor field generator Bm(x), can now be expressed in terms of a

single function, bm(x), which now serves as a basis for the ith component of
the tensor field. Based on the choice for this function we distinguish between
two implementations for the field generators; the original one that used B-
splines [5] and the new one that uses NURBS.

18.3 B-Spline Approximation

With the B-splines we choose bm(x) to be a product of one-dimensional func-
tions, i.e., bm(x) = fm(x)gm(y)hm(z). The basis functions are now separable
in two ways, first with respect to the components of the tensor, and second
with respect to the coordinates. Finding the continuous field D(x) can be
reduced to applying a one dimensional approximation algorithm along x, y
and z coordinates sequentially within the imaging volume for each component
[10].

The fm(x), gm(y), hm(z) are B-spline functions [17, 19] which are obtained
by repeated convolutions of the simple box function (Fig. 18.1a) The number
of convolutions determines the order of the B-spline, i.e., linear, quadratic,
cubic, etc. The use of the separable basis function provides also an easy way
to account for the nonuniform resolutions in x, y, and z directions in some
DT-MRI acquisitions.

(a)

p=3
p=1

p=2
(b)

Fig. 18.1. (a) 1-D B-spline functions of degree p = 0 through 3. The B-spline of
degree n is obtained by n-fold convolutions of the box function (p = 0) as indicated.
(b) 2-D separable B-spline basis functions with degrees p = 1, 2, and 3
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Using B-spline functions has several advantages: B1) the generators have
finite spatial extent (i.e., finite support), which speeds up and simplifies digital
processing algorithms; B2) they can be evaluated fast in a recursive fashion
(as well as analytically, faster) in terms of splines of lower degree; B3) the
derivatives of B-splines can be expressed recursively in terms of the original
B-splines; B4) by changing the polynomial order or degree of the B-spline
functions, we can control the degree of smoothness and differentiability of
our continuous approximation; B5) by adjusting the (scale) parameters of
the B-spline representation we can choose between interpolation (fitting data
points exactly) and approximation (fitting data points approximately); B6)
invariant representation under affine as well as perspective transformations;
B7) possess the convex-hull property; and B8) B-spline functions naturally
generate multi-resolution structures that are useful in analyzing signals and
images at different length scales.

Additionally, the separable multi-dimensional spline functions behave well
for the cubic and higher order splines as demonstrated in Fig. 18.1b. It shows
that the two-dimensional spline function bm(x) constructed as a product of
linear one-dimensional B-splines is anisotropic (i.e., shows preferential direc-
tions) and will produce artifacts when used for scaling (i.e., smoothing) a
general tensor field. However, when the cubic B-splines are used these ar-
tifacts are negligibly small and the bm(x) constructed in this way perform
nearly as well as the true two-dimensional isotropic basis functions, but are
much more computationally efficient to implement. In our application we use
mainly the cubic B-splines. If higher order derivatives are needed, it is advis-
able to use B-splines of higher polynomial order than three to preserve the
isotropic properties of the multidimensional basis functions.

Another advantage of using B-splines is that they need very few additional
parameters. In fact the simplest implementation can consist of only one para-
meter, the scale parameter, ∆, which controls the smoothness of the model,
and indicates the degree of parameter reduction in the model. For example,
when the scaling parameter ∆ equals 0.25, the B-spline model is a projection
of the original data to a 4-fold smoother space and in 1-D case requires 4
times less parameters. Typically, we use three scale parameters, ∆x, ∆y, and
∆z, which control the degree of smoothness along each direction. The shifts
on a uniform grid within the imaging volume, are indicated by k, l, and m.
The generator for B-splines in this case is written as

Bm(x,Qi,j,k) = Bm(x,∆) = Bm(x∆x − i, y∆y − j, z∆z − k) (18.3)

The optimal choice of the coefficients, Pm(i, j, k), for a given choice of the
B-spline and scale parameters is the one that minimizes the least-squared
difference between the original tensor data and the approximated diffusion
tensor field [10].
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18.3.1 Implementing B-Spline Approximation

Once the polynomial order of the B-spline is chosen (generally cubic), then for
a given DT-MRI data set, we calculate B-spline coefficients in the x, y, and
z-directions for each of the six independent diffusion tensor elements using
the spatial separability property described above. Thus, we perform 18 1-D
transforms on the tensor data set. The 1-D B-spline approximation we use is
based on a scale conversion algorithm which finds the optimal approximation
of the original signal at a given scale ∆ [15, 17, 18, 19]. The only difference
in our implementation is the exclusion of the post-filtering step, as described
in the block diagram of the algorithm in [20]. The task of this algorithm is
to find the minimal least square approximation of the original signal in the
space scaled down by factor ∆. This algorithm efficiently obtains the B-spline
coefficients by projecting the B-spline expansion of the original signal onto
the scaled space basis. This algorithm is not exact, i.e., it does not provide
a mathematically precise projection between the two spaces. However, the
deviations from the exact solution are mostly formal in nature. In practice,
the performance of this algorithm is nearly optimal, while gaining in speed
and efficiency. This and other details of our implementation are described in
the Appendix of [5].

An important step in the implementation is also to choose the appropriate
scale parameters. If the scale parameters equal 1, the continuous represen-
tation becomes interpolation; if one or more of the ∆i is less than 1, the
continuous representation becomes a data reduction technique that approxi-
mates or fits the discrete tensor data. Since the ∆ is the ratio of the number
of unknown parameters to the number of measured data points for the 1-D
approximation the scale parameters can only take on specific rational values,
{∆}N , which designates the rational number closest to ∆ that contains N
in the denominator. For DT-MR images N is usually large enough to allow
sufficient precision in the range of the scale parameter values between 0 and
1. We reduce the number of scale parameters by choosing only one ∆ and
by assigning the three values of the model as {∆}Nx

, {∆}Ny
, {Vr∆}Nz

, where
Vr is the voxel aspect ratio (Vr ≈ 2) in our case), thus making the grid of
B-spline coefficients more uniform. Ideally, the value of ∆ should be twice the
ratio of the maximal spatial frequency of the pure (noise-free) signal and the
sampling frequency. Note, however, that our approximation method is not a
simple low-pass filter and the projecting onto a smoother space is not the
same as smoothing. The first one provides the least square fit while the latter
does not, in general. In cases where structures within the image appear at all
length scales, the choice of ∆ is empirical as the structures on the small scales
(single or a few voxels) must be blurred in order to improve estimates of large
structures of the diffusion tensor field elsewhere.

The B-spline approximation, although successfully applied to the fiber
tracking application [9] (see Fig. 18.2), does not provide a reliable frame-
work for applying general methods of differential geometry to DT-MRI data.
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Fig. 18.2. Fiber tracts result from integrating along the tangent direction of the
B-spline approximated tensor field, and with starting points chosen from the two
circular regions in the area of pons. The obtained result agrees well with known
anatomical data. (See colour plates.)

Calculations of curvature, torsion and other differential geometric quantities
were highly unreliable [5].

18.4 Non-Uniform Rational B-Splines (NURBS)

Non-Uniform Rational B-Splines, or NURBS as they are widely known, are a
powerful tool to describe and model complex curves and surfaces using a small
number of parameters [21]. It is a much richer set of basis functions which
generalize many concepts of ordinary B-splines. To introduce the NURBS
model we focus on the 1-D model, since here too the multidimensional models
are derived using products of basis functions.

There are three main groups of parameters that describe a NURBS model.
The first is the knot vector, U , which controls the non-uniformity along a
particular dimension, the second is a set of weights, W, one for each basis
functions, and the third are the ‘control points’, which correspond to the B-
spline coefficients of our model, but we adopted this commonly used jargon.

The knot vector is a set of monotonically nondecreasing numbers in the
real interval [a, b] which parametrizes a given curve, i.e.,

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, ..., ui−1, ui, ui+1, ..., um−p−1, b, ..., b︸ ︷︷ ︸
p+1

} (18.4)
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As can be seen some values can be repeated and an important quantity is
the multiplicity of the knot, nm, which is equal to the number of times a
given value is repeated. In this way it is possible to control the continuity of
the curve. Each basis function is Ck-continuous, k = p − nm at a knot with
multiplicity nm, and C∞ continuous elsewhere. The p + 1 repetition of the
end points of the interval is just a statement that at the edges the curve is
discontinuous. Alternatively, one can lower the multiplicity at the end points
by using boundary conditions.

The set of basis functions is obtained using the recursive structure of the
B-splines except that now the factors in front of the interacting B-splines
of lower order are not constant but are functions of the knot vector. They
are called Non-Uniform B-Splines (NUBS). The NUBS basis functions are
obtained using the following recursion:

Bi,p(u) =

(
u− ui

ui+p − ui

)
Bi,p−1(u)−

(
u− ui+p+1

ui+p+1 − ui+1

)
Bi+1,p−1(u)

Bi,0(u) =

{
1 u ∈ [ui, ui+1)
0 otherwise

(18.5)

and the kth derivate at point u can be obtained using

B
(k)
i,p (u) = p

(
B

(k−1)
i,p−1 (u)

ui+p − ui
−

B
(k−1)
i+1,p−1(u)

ui+p+1 − ui+1

)
(18.6)

Figure 18.3a shows a set of NUBS for the given values of spline degree
and the knot vector. Once a set of NUBS is obtained we use the second set of
parameters, W, which are the weights associated with each of the NUB basis

0 0.2 0.4 0.6 0.8 1

(a)

0 0.2 0.4 0.6 0.8 1

(b)

Fig. 18.3. (a) A set of 1-D NUB-basis functions with p = 2 and the knot vector
U = [0 0 0 0.1 0.6 0.6 0.8 1 1 1]. (b) A set of rational basis functions (NURBS)
obtained using the NUBs in (a) and by changing the weights for the 3rd, 4th and
5th basis function to 0.2, 0.5 and 5, respectively. The remaining NUBs had weights
w = 1. (See colour plates)
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functions, to obtain the rational basis functions (Fig. 18.3b). The rational
basis function Ri,p(u) corresponding to the ith NUB basis function, Bj,p, is
obtained as

Ri,p(u) =
Bi,p(u)wi

n∑

j=0

Bj,p(u)wj

(18.7)

The third set of parameters are the coefficients Pm of the spline model, or
in NURBS parlance, control points. The control points are actually tuplets of
B-spline coefficients grouped together to reflect the geometry of the model.
For example, for a 3-D space curve the B-spline coefficients of the x(u), y(u)
and z(u) functions are grouped together to form a 3-D control point, Pi =
(P i

x, P
i
y, P

i
z). The NURBS curve model C(u) can now be written as

C(u) =

n∑

i=0

Ri,p(u)Pi (18.8)

Once the weights and the knot vector are chosen, which we discuss below,
the rational basis functions Ri,p(u) are determined, and the model in (18.8)
is linear. Thus, when solving this linear system for control points, here too
we can choose between interpolation (number of control points is the same
as the number of data points) or the least square fit (fewer control points).
The NURBS curve model can be extended using the function products, as
described in Sect. 18.2, to surfaces, volumes and ultimately to tensor fields.
Here we finally write our NURBS tensor model in terms of control tensors,
Dc

i,j,k,

D(x, y, z) =
n∑

i=0

m∑

j=0

l∑

k=0

Ri,j,k(x, y, z)Dc
i,j,k (18.9)

where Ri,j,k(x, y, z) is a new 3-D rational function defined from NUBS, which
now require three different knots vectors U, V, and S and can be of different
degree in each dimension (p, q, r), i.e.,

Ri,j,k(x, y, z) =
Bi,p(x)Bj,q(y)Bk,r(z)wi,j,k

n∑

i′=0

m∑

j′=0

l∑

k′=0

Bi′,p(x)Bj′,q(y)Bk′,r(z)wi′,j′,k′

(18.10)

Equation (18.9) is equivalent to (18.1), except that here the Nr independent
components of the tensor field are lumped together into a control tensor. This
geometric interpretation can be very useful. For example, since the convex
hull property has much tighter bounds in the case of the NURBS model we
can use positive semidefiniteness of the control tensors to enforce the same
property for the tensor field at any point in space.

The NURBS model shares all the good properties of the B-spline model
(B1-B8) but has important additional advantages: (N1) precisely represents
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a large family of mathematical curves, piecewise polynomials, conic sections
(circles, ellipses, hyperbolas, parabolas), Bezier curves, and very efficiently
arbitrary shapes (N2) can control the degree of smoothness and continuity,
including discontinuous functions, thus suitable for piecewise continuous rep-
resentation.

However, although they enable fast evaluation in a recursive fashion at
any point in the space (like B-spline), obtaining the appropriate parameters
of the model is much harder now. We assume here that one wants to use the
properties N1-N2, otherwise the NURBS model can be simplified. After all,
the B-splines are a special case of NURBS with uniformly spaced knot vector
and all weights equal. Here we mainly refer to NURBS as model that requires
non-uniform knots and varying weights.

As mentioned above, we obtained the control points by solving the linear
system in (18.8). The knot vector is initially chosen based on the spacing
between the data (1-D case), but later knots are randomly added or removed.
The most difficult part in fitting the NURBS model is to determine the optimal
set of weights. Here, we initially set the weights to 1 and after obtaining the
desired set of control points we use simulated annealing to obtain the new set
of weights, keeping control points and the knot vector fixed. After randomly
adding or removing a single knot we obtain a new knot vector and with the
new weights calculate the new set of rational basis functions, Ri,p(u). This
procedure is repeated until satisfactory solution is obtained.

In the case of one dimensional data one can still obtain useful NURBS
fits relatively quickly. Figure 18.4a shows a fit to synthetic 2-D data (noisy
samples of two different 2-D curves were joined together to create an apparent
discontinuity). The solid line indicates the fit to a NURBS model and one can
see that even with a discontinuity, the NURBS describes the curve very well
with only 14 control points. The B-spline model was incapable of describing
such curve.

The image inset in Fig. 18.4b shows a 2D-projection of a tract (solid yellow
line) onto a slice of DT-MRI volume with color coded orientations. The tract

P

P

P

P
P P

P

P

P P

P

P

P
P

P

Control
Polygon

Control
Points

(dashed line)

(labeled      )

Discontinuity

Fitted
Curve

(solid line)

Noisy
Data
(circles)

(a) (b)

Fig. 18.4. (a) 2-D curve NURBS model fit to noisy data (b) 3-D curve NURBS
model fit to fiber tracking data, indicated on the inset image. (See colour plates)
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passes through the corpus callosum and spans from one end of the brain to
the other. Figure 18.4b shows side by side the same tract in 3-D described
with NURBS model (left) and B-spline model (right). The B-spline model,
parameterized with B-spline coefficients needs a total of 3*130 = 390 parame-
ters to produce as faithful representation of the space curve as the NURBS
model did with only 15 control points (total of 60 parameters). Such a sparser
parameter space enables more efficient explorations of connectivity, and more
importantly can significantly alleviate the noise effects. In the next section we
compare B-spline and NURBS models on the important example of estimating
local curvature of the fiber tract.

18.5 B-spline vs NURBS Comparison
on Curvature Estimation

Estimating curvature is problematic for noisy data. The curvature of a fiber
tract, or a space curve, is defined as

κ(u) =

∣∣∣∣
dt(u)

du

∣∣∣∣ =
|ṙ× r̈|
|ṙ|3

(18.11)

where r = r(u) is the position vector parameterized by u, and t(u) is the
tangent of the space curve at r(u). Since higher derivatives are involved, this
estimate is very sensitive to noise (each derivation acts as a linear ramp high
pass filter). Another look at the problem is that the fiber tracts are not poly-
nomial and their estimates are noisy. Thus in order to faithfully depict a given
curve one has to represent curves with a relatively high number of B-spline
coefficients, thus sampling the noise often. The curvature of noise is infinite
and thus the local estimates of the radius will be biased towards zero, besides
being also very noisy. We reported previously that the B-spline approximation
did not produce satisfactory results in this regard. Here we compare B-spline
estimates with NURBS estimates.

We test curvature estimation on a simulated space curve consisting of
four circular arcs with radii Rc = 100,10,5,35 in arbitrary units. We then
sampled 50 points with sampling error of 1%, which are indicated as solid
black circles on the inset in upper right corner of Fig. 18.5. The inset also
shows the 15 control points of the fit, together with the ‘ideal’ control points
(light blue circles) which could describe such curve exactly. There are total of
10 ‘ideal’ points but not all are shown since in many cases they are very close
to the control points obtained from the fit. We see that the NURBS fitting
routine can be improved further, however, even this imperfect fit provides
significant improvement over the B-spline approximation. The solid black line
in Fig. 18.5a indicates the true radius, with the exception of the three inflection
points where the curvature is infinite. The solid blue line indicates the NURBS
estimates outperforms the B-spline approximation for any level of smoothness,
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Fig. 18.5. Radii of curvature obtained from a noisy data set of points sampled
from a curve consisting of four circular arcs (see the inset in upper right corner)
with radii 100,10,5,35. The sampling error was 1%. The solid black line indicates the
true radius (at inflection points the radius is infinite). The solid blue line indicates the
NURBS fit, while B-spline approximation estimates are labeled as follows: ∆ = 1,
i.e., interpolation (green triangles), ∆ = 0.5 (purple dots), or ∆ = 0.2 (red solid
line). Note that the original curve could have been described with only 10 control
points (the light blue circles, not all shown). (See colour plates)

as described in the caption. The spike in the NURBS estimate occurs at the
inflection point where the radius of curvature is infinite.

In Fig. 18.6 we determined the radius of curvature for every voxel in one of
the slices using both NURBS estimate and the B-spline approximation with
∆ = 0.2 (since such choice produced relatively stable estimates in Fig. 18.5,
however with significant loss in resolution. This loss of resolution is evident in
Fig. 18.6a, where it appears that very little variation of the radius of curvature
is occurring, for example, in the splenium of the corpus callosum. The NURBS
estimate in 18.6b does show significant variation. Even though the lower cur-
vature structures appear ‘spotty’ in the NURBS estimate they indicate errors
of only 20 % (a good precision for the curvature radius).

18.6 Discussion and Conclusion

The continuous approximation methodology takes noisy, voxel-averaged, and
discrete statistical samples of an underlying macroscopic effective diffusion
tensor field as its input, and produces a piecewise continuous, smooth tensor
field approximation as its output. Besides being able to recover the original
noiseless tensor field reliably, the approximation schemes substantially reduces
bias of the mean and variance of various quantities derived from the tensor
field, e.g., Trace(D(x)). This new methodology also facilitates following nerve
and other fiber tract trajectories in vivo. New MR features or parameters
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Fig. 18.6. Color coded images of the radius of curvature obtained at the center
of each voxel for the given slice using B-spline approximation with ∆ = 0.2 (left)
and NURBS (right), with colorbar indicating the scales. We see that the NURBS
estimates are capable of showing the spatial variation of the fiber curvature. Note,
that although the models are continuous, the estimates obtained from them are not
necessarily smooth. The pixelization in the image, however, is arbitrary and we could
have obtained the estimates at any point in space with the continuous models. (See
colour plates)

that characterize structure, architecture, and functional assessment of tissues
can be developed from this continuous representation of DT-MRI data. As
analytical functions are used to approximate the diffusion tensor field, we can
evaluate and display quantities such as the gradient tensors [5], which cannot
be evaluated accurately from noisy DT-MRI data.

18.6.1 Microscopic Field (Underlying) vs Macroscopic Field
(Voxel Averaged)

The microscopic tensor field is one that describes water diffusion on a micro-
scopic scale, whereas the macroscopic effective tensor field describes the tensor
field on a voxel scale. If we assume no intercompartmental mixing of spins, the
measured macroscopic tensor field is just the voxel-average of this microscopic
tensor field. While these macro and micro fields should be similar in regions
containing tissue whose distribution of fiber direction is uniform within the
voxel, in tissues whose distribution of fiber direction is non-uniform, such as re-
gions where fibers diverge or converge (splay), bend or twist, branch or merge,
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a significant disparity may exist between these fields. Generally, in these re-
gions, the macroscopic field will be a powder average of the heterogeneous
microscopic tensor field within a voxel. An important long-term goal is to
develop techniques to identify regions in which such powder averaging occurs,
and then attempt to infer the microscopic tensor field from macroscopic voxel-
scale measurements there using additional information from other sources [22]
(see also Chap. 5 by Alexander).

18.6.2 NURBS vs B-Spline

The B-spline approximation is not nearly as efficient as the NURBS model. Its
estimation of quantities involving higher derivatives is inaccurate and thus the
model is not adequate for applying differential geometric methods. Another
shortcoming of the B-spline approximation method is that it forces continuity
of the tensor field at boundaries or interfaces, where there is no physical
requirement to impose continuity. This results in high approximation errors
at the edges of the structures.

NURBS can account for piecewise continuity by modifying knot vector.
NURBS produce promising results for 1-D curves, and to some extent with
surfaces. However, to date, we have been unable to obtain an efficient ten-
sor model, mainly due to an extremely large parameter space and the very
rich model, which is difficult to fit (many local minima). It appears that the
NURBS methodology will have to be used differently than the B-spline ap-
proximation, and a long computation will be required to obtain the model,
using various stochastic fitting methods (simulated annealing, genetic algo-
rithms, etc.) Once the model is obtained it will be possible to explore its
geometry, tract fibers, and run various differential geometric models with al-
most the same efficiency as with B-splines. Work is underway to improve
NURBS fitting and at the same time to generalize this continuous tensor field
approximation to treat internal boundaries and discontinuities in the tensor
field more naturally and robustly by using control tensors that do not use the
actual coordinates x, y, and z for parameterization. In other words the control
tensor will contain information about its position in space. The tensor model
is now written as

D(u, v, s) =

n∑

i=0

m∑

j=0

l∑

k=0

Ri,j,k(u, v, s)Dc
i,j,k(ri,j,k) (18.12)

Effectively, the control tensor is now a 9-dimensional quantity (6 independent
tensor components plus 3 spatial dimensions).
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