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The Elliptical Cone of Uncertainty and Its Normalized
Measures in Diffusion Tensor Imaging

Cheng Guan Koay*, Uri Nevo, Lin-Ching Chang, Carlo Pierpaoli, and Peter J. Basser

Abstract—Diffusion tensor magnetic resonance imaging
(DT-MRI) is capable of providing quantitative insights into
tissue microstructure in the brain. An important piece of informa-
tion offered by DT-MRI is the directional preference of diffusing
water molecules within a voxel. Building upon this local direc-
tional information, DT-MRI tractography attempts to construct
global connectivity of white matter tracts. The interplay between
local directional information and global structural information is
crucial in understanding changes in tissue microstructure as well
as in white matter tracts. To this end, the right circular cone of
uncertainty was proposed by Basser as a local measure of tract
dispersion. Recent experimental observations by Jeong et al. and
Lazar et al. that the cones of uncertainty in the brain are mostly
elliptical motivate the present study to investigate analytical
approaches to quantify their findings. Two analytical approaches
for constructing the elliptical cone of uncertainty, based on the
first-order matrix perturbation and the error propagation method
via diffusion tensor representations, are presented and their
theoretical equivalence is established. We propose two normalized
measures, circumferential and areal, to quantify the uncertainty
of the major eigenvector of the diffusion tensor. We also describe
a new technique of visualizing the cone of uncertainty in 3-D.

Index Terms—Cone of uncertainty, diffusion tensor imaging
(DTI), eigenvector dispersion, normalized areal measure, normal-
ized circumferential measure.

I. INTRODUCTION

DIFFUSION tensor magnetic resonance imaging (DT-MRI)
is a noninvasive in vivo imaging technique uniquely ca-

pable of probing tissue microstructure in the brain [1]–[5].
DT-MRI has provided great impetus for quantifying and char-
acterizing changes in human brain morphology [5]–[8] and in
anatomical connectivity of white matter tracts [9]–[16].

Within an imaging voxel, the directional information of white
matter tracts is usually obtained from the major eigenvector of
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the diffusion tensor [1]. Using this local directional informa-
tion, DT-MRI tractography attempts to construct global anatom-
ical connectivity of white matter tracts. The interplay between
local directional and global structural information is crucial in
understanding changes in white matter tracts. With this end in
view, the cone of uncertainty (COU) was proposed by Basser
[17] as a local measure of tract dispersion, but the shape of
the cone had been presumed circular both in [17] and in later
studies [18]–[24]. For example, the noninformative prior in an-
gular space used by Behrens et al. [23] and the zeroth order di-
rectional uncertainty proposed by Parker et al. [24] were mod-
eled after directional dispersion that is symmetric or circular.
Although we have previously described an analytical method
based on error propagation via diffusion tensor representations
to account for asymmetry in tract dispersion [25], [47] the ex-
perimental observations by Jeong et al. [26] and Lazar et al.
[27], [28] that the cones of uncertainty in the brain are mostly
elliptical call for a closer investigation of analytical approaches
to support their nonparametric studies, which were based on the
bootstrap method. Since the dispersion is actually elliptical, the
proposed analytical local measure of tract dispersion has a crit-
ical role to play in both deterministic and probabilistic methods
of tractography [23], [24], [29]–[32].

To date, there are two analytical methods that can be em-
ployed to study tract dispersion—perturbation [17], [20], [29],
[33], [34] and error propagation via diffusion tensor representa-
tions [25], [47]. Although Hext [33] did discuss the asymmetry
of the dispersion of the eigenvector of a second order tensor, the
formulation he provides, as we will show, was not suitable for
practical computation and visualization because the covariance
matrix of the eigenvector was not explicitly given, which might
explain why it was not adopted in DT-MRI studies even though
his work was made known by Anderson [29]. Furthermore, the
formulation by Hext was based upon the ordinary linear least
squares method, which has been shown to be less optimal than
the nonlinear least squares method when applied to diffusion
tensor estimation [35]–[37]. We should also remark that pre-
vious DTI studies on tract or eigenvector dispersion [17], [20],
[29], [33] did not provide an explicit expression for the covari-
ance of the eigenvector of the diffusion tensor and these studies
were also based on the linear least squares method of DTI.

Based on our recent work [25], [47], we have identified
the covariance matrix of the major eigenvector of the dif-
fusion tensor as the most appropriate object for quantifying
local tract dispersion. In this paper, we will reformulate the
first-order matrix perturbation method used by Hext to obtain
the same covariance matrix obtained in [25] and [47]. The
reformulation has two very important roles—analytical as
well as practical. First, as a practical construct, it renders the

0278-0062/$25.00 © 2008 IEEE



KOAY et al.: THE ELLIPTICAL CONE OF UNCERTAINTY AND ITS NORMALIZED MEASURES IN DIFFUSION TENSOR IMAGING 835

technique of first-order matrix perturbation more suitable for
computing and visualizing the elliptical cone of uncertainty.
Second, as a theoretical construct, it enables the constructive
proof of the equivalence between the two covariance matrices
obtained from two different approaches—the first-order matrix
perturbation and the error propagation method via diffusion
tensor representations.

Although the covariance matrix of the major eigenvector con-
tains all the necessary information for constructing the ellip-
tical COU, a normalized scalar measure of the elliptical COU
may also be useful in understanding tract dispersion and in dis-
playing uncertainties of the cones as an image. To this end,
we propose two new normalized measures—the normalized cir-
cumferential and areal measures of the elliptical COU. We also
propose a new approach for constructing the COU that would
resolve the issue of overlapping cones in neighboring locations.

II. METHODS

A. Review of Nonlinear Estimation of the Diffusion Tensor in
Different Tensor Representations

Diffusion tensor estimation by a linear least squares method
initially proposed by Basser et al. [1], [2] is now a routine pro-
cedure in DT-MRI studies even though recent studies [35]–[37]
have shown the nonlinear least squares method to be more ap-
propriate and accurate than the linear least squares method. Re-
cently, we initiated a line of investigation starting from the basic
properties of MR noise [38], particularly the fundamental re-
lationship between Gaussian and Rician noise, to the methods
for nonlinear estimation of the diffusion tensor [36], [37], and
error propagation for DT-MRI via diffusion tensor representa-
tions [25], [47]. The common theme of our approach in these
works can be characterized as nonlinear and analytical because
the problem faced in each stage of this line of investigation was
essentially nonlinear but analytically tractable. In brief, this line
of investigation attempts to make DT-MRI more quantitative
and more accessible.

Throughout this paper, we will use the same notation as em-
ployed in our previous works, [37] and [25], [47]. Although we
have tried to make the present work as self-contained as pos-
sible, we should mention that it is intricately connected to the
nonlinear least squares estimation of the diffusion tensor [37]
and the method of error propagation via diffusion tensor repre-
sentations [25], [47]. Therefore, readers are encouraged to skim
through [37] and [25], [47] to get a more holistic picture of
the interconnectedness of various concepts and ideas introduced
here and in [25], [47], [37].

In general, the objective functions for the nonlinear least
squares problem in DTI in the ordinary [37] and Euler diffusion
tensor representations [25] and [47] can be expressed respec-
tively as follows:

(1)

and

(2)

and the covariance matrices of these representations are given
by [25], [47]:

(3)

and

(4)
The matrix or vector transposition is denoted by superscript .
The notations used in (1)–(4) are defined in Appendix I.

B. Error Propagation Framework

The core idea of error propagation is to transform one co-
variance matrix to another covariance matrix of interest through
an appropriate mapping between the underlying representations
[25], [47].

In DT-MRI, the most fundamental covariance matrix is ,
from which other covariance matrices can be obtained [25],
[47]. For example, can be constructed from as follows:

(5)

where , is known as
the Jacobian matrix of with respect to evaluated at . This
Jacobian matrix is a locally linear map from to at , e.g.,

(6)

In general, an explicit mapping, i.e., , is needed to recon-
struct the Jacobian matrix, i.e., ; although exists [39],
it is neither accurate computationally compared to matrix diago-
nalization nor useful conceptually. To drive home this point, the
reader is invited to derive the analytical expression of .
The Euler representation was therefore proposed [25], [47] to
resolve this issue by expressing the ordinary tensor representa-
tion in terms of the Euler representation, ; this mapping is
related to the decomposition of a symmetric matrix. As a con-
firmation that these two formulations are indeed equivalent in
principle, we will derive (4) by substituting (3) into (5)
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In the above derivation, we used the following well-known
identity , and, therefore,

. In practice, it is easier to compute
than . This seemingly trivial technique of

transforming one problem to another in which the Jacobian ma-
trix of the latter has a much simpler expression will be exploited
again later.

As can be seen above, the Jacobian matrix between repre-
sentations plays a critical role in transforming one covariance
matrix to another and the Jacobian matrix is, in turn, dependent
upon the mapping between representations. In light of this un-
derstanding, we will reformulate the perturbation method in the
next section to elucidate how the Jacobian matrix between the
ordinary representation and the major eigenvector can be con-
structed so that the covariance matrix of the major eigenvector
can be obtained.

We should note that an explicit mapping between represen-
tations is usually needed to construct the Jacobian matrix. Oc-
casionally, such a mapping may not exist or may be too com-
plicated to shed light on the problem at hand. If this is the case
then the first-order matrix perturbation method may be helpful
in finding the Jacobian matrix in the form of
without requiring an explicit mapping of .

C. First-Order Matrix Perturbation Method Reformulated

The first comprehensive theoretical analysis of noise in
DT-MRI via the method of matrix perturbation was carried
out by Anderson [29], and since then, many studies have built
upon this work in understanding tract dispersion [27], [30] and
variability in scalar tensor-derived quantities [20]. Further, it is
through this work that we learned of the work by Hext [33] in
which the local dispersion of the major eigenvector was first
formulated. This formulation of local dispersion is different
from that of Basser [17] because the latter leads to a circular
cone of uncertainty. It is important to note that the covariance
matrix of the second order tensor used by Hext [33], Anderson
[29], Basser et al. [17], and Chang et al. [20] was based on
the linear least squares methods, ordinary, or weighted. In this
work, the covariance matrix of the diffusion tensor is based on
the nonlinear least squares method, which is consistent with
our previous works [25], [47], [37].

We will introduce a notation, , used by Hext [33] to
simplify our discussion. Let

and

we can write the quadratic form, , as a dot product
between two vectors as follows, which is a well known trick in
DT-MRI:

(7)

where

(8)

is the notation used by Hext, and

(9)

The first-order matrix perturbation method begins with the
eigenvalue equation and the orthonormality condition

(10)

and

(11)

respectively. Here, is the Kronecker delta function, which
assumes unity if or zero otherwise.

If we take a small variation on both sides of (10), i.e.,
, and of (11), i.e., , the former

leads to

(12)

while the latter leads to

(13)

Equation (13) also implies that

(14)

and from we obtain

(15)

Taking the dot product between (12) with , we have

(16)

Since is symmetric, (16) can be further reduced to the fol-
lowing expression by taking (10) into account:

(17)
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(18)

The derivation thus far can be found in Hext [33]. In order to
obtain the covariance structure of the major vector of the diffu-
sion tensor, we should keep in mind one of the key objects in
error propagation, namely, the Jacobian matrix between repre-
sentations in a form similar to (6). Although (18) differs slightly
from (6), we will reformulate it to achieve the desired form of

. Later, we will extend the reformulation from
to .

Without loss of generality, we assume that .
Since we are interested in the dispersion of the major eigen-
vector, we will take . We should point out that the disper-
sion of the medium and minor eigenvectors can be similarly de-
rived. Note that (18) results in three separate equations, namely

(19)

(20)

and

(21)

Note that (19) is a consequence of (15) and not of (17). Equa-
tions (19)–(21) can be combined into a single matrix expression
given by

which is , or

(22)

In the above derivation, we have used the orthonormality con-
dition, i.e., .

The above reformulation based on can be easily extended
to resulting in

(23)

where is a 3 7 matrix given by

Therefore, we have and .
Finally, the covariance of the major eigenvector can be ex-

pressed nicely as [25], [47]

(24)

Interestingly, the formulation used by Basser [17] or Fuku-
naga [34] and later by Chang et al. [20] can be deduced from
the present framework starting from (22)

or

so that

(25)

In retrospect, it may seem trivial that (22) can be deduced
from (25). Although such a derivation is short, it may seem too
artificial without sufficient motivation on the crucial role played
by the Jacobian matrix in error propagation. Furthermore, the
covariance of the major eigenvector as a geometric structure for
quantifying local tract dispersion is a concept that was intro-
duced only recently [25], [47]. From (25), we see that the vector,

, is perpendicular to the major eigenvector, , because
is a linear combination of and . For completeness, we pro-
vide the expression for the angle of deviation of the right circular
cone of uncertainty [17], [20]

(26)

Note that is taken to be the standard deviation of the tensor
elements in computing the angle in (26), [17], [20], [29].

As mentioned above, an explicit mapping between represen-
tations may not be available as is the case between and but

can still be computed.
In concluding this section, we will demonstrate that (24) can

be derived from the approach proposed in [25], [47]. The co-
variance of the major eigenvector of the diffusion tensor using
the Euler representation is given by [25] and [47]

(27)

Substituting (4) into (27), we have
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(28)

Two important identities were used in the derivation above:
, and

. Although the derivation above shows that (28) can be
obtained from (27), it is important to point out that it shows only
the existence of but not necessarily the construction
of . Fortunately, as we have seen in this section, we
know of one such construction.

For completeness, we will outline the steps needed to con-
struct the cone of uncertainty following the approach used by
Hext. From (28), we know that the joint confidence re-
gion for is the ellipsoid [40] given by

where is the upper quantile for an distribution
with 2 and degrees-of-freedom; the plus sign on
denotes the matrix pseudoinverse which is needed here because
the matrix rank of is two rather than three. Equivalently,
one can write

and finally because
the eigenvectors of the diffusion tensor are orthogonal
and the eigenvectors of are also the singular vec-
tors [41]. Let the eigenvalue decomposition of be

; the last term is due
to and (24). Then, choosing to be

or will give
us the principal directions of the ellipse of the COU whose
area corresponds to the joint confidence region for .
Note that can be found by solving for the root
of where
is the incomplete Beta function [42]. We should also mention
that the covariance matrix of the major eigenvector may also be
obtained from the average dyadics of the bootstrap estimates
of the major eigenvector as described in [25, Appendix X] and
[47].

D. COU Visualization and Normalized Circumferential and
Areal Measures

We propose here a technique of COU construction for visu-
alization and two normalized measures for quantifying uncer-
tainty in the major vector of the diffusion tensor. We will pro-
vide detailed information on the new construction of COU as
well as the computation of the normalized measures in this sec-
tion.

A simple closed or Jordan curve [43] on the unit sphere di-
vides the unit sphere into two regions. If the simple closed curve
is not the great circle then one region will be greater than the
other. The proposed normalized areal measure, denoted by ,
is the ratio of the area of the smaller region on the unit sphere,
which is enclosed by a simple closed curve whose Gnomonic

Fig. 1. Gnomonic (or central) projection.

Fig. 2. (A) Inverse Gnomonic projection of an ellipse of the u,v-plane onto the
unit sphere is accomplished by normalizing the vector p in Fig. 1 to unit length
so that the normalized vector is s. (B) The proposed construction of the COU
is based on the inverse Gnomonic projection of an ellipse of the u,v-plane onto
the unit sphere.

(or central) projection [44] on the -plane is an ellipse as de-
picted in Fig. 1 and Fig. 2(A), to the area of the hemisphere. The
ratio of the circumference of the simple closed curve on the unit
sphere to the circumference of the great circle of the unit sphere
is another normalized measure, denoted by , that is related to
the cone of uncertainty. As a spin-off of making these normal-
ized measures practical for computation, we have a technique of
constructing the COU, depicted in Fig. 2(B), that avoids over-
lapping cones in neighboring regions.

Let be a point on the upper hemisphere whose Gnomonic
projection on the -plane is the point , Fig. 1. Let be de-
noted in vector form by

(29)

The point in vector form can be obtained by normalizing
to unit length

(30)

Therefore, the components of are functions of and .
Suppose that the major and the minor axes of the ellipse coin-

cide with the axes of the -plane. Let the length of the major
and the minor axes be and , respectively. Specifically, we
have and
which are taken from the previous section. The normalized
areal measure, , which is a dimensionless quantity, with values
ranging from zero to unity can then be expressed as follows:

(31)
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in terms of the coefficients of the first fundamental form [45]; the
region is defined by and the coefficients
of the first fundamental form are

and

The surface integral above can be further simplified to show
explicit dependence on and

(32)

where K and are, respectively, the complete elliptic integrals
of the first kind and the third kind [46], which are defined below
for completeness

and

The derivation of (32) is provided in Appendix II.
It is interesting to note the special case which occurs when

the ellipse on the u,v-plane becomes a circle where .
In this case, the normalized areal measure is given by

(33)

The derivation of (33) involves a simple change of variables to
polar coordinates starting from (B2) and is left to the reader.
The two limiting cases in which the variable approaches zero
or infinity confirm that the proposed normalized areal measure
is bounded in the interval between zero and unity.

Finally, the normalized circumference of the simple closed
curve, as depicted in Fig. 2(A), is given by

(34)

where .

Again, the normalized circumferential measure is also a di-
mensionless quantity. The derivation of (34) is provided in Ap-
pendices V and VI. When , the normalized circum-
ferential measure is reduced to

It is only when that is in one to one correspondence
to , i.e., . In general, maps to multiple and
vice versa.

III. RESULTS

We shall outline the basic idea of constructing the covariance
matrix of the major eigenvector of the diffusion tensor with an
example similar to that presented in [25] and [47]. The technique
of error propagation via diffusion tensor representations will be
denoted by “EP” while the reformulated perturbation technique
described in the previous section will be denoted by “RP.” We
will take a synthetic diffusion tensor, given by

as known. The eigenvalue-eigenvector pairs of this tensor are

and

Further, the trace and the fractional anisotropy (FA) of this syn-
thetic diffusion tensor are 0.0021 mm /s and 0.4176, respec-
tively.

The mean covariance matrix of the major eigenvector of this
tensor, based on EP and RP is essentially equivalent except for
some rounding errors

Full details on this and related computations that require the
notion of average covariance can be found in [25] and [47].

The computation above is carried out based on a signal-to-
noise ratio (SNR) of 50 and on a design matrix that was
constructed from a 35 gradient direction set with four spherical
shells having values of 0, 500, 1000, and 1500 s/mm .

The eigenvalue-eigenvector pairs of are

and

Finally, the only difference between the eigenvalue-eigenvector
pairs of and of is in the minor eigenvalue,
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Fig. 3. The angle of deviation (in degrees) as a function of SNR.The red curve,
� , and the blue curve, � , denote the angles of deviation of the major and the
minor axes of the elliptical cone of uncertainty, respectively. The dotted curve,
� , denotes the angle of deviation of the circular cone. At each SNR, 5000
samples were generated to obtain an estimated angle of deviation.

for , which is of no consequence in
practice.

Although it is interesting to compare the angle of deviation of
the two major axes of the elliptical COU to that of the circular
COU, a consistent comparison cannot be easily made because
the formalism used in the circular COU, (26), is ill-suited for es-
tablishing the joint confidence region for the major eigenvector.
Specifically, the angle of deviation of the circular COU is de-
rived from a hyper-cuboid region in the space of the diffusion
tensor elements determined by rather than from a confidence
region in the space of the elements of the major eigenvector.
With this issue in mind, we will present a qualitative comparison
by adjusting the confidence level of the elliptical COU.
Here, we will take to be 0.3173, which is the area covering
the two tails of the normal distribution at one standard deviation
apart from the center, i.e., at and . Therefore, we have

for this particular example.
The angle of deviation for the principal directions of the el-

liptical COU are given by ,
and , respectively, where
and are the first two largest eigenvalues of . In the con-
text of the example discussed here, we have and

while the angle of deviation of the circular cone of
uncertainty is . We also show here the SNR depen-
dence of , and based on the same design matrix and the
underlying true tensor, see Fig. 3.

Using the same simulated human brain tensor data used in
[37] and [25], [47] together with the experimental design de-
fined in the above example, the normalized areal measure map,
which corresponds to the 0.95 joint confidence region (or 95%
confidence region) at an SNR level of 15, can be obtained and is
shown in Fig. 4(C) while the corresponding image of the cones
of uncertainty is shown in Fig. 5. Fig. 4(A) and (B) show the
FA map and the cones of uncertainty within the region bounded
by the rectangular box indicated in Fig. 4(A). Fig. 4(D) and (E)
are, respectively, the normalized circumference map, see Ap-
pendix V, and the eccentricity map of the ellipse of the cone
of uncertainty. The eccentricity of an ellipse is given by

and it is assumed that .

IV. DISCUSSION

In this work, one of our main objectives is to elucidate the
connection between the first-order matrix perturbation method
and the error propagation method via diffusion tensor represen-
tations by way of an important example—the covariance of the
major eigenvector of the diffusion tensor, and to show that these
two methods are distinct but complementary. The other main
objective is to provide new normalized scalar measures related
to the cone of uncertainty and to outline a new technique of vi-
sualizing the cone of uncertainty.

The covariance matrices of the eigenvector of the diffusion
tensor as obtained from the perturbation method and the error
propagation method via diffusion tensor representations are
in principle equivalent, but are in practice very different; the
first-order matrix perturbation as reformulated here is simpler,
and therefore, more efficient than the approach via diffusion
tensor representations. However, the error propagation via
Euler representation is more coherent in that the uncertainty
of any tensor-derived quantity, scalar-valued or vector-valued,
can be obtained from the Euler representation alone while the
first-order matrix perturbation method requires two distinctly
different representations. Consequently, two Jacobian matrices
of the eigenvalues and of the eigenvectors with respect to the
ordinary tensor representation are needed in the first-order
matrix perturbation method. It is important to note that the
reformulation of the first-order matrix perturbation method
proposed in this work makes the perturbation method practical
for 3-D visualization of the cones of uncertainty. We should
also point out that the proposed reformulation makes use of the
covariance matrix of the diffusion tensor that is derived from
the nonlinear objective function of diffusion tensor estimation
[25], [47], [37].

Here, we outline the main findings of this work. First, the
perturbation method is reformulated to obtain the covariance
of the major eigenvector of the diffusion tensor. Second, this
covariance matrix is shown to be equivalent to that derived from
the error propagation method based on the Euler representation.
Third, when a mapping between representations of interest is not
available then it is likely that the first-order matrix perturbation
method may be helpful in finding the Jacobian matrix so that
the transformation from one covariance structure to another can
be realized. Finally, two new normalized measures of the cone
of uncertainty and a new technique of visualizing the cone of
uncertainty are described.

In DT-MRI studies, several scalar measures have been pro-
posed to characterize tract dispersion; some are parametric [17],
[20], [25], [47], [29] while others are not [18], [19], [28]. The
normalized circumferential and areal measures discussed in this
work belong to the former and can be viewed as a local para-
metric coherence measure. Since the major eigenvector of the
diffusion tensor is usually associated with the directional pref-
erence of the diffusing water molecules, the proposed measures,
which are directly linked to the uncertainty in the major eigen-
vector of the diffusion tensor, may be important for probing the
integrity of the white matter tracts in the brain. In addition to
that, these measures have a dependence on the signal-to-noise
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Fig. 4. (A) A fractional anisotropy (FA) map. (B) The corresponding elliptical 95% confidence cones of uncertainty on the region bounded by the red rectangular
box in (A) at an SNR level of 15. (C) The map of the normalized areal measure and (D) the map of the normalized circumferential measure. (E) The map of the
eccentricity of the ellipse of the 95% confidence COU. The maps, (C), (D), and (E), are generated from the 95% confidence COU at ant SNR level of 15. Let the
minimum value, the lower quartile, the median, the upper quartile and the maximum value of a map (excluding the background) be arranged as an array of five
elements in ascending order. The arrays associated with (A), (C), (D), and (E) are approximately and respectively {0.013, 0.078, 0.145, 0.299, 0.873}, {0.001,
0.021, 0.091, 0.239, 0.828}, {0.047, 0.216, 0.455, 0.700, 0.997}, and {0.102, 0.688, 0.817, 0.908, 0.999}.

Fig. 5. An axial slice of the map of 95% confidence COU at an SNR level of
15.

ratio and may be used as a calibration gauge for assessing an
MRI system or DT-MRI acquisition performance.

The key advantage of the proposed measures for quantifying
uncertainty of the major eigenvector of the diffusion tensor is
that these measures are dimensionless and normalized to unity.
These measures have direct geometric interpretations. In partic-
ular, the areal measure corresponds directly to the projection of
the joint confidence region for in the -plane onto the
unit sphere. Besides the areal measure, the circumferential mea-
sure may be important in gaining insights into the asymmetric
nature of tract dispersion. It should be clear that the dispersion
information contained in may be incorporated into mod-
eling the prior distribution of fiber coherence in probabilistic
(or Bayesian) tractography [23], [24], [32]. Finally, we should

note that the main motivation behind the proposed technique of
COU construction is to avoid overlapping cones of uncertainty
from neighboring regions.

Readers of Hext’s work [33] will soon realize that hidden in
the seemingly innocent phrase “in vector notation,” which ap-
peared on the line just above (4.21) in [33], lies the main hurdle
in rendering that formulation suitable for practical computation
and visualization. We hope the present study and our earlier
work [25], [47] prepare readers to look at Hext’s work from
an illuminating vantage point where the fundamental connec-
tion between the first-order matrix perturbation method and the
error propagation method is elucidated and the role of the Jaco-
bian matrix is highlighted.

V. CONCLUSION

Building upon the covariance matrix of the diffusion tensor
that is derived from the nonlinear least squares method, the
first-order matrix perturbation is reformulated and shown to be
equivalent to the technique of error propagation via diffusion
tensor representations in expressing the covariance of the major
eigenvector of the diffusion tensor. Normalized circumferential
and areal measures of the uncertainty of the major eigenvector
and a new technique of constructing the cone of uncertainty are
explicated.

APPENDIX A
NOTATIONS

Here, we describe the notations used in this work. The dif-
fusion tensor is a 3 3 symmetric positive definite matrix
given by

The measured (noisy) DW signals are denoted by , while the
DW functions at or are and
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, respectively. Supposing that
is the nonlinear least squares estimate of the parameter

vector , then the residual vector is a vector whose individual
component is the difference between the observed and the ex-
pected or estimated signals

where for .
The design matrix is given by at the bottom of the page.
The two representations of the diffusion tensor, which will be

used in this work, are the ordinary diffusion tensor representa-
tion, given by

and the Euler diffusion tensor representation given by

where is the parameter for the nondiffusion weighted signal.
The major, medium, and minor eigenvalues are denoted by

, and , respectively. The Euler angles are denoted by
, and , respectively. Since there are many conventions that

can be used to parametrize the rotation matrix using the Euler
angles, we will adopt the convention that is consistent with our
previous work [25], [47].

The matrices and are diagonal matrices whose diagonal
elements are the observed and the estimated diffusion weighted
signals, respectively, i.e.,

. . .
. . .

The residual matrix is expressed as: . The element of
the Jacobian matrix, , is defined as .
Similarly, we have . Finally, is the es-
timated variance derived from the nonlinear fit (1), i.e.,

, see also [25], [47], and [37].

APPENDIX B

In this Appendix, we will derive (32). First, we evaluate sev-
eral preliminary expressions

and

The integrand in (31) is then given by

Therefore

(B1)

where is the region defined by .
By a change of variables, and , we obtain

(B2)

where is a circular region (or a disk) defined by .
The limits of integration due to can be introduced into and
the integral is now given by

(B3)

...
...

...
...

...
...

...
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Factoring out the term in the integrand and defining
, the inner integral can be evaluated using the result

in Appendix III-(C1), so that we have

Because the integrand is an even function, we can write

By the result of Appendix IV, we have

(B4)

It is interesting to note that a new mathematical identity shows
itself quite readily since should be invariant with respect to
the permutation of and .

APPENDIX C

We will derive an expression for this integral which is needed
in Appendix II

Define , the derivative of T with
respect to is given by

Rearranging in the equation above, we have

Therefore

It is clear that

(C1)

A faster, more direct but less general approach (not shown
here) would be to make a trigonometric substitution of

.

APPENDIX D

The goal of this Appendix is to express the integral below
in terms of the complete elliptic integrals of the first and third
kinds:

(D1)

Define

and

we then have

and

It is easy to see that

and
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are both valid. The former leads to

(D2)

while the latter leads to

(D3)

Since (D1) and (D2) are equivalent, we can equate them

so that

(D4)

The integral, , can now be expressed in terms of K and

(D5)

APPENDIX E

In this Appendix, the circumference of a simple closed curve
on the sphere shown in Fig. 2(A) is expressed in terms of the
complete elliptical integrals of the first and third kinds. The nor-
malized circumference of the simple closed curve on the unit
sphere can be defined as

(E1)
The in the denominator is the normalization factor coming
from the circumference of the great circle of the unit sphere.
Without loss of generality, we parametrize the components of
the vector, , in terms of , and as follows:

Equation (E1) can be further simplified and expressed in terms
of the complete elliptic integrals of the first and third kinds:

(E2)

where .
The derivation of (E2) is provided in Appendix VI.

APPENDIX F

In this Appendix, our goal is to derive (E2) starting from (E1).
Provided here are several preliminary expressions
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With some algebraic manipulations, it can be shown that

so that the square root of may be written as

or

The normalized circumference is then given by

Since the arc length for each quadrant is the same, the nor-
malized circumference, , can be reduced to

(F1)

Similar to the technique used in Appendix IV, let us express
the integral in (F1) in two different but equivalent ways, as
shown in the equation at the bottom of the page.

Since the two expressions and are equivalent, we can
solve for by equating the two expressions so that is given
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in terms of , and . Substituting the new expression of
into , and the normalized circumference is now given by
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