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We survey recent progress in the application of nanoindentation to characterize the local mechanical

properties of polymer gels and biological tissues. We review the theories, analytical models based

thereon, and data processing techniques commonly used to determine elastic properties of these classes

of materials by instrumented nanoindentation. Examples from the testing of synthetic and biological

gels are used to illustrate the limitations of existing theories and approaches. Emphasis is placed on the

need for contact mechanics models that more accurately represent the large-strain behaviour of soft

matter.
1. Introduction

With the advent of atomic force microscopy (AFM) and depth-

sensing nanoindentation in the 1980s,1,2 the measurement of

local hardness and elastic properties by applying minuscule

forces to probes of submicron dimensions became feasible.

Sensitivity and resolution of the instruments have increased

concomitantly with advances in miniaturization-enabling tech-

nologies such as photodetection, electrostatic and piezoelectric

actuation, and microfabrication. Today, the AFM is a versatile

tool for applications as diverse as atomic-resolution imaging3

and force spectroscopy of inter- and intra-molecular inter-

actions4–6 while the mechanical characterization capabilities of

both the AFM and the depth-sensing nanoindenter have been

extended to include specialized functions such as wear and

scratch testing and lateral force spectroscopy.7,8
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Conventional indentation, in which a rigid probe of well-

defined geometry is pressed into the flat surface of a test sample

by a force applied normal to the surface, is a well-established

technique in the characterization of hard surfaces that undergo

elastic–plastic deformation. Methods developed for macroscopic

indentation have been shown to be transferable to micron and

submicron length scales in the testing of many hard materials

including metals, ceramics, plastics, calcified biological tissues,

and composites.9–13 When applied to soft materials that undergo

purely elastic deformation even at large indentation depths, the

physics of the indentation process are inherently more complex.

Manifestations and consequences of the increased complexity

include:

� Tip–sample interactions such as adhesion are generally

stronger in compliant samples, particularly in tip retraction.

Data analysis is therefore usually more difficult and may

require models that provide for contributions from interactive

forces.

� Applied forces for a given indentation depth are much

smaller in soft materials, making the point of contact difficult
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Fig. 1 (Left) AFM contact mode topography image of articular

cartilage from the femoral head of a day-old mouse scanned over an

18 mm � 18 mm area with a sharp pyramidal tip. Raised regions are

chondrocytes. (Right) Corresponding elastic modulus map of the same

area at a resolution of 32 � 32 indentations using the same tip, showing

the local inhomogeneities in stiffness. Note that the elastic modulus

varies over two orders of magnitude.
to identify in many cases. Moreover, signal-to-noise ratios can be

adversely affected.

� Although the elastic deformation range of soft materials is

typically larger than that of hard materials, the transition from

linear to nonlinear stress–strain behaviour may be ambiguous.

The opposite is true of many hard engineering materials, which

possess obvious yield points.

Despite the hindrances that cast uncertainty on its accuracy,

nanoindentation remains an important tool in the study of soft

materials. For example, the AFM’s capability of concurrent

topographical imaging and mechanical probing has been

exploited to generate high-resolution elasticity maps of tissues

and cells, and even to chart the spatiotemporal evolution of

stiffness during cellular processes.14,15 Nanoindentation is also

one of a small number of techniques not limited by sample size;

for example, elastic properties of single vesicles as small as 100

nm in diameter have been measured.16 The adoption of combina-

torial methods in the design of polymer gels for biomedical use

(e.g. in soft contact lenses, drug delivery agents, and tissue

engineering scaffolds) has engendered demand for high-

throughput characterization techniques compatible with the large

libraries of minute sample volumes that are produced.17–19

In this article, we focus on the theories and analytical models

used in measuring the elastic properties of soft materials by

conventional nanoindentation. Esoteric theories such as those

pertaining to single molecule force spectroscopy and the indenta-

tion of shells will be excluded. The body of work on indentation

theory has focused chiefly on axisymmetric indenters, especially

those that are spherical in form. Although such probes are most

conducive to accuracy and consistency in mechanical measure-

ments,20 their use is not always warranted in practice (e.g.

when concurrently imaging and probing the compliance of

a sample using the atomic force microscope). Hence, other

geometric models are covered where they are available and

deemed congruent with the objective of this review. We examine

various approaches utilized by researchers and discuss the

applicability and shortcomings of each. It should become clear

to the reader that the full potential of the nanoindentation

technique, particularly when utilizing the AFM, cannot be

realized without further developments in contact mechanics

theory and modelling.

The paper is organized as follows: we begin with a brief

summary of the Hertz contact mechanics theory. We then

present a synopsis of the theories that incorporate tip–sample

adhesive forces, followed by those that correct for the effect of

small sample thickness. Next, we briefly discuss tip–sample

repulsion and a proposed strategy for its treatment. A section

is devoted to the discussion of nonlinear elastic contact

mechanics. A number of analytical approaches based on linear

elastic models are then highlighted, with the salient features of

each identified. Finally, we provide an illustrative example of

the shortcomings of each method and emphasize the strength

of a combined approach. A comprehensive scheme is of parti-

cular importance in the nanoindentation of materials with large

local inhomogeneities such as biological tissues (Fig. 1) and

polymer composites. As a consequence of variations in local

structure, composition, surface charge, etc., the indentation

response of these materials can vary over length scales compa-

rable to the resolution of the instruments.
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2. Contact in the Hertzian regime

In reference to the original Hertz theory of contact between two

elastic, ellipsoidal bodies21we define force–indentation behaviour

that can be assumed to be governed by linear elasticity as being in

the ‘‘Hertzian regime.’’ Theories and models applicable in this

range include those that account for influence from surface

properties (e.g. tip–sample adhesion) and geometric factors (e.g.

finite sample thickness).

2.1 Non-interactive indentation of an infinite half space

Hertz was the first to solve the problem of contact between two

smooth, ellipsoidal solids.,22 In the context of the indentation of

a flat (infinite radius of curvature), elastic surface by a rigid sphere,

the assumptions employedbyHertz canbe summarized as follows:

� The strains are small, i.e. ac << R, where ac is the contact

radius and R is the radius of the sphere.

� The indented solid is a linear elastic, infinite half space.

� The surfaces are frictionless.

Following Hertz’s seminal treatise, numerous others (e.g.

Boussinesq,23 Love,24 Segedin,25 Landau and Lifshitz,26 and

Sneddon27) made significant contributions to the theoretical

framework. Exact solutions in the form of force–indentation

relationships, contact pressure distributions, and stress and

displacement fields are readily available for common axisym-

metric geometries (e.g. cone, cylinder, sphere) while approximate

solutions have been derived for other geometries of practical

interest such as sharp28,29 and blunt29 pyramids and blunt

cones.30,31 Force–indentation and contact radius relationships

for the most common geometries are summarized in Table 1.

In addition to uncertainties about their true geometric dimen-

sions, the small tip angles of common tapered tips used in instru-

mented nanoindentation raise concerns of exceeding the linear

stress–strain limit of the indented material.20,28 Hence, care

should be exercised to select probes of the largest available tip

angle and to minimize indentation depths whenever possible.

2.2 Adhesive indentation of an infinite half space

Some degree of tip–sample interaction is often unavoidable in

nanoindentation, with the type and magnitude of the force
This journal is ª The Royal Society of Chemistry 2008



Table 1 Indentation relationships for common indenter shapes

Model la h ac (contact radius)

Hertz: sphere of radius R E*R1/2 3/2 (Rd)1/2

Flat cylinder of radius r 3E*r/2 1 r
Sharp cone of tip angle 2f 3E* tanf/(2p) 2 2d tanf/p
Sharp pyramid of face incline angle p/2�f, Bilodeau solutionb 3(1.4906)E* tanf/8 2 1.5791/2d tanf/2
Sharp pyramid, Rico et al. solutionc 3E* tanf/25/2 2 d tanf/21/2

Blunt cone or blunt pyramid of tip angle 2f,
transitioning at radius or half-width b to round tip with
radius R, with b ¼ R cosf F ¼ 3E
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cone : m ¼ 1=2; n ¼ 1

pyramid : m ¼ 21=2; n ¼ 23=2=p

a E* ¼ 4E/3(1�n2) where E is Young’s modulus and n is Poisson’s ratio. b Contact radius is actually half the length of one side of the square of contact.
c Effective contact radius is of a circle with equal contact area.
General force–indentation relationship: F ¼ ldh. F: force; d : indentation depth; l: geometry-dependent elastic constant; h: geometry-dependent
exponent
affected by the composition and surface chemistry of the tip.

Selecting the tip material or modifying its surface to be compa-

tible with a specific sample is generally impractical. Hence, it is

preferable to incorporate interactive interactions into contact

mechanics theory. This was pioneered by Johnson et al.32 who

were motivated by the large body of evidence (usually manifested

in enlarged contact area at a given load) suggesting the existence

of attractive forces between both contacting hard and rubber-

like solids. The JKR (Johnson–Kendall–Roberts) theory

modifies the Hertz theory by introducing an apparent Hertz

load, or the equivalent load in the absence of adhesion that

produces the enlarged contact area. Later, Derjaguin et al.,33

proposed the seemingly contradictory DMT (Derjaguin–

Muller–Toporov) theory in which the deformed surface profile

is assumed to follow the Hertz model. The ensuing debate

persisted in the pages of the Journal of Colloid and Interface

Science34 until Tabor identified the applicability of the two

theories to opposite extremes of the relationship between sample

compliance and the range of the adhesive force.35 The JKR

theory was found to be valid for the indentation of relatively

compliant materials with probes of relatively large radii and

strong adhesive forces. In contrast, the DMT theory applies

under conditions of stiff materials, small probe radii, and weak

adhesive forces.

An important development in adhesive contact mechanics was

advanced by Maugis,36 who employed the Dugdale square-well

approximation of the Lennard-Jones potential to formulate

a closed-form solution to the general spherical indentation

problem spanning the JKR and DMT limits. The Maugis–

Dugdale theory consists of three equations that give an indirect

relationship between force and indentation.36,37 Carpick et al.38

and Pietrement and Troyon37 developed an empirical form of

the theory that greatly enhances its practicality. The following

set of equations comprises the empirical Maugis–Dugdale

model:37,38
This journal is ª The Royal Society of Chemistry 2008
d ¼ a2
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�ac0 ¼ –0.451x4 + 1.417x3 – 1.365x2 + 0.950x + 1.264 (3)

F�ad ¼ 0.267x2 – 0.767x + 2.000 (4)

S ¼ –2.160x0.019 + 2.7531x0.064 + 0.073x1.919 (5)

b ¼ 0.516x4 – 0.683x3 + 0.235x2 + 0.429x (6)
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(7)

F�ad ¼ Fad/(pgR) (8)

where d is the indentation depth, ac0 is the contact radius at zero

applied force (Fn ¼ 0, corresponding to the point indicated by,

in Fig. 2), Fad is the constant adhesive force (in Fig. 2, it can be

seen that contact or separation occurs when Fn ¼ �Fad), g is the

interfacial energy, E* ¼ 4E/3(1�n2) where E is Young’s modulus

and n is Poisson’s ratio, x is a nondimensional parameter that

represents the intermediacy within the JKR–DMT transition, S

and b are nondimensional functions of x, and �ac0 and F�ad are

nondimensionalized equivalents of ac0 and Fad. The special

case x ¼ S ¼ b ¼ 0 corresponds to the DMT theory while the

JKR equations are recovered when x ¼ 1 (and hence, S ¼ 2/3
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Fig. 2 Essential reference points for cases of non-interactive and adhesive indentation. Bending of the AFM cantilever at each point is shown. Raw

data from the depth-sensing nanoindenter are usually in the form of force (F) vs. tip position. For the AFM, raw data are in the form of cantilever

deflection (d) vs. position of the cantilever base. Tip position and base displacement are mathematically equivalent and designated by coordinate z.

Indentation is always zero at the point of contact in the non-interactive (indicated by 1) and DMT (indicated by B) models, but can be negative

in the general case of adhesion (indicated by ,) to allow for deflection of the sample surface towards the tip. The general case therefore additionally

requires the point of zero indentation (indicated by >). The point of zero applied force (indicated by O) occurs at positive indentation depth for all

cases of adhesion. Figure adapted from Lin et al.50 When electrostatic repulsion at larger separation transitions to adhesion, the resulting response is

dependent on whether the adhesive force is greater than (curve ‘‘i’’) or less than (curve ‘‘ii’’) the maximum repulsive force. In curve ‘‘ii’’ analysis should be

performed using data subsequent to the point of contact (indicated by �).
and b ¼ 1/2). It is worth noting that the ‘‘jump to contact’’

phenomenon observed in some instances of strong adhesion is

consistent with the JKR theory, which predicts abrupt contact

of ac > 0 at the critical point where Fn ¼ �Fad.

The JKR theory was extended by Sun et al.39 to a hyperboloid

or blunt conical indenter of tip radius R and semivertical angle f.

The contact equations are:
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2.3 Non-interactive indentation of thin layers

The Hertz assumption of infinitesimal deformation (i.e. the

indented sample is regarded as an infinite half-space) is a valid

approximation in most practical applications. However, there

exists a threshold in the ratio of maximum indentation depth

to sample thickness at which errors from finite size effects

become unacceptably large. Dimitriadis et al.20 cited examples

of corrections based on extensive numerical computations and

found that Chadwick’s approach provides a suitable estimate

for modelling the indentation of very thin, incompressible

layers by a spherical probe.40 They prescribed a condition of

c ¼ (Rd)1/2/h # 1, where h is the sample thickness, for which their

force–indentation relationship is valid:
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In eqn (11), j and z are functions of Poisson’s ratio and take

on different forms based on the interfacial conditions between

the sample and the underlying rigid substrate. When the sample

is not bonded to the substrate, the parameters are given by

j ¼ �0:347
3� 2n

1� n
; z ¼ 0:056

5� 2n

1� n
(12)

and when the sample is bonded to the substrate, they are given

by

j ¼ �1:2876� 1:4678nþ 1:3442n2

1� n
;

z ¼ 0:6387� 1:0277nþ 1:5164n2

1� n

(13)

For very thin incompressible samples (i.e. c > 1 and n ¼ 0.5),

use of Chadwick’s solution is recommended:

F ¼ (2p/3)ER1/2d3/2c3 (bonded sample) (14)

F ¼ (2p/3)ER1/2d3/2c (nonbonded sample) (15)

2.4 Repulsive tip–sample interactions

While adhesion is the most prevalent form of tip–sample interac-

tion in the indentation of soft materials, other types of interac-

tions are possible. Of particular interest is the existence of

electrostatic forces when indentation is performed in aqueous
This journal is ª The Royal Society of Chemistry 2008



media, specifically in the presence of ions.41 Models based on

electrosteric and electrostatic interactions41–43 and on the

Derjaguin–Landau–Verway–Overbeek (DLVO) theory44,45 have

been applied in the limited body of work utilizing probe micros-

copy to measure the repulsive force between a probe and a flat

surface. The majority of recent research efforts have focused

on repulsive interactions between microbes and various mate-

rials.46–49 These studies are concerned with surface properties

of the investigated materials rather than their bulk mechanical

properties. Hence, although the repulsive force between a probe

and sample surface of like charge can be modelled as a function

of the separation distance using the electrosteric, electrostatic,

and DLVOmodels, force–indentation relationships that account

for repulsion are lacking.

Lin et al.50 proposed a simplistic and inexact approach to

handling repulsive interactions in the contact regime. Similar

to the treatment of adhesive forces in the JKR, DMT, and

Maugis–Dugdale theories (see section 2.2), the maximum repul-

sive force is assumed to be constant at sufficiently large indenta-

tion depths. Consequently, the force–indentation relationship in

this portion of the post-contact regime is offset from its zero-

force position by a distance corresponding to the repulsive force.

Because the mechanics in this region are otherwise assumed to be

unchanged from the non-interactive case, the relationships in

Table 1 along with eqn (11) – (15) are valid.

In rare cases, a more complex phenomenon can occur in which

the electrostatic repulsion that dominates at larger separation

distances is overcome by adhesive forces upon tip approach,

resulting in the characteristic dip shown by curves ‘‘i’’ and ‘‘ii’’

in Fig. 2.41 When the adhesive force is greater than the maximum

repulsive force (curve ‘‘i’’), the indentation mechanics are similar

to those associated with pure adhesion, and can be analyzed as

such. If, however, the adhesive force is less than the repulsive

force (curve ‘‘ii’’), the adhesive models are not applicable because

the net force is repulsive at the point of contact. In this case, the

suggested course of action is to discard the portion of data prior

to contact and use themethod outlined in the previous paragraph.
3. Contact beyond the Hertzian regime

In soft materials, the linear stress–strain approximation becomes

progressively inadequate with increasing deformation. The strain

at which deviation from linearity becomes significant is a material

property that is seldom known prior to performing indentation

experiments. Hence, it may be difficult to limit deformations to

the linear regime. The lack of closed form force–indentation

relationships appropriate for nonlinear elastic deformation has

been the impetus for investigators to conduct numerical studies

of nonlinear contact mechanics.30,51 These studies illustrate the

potentially significant errors that canbe incurredbyapplying linear

models to the indentation of stiffening or softening materials. The

prevalence of using tapered tips tomeasure themechanical proper-

ties of soft materials, particularly of cells and tissues, underscores

the necessity for nonlinear contact mechanics models that cover

a range of tip geometries and non-Hertzian deformations.

A number of phenomenological theories originating from

polymer science have been developed over the years to describe

the nonlinear elastic behaviour of rubbers and other polymeric

materials.52,53 Continued research in the nonlinear elasticity of
This journal is ª The Royal Society of Chemistry 2008
soft materials now encompasses constitutive equations formu-

lated to model the micromechanics of cells.31,54,55 Such models,

however, are largely academic except when implemented in

computational methods. Interestingly, Jaasma et al.56 found

the indentation of osteoblasts with a spherical probe to closely

follow a single parameter, second-order power law as a function

of force.

Because contact mechanics remains a relatively under-

developed field, linear models often serve as the basis for

qualitative analyses of deformations beyond the Hertzian

regime. For example, Costa et al.57 used a pointwise approach

of calculating Young’s modulus with the blunt cone model

(Table 1) to determine the extent of material nonlinearity. By

comparing the value of E at each point, the stiffening and

softening behaviour could be discerned. Mathur et al.58 observed

similar transitions in the elastic modulus with indentation depth

in their studies on cardiac and skeletal muscle cells.

Lin et al.59 addressed the dearth of nonlinear force–

indentation relationships and derived an approximate equation

based on the Mooney–Rivlin strain energy function.53 The

relationship for the indentation of a rubber-like material by

a rigid sphere of radius R is

F ¼ pR1=2B1

 
d5=2 � 3R1=2d2 þ 3Rd3=2

d� 2R1=2d1=2 þ R

!

þpR1=2B2

 
R1=2d5=2 � 3Rd2 þ 3R3=2d3=2

�d3=2 þ 3R1=2d� 3Rd1=2 þ R3=2

! (16)

where B1 and B2 are essentially the Mooney–Rivlin constants

and are related to Young’s modulus at infinitesimal strain, E0,

by59

B1 þ B2 ¼
4E0

9pð1� n2Þ (17)

The net force is equal to the sum of the applied force and the

adhesive force (F ¼ Fn + Fad) if adhesion is present and conforms

to the specific conditions of the DMT theory (stiff material, small

probe radius, andweak adhesive force).However, eqn (16) cannot

be used for general cases of adhesion. The model reduces to the

neo-Hookean form53 when B2 ¼ 0. Although the neo-Hookean

equation should be adequate for perfectly rubber-like materials

under compression, Lin et al. suggested the use of the Mooney–

Rivlin form to allow for slight deviations from rubber elastic

behaviour. Eqn (16) eliminates the need to limit deformations to

the linear regime or to truncate datasets, and was shown to be

a good fit for the large-strain indentation of swollen poly(vinyl

alcohol) gels and some cartilage samples.59 The method of

derivation of eqn (16) can be extended to other hyperelastic strain

energy potentials (e.g. Ogden, van der Waals, Fung).60,61 The

family of equations thus generated covers models that have been

used successfully for many rubber-like gels and soft tissues.
4. Analytical techniques

A multitude of techniques have been developed for the analysis

of data from the AFM or depth-sensing nanoindenter. Virtually

all the techniques presented in this section were designed for
Soft Matter, 2008, 4, 669–682 | 673



extracting linear elastic properties from indentation data. Many,

however, can be adapted for use with eqn (16). The features,

capabilities, and shortcomings of what we believe to be the

most representative approaches will be discussed. We will assess

the capability of each in handling irregular data sets (i.e. those

with excessive noise, significant adhesion, or significant

repulsion). Obviously, it is not possible to cover the intricacies

of implementing each technique. However, it is hoped that this

critical review will aid the researcher in selecting or developing

an approach suitable for the analysis of experimental data.

Before commencing with the survey of methods, the subject of

material compressibility merits a brief discussion. While the

assumption of sample incompressibility applied in many tests is

generally valid, Poisson’s ratio of some materials, particularly

soft tissues, can be significantly less than 0.5. Using the Hertz

equation as an example, it can be verified that the assumption

results in an underestimation of Young’s modulus by nearly

18% and 11% for actual Poisson’s ratios of 0.3 and 0.4, respec-

tively. In the following methods, if Poisson’s ratio is unknown,

it can be combined with Young’s modulus to form an effective

material constant (e.g. E* in Table 1) useful for comparing the

elasticity ofmaterialswith similar compressibility.Note, however,

that the quantity is not as meaningful as Young’s modulus.

4.1 Reference point dependence

The majority of methods require the determination of reference

points to transform positional coordinates to force and

indentation data. The complexity of the process depends on

whether adhesive interactions are present and on the type of

instrument employed, with the depth-sensing systems generally
Table 2 Essential reference points in nanoindentation data processing

Instrument
type

Non-interactive
Indentation Adhesive Indentationa

Atomic force
microscope

Contact or release/ zero
indent: (z0, d0)

Contact or release: (z0, d0)

Zero indent: (z0, d0)
Zero force: (z1, d1)

Depth-
sensing
nanoindenter

Contact or release/zero
indent: (z0, F0)

Contact or release: (z0, F0)

Zero indent: (z0, F0)

a When adhesion is governed by the DMT theory, i.e. a ¼ S ¼ b ¼ 0 in
eqn (1) – (8), the point of zero indentation is also the contact point.
z is the position of the tip (nanoindenter) or cantilever base (AFM).
d is the deflection of the cantilever (AFM).
F is the net force measured by the force actuator of the nanoindenter.

Table 3 Force and indentation relationships

Instrument type Non-interactive Indentation

Atomic force microscope F ¼ Fn ¼ kc(d � d0)
d ¼ (z � z0) � (d � d0) ¼ (z �
(z0 � d0) ¼ w � w0

Depth-sensing nanoindenter F ¼ Fn ¼ F � F0

d ¼ z �z0

kc is the spring constant of the cantilever; w ¼ z � d is a transformed position c
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requiring less rigorous treatment of the raw data due to their

ability to measure forces directly. For typical AFM and depth-

sensing nanoindenter setups, the essential reference points under

non-interactive and adhesive conditions as identified by Lin

et al.50 are summarized in Table 2 and illustrated in Fig. 2. Force

and indentation depth are derived from the reference points using

the relationships listed in Table 3.

For non-interactive contact, the implications of an incorrectly

identified contact point (equivalent to the release point in tip

retraction) on the accuracy of extracted mechanical properties

were studied by Crick and Yin.62 Simulations were performed

of the indentation of materials with linear and nonlinear

stress–strain properties using a blunt conical tip. It was found

that the errors incurred by misidentifying the contact point

were affected by the linearity and stiffness of the material, the

level of noise in the data, the distance of the misidentified point

from the actual contact point, and whether the misidentified

point was situated in the pre-contact or post-contact region.
4.2 Methods for non-adhesive contact

4.2.1 General principles of data fitting. Techniques based

purely on data fitting are usually implemented in search strate-

gies. The appropriate transformations in Table 3 are substituted

into a force–indentation relationship to form the fitting

equation; the sole reference point in non-adhesive indentation

is the contact point. These methods were further grouped by

Lin et al. according to whether the identified contact point is

required to be a member of the data set.63 Different levels of

constraints were defined:

� Fully constrained, in which the contact point must come

from the data set and the lone fitting parameter is an elastic

constant.

� Semi-constrained, in which only one coordinate of the

contact point is from the data set and the other coordinate along

with an elastic constant are the fitting parameters. Bounds can

be imposed on the parameters.

�Unconstrained, in which both coordinates are allowed to fall

outside the data set, leaving three fitting parameters (both

coordinates of the contact point and an elastic constant). A

good initial guess of the contact point is usually necessary.

Variants of these search procedures have been used by many

researchers to process data from the nanoindentation of hydro-

gels, cells and other biologically relevant materials.14,20,29,64–68

The semi-constrained and unconstrained techniques help to

compensate for errors arising from high levels of noise (e.g.

ensuing from adhesive ‘‘jump to contact’’) or from relatively

minor misidentifications of the contact point by allowing the
Adhesive Indentation

F ¼ Fn + Fad ¼ kc(d � d1) + kc(d0 � d1)
d) � d ¼ (z � z0) � (d � d0) ¼ (z � d) � (z0 �d0) ¼

w � w0

F ¼ Fn + Fad ¼ (F � F1) + (F0 �F1)
d ¼ z � z0

oordinate introduced for simplicity and w0 is its value at the contact point.
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contact point to ‘‘float’’. Ideally, multiple iterations are not

necessary with the unconstrained technique. Lin et al. found

the semi-constrained approach to be amenable to optimization

strategies such as the Golden Section search, which offsets its

relative computational expense.63 This is illustrated in Fig. 3 by

the plots of the fitting error as the assumed contact point is

moved along the curves of three sample data sets.

Because the fitting schemes are compatible with any force-

indentation equation, material nonlinearity does not preclude

their use. In their large-strainAFM indentation tests of poly(vinyl

alcohol) hydrogels and cartilage specimens, Lin et al.59 applied

eqn (16) successfully in an implementation of a semi-constrained

search procedure. These schemes fail to produce acceptable fits

of the data, however, when large repulsive forces obscure the

contact point. As in the case of adhesion, the contact point is

shifted under the influence of repulsive forces and non-interactive

contact models do not accurately fit the data. By assuming the

maximum repulsive force to be constant at sufficiently large

indentation depths, Lin et al.63 argued that the force–indentation

behaviour essentially obeys non-interactive contact mechanics.
Fig. 3 Curves ‘‘a’’–‘‘c’’: Force curves (every fifth point indicated by >), best-

error (MSE) as a function of the position of the assumed contact point u

engineered cartilage specimens with a 9.6 mm diameter spherical tip are shown

on the solutions. In curve ‘‘c’’, points prior to the inflection point (indicated b

the analysis. A surrogate contact point (indicated by �) is found using a semi-c

of the retained data, the MSE plot is unimodal (curves ‘‘a’’ and ‘‘b’’) and optim

When the contact point lies outside the range of the retained data (curve ‘‘c’’), a

a global minimum. Curve ‘‘d’’ is a representative curve showing significant adh

Lin et al.50

This journal is ª The Royal Society of Chemistry 2008
Discarding the data points affected by repulsion, a semi-

constrained ‘‘rearwards search’’ is performed to locate a surrogate

contact point (see curve ‘‘c’’ in Fig. 3).

4.2.2 Method of Crick and Yin. As a complement to their

study,CrickandYinproposedanalgorithmforfinding the contact

point and subsequently extracting the value ofYoung’smodulus.62

Using a moving subset containing 25% of all data points, the

difference in cantilever deflection between the first and last points

is used to evaluate whether the contact point is bracketed within

the subset. The iterative process is performed until the difference

is significantly greater than the noise level. The first and last points

of the subset are then used to define initial lower and upper bounds

of the search interval. The size of the interval is adjusted according

to rough estimates of the stiffness of the material and the location

of the contact point. Within the new interval, an exhaustive

search is performed by fitting the first half of the data up to the

candidate contact point with a line and the second half with either

another line or a quadratic function. The solution is determined

from an aggregate measure of the accuracy of each fit.
fit curves (dark solid lines), and corresponding plots of the mean-square-

sing a linear, semi-constrained search. Three separate indentations of

. For visualization purposes, curves were shifted vertically with no effect

y ,) and presumably influenced by repulsive forces, were discarded from

onstrained rearwards search. When the contact point lies within the range

ization strategies such as the Golden Section search can be implemented.

s is prone to occur with significant repulsion, the MSE plot does not have

esive interactions, and requires a different analytical approach. Data from
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This method can be extended for nonlinear elastic indentation

by substituting eqn (16) in place of the linear or quadratic

functions for fitting the assumed contact portion of the data.

Its chief deficiency is that it will only work when the pre-contact

portion of the data set is virtually free from tip–sample inter-

actions. Repulsion and adhesion may both cause the bracketing

procedure to erroneously omit the true contact point from the

search interval. It is clear that this is the case for sample data

set ‘‘c’’ shown in Fig. 3, where the difference in deflection

between the first and last points of any subset will be substan-

tially larger than the level of noise.

4.2.3 Method of Jaasma et al.. For indentation in the

Hertzian regime with a tip profile satisfying the general force–

indentation relationship given in Table 1 (F ¼ ldh), Jaasma

et al.56 showed that the derivative of the AFM cantilever deflec-

tion with respect to the base position is zero at the point of

contact or release. This relationship is linear for their empirical

value of h ¼ 2. Extrapolation of post-contact portions of the

data to the point of zero derivative yields the location of the

point of contact or separation. Regression analysis is applied

to determine Young’s modulus. This method requires that the

deformation be confined to the linear regime. However, it is

compatible with adhesive and repulsive indentation provided

that there is sufficient data at large indentation depths for which

interactive forces are negligible. It is important to note that

because the analysis is based on the derivative of the data, high

levels of noise may introduce large errors.

4.2.4 Method of Guo and Akhremitchev. Guo and

Akhremitchev69 devised a data fitting scheme based on the

linearization of data. The general force–indentation relationship

given in Table 1 is first rewritten in terms of the tip–sample

separation distance D and a constant C related to the point of

contact or separation (d ¼ C – D, where d is the indentation

depth).70 The linearization in D is obtained by rewriting the

general equation as

F1/h ¼ C* – l1/hD (18)

where C* is another constant and equal to l1/hC.

Guo and Akhremitchev estimate a maximum systemic error

of approximately 10% associated with manually selecting the

point of contact or separation. This method is most suitable for

data sets in which the point can be easily identified. After

transforming the raw coordinates to values of force and

indentation, points in the post-contact region are plotted using

eqn (18). Young’s modulus is then extracted from the slope of

the line. Indentations are required to be linear elastic and

non-interactive.

4.2.5 Method of Oliver and Pharr. This method is an

extension of traditional methods for determining the hardness

and elastic moduli of solid materials.71 In order to limit

experimental complexity and make the method more tractable

for nanoindentation data, Oliver and Pharr dispensed with the

need to measure the geometry of the residual impression. Hence,

their approach can be adapted for the indentation of soft

materials.72–76
676 | Soft Matter, 2008, 4, 669–682
For indentation with a rigid indenter, the reduced modulus,

Er, is defined by71

Er ¼
E

1� n2
¼

ffiffiffiffi
p

p

2

sffiffiffiffiffiffi
Ac

p

where s is the initial loading stiffness determined from the

derivative of the transformed force–indentation relationship at

maximum load and Ac is the corresponding contact area.

Although Oliver and Pharr performed experiments to establish

the relation between the contact radius and applied load, the

equations in Table 1 can be used in lieu of empirical relation-

ships. Eqn (19) serves as a substitute of the regression analysis

employed in other approaches of extracting the elastic modulus.

The constraint of limiting the analysis to the unloading data can

be relaxed in testing many soft materials due to the absence of

inelasticity.

4.2.6 Method of A-Hassan et al.. A-Hassan et al.77 proved

that the relative work of indentation (i.e., the ratio of areas under

the force–indentation curves for two different samples) is

proportional to the ratio of their stiffness. Hence, the work

can be used as a relative measure of the elastic modulus.

Although this method is valid for both linear and nonlinear

deformation and does not require the identification of reference

points, its practicality is severely limited by its inability to

measure the absolute elastic moduli of materials.

4.2.7 Other methods. A number of other contact point

dependent methods, mostly designed for non-interactive contact,

have been described in the literature. We touch on a few of them

here to provide awareness of alternative schemes:

� Derivatives of cantilever deflection78 – the contact or release

point is assumed to occur at the point of maximum change in

deflection with respect to the cantilever base position. When

the level of noise is high, however, large errors in the detected

contact point are likely.

� Average deflection in the contact region79 – after identifying

the pre-contact portion of the data set, the average of the

deflection is calculated. The force–indentation equation is then

fit to the purported contact portion of the data, with the elastic

constant and the z-coordinate of the contact or release point as

fitting parameters. The pre-contact region will be difficult to

identify unless tip–sample interactions are absent and the level

of noise is low.

� Power series correction80 – the force–indentation equation is

expanded in a two-term power series about an arbitrary point in

the vicinity of the contact or release point. This modified fitting

equation is then used to find the values of the elastic constant and

the coordinates of the true contact or release point. Subjectivity

in the selection process and significant influence from the size of

the pre-contact portion make this method difficult to implement.

4.3 Methods for adhesive contact

4.3.1 Method of Lin et al. for adhesive interactions. When

adhesion is detected (see Fig. 2 and curve ‘‘d’’ in Fig. 3), typically

in tip retraction, Lin et al.81 proposed an approach based on the

Pietrement–Troyon empirical model represented by eqn (1) – (8).

The locations of the zero force and contact reference points
This journal is ª The Royal Society of Chemistry 2008



Fig. 4 Sample retraction curves from the AFM indentation of a poly(vinyl alcohol) gel using a 9.6 mm diameter spherical tip. The contact points

(indicated by B) and the zero indentation reference point (indicated by �) do not necessarily coincide. Data from Lin et al.81

Fig. 5 Flowchart representation of the algorithm developed by Lin et al.50 for the analysis of AFM nanoindentation data. Contingencies for repulsive

and adhesive interactions are incorporated into the scheme.
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Fig. 6 Simulated, non-adhesive AFM data sets analyzed by three methods. Random noise of up to �1 nm was added to each value of deflection d. For

the method of Jaasma et al.56 the range of analysis was found through trial and error. For the neo-Hookean data, the method of Guo and

Akhremitchev69 relies on the Hertz equation. For the Hertz and neo-Hookean data sets, the method of Crick and Yin62 yields essentially the same results

as the method of Lin et al.50,63 Best-fit curves (solid lines) are plotted with the data (every fifth point indicated by B) where possible.

678 | Soft Matter, 2008, 4, 669–682 This journal is ª The Royal Society of Chemistry 2008



Fig. 7 Simulated, JKR type adhesive AFM data sets analyzed by three methods. Best-fit curves (solid lines) are plotted with the data (every fifth point

indicated by B) where possible.
(Table 2 and Fig. 2) are determined independently prior to the

principal data fitting and search process. The separation point

(or contact point in the loading phase) is taken to be the point

of minimum absolute deflection (i.e. the bottom of the valleys

shown in Fig. 2) when the tip completely detaches from the

sample upon initial release. Frequently in the indentation of

soft materials, multiple release points resulting in a sawtooth

pattern are observed.81,82 Examples of this phenomenon can be

seen in the two data sets displayed in Fig. 4. When this occurs,

the first release point is chosen to be the reference point.
This journal is ª The Royal Society of Chemistry 2008
Following the identification of the first two reference points,

an iterative search for the zero indentation reference point is

conducted by varying the value of the nondimensional parameter

a that represents the intermediacy within the JKR–DMT

transition. At each iteration, eqn (1), (5) and (6) are used to

calculate the coordinates of the reference point at d ¼ 0. The

coordinates that result in the best fit of the data are accepted

as the solution. Young’s modulus can be extracted from eqn

(3), (4), (7) and (8). Because this method is based on an empirical

form of the Maugis–Dugdale theory, it shares the same
Soft Matter, 2008, 4, 669–682 | 679



Table 4 Matrix of methods, amount of user intervention required in implementing each method, and types of AFM data each is suited for

Data Crick and Yin62 Guo and Akhremitchev69 Jaasma et al.56 Lin et al.50,63,81 Oliver and Pharr71 Sun et al.39

Non-interactive, Hertzian U U U U U

Repulsive U
a

U
b

U

Mooney–Rivlin elastic U U
b

U

Small adhesive force U U
a

U
b

U U

Large adhesive force of JKR type U U

Large adhesive force of DMT type U U

Large adhesive force in the
JKR–DMT transition

U

User intervention Minimal Significant Moderate Minimal Significant Minimal

a Accuracy is contingent on the selected contact/separation point or range of points. b Accuracy is contingent on the range of data used in the analysis;
a fixed range may not be suitable for all data sets.
limitations. These include the requirements of material linearity

and large relative sample thickness.

4.3.2 Method of Sun et al. for adhesive interactions. An alter-

native technique for analyzing indentation data sets that are

strongly influenced by adhesive interactions was developed by

Sun et al.39 using transformed force and indentation data. The

zero force reference, which can generally be identified with little

difficulty, and another reference point (e.g. the release point) are

used to generate four equations based on eqn (1) and (2) or on

eqn (9) and (10). This system of equations can be solved for

the four unknown quantities (the contact radius at the two

points, the interfacial energy, and the elastic constant E*).

Especially in the case of the AFM, however, transformation of

the data may be difficult. In such circumstances, a single

equation can be generated for the change in indentation between

the two chosen reference points using eqn (1) or (9).

Because this method makes use of only data up to the zero

force reference, material nonlinearity is not a concern. For

spherical indenters, it should also be compatible with the JKR

and DMT theories, but not the general Maugis–Dugdale theory.

Care should be exercised to limit the indentation depth in order

to minimize the amount of superfluous data. It should also be

realized that because only two points are used in the analysis,

the results depend greatly on the accuracy in identifying the

reference points.
4.4 Combined approaches

Lin et al.63 offered an algorithm as an example of combining

multiple analysis strategies into a synergistic approach that can

better handle different types of problematic data sets (e.g.

excessive noise and tip–sample adhesion or repulsion). Two

main conditions were stipulated as key requirements of a

comprehensive scheme:

� It must be capable of detecting and handling data sets that

are influenced by adhesion or repulsion.

�User intervention shouldbeminimized toprevent subjectivity.

In the algorithm, a preprocessing step determines whether

adhesive interactions are present and invokes one of twomeasures

– one based on the semi-constrained search and the rearwards

search procedure for non-interactive or repulsion-influenced

data, and the other based on the empirical Pietrement–Troyon

model for adhesive interactions. The algorithm is represented

in flowchart form in Fig. 5.
680 | Soft Matter, 2008, 4, 669–682
If accuracy is the primary criterion in formulating an

analytical approach, multiple techniques can be employed and

their results compared to identify the best solution (i.e. the one

that provides the best fit of the data). For example, the

method of Jaasma et al.56 can be used to identify the point of

contact or separation, and then the method of Guo and

Akhremitchev69 can be applied to extract the value of Young’s

modulus from the transformed data. The advantages of applying

a combined approach are illustrated in Fig. 6 and 7, where

simulated data sets are analyzed using a number of methods. In

Table 4, we identify the methods that are most suitable

for various types of data as well as those that require

minimal user input and hence, are most appropriate for

automated analysis schemes. The comparisons should provide

a clearer understanding of the capabilities of the different

methods.

5. Conclusions and future perspectives

Nanoindentation of soft materials can present several unique

challenges compared to the traditional processes developed for

the testing of hard materials. The analytical approaches based

on linear elasticity theory listed in this paper are all capable of

accurately extracting elastic properties from ideal data sets that

exhibit high signal-to-noise ratios, limit deformations to the

Hertzian regime, and have conspicuous points of contact or

separation. In intractable data sets, complications usually arise

in the form of ambiguities in the location of important reference

points. Under such circumstances, a combination of techniques

is the recommended course of action.

When the deformations extend beyond the Hertzian regime,

the linear elastic models are inadequate. In fact, the linear elastic

limit may be essentially nonexistent in many materials of

biological origin. Additionally, the nonlinear response may

vary significantly among different materials. Although a simple

force–indentation relationship based on the Mooney–Rivlin

formalism has been developed and validated for the testing of

certain gels and soft tissues, no hyperelastic model exists that is

capable of serving as a universal constitutive law for soft elastic

materials. Hence, multiple models are necessary for representing

the diversity of large strain behaviours that exists among soft

matter. It is obvious that further advances in the area of

nonlinear elastic indentation modelling are required to match

the rapid growth of nanoindentation in fields from polymer

science to biology.
This journal is ª The Royal Society of Chemistry 2008



6. List of symbols

a1 contact radius at point of contact or separation in

JKR-type adhesive contact

a2 contact radius at point of zero applied force in JKR-type

adhesive contact

ac contact radius

ac0 contact radius at zero applied force

�ac0 nondimensionalized value of ac0 used in empirical

Maugis–Dugdale model

Ac contact area

B1 first Mooney–Rivlin or neo-Hookean elastic constant for

spherical indentation

B2 second Mooney–Rivlin elastic constant for spherical

indentation

C constant used to relate indentation depth and separation

distance in the method of Guo and Akhremitchev69

C* constant obtained after linearizing the relationship

between force and separation distance in the method of

Guo and Akhremitchev69

E Young’s modulus

Er elastic constant or reduced modulus used in the method of

Oliver and Pharr71

E* elastic constant combining Young’s modulus and

Poisson’s ratio

F net indentation force

Fad adhesive force

F�ad nondimensionalized value of Fad used in empirical

Maugis–Dugdale model

Fn normal or externally applied force

kc spring constant of AFM cantilever

R radius of spherical indenter

S nondimensional term used in the empirical Maugis–

Dugdale model

b nondimensional term used in the empirical Maugis–

Dugdale model

c transformed indentation depth used in finite layer thickness

models

d indentation depth

D tip–sample separation distance

f semivertical or half tip angle of conical or pyramidal

indenter

g interfacial energy

h geometry-dependent exponent in the general force–indenta-

tion equation

l geometry-dependent elastic constant in the general force–

indentation equation

n Poisson’s ratio

s loading stiffness at maximum load during tip retraction

x nondimensional constant representing intermediacy within

the DMT–JKR transition

j constant representing the interfacial condition between

sample and underlying rigid substrate

z constant representing the interfacial condition between

sample and underlying rigid substrate
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