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Allen Song and coworkers recently proposed a method for MRI
detection of biocurrents in nerves called “Lorentz effect imag-
ing.” When exposed to a magnetic field, neural currents are
subjected to a Lorentz force that moves the nerve. If the dis-
placement is large enough, an artifact is predicted in the MR
signal. In this work, the displacement of a nerve of radius a in a
surrounding tissue of radius b and shear modulus � is analyzed.
The nerve carries a current density J and lies in a magnetic field
B. The solution to the resulting elasticity problem indicates that

the nerve moves a distance
BJ
4�

a2ln�b
a�. Using realistic param-

eters for a human median nerve in a 4T field, this calculated
displacement is 0.013 �m or less. The distribution of displace-
ment is widespread throughout the tissue, and is not localized
near the nerve. This displacement is orders of magnitude too
small to be detected by conventional MRI methods. Magn
Reson Med 61:59–64, 2009. © 2008 Wiley-Liss, Inc.
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In recent years, many researchers have attempted to detect
currents (1–5), including neural currents (6–8), by mag-
netic resonance imaging (MRI). This technique differs
from functional MRI using the blood oxygenation level-
dependent (BOLD) signal (9). With BOLD, changes in the
metabolic activity of neurons is presumed to change blood
oxygenation, which in turn changes the magnetic suscep-
tibility of the blood, thereby modifying the magnetic field
and influencing the MR signal. With direct detection of
neuronal currents, the biocurrent itself produces a local
magnetic field perturbation that contributes to the gradient
field used to produce the image. Bandettini et al. (10) have
reviewed this research, asking whether direct detection of
neuronal current with MRI is “fantasy, possibility, or re-
ality.”

Allen Song and coworkers (11–14) recently proposed an
alternative method for MRI detection of biocurrents, called
“Lorentz effect imaging.” When exposed to a magnetic
field, biocurrents are subjected to a Lorentz force that
deforms the tissue, causing the current-carrying nerve fi-
bers to move. If a magnetic field gradient is also present,
this displacement causes the spins to dephase, resulting in

an artifact in the MR signal. Song and Takahashi (11)
demonstrated this method by imaging the movement of a
copper wire in a gel phantom using MRI. More recently,
Truong and Song (13) performed an experiment on a hu-
man median nerve, applying “a series of oscillating gradi-
ents (with positive and negative lobes of the same ampli-
tude and duration) in synchrony with the neural stimula-
tion, such that the neuroelectric activity occurs only
during the negative lobes.” They concluded that “the suc-
cessful detection of neuroelectric activity in vivo by using
our technique demonstrates that neural activation can be
imaged noninvasively by MRI with a high spatial and
temporal resolution.” Basford et al. (15) have also exam-
ined Lorentz-force-induced motion during MRI.

In this work, our goal is to estimate the displacement of
a nerve carrying an action current, which is immersed in a
static magnetic field. We solve the resulting elasticity
problem including the Lorentz force as a body force, and
use this result to analyze Truong and Song’s (13) experi-
ment to detect neural activation using MRI.

MATERIALS AND METHODS

Consider a cylindrical nerve of radius a lying at the center
of a conducting cylinder of radius b, like the median nerve
in the arm (Fig. 1). The nerve carries an intracellular cur-
rent density J uniformly distributed over its cross section.
An equal current returns in the extracellular space, but the
extracellular current density is smaller because of the
larger cross-sectional area. A uniform, steady magnetic
field B is directed perpendicular to the nerve.

In our mechanical model the tissue is subject to three
forces. The first two are similar to those in the fluid-fiber-
collagen model of cardiac muscle (16): a pressure caused
by the incompressible fluid, and a shear force character-
ized by the tissue shear modulus, �. The third is the
Lorentz force acting on a current in a magnetic field.

We calculate the displacement of the tissue using the
Maxwell stress tensor from electrodynamics (17) and Navi-
er’s equation from the theory of elasticity (18). The deri-
vation, which is quite mathematical, is given in the Ap-
pendix.

RESULTS

Figure 2 shows the displacement produced by the Lorentz
force, calculated from Eqs. [5], [10], and [12] in the Ap-
pendix. The left panel (Fig. 2a) plots the displacement over
the entire tissue (b � 25a, with the outer circle indicating
b and the inner circle a), and the right panel (Fig. 2b)
shows more detail in the region near the nerve. The dis-
placement is continuous across the nerve boundary, and
the displacement arrows form closed loops (as they must,

1Department of Physics, Oakland University, Rochester, Michigan, USA.
2Section on Tissue Biophysics and Biomimetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes
of Health, Bethesda, Maryland, USA.
Grant sponsor: National Institutes of Health (NIH); Grant number:
R01EB008421; Grant sponsor: Intramural Research Program of the Eunice
Kennedy Shriver National Institute of Child Health and Human Development,
NIH.
*Correspondence to: Bradley J. Roth, Dept. of Physics, Oakland University,
Rochester, MI 48309. E-mail: roth@oakland.edu.
Received 12 November 2007; revised 25 June 2008; accepted 7 July 2008.
DOI 10.1002/mrm.21772
Published online in Wiley InterScience (www.interscience.wiley.com).

Magnetic Resonance in Medicine 61:59–64 (2009)

© 2008 Wiley-Liss, Inc. 59



since the tissue is incompressible). The displacement is
not well localized to the region around the nerve, but
spreads throughout the entire tissue, implying that the
spins are dephased throughout the arm, not just near the
nerve. Localizing the nerve within an MR image volume
would therefore be difficult.

The most important result derived in the Appendix is
that the center of the nerve is displaced by a distance
BJ
4�

a2ln�b
a�. We can estimate the magnitude of this dis-

placement using realistic values for the parameters. In the
MRI scanner used by Truong and Song (13), the magnetic
field is B � 4 T. The shear modulus of soft tissue is
approximately � � 104 Pa (16). We assume that the entire
human median nerve is simultaneously active, and set a �
2 mm (19). In addition, we let b � 25a, which is on the
order of the size of the human arm and should ensure that
the assumption of b � a is satisfied. The current density
can be estimated by assuming a conductivity of 1 S/m and
an electric field corresponding to the amplitude of the
action potential (100 mV) over a distance of 10 mm, re-
sulting in J � 10 A/m2. The resulting displacement is
0.013 �m. This result is sensitive to the nerve radius
because of the factor of a2. If we model a single active axon
with radius 10 �m, the displacement is only 1 pm.

To be conservative, in the preceding paragraph we as-
signed values to uncertain parameters that would magnify
the Lorentz force effect. We assumed that the entire nerve
was active simultaneously. During Truong and Song’s (13)
experiment, all the axons in the median nerve were not
active because they stimulated below the motor threshold,
and therefore they did not excite any of the motor axons
and only the larger of the sensory axons. Our values for the
conductivity of the intracellular space, the electric field in
an axon, and the radius of the nerve are reasonable but
probably somewhat high. The calculation is not very sen-
sitive to the radius of the arm, but that value was also
overestimated for all but the largest arms. Given these
limitations, the value of 0.013 �m should be considered an
upper limit for the displacement.

DISCUSSION

Our calculated displacement is too small and diffuse to
explain the data obtained by Truong and Song (13). What,
then, is the explanation? We do not have a satisfactory
answer to this question. They performed several controls
in their experiment, such as delaying the electrical stimu-
lation of the nerve by 50 ms so it was not in sync with their
magnetic field gradients, and the signal disappeared as
they expected. They were careful to avoid any direct mus-
cle excitation, and performed controls to rule out artifacts
caused by eddy currents induced by the rapidly changing
magnetic field gradients. These controls support their hy-
pothesis that the measured signal is related to nerve con-
duction.

How can we reconcile Truong and Song’s (13) observa-
tions with our calculation? We can think of four potential
problems with the experiment. First, perhaps they excited
a few skeletal muscle fibers—too few to produce a signal in
the electromyogram or visible contraction of the muscle,
but enough to cause minute displacements. Second, their
data may be influenced by the magnetic field of the nerve
action potential itself (6–8). For the parameters in our
calculation, the magnetic field at the nerve surface is about
1.3 � 10–8 T (20), compared to the product of the magnetic
field gradient used by Truong and Song (13) (G � 36
mT/m) and our predicted displacement (uy � 0.013 �m),
Guy� 5 � 10–10 T. Therefore, the magnetic field produced
by the axon itself should have a more than 25 times greater
influence on the signal than the Lorentz displacement.
However, during their control experiment the signal dis-
appeared when no gradient was applied, suggesting the
magnetic field itself is not the primary source of the signal.
Third, Lorentz force imaging and diffusion imaging use
similar pulse sequences and magnetic field gradients (21).
Changes in diffusion associated with nerve activation may
be masquerading as a Lorentz force signal. Fourth, their
displacement may be small but their technique may be
sensitive to submicron displacements. Denk et al. (22)
measured oscillatory flow in the cochlea using an MRI
technique similar to that used by Truong and Song (13).
They estimated that the minimum displacement they
could detect would be about 0.16 �m, using an imaging

FIG. 1. A nerve of radius a lying in surrounding tissue of radius b.
The magnetic field B is in the x direction. Current inside the nerve
flows in the positive z direction (out of the page), and current in the
surrounding tissue flows in the negative z direction. The Lorentz
force on the nerve is in the y direction, consistent with the “right-
hand rule.”

FIG. 2. The displacement produced by the Lorentz force, calculated
using Eqs. [5], [10], and [12]. a: The entire tissue. The outer circle has
radius b and the inner circle radius a (b � 25a). b: A detailed view of
the displacement around the nerve. In the figure, the arrow length is
exaggerated compared to the predicted displacement. The scale for
the length of the arrows is set by the displacement at the center of
the nerve (Eq. [22]).
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system with large gradients (470 mT/m) to produce high
spatial resolution images of rats. We predict that the dis-
placement in Truong and Song’s (13) experiment was
smaller than the minimum that Denk et al. could detect,
and it was measured using weaker gradients (36 mT/m).
Put another way, the phase shift induced during Truong
and Song’s (13) experiment by our predicted displacement
uy is on the order of �Guy� � 0.00063 rad � 0.036�,
where � is the gyromagnetic ratio of a proton (2.7 � 108 s–1

T–1), and � is the duration of the gradient pulse (5 ms) (13).
Truong and Song (13) used three cycles of oscillating gra-
dients, so their phase shift may have been three times as
large, or about 0.1°. We are skeptical that they could detect
such small phase shifts.

Perhaps the small size of the predicted displacement
arises because of a problem with our model. What are
some of the limitations of this calculation? The calculation
is based on the following assumptions:

● The current density J is uniform along the nerve,
independent of z. In a real nerve, J does vary with z.
For a large myelinated axon, the speed of propagation
can be as high as 100 m/s, and the upstroke of the
action potential lasts about 0.5 ms, implying that the
current associated with the action potential upstroke
is spread over a length of 50 mm. This length is larger
than a nerve radius, and much larger than an axon
radius, but may be similar to the radius of the sur-
rounding tissue, such as the arm surrounding the me-
dian nerve. Smaller axons have slower speeds, so this
length could be shorter in slower axons (an estimate of
10 mm was used in our calculation of J). We make this
assumption in part because accounting for variation
in the current in the z direction would make an ana-
lytical solution difficult, necessitating numerical
methods (23,24). Moreover, the depolarization and
repolarization phases of the action potential produce
intracellular currents in opposite directions at differ-
ent locations along the axon, reducing the net Lorentz
force and resulting in smaller displacements. Finally,
different axons have different conduction velocities,
so the relative position and timing of the upstroke in
each axon varies as their action potentials propagate,
further reducing the net displacement. Thus, relaxing
our assumption of a uniform current would generally
make the displacement smaller.

● The intracellular current density is uniform across the
cross section of the nerve, independent of r. Calcula-
tion of the intracellular potential and current associ-
ated with a propagating action potential along a nerve
axon indicates that the axial current density should be
nearly uniform across the axon cross section (24). In
this macroscopic model, we assume the active axons
are uniformly distributed throughout the nerve cross
section.

● The extracellular current density is distributed uni-
formly throughout the extracellular space. The valid-
ity of this assumption should improve as the spatial
extent of the action potential upstroke increases. In
the limit of a uniform current along the axon, we
expect the extracellular current to distribute uni-
formly, so this assumption is related to our first as-

sumption of a uniform intracellular current along the
axon. For a current that is localized along the axon,
the extracellular current will be greater near the axon
than far from it (23,24). In general, extracellular cur-
rents spread out radially over a distance comparable
to the axial extent of the action potential (estimated at
50 mm above). If we relax this assumption, the forces
on the intracellular and extracellular currents would
probably cancel more completely (as in a coaxial ca-
ble), implying a smaller displacement (although per-
haps a more localized distribution).

● A steady-state elastic model. This assumption ignores
phenomena associated with the propagation of acous-
tic waves and therefore provides accurate results
when the acoustic wavelength is much greater than
the other dimensions in the problem. The wavelength
of a sound wave in tissue is large (about 1.5 m) at the
1 kHz frequency characteristic of a nerve action po-
tential. Therefore, the steady-state model should be
accurate.

● The nerve and surrounding tissue are homogeneous
and isotropic. Both the electrical and mechanical
properties are heterogeneous in real tissue, and both
neural and muscle tissue are anisotropic, but properly
accounting for heterogeneity and anisotropy would
require a much more elaborate numerical model than
the one we derive here. Our results represent an initial
approximation, which may need to be refined and
extended in later work.

● Viscoelastic and poroelastic material behaviors are
ignored. For the assumed rapid change in current (a
few milliseconds), one can neglect viscoelastic or po-
roelastic effects. At short times, the material could be
assumed to be incompressible. For tissue that is po-
roelastic, there is insufficient time for the fluid phase
to flow through the solid or network phase (25). Sim-
ilar arguments can be applied for viscoelastic models
of tissues with dashpot elements. Generally, includ-
ing either of these two dissipative mechanisms would
tend to reduce the net displacement of the tissue, so
using a linearly elastic model of the tissue will always
result in larger net displacements. Including these
effects in the constitutive law of the tissue will only
reduce the contribution of the Lorentz force to the MR
image.

● A linear approximation for the strain tensor. Given the
small strains predicted by this calculation, a linear
approximation for the strain should be very accurate.

● The nerve is located at the center of the arm. Results
might vary if the nerve is off-center. However, either a
numerical model or a much more complicated analyt-
ical model would be required to treat an off-center
nerve (23). Moreover, we see no reason why a non-
concentric nerve should magnify the displacement
significantly.

● The tissue shear modulus is 10,000 Pa. Our value is on
the order of the shear modulus for many soft tissues
(16,25,26), but might not be accurate for the skeletal
muscle surrounding a human median nerve. One ad-
vantage of an analytical model is that it highlights
which parameters are important in a problem. The
shear modulus is crucial for determining the magni-
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tude of the displacement, but is not typically mea-
sured in experiments. Our results suggest that the
magnitude of the displacement is inversely propor-
tional to the shear modulus, but the spatial distribu-
tion is independent of it. So, our conclusions about
the distribution of displacement should hold regard-
less of the shear modulus value.

● The nerve is elastically coupled to the surrounding
tissue. One key question regarding our mechanical
model is: How well attached is the nerve to the tissue
around it? If the nerve could somehow slide through
the tissue without exerting any stress on its surround-
ings, our model would provide an erroneous view of
the displacement distribution. We find it difficult to
imagine how this would be possible.

● The outer boundary is free. We have solved the same
problem with a fixed outer boundary instead of a free
one. Although the displacement distribution is some-
what different in this case, the magnitude of the dis-
placement at the center of the nerve is the same.

● The effect of myelination is ignored. Most large axons
in a human nerve are myelinated, which our model
does not take into account. However, as estimated
above, the region of depolarization of the action po-
tential can be up to 50 mm in length, which is much
greater than the distance between the nodes of Ran-
vier (about 1 mm). Therefore, we expect that myelina-
tion will cause only a small change in the resulting
current distribution compared to an equivalent homo-
geneous axon (27).

● The Lorentz force acts macroscopically. We treat the
Lorentz force as acting on a continuous current rather
than on individual ions, in the tradition of the cable
model (28). Microscopically, the Lorentz force acts on
the ions themselves, but this force is transmitted to
the nerve by friction within the conductor, just as the
magnetic force on individual electrons results in a
macroscopic force on a current-carrying wire. Truong
et al. (14) considered a microscopic model and con-
cluded that “ionic currents with durations and cur-
rent densities on the same order of magnitude as those
induced by neuroelectric activity in nerve fibers and
in the brain can be detected [by MRI].” However, they
assumed a frictional force consistent with a mobility
of 0.13 (m/s)/(V/m). The measured mobilities of ions
important in nerve conduction are on the order of 7 �
10–8 (m/s)/(V/m) (29). Thus, they may have overesti-
mated the Lorentz force by a factor of more than 1
million.

● Incoherent intravoxel phase shifts. Song and Taka-
hashi (11) have suggested that the Lorentz effect signal
arises from “intravoxel incoherent phase shifts.” The
only way intravoxel dephasing could account for a
signal larger than the one we predict is if microscopic
incoherent displacements were much larger than the
macroscopic coherent displacement that we calculate.
We do not know what mechanism would produce
such large microscopic displacements.

CONCLUSIONS
In conclusion, we use the theories of electromagnetism
and elasticity to predict the displacement ascribed to the

Lorentz force in the experiment by Truong and Song (13),
and find that it is less than 0.013 �m. A displacement this
small would probably not be detectable using their exper-
imental technique. Thus, we suspect that some other effect
besides a Lorentz force-induced displacement is responsi-
ble for their measured signal.
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APPENDIX

Consider a cylindrical nerve of radius a lying at the center
of a conducting cylinder of radius b (Fig. 1). Position is
described by a cylindrical coordinate system (r, �, z), and
the problem is assumed to be independent of z. The nerve
carries a current density J uniformly distributed over its
cross section. An equal current returns in the extracellular
space, but because of the different cross-sectional areas the

extracellular current density is j � J
a2

b2 � a2, where the

minus sign indicates that the intracellular and extracellu-
lar currents flow in the opposite directions. A uniform,
steady magnetic field B is in the x-direction.

In our mechanical model the tissue experiences pressure
and undergoes displacements. The stress tensor, �ij, is

�ij � � p�ij � 2�εij � Tij, [1]

where p is the hydrostatic fluid pressure, εij is the strain
tensor, � is the tissue shear modulus, and Tij is the Max-
well stress tensor that results in the Lorentz force F�J�B.
The first two terms of this stress tensor are similar to those
in the fluid-fiber-collagen model derived by Ohayon and
Chadwick (16) to describe the mechanical properties of
cardiac muscle. Equation [1] does not include any vis-
coelastic or poroelastic behavior.

The stress tensor specifies that state of internal stress in
the tissue, but in order to determine the net force on the
tissue we must examine spatial derivatives of the stress
tensor. The divergence of Eq. [1] gives Navier’s equation
that describes the elastic state of the medium in static
equilibrium (steady-state), and says that the sum of the
forces (elastic plus magnetic) is zero. Navier’s equation in
polar coordinates is (18)

�
	p
	r

� 2��	εrr

	r
�

1
r

	εr�

	�
�

εrr � ε��

r � � Fr � 0, [2]

�
1
r

	p
	�

� 2��	εr�

	r
�

1
r

	ε��

	�
�

2εr�

r � � F� � 0. [3]

In the linear approximation, the displacement of the
tissue, u � (ur, u�), is related to the strain tensor by (18)
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We assume that the tissue is incompressible (ƒ � u � 0),
which implies that the displacement can be specified by a
stream function 
, a scalar function whose spatial deriva-
tives give the radial and azimuthal components of the
displacement vector (18)

ur � �
1
r

	


	�
; u� �

	


	r
. [5]

These relationships allow the solution of Navier’s equa-
tion to be stated in terms of two scalar functions: the
pressure and the stream function. The uniqueness of these
solutions will depend on the boundary conditions (30).

The Maxwell stress tensor Tij inside the nerve (r � a) is
(17)

Trr �
BJ
2

r sin�, T�� � �
BJ
2

r sin�, and Tr� �
BJ
2

r cos�.

[6]

The divergence of Tij is simply the body force per unit
volume F�J�B, which for this geometry is

Fr � BJ sin�, F� � BJ cos�. [7]

In Cartesian coordinates, this is simply a force per unit
volume of magnitude BJ in the y-direction, consistent with
the “right-hand rule.” Outside the nerve (a � r � b),
the form of Tij is more complicated:

Trr �
BJ
2

sin��a2

r
�

a2

b2 � a2� r �
a2

r �� ,

T�� � �
BJ
2

sin��a2

r
�

a2

b2 � a2� r �
a2

r �� ,

and

Tr��
BJ
2

cos��a2

r
�

a2

b2�a2(r�
a2

r
)� , [8]

but the Lorentz force is given simply by

Fr � � BJ
a2

b2 � a2 sin�, F� � � BJ
a2

b2 � a2 cos�, [9]

which is equal to a force Bj in the negative y direction.
At the boundary of the nerve (r � a), the displacement

(ur and u�) and the components of the stress tensor (�rr and
�r�) are assumed to be continuous. At the outer boundary
(r � b) the surface is “stress-free” (�rr � �r� � 0).

We have found an analytical solution to Navier’s equa-
tion subject to these boundary conditions. Inside (i) and
outside (e) of the nerve, the stream function and pressure
are given by


i �
BJ
4�

a3cos�� �
1
4�1 � �a

b�
2�� r

a�
3

� � r
a� ln�b

a�� ,

[10]

pi �
BJ
2

a�1 � �a
b�

2�� r
a�sin�, [11]


e �
BJ
4�

a3�
1

1 � �a
b�

2�cos��1
4��a

b�
4� r

a�
3

� �a
r�� � � r

a�

� � ln�b
r� � �a

b�
2

ln�b
a��� , [12]

pe �
BJ
2

a�
1

1 � �a
b�

2�sin�� � �a
b�

2�2 � �a
b�

2�� r
a�

� �a
r�� . [13]

These expressions are complicated, but become simpler if
b � a. This means that the return path has a significantly
larger area than the nerve carrying the action current.


i �
BJ
4�

a3cos�� �
1
4� r

a�
3

� � r
a� ln�b

a�� , [14]

pi �
BJ
2

a� r
a�sin�, [15]


e �
BJ
4�

a3cos�� �
1
4�a

r� � � r
a� ln�b

r�� , [16]

pe �
BJ
2

a�a
r�sin�. [17]

Note that b cannot be removed entirely from these expres-
sions even if it is much larger than a; it still appears as an
argument of the logarithm in the stream function.

For the case of b � a, the displacement inside the nerve
is

ur �
BJ
4�

a2sin�� �
1
4� r

a�
2

� ln�b
a�� , [18]

u� �
BJ
4�

a2cos�� �
3
4� r

a�
2

� ln�b
a�� , [19]

and outside the nerve is

ur �
BJ
4�

a2sin�� �
1
4�a

r�
2

� ln�b
a�� , [20]

u� �
BJ
4�

a2cos��1
4�a

r�
2

� 1 � ln�b
a� � ln� r

a�� . [21]
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The center of the nerve is displaced by

ur �
BJ
4�

a2ln�b
a�sin� and u� �

BJ
4�

a2ln�b
a�cos�, or simply

uy �
BJ
4�

a2ln�b
a� . [22]
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