
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 8, AUGUST 2007 1017

Error Propagation Framework for Diffusion Tensor
Imaging via Diffusion Tensor Representations

Cheng Guan Koay*, Lin-Ching Chang, Carlo Pierpaoli, and Peter J. Basser

Abstract—An analytical framework of error propagation for
diffusion tensor imaging (DTI) is presented. Using this framework,
any uncertainty of interest related to the diffusion tensor elements
or to the tensor-derived quantities such as eigenvalues, eigenvec-
tors, trace, fractional anisotropy (FA), and relative anisotropy
(RA) can be analytically expressed and derived from the noisy
diffusion-weighted signals. The proposed framework elucidates
the underlying geometric relationship between the variability
of a tensor-derived quantity and the variability of the diffusion
weighted signals through the nonlinear least squares objective
function of DTI. Monte Carlo simulations are carried out to vali-
date and investigate the basic statistical properties of the proposed
framework.

Index Terms—Cone of uncertainty, covariance structures, diffu-
sion tensor imaging, diffusion tensor representations, error prop-
agation, invariant Hessian.

I. INTRODUCTION

DIFFUSION tensor imaging (DTI) is a unique noninvasive
magnetic resonance imaging technique capable of probing

tissue microstructure in the brain [1]–[7]. DTI is a well-estab-
lished diagnostic technique and has provided fresh impetus
in monitoring human brain morphology and development
[6]–[12]. Therefore, an accurate quantification of uncertainties
in tensor elements as well as in tensor derived quantities, such
as the eigenvalues, eigenvectors, trace, fractional anisotropy
(FA), and relative anisotropy (RA), is needed so that statistical
inferences can inform clinical decision making.

Accurate characterization of variability in tensor-derived
quantities is of great relevance in various stages of DTI data
analysis—from exploratory and diagnostic testing to hypoth-
esis testing, experimental design and tensor classification. To
date, many studies have been conducted on optimal design
and the effects of noise in DTI [13]–[24]. In the context of
variability studies on tensor-derived quantities in DTI, there
are currently two different methods—perturbation and error
propagation—which have been studied in the work of Anderson
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Fig. 1. Different representations and coordinate transformations of the diffu-
sion tensor. As defined in the text, 


 is the ordinary representation of the diffu-
sion tensor together with the logarithm of the reference signal. Similarly,��� and ���
are representations derived from the Cholesky composition and from the Eigen-
value composition, respectively. Note that decompositions, Cholesky or Eigen-
value, are more numerical in character whereas their compositions are more
analytical or rather, analytically more tractable.

[17], Chang et al. [21], and Poonawalla [19]. However, these
studies were based on the linear objective function of DTI,
which may not be appropriate for diffusion that is anisotropic
[25]. Further, Poonawalla [19] focused only on anisotropy (or
scalar) calculations.

In this paper, our goal is to present a general analytical error
propagation framework for DTI based on the nonlinear objective
functions of DTI and to show the relevance of various diffusion
tensor representations to DTI error propagation. Fig. 1 shows
three basic diffusion tensor representations and their mappings.
The proposed theoretical framework allows the uncertainty to be
calculated for any tensor-derived quantity including the eigen-
vector—the main geometric object of DTI tractography. Within
this framework, the cone of uncertainty [26]–[30] can be quanti-
tatively estimated; this framework coupled with the observation
of Jeong et al. [30] and Lazar et al. [29] provides converging ev-
idence that the cone of uncertainty is generally elliptical. A fresh
approach is taken to show both the geometric and analytical as-
pects of the proposed framework without heavy machinery from
differential geometry and tensor calculus [31]–[40].

Monte Carlo simulations are carried out to investigate the
basic statistical properties of the proposed framework. Some
material here was previously presented in abstract form [23].

0278-0062/$25.00 © 2007 IEEE
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II. METHODS

A. Nonlinear DTI Estimation in Different Diffusion Tensor
Representations

In a typical DTI experiment, the measured signal in a single
voxel has the following form [1], [4], [41]:

(1)

where the measured signal depends on the diffusion encoding
gradient vector of unit length, the diffusion weight , the ref-
erence signal , and the diffusion tensor . The symbol “ ”
denotes the matrix or vector transpose. Given sampled
signals based on at least six noncollinear gradient directions and
at least one sampled reference signal, the diffusion tensor esti-
mate can be found by minimizing various objective functions
with respect to different representations of the diffusion tensor
in (1). Different representations of the diffusion tensor provide
different insights and information about the diffusion tensor it-
self. We will use three distinct diffusion tensor representations
that have applications to DTI and show how they can be used in
DTI error propagation.

In general, the objective functions for the nonlinear least
squares problem in different diffusion tensor representations
can be expressed as follows:

(2)

(3)

(4)

where is the measured diffusion weighted signal with noise;
is the diffusion weighted func-

tion evaluated at ;

is the diffusion weighted function evaluated at ;

is the diffusion weighted

function evaluated at ; and see the equations at the bottom
of the page.

The three representations of the diffusion tensor are

(5)

(6)

(7)

where is the parameter for the nondiffusion weighted signal.
We shall denote , , and as the ordinary, the Cholesky,

and the Euler representations, respectively. The meaning of each
term mentioned here will be obvious in the following discus-
sion. Fig. 1 shows the mappings between different spaces or
representations.

To construct the mappings and , we use the main
ideas from the Cholesky decomposition of a symmetric posi-
tive definite matrix and the eigenvalue decomposition of a sym-
metric matrix [42] in reverse. The connections between (5) and
(6) and between (5) and (7) can then be established based on the
following equations:

(8)

and

(9)

where is an upper triangular matrix with nonzero diagonal
elements and are the column vectors of which depend on
the Euler angles. Without loss of generality, we shall assume the
eigenvalues are arranged in decreasing order, i.e.,

...
...

...
...

...
...

...
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. Each column vector of is also an eigenvector of .
Particularly, we have

(10)

(11)

(12)

(13)

and

(14)

where , , and are the eigenvalues of . If is
positive definite then its eigenvalues are positive. Finally, the
rotation matrices, , , and represent rota-
tions through angle around the , , and axes, respectively,
and are defined in Appendix I.

Given (8) and (9), the mappings, and , can be ex-
pressed as

(15)

(16)

Since the expressions for (16) are lengthy but easy to com-
pute, we have collected them in Appendix II.

It is important to note that the inverse mapping of , ,
which can be constructed analytically, is well defined only when
the diffusion tensor contained within is positive definite, oth-
erwise the modified Cholesky decomposition is needed to force
the diffusion tensor to be sufficiently positive definite [43].
However, the solution obtained from the modified Cholesky
decomposition is generally not a minimizer of .
The solution is, nevertheless, useful as an initial guess of the
minimization of . A specific algorithm of this type
of minimization, where the resultant diffusion tensor estimate
is both positive definite and a minimizer of , can
be found in [25]. Finally, the analytical expression of
based on the Cholesky decomposition is shown in Appendix II.

Another mapping of interest is . The construction of
, which requires the eigenvalue decomposition of a sym-

metric matrix, e.g., using the Jacobi method (34), has two
main advantages. First, it is numerically more stable and more
accurate than the analytical approach of [44]. Second, it can
be used even when the diffusion tensor within is not positive
definite—an additional advantage over the analytical approach
of [44]. Once the orthogonal matrix is obtained by diagonal-
ization, we still need to solve for the Euler angles, , , and .
The solution to this problem is simple but, for completeness,
we have collected these results in Appendix I. The Euler rep-
resentation is more useful than the representation proposed by
Hext [45], a special case of which was used by Anderson [17]
and Chang et al. [21] in computing the covariance between
eigenvalues, because the covariance matrix of the major eigen-
vector of the diffusion tensor can be constructed in the Euler
representation. Appendix III contains further comments on the
representation by Hext.

The first two objective functions, (2) and (3), have been used
in many studies [25], [46]–[50], and the theoretical and algo-
rithmic framework for these objective functions was investi-
gated by Koay et al. [25]. To date, the third objective function,
(4), has not been used for DTI estimation because the direct es-
timation of the eigenvalues and eigenvectors by (4) is imprac-
tical due to the cost of computation, particularly for the initial
solution and for those trigonometric functions occurring in the
rotation matrix. Nonetheless, (4) as expressed in the Euler rep-
resentation does provide a foundation for DTI error propagation
that is conceptually elegant and algorithmically practical.

We introduce the proposed framework with respect first to the
ordinary representation for a scalar function in Section II-B and
then for a vector function in Section II-C. In Section II-D, we
discuss commonly used scalar and vector tensor-derived quanti-
ties and their corresponding gradient vectors, while Section II-E
covers the diffusion tensor representation and analytical for-
mulas for the invariant Hessian structures, a new concept to be
defined later, with respect to different diffusion tensor represen-
tations. Section II-F discusses selected applications of the pro-
posed framework. Fig. 7 shows the schematic diagram of the
necessary steps needed to obtain appropriate covariance struc-
tures. The segment above the dotted line in Fig. 7 deals with
diffusion tensor estimations; these techniques can be found in
[25], while the segment below the dotted line pertains to the
proposed framework.
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Fig. 2. (A) Hyper-surface of the nonlinear objective function, f , with respect to the 


 coordinate system with a minimum value of f (
̂

) at 
̂

 . A new
coordinate system centered at f (
̂

) is also shown here and will be denoted as the ���-coordinate system. (B) Typical hyper-surface of a tensor-derived quantity
with respect to a 


-coordinate system. The contours of f are projected vertically onto the tangent plane of g. This tangent plane of g at g(
̂

) shows the intersection
between the contours of f and those of g. (C) The magnified image of the region centered at f (
̂

) with respect to the ���-coordinate system. (D) The
magnified image of the tangent plane of g at g(
̂

). The gradient vector of g(
̂

) shows the direction of greatest ascent with respect to the landscape of g around
g(
̂

). (E) New look of the hyper-surface of f with respect to the transformed ���-coordinate system as defined in both (20) and (21) where the change in f
looks uniform in all directions of any unit vector. (F) Tangent plane of g(
̂

) with respect to the ���-coordinate system.

B. Error Propagation Framework For Scalar Functions

Let be
the NLS objective function in the ordinary representation. Let

be any smooth function (tensor-derived quantity) of and
let be the NLS estimate, i.e., is a minimizer of . The
connection between the uncertainty of and of can be
represented geometrically.

To examine the effect of the variability of on the vari-
ability of , we first focus on the region around (the
blue contour) and its relation to the function by projecting
the contour around to the tangent plane of at
[Fig. 2(A) and (B)].

By second-order Taylor expansion, the change in is

(17)
where and is the Hessian matrix of

. Here, we can safely assume that because
minimizes [Fig. 2(C)]. In the same vein, the first-order

change in is

(18)

where is defined later. If minimizes then the Hessian
matrix is positive definite at and can be written as

(19)

where is an orthogonal matrix and is a diagonal matrix with
positive elements. Therefore, we can express the change in
as

(20)

such that

(21)

In the -coordinate system, the change in looks uniform
in all directions of since (20) is the equation of a hyper-sphere
[Fig. 2(E)]. To measure or capture the change in in a consistent
manner, has to satisfy (20) and be parallel to ; the theo-
retical reason behind the latter condition is related to another
condition, which we shall refer to as the consistency condition.
This condition is best explained using a geometric figure and is
discussed in the caption of Fig. 3. These conditions then lead
naturally to the following formula:

(22)

where is a unit vector along . Therefore, (18)
can be written as

(23)
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Fig. 3. The consistency condition. As in Fig. 2(F), suppose the contours of g are
projected onto the tangent plane of g, depicted here as a circle. The contours of
g on the tangent plane provide a means of measuring change or variation but this
type of change is 1-D, that is perpendicular to the contours, i.e., parallel tor g.
Without loss of generality, we will assume that both ��� andr g are normalized
to unit length and suppose that ��� is not parallel to the gradient of g. This implies
the projections of ��� ontor g and ofr g onto ��� no longer fall onto the same
contours. Therefore, the change in g cannot be measured consistently if ��� is not
parallel to r g. If ��� is perpendicular to r g then the change in g is always
zero by (18). Therefore, ��� must be parallel to r g.

[Fig. 2(F)]. By changing the variables from the -coordinate
system back to the -coordinate system and squaring (23)
[Fig. 2(D)–(F)], we arrive at the error propagation equation for
DTI [51]

(24)

The derivation of (24) is provided in Appendix IV.
Note that there is freedom in setting the magnitude of the

change in , . However, it is more meaningful to
use the following definition
where is the number of degrees-of-freedom. Here,
for DTI, i.e., the number of tensor elements and one reference
signal. This definition is meaningful because
is an unbiased estimate of the variance of the diffusion weighted
(DW) signals [25], so that can serve as an estimate of
the variance of . More importantly, if the change in were
to be taken as some multiple of the DW signal variance instead
of one unit of the DW signal variance, then would no
longer be in agreement with the familiar notion of variance in
statistics.

In subsequent discussion, we will denote for
. As an example, the variance of

can be calculated by setting in (24), which yields
. Similarly, for

, .
We can also work with the objective functions

and instead of so that the variances of
interest with respect to a particular representation can be com-
puted without elaborate computation. However, it is important
to realize that the Hessian matrix of the ordinary representa-
tion is fundamentally different from the Hessian matrices of the
Euler and the Cholesky representations because the latter ma-
trices do not transform like a tensor. Although a detailed discus-
sion on tensor transformation laws is beyond the scope of this
paper, we shall pursue along a different line by constructing co-
variance matrices of the Euler and the Cholesky representations

based on the technique explicated in Section II-C. We will show
that fundamental geometric objects in error propagation from
which the covariance matrices are derived are the invariant Hes-
sian matrices, and not the Hessian matrices. Briefly, an invariant
Hessian matrix is defined to be the term in the Hessian matrix
that is invariant with respect to coordinate transformations.

One of the goals in this paper is to show that with one condi-
tion—which is that the tensor estimate has to be positive definite
[25], [47], [50]—separate minimizations of each objective func-
tion are unnecessary and the variances computed from one rep-
resentation can also be obtained rather easily from another rep-
resentation by a continuous coordinate transformation between
the representations. Before we discuss the technique of coordi-
nate transformation between representations, we will work on
error propagation for vector functions and on practical variance
or covariance computations of commonly used tensor-derived
quantities in Sections II-C and II-D.

C. Error Propagation Framework for Vector Functions

The discussion thus far has focused mainly on the proposed
framework for any scalar function of . Here, we will extend
the framework to include vector functions so that quantities
of interest such as the variance-covariance matrix of or of
the major eigenvector of the diffusion tensor can be obtained.
Without loss of generality, we will assume the vector function

consists of three scalar functions. By the
first-order Taylor expansion of at , we have

... (25)

The variance-covariance matrix of can be defined as
(26)–(28), shown at the bottom of the page.

Under the consistency condition, there are three pos-
sibilities in choosing : ,

, and . But the
correct choice of in each element of the matrix in (28) is
again determined by the same consistency condition. This
condition also ensures that the matrix in (28) is symmetric. As
an example, let us consider the case of two distinct tangent
planes, say of and of . In this case, , which appears in
the off-diagonal term, , of (28), can be
taken to be either or .
It is important to note here that either one will yield the same
result, which is . In other words, the projection of

onto the tangent plane of or the projection of
onto the tangent plane of will yield the same covariation.
Taking the consistency condition into account, the final expres-
sion of (28) can be written as

���g(���) =�
2

DW

r
T
��� g1 � r���g1 r

T
��� g1 � r���g2 r

T
��� g1 � r���g3

r
T
��� g2 � r���g1 r

T
��� g2 � r���g2 r

T
��� g2 � r���g3

r
T
��� g3 � r���g1 r

T
��� g3 � r���g2 r

T
��� g3 � r���g3

:

(29)
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or, equivalently

(30)

where and
is the correlation coefficient. Note that

is a unit vector parallel to . Finally, the
variance-covariance matrix in the coordinate system has
the following expression:

(31)

or

(32)

where

(33)

and (34), shown at the bottom of the page, is the corre-
lation coefficient. As an example, it can be shown that
the variance-covariance matrix of can be expressed as

; see Appendix V for various
Hessian structures and Appendix VI for the derivation of

.
The reader should be cautious not to be misled into thinking

that the covariance matrix of the Euler representation, ,
is simply . These two quantities are
closely related but they are not equivalent. As mentioned
earlier, the Hessian matrix of the Euler representation is not
a tensor. This means that its inverse will not be invariant with
respect to coordinate transformations. In Appendix VI, it is
shown that the covariance matrix of the Euler representation,

, is equal to , where
denotes the invariant Hessian matrix of , which is the part of
the Hessian matrix that is invariant with respect to coordinate
transformations. It is noteworthy that we can discover these

invariant Hessian structures within the proposed framework
using the technique discussed in this section, see Appendix VI.

D. Scalar and Vector Functions of the Diffusion Tensor

As mentioned earlier, variance computation for certain
tensor-derived quantities can be greatly simplified by using
the appropriate diffusion tensor representation. The most com-
monly used tensor-derived quantities are listed below [2], [5]

1) Trace:

(35)

2) Fractional Anisotropy:

or

(36)

3) Relative Anisotropy:

or

(37)

4) Eigenvalues of :

(38)

as defined in (9) and (14).
5) Eigenvalues of :

and as defined in (9), and (11) -(13) (39)

(26)

...
...

...
... (27)

(28)

(34)
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It should be noted here that the first component in each represen-
tation, , , and , is and, therefore, the partial derivative
of any tensor-derived quantity with respect to is 0.

Since and , it is clear
that the variance computation for (35)–(37) is equally tractable
in both the ordinary and the Euler representations. However,
the variance-covariance computation of (38) and (39) is most
convenient in the Euler representation.

The formulas listed below are the gradients of the most com-
monly used tensor-derived quantities; the first three formulas are
expressed with respect to both the ordinary representation and
the Euler representation, while the last two are expressed with
respect to the Euler representation only.

1) Gradient of Trace:

or

(40)

2) Gradient FA: Let
and then

. The gradient of FA with re-
spect to the Euler representation is

,
where

and

The gradient of FA with respect to the ordinary represen-
tation has the following components:

(41)

3) Gradient of RA: Let , the gradient of
RA with respect to the Euler representation is

,
where

and

The gradient of RA with respect to the ordinary represen-
tation has the following components:

(42)

4) Gradients of the eigenvalues are

(43)

5) Gradients of a component of an eigenvector: i.e.,
. Since the expressions are more in-

volved, we have collected these formulas in Appendix VII.
Some of the preliminary formulas used to derive (40)–(42)

are collected in Appendix VIII.

E. Coordinate Transformation Between Different Tensor
Representations

As discussed in Section II-C and Appendix VI, invariant
Hessian structures are very important to variance-covariance
computation. Particularly, we have used the technique expli-
cated in Section II-C to derive the invariant Hessian structures
of the ordinary and Euler representations in Appendix VI. For
convenience, these structures are explicitly given here

(44)

(45)

(46)

where the invariant Hessian matrix of is denoted by .
Please refer to Appendix V for the terms defined above.

We have previously mentioned why the expression,
, should not be taken as the defi-

nition of the covariance matrix of the Euler representation. On
intuitive ground, variance or covariance of a quantity should
be invariant with respect to coordinate transformations, or
equivalently, it can be said that variance or covariance of a
quantity should transform like a tensor. Here, we will show how
the invariance property of the covariance matrix is violated if
one insists on using as the covariance
matrix of the Euler representation. According to (31), we need
to construct so that
or

(47)

Since the covariance structure should be invariant with
respect to coordinate transformation, one expects in
(47) to be equal to . However, the
invariance property is violated if one substitutes the following
expression:
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into (47)

(48)

Comparing (48) and , we see that
the additional error introduced in the estimation of vio-
lates the invariance property of the covariance matrix.

In brief, the covariance matrices in various tensor representa-
tions are derived from the invariant Hessian structures and their
expressions are given below

(49)

(50)

and

(51)

F. Applications

1) Average Variance-Covariance Matrix: The average vari-
ance-covariance matrix for a given diffusion tensor is a very
useful quantity to compute in a simulation study; it is directly
related to average DW signals where the estimated signals are
assumed to be fitted perfectly to the observed signals, i.e., the
residuals are zero. One can see then that the average variance-
covariance matrices can be easily derived from (49)–(51), and
are given by

(52)

(53)

(54)

The symbol, , represents the average quantity of . The
method of averaging and the derivations of (52)–(54) are dis-
cussed in Appendix IX.

It should be noted here that has to be defined differ-
ently from the previous definition, which was based on the esti-
mated DW signal variance, because the residual sum of squares
is now assumed to be zero. Therefore, has to be taken from
a known variance with respect to the Rician-distributed DW sig-
nals. The technique on transforming the variance with respect to
the Gaussian-distributed complex signals to the variance with
respect to Rician-distributed magnitude signals at a prescribed
level of signal-to-noise ratio (SNR) can be found in Koay et al.
[25], [52]. For , is an acceptable approximation
to ; represents the standard deviation of the
Gaussian-distributed complex signals.

Once the average covariance matrices with respect to var-
ious tensor representations are known, the mean variance of
any tensor-derived quantity or the mean variance-covariance be-
tween any two tensor-derived quantities can then be computed
based on the techniques explained in the preceding sections. As
an example, the mean variance of can be expressed as

Here, we use this approach to show the rotational variance of Tr
of a prolate tensor based on the variance-covariance matrix in
(52), Fig. 4. This framework will also be useful in analyzing the
effect of gradient sampling schemes on tensor-derived quanti-
ties without the need for a computationally intensive bootstrap
to quantify uncertainty, see Jones [53]. It is clear that the vari-
ance of trace exhibits rotational asymmetry, Fig. 4. Increasing
the number of gradient directions will not reduce the systematic
variation, Fig. 4. The theoretical reason for this phenomenon is
that the experimental design for DTI is not rotationally invariant
[54].

2) Elliptical Cones of Uncertainty of the Principal Eigen-
vectors: Based on the technique expounded in Sections II-C
and D, the variance-covariance matrix of the components of an
eigenvector can be computed quite easily. This particular vari-
ance-covariance matrix is useful in constructing the elliptical
cone of uncertainty about that eigenvector.

Without loss of generality, we shall take the major vector of a
diffusion tensor to illustrate the method in this section. By (11),

, and (31), we have

(55)

According to the perturbation method proposed by Hext [45],
is normal to the plane of the elliptical cone of uncertainty. In

other words, the eigenvector that is associated with the smallest
eigenvalue of is parallel to , therefore, the other two
eigenvectors are perpendicular to . The same observation can
be made within the proposed framework. That is, the equation
of a sphere , will force to be a matrix
of rank 2, therefore, the smallest eigenvalue of is essen-
tially zero. Another argument for this observation is based on
the dyadics formulation; it is presented in Appendix X. We shall
outline the basic idea with an example. If we have , as shown
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Fig. 4. Rotational Asymmetry in the variance of Trace for a prolate tensor. Generally, the rotation of a typical tensor requires three parameters, i.e., Euler angles.
But, analysis of rotational asymmetry of any tensor-derived quantity can be studied using a prolate tensor where only two parameters are sufficient, i.e., the major
eigenvector of the prolate tensor can be parametrized by [ sin(�) cos(') sin(�) sin(') cos(�) ] with 0 � � < � and 0 � ' < 2�. The plots above are
computed with a prolate tensor having FA of 0.586 and eigenvalues of � = 1:24� 10 mm =s and � = � = 4:30� 10 mm =s at SNR = 25. Images
A–C were computed with different numbers of gradient directions: 23, 85, and 382, respectively. In each plot, the final design matrixW was constructed from
four spherical shells having b values of 0, 500, 1000, and 1500 s=mm . The color-coded variation is specific to each plot but the numerical scale, which has been
normalized to the unit interval, [0; 1], from b0;2:0� 10 mm =s c, is common to all.

in the equation at the bottom of the page, then the major eigen-
vector is and the major
eigenvalue is 0.00114 .

We shall denote the lower right 3 3 submatrix of as
and

based on the SNR level of 50 and on a design matrix, , that
was constructed from a 35 gradient direction set with four spher-
ical shells having values of 0, 500, 1000, and 1500 .

Similarly, we shall denote the lower 3 3 submatrix of
as ,

particularly, we have

for our example.
The variance-covariance matrix can then be computed as

follows:

which has the following numerical values

The eigenvalue–eigenvector pairs of this matrix are

and

It is quite clear then that is parallel to the minor eigenvector of
. Note that the other two eigenvectors of are not gener-

ally equal to the medium and minor eigenvectors of the diffusion
tensor. Once the eigenvalue–eigenvector pairs of and are
computed, the elliptical confidence cone can be
constructed quite easily. We shall mention here a simple but im-
portant method for visualizing the confidence cone. We prefer to
use the approach proposed by Hext [45] in which the confidence
cone is projected onto the unit sphere, thus avoiding an impor-
tant visual ambiguity: if the height of a confidence cone were to
be scaled proportional to some function of the major eigenvalue,
then the spread of the cone would be a function not only of the
two nonzero eigenvalues of but also of the major eigenvalue
of the diffusion tensor. It would then be harder to compare two
neighboring confidence cones visually. Fig. 5 shows an example
of the elliptical confidence cones constructed from the human
brain data.

III. RESULTS

A variance-covariance estimate can be obtained from a set of
DW measurements. Therefore, repeated DW measurements can
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Fig. 5. Elliptical confidence cones. (A) FA map. (B) Magnified image of the region bounded by a red square on the FA map. (C) Corresponding elliptical 95%
confidence cones on that region at SNR level of 15.

be carried out to measure the uncertainty of the variance-co-
variance estimate by a graphical method based on histogram
analysis. This approach will provide a reasonable measure of
the distributional properties of these estimates. Further, the clas-
sical sample variance-covariance formulas can be employed to
compare with the analytically derived value of these estimates.
Monte Carlo simulations similar to those of Pierpaoli and Basser
[5] were carried out to validate the proposed method.

For simplicity, we shall use the simulation condition (in-
cluding the parameter vector, ) similar to that of Section II-F2
except at a single SNR level of 15. Further, 50 000 re-
peated measurements were generated to facilitate statis-
tical comparison. Briefly, this parameter vector has Tr of
0.0021 and FA of 0.5278. Further, its major eigen-
vector is .

The sample statistics, and the results from the proposed
framework with respect to two different covariance matrices,

and are listed in Table I. The sample statistics, listed as
(I) in Table I, are computed based on classical statistical ex-
pressions for sample mean and sample variance. Similarly, the
sample covariance matrix of the major eigenvector is based on
classical statistics but the sample eigenvectors,
for , 2, 3, have to be properly oriented so that their
directions are on the same hemisphere as the estimated mean
major eigenvector. The estimated mean major eigenvector
is computed based on the dyadic product formulation [27]
where the major eigenvector of
corresponds to the mean major eigenvector. An important
observation about this dyadic product is that the medium and
the minor eigenvectors of can be used to construct the
covariance matrix of the major eigenvector. The argument for
this observation is presented in Appendix X. The results on
(II) and (III) are obtained from the average covariance matrix
discussed in Section II-F1. The results on (IV) and (V) are ob-
tained by averaging the 50 000 variance estimates of Tr and FA;
these variance estimates, (IV) and (V), are obtained from the

TABLE I
SIMULATION RESULTS BASED ON VARIOUS METHODS

DISCUSSED IN THIS PAPER

proposed framework with respect to the ordinary and the Euler
representations, respectively. Further, the DW signal variances
were estimated from each nonlinear fit using the modified full
Newton method described in [25]. To complement the results
in Table I, we also show the distributional property of these
variance estimates in Fig. 6.

Before presenting the results on the covariance matrix of the
major eigenvector, we will show some results on the dyadics
formalism for later comparison. The average dyadics from the
50 000 samples of eigenvectors turns out to be

and the corresponding eigenvalue–eigenvector pairs are
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Fig. 6. Histograms of the variance estimates of (A) trace and of (B) FA based on three different covariance matrices: ��� (red), ��� (blue), and ��� (green). The
construction of ��� is discussed in Appendix III and it is related to the Hext representation. Note that on Fig. 6(A) and (B), the lines are superimposed. Sample
variance of trace (FA), which is computed from the 50 000 trace (FA) estimates, is shown in Fig. 6(A) and (B) as a vertical line.

and

The average vector before and after normalization is
, and

, respectively, with a vector
norm of and ;

is an approximation to the minor eigenvalue of
the covariance matrix of the major eigenvector of the diffusion
tensor, see Appendix X.

Here, we present the results on the covariance matrices of the
major eigenvector

and

which are obtained, respectively, by methods, (I), (III), and (V)
listed in Table I. Their corresponding eigenvalue–eigenvector
pairs are shown in the equation at the bottom of the page

Clearly, , a result from the
average dyadics, is a good approximation to the minor eigen-
value of the sample covariance matrix of the major eigenvector,

. Further, the medium and minor eigenvalue–eigenvector
pairs from the average dyadics respectively are very close to the
largest and medium eigenvalue–eigenvector pairs of the sample
covariance matrix of the major eigenvector. This result validates
the analysis represented in Appendix X.

IV. DISCUSSION

In this work, our main objective is to present as simply as
possible both the geometric and analytical ideas that underlie the
proposed framework of error propagation so that the translation
of this work into practice is clear to interested readers.

Here, we outline the main findings of this work. As a tech-
nique of error propagation, the proposed framework has several
desirable features—namely, that the uncertainty of any tensor-
derived quantity, scalar or vector, can be estimated by using the
appropriate diffusion tensor representation; that the covariance
matrices with respect to different diffusion tensor representa-
tions can be analytically expressed; and that covariance estima-
tion is very accurate and is a natural by-product of the modified
full Newton method of tensor estimation, a description of which
can be found in [25]. Fig. 7 shows schematically the necessary
steps needed to obtain the covariance matrices of interest. The
sample statistics and the simulation results obtained from the
proposed framework agreed reasonably well, see Fig. 6.

The concept of the average covariance matrix is introduced
and applied to the issue of rotational asymmetry of the variance
of the trace. This particular approach circumvents the need for
bootstrap methods [18], [53] in this type of investigation. It is
not hard to see that a covariance matrix with respect to a diffu-
sion tensor representation corresponding to a particular tensor
can be generated with great ease and efficiency. This technique
of generating covariance matrices will be very useful in simu-
lation studies but we should emphasize here that it is based on
the limiting case of zero-residual. Therefore, readers who are
interested in analyzing experimental DTI data should use the
covariance matrices in (49)–(51) of Section II-E rather than the
average covariance matrices discussed in Section II-F1. A sim-
ilar idea related to the average covariance matrix is that of the
average Hessian matrix of the ordinary representation, which
is also known as the precision matrix [55]. The precision ma-
trix is very useful in DTI experimental design [54], [55], and it
can also be used in constructing the Hotelling’s -statistic for
testing group differences or the Mahalanobis distance for tensor
classification. However, we expect the invariant Hessian matrix
of the Euler representation to be more useful than its regular
counterpart, Hessian matrix, for tensor classification. These are
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Fig. 7. Overview of the proposed error propagation framework for diffusion tensor imaging. The segment above the dotted line deals with tensor estimations;
(these techniques can be found in [25]); while the segment below the dotted line pertains to the proposed framework.

areas of our current interest and we shall present them in future
work.

The confidence cone, or the cone of uncertainty, of the major
eigenvector in DTI—a concept introduced by Basser [26] and
expounded upon by Basser and Pajevic [27], was brought to
bear in fiber tract visualization by Jones [28]. But, the shape of
the confidence cone discussed in these work has always been
simplified or reduced to being circular. The observation of
Jeong et al. [30] and Lazar et al. [29] provided clear evidence
that the cone of uncertainty is generally elliptical in cross sec-
tion. In this work, we have presented several analytical tools,
based on the proposed framework, the perturbation method,
and dyadic formalism, for constructing the elliptical cone of
uncertainty. According to the result derived in Appendix X, it
is noteworthy that the length and direction of the major and
minor axes of the ellipse of the confidence cone are just the
medium and minor eigenvalue–eigenvector pairs of the average
dyadics of the particular eigenvector—a fact that had escaped
notice for sometime.

The proposed framework can also be used to analyze DTI
data retrospectively to investigate the reproducibility of a DTI
parameter of interest or of the fiber orientation. For example,
if there is an insufficient number of diffusion-weighted images
to perform a bootstrap analysis, at least the uncertainty in the

tensor elements and tensor-derived quantities can still be esti-
mated within the proposed framework.

Although we have presented some cogent reasons—the uni-
fying principles of diffusion tensor representations, of Taylor
approximations of scalar and vector functions and, more impor-
tantly, of invariant Hessian and covariance structures of the non-
linear least squares objective function of DTI—for preferring
the proposed framework to the perturbation method, the pertur-
bation method is nevertheless a useful technique [17]. The diffu-
sion tensor representations studied here are logically equivalent
but they are not equally useful or significant. It is the variety of
applications that made one diffusion tensor representation to be
preferable to another.

We have shown that invariant Hessian matrices are more im-
portant than the Hessian matrices in DTI error propagation be-
cause covariance matrices are directly linked to them. Further,
we also showed how these invariant Hessian matrices can be
obtained from the proposed framework without employing the
technique of covariant derivatives in tensor calculus and differ-
ential geometry.

V. CONCLUSION

We have developed an analytical and geometrically intuitive
error propagation framework for diffusion tensor imaging.



KOAY et al.: ERROR PROPAGATION FRAMEWORK FOR DIFFUSION TENSOR IMAGING 1029

We have presented the nuts and bolts of various aspects of
diffusion representations for understanding variability in any
tensor derived quantity, vector, or scalar. This framework
provides an analytical and efficient method for understanding
the dependence of variance of a tensor-derived quantity on
orientation or gradient schemes. Furthermore, it provides an
approach for computing the necessary parameters in order to
construct the elliptical confidence cone of an eigenvector. This
particular technique will be very useful in fiber tractography,
group analysis of diffusion tensor data and tensor classification.
It is also clear that the proposed framework can be adapted to
other nonlinear least squares problems.

APPENDIX I
ROTATION MATRICES AND A METHOD

FOR FINDING EULER ANGLES

The rotation matrices, , , and represent
rotations through angle around the , , and axes, respec-
tively, and are defined as follows:

and

The following discussion is on obtaining the Euler angles
from the proper rotation matrix, , which can be expressed
columnwise as

and

By proper rotation, we mean that the determinant of should
be positive one. If negative one is encountered, we can always
change to its additive inverse, . Once this step is checked,
the Euler angles can then be found as follows:

1)
2) If , then

a)
b)

The function is defined in many programming lan-
guages such as C and Java.

In the case where , the rotation matrix can be shown
to reduce to

It is clear that and can not be uniquely determined
and we can set one of them to zero. Let , then

.

APPENDIX II
MAPPINGS BETWEEN VARIOUS REPRESENTATIONS

The components of are defined below

where the components of are functions of , , and .
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For completeness, we will show analytical formulas for each
component of by the Cholesky decomposition with the as-
sumption that the diffusion tensor within is positive definite
otherwise, as mentioned in the text, the modified Cholesky de-
composition is to be used for constructing [25], [50]. Be-
fore presenting the formulas, we shall define the following terms
to simplify the expression of :

, , , and is

the matrix determinant.
can be expressed as follows:

APPENDIX III
REPRESENTATION BY HEXT

The representation proposed by Hext [45] is the mapping re-
lating the components of to those of

(C1)

where , but the off-diagonal elements of are not
necessarily zero. A special case of (C1) with being a diagonal
matrix was used by Anderson [17] to compute the covariance
between two eigenvalues.

Adapting (C1) to the convention used in this paper, we can
show that the linear relation in vector form can be expressed as
shown in the equation at the bottom of the page.

We shall denote the above equation as , the first-order
differential can be written as so that we can identify
the elements of as or . If the

covariance matrix is given then it can be shown that
. See Section II-E and Appendix VI

for the technique for transforming covariance matrices from one
representation to another.

It is evident that this representation has a simpler expres-
sion than that of the proposed Euler representation, . However,
this representation cannot answer questions regarding the uncer-
tainties in the eigenvectors, i.e., the elliptical cone of uncertainty
of the major eigenvector, without resorting to the perturbation
method.

APPENDIX IV
DERIVATION OF A KEY EQUATION ON ERROR PROPAGATION

As defined in the main text, we have
and where

is an orthogonal matrix and is a diagonal matrix with
positive elements. Therefore, we can write . This
is equivalent to the following expressions in component form:

(D1)

and

(D2)

and
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(D3)

From the above derivation, we also see that
and .

APPENDIX V
HESSIAN STRUCTURES IN DIFFERENT REPRESENTATIONS

Here, we provide explicit Hessian expressions with respect to
various representations studied in this paper

(E1)

(E2)

(E3)

where and are diagonal matrices whose diagonal elements
are the observed and the estimated diffusion weighted signals,
respectively, i.e.,

. . .
. . .

Further, we have , ,
, ,

and . Equations (E1) and
(E2) have been previously derived and studied by Koay et al.
[25].

APPENDIX VI
COVARIANCE STRUCTURES IN DIFFERENT REPRESENTATIONS

In (31), we have the following equation:

To construct the covariance matrix with respect to the ordi-
nary representation, we write

or

where and denotes the identity matrix.
To construct the covariance matrix with respect to the Euler

representation, we write

or

(F1)

Two identities: and
were used in the derivation of (F1).

Equation (F1) is very important because we have discovered
the part of the Hessian matrix that is invariant with respect to
transformation without using the concept of covariant derivative
in tensor calculus. Interestingly, the invariant Hessian matrix of
the Euler representation is exactly the first term of the Hessian
matrix in (E2).

APPENDIX VII
GRADIENT COMPUTATION: EIGENVECTORS

The gradient of the first, second, and third components of
can be written as
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and

Similarly, the gradient of the components of and can
be computed quite easily.

APPENDIX VIII
GRADIENT COMPUTATION: TENSOR-DERIVED QUANTITIES

A few notations and conventions are introduced here to keep
the formulas shown in (38)–(40) in a compact form.

1) The indices , 2, 3 denote , , , respectively.
2) is the Kronecker delta function, i.e., for

and for .
3) The formulas for the partial derivatives with respect to

the off-diagonal elements of is symmetrized, i.e.,
for .

For convenience, the formulas that are frequently used are
listed here

(H1)

(H2)

and

(H3)

(H4)

APPENDIX IX

AVERAGE COVARIANCE MATRIX

In the zero-residual case, which is very useful in simulation
studies where the ground truth is known, the invariant Hessian
expressions in (49)–(51) reduce to

(I1)

(I2)

and

(I3)

Further, we have , where
is known. As an example, the average invariant Hessian matrix
of (I1) can be expressed as follows:

(I4)

Therefore, the average covariance matrix is

(I5)
In other words, we expect the arithmetic mean of to ap-

proach as the number of samples of in-
creases. Note that the arithmetic mean and the method of av-
eraging used in obtaining (I5) are different but we expect the
difference between these two quantities to be negligible for a
large sample.

APPENDIX X

CONNECTION BETWEEN THE ELLIPTICAL CONE OF

UNCERTAINTY AND THE AVERAGE DYADICS

Let be the collection of properly oriented
major eigenvectors with respect to the mean major eigenvector
and let be the average dyadics
[27]. Further, let the eigenvalue decomposition of the average
dyadics be where .

According to [56], the maximum likelihood estimate of the
mean of is . We shall now show that these
eigenvalue–eigenvector pairs, and , are re-
lated to the length and direction of the major and the minor axes
of the confidence cone of the major eigenvector, . In other
words, these two eigenvalue–eigenvector pairs are related to the
covariance matrix of . The argument goes as fol-
lows. Let the sample covariance of be defined
as

(J1)
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Let , then . If we assume that
, which is not unreasonable because is an estimate of

the mean major eigenvector, then we have

When is large we have and , so that
. The sample covariance is then reduced to

(J2)

Essentially, the dyadic product formulation suggested in [27]
is sufficient to construct the elliptical confidence cone without
having to use (J1). In retrospect, the construction of the confi-
dence cone using (J2) bypasses the need to reorient the sample
eigenvectors such that they are pointing on the same hemisphere
as the mean major eigenvector.
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