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Diffusion tensor MRI (DT-MRI) permits determination of the
dominant orientation of structured tissue within an image voxel.
This has led to the development of 2D graphical methods for
representing fiber orientation and DT-MRI “tractography,”
which aims to reconstruct the 3D trajectories of white matter
fasciculi. Most contemporary fiber orientation mapping
schemes and tractography algorithms employ the directional
information contained in the eigenvectors of the diffusion ten-
sor to approximate white matter fiber orientation. However,
while the uncertainty associated with every estimate of an eig-
envector has long been recognized, no attempts to quantify this
uncertainty in vivo have been reported. Here, a method is pro-
posed for determining confidence intervals in fiber orientation
from real DT-MRI data using the bootstrap method. This is used
to construct maps of the “cone of uncertainty,” allowing simul-
taneous viewing of fiber orientation and its uncertainty, and to
examine the relationship between orientation uncertainty and
tissue anisotropy. Magn Reson Med 49:7–12, 2003.
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Key words: diffusion tensor; eigenvector; uncertainty; tractog-
raphy

That diffusion is anisotropic in white matter has been
known for over a decade (1). The observation that the
apparent diffusivity of water is greatest along the domi-
nant orientation of white matter tracts within an image
voxel has led to a variety of methods for displaying fiber
orientation, ranging from simple techniques based on ap-
parent diffusion coefficients measured in two orthogonal
directions (2), to methods based on information contained
within the full diffusion tensor (3–6). This orientational
information has been further exploited in attempts to infer
axonal connectivity in the brain (7–13). In the majority of
these methods, at each step in the reconstruction of a fiber
trajectory a single estimate of fiber orientation is used to
determine the direction of propagation.

There are two factors that are important for reliable fiber
orientation mapping and tractography: 1) accuracy of the
estimates of fiber orientation, and 2) repeatability/preci-
sion of the estimates. In this work, we shall only consider
the latter. Due to the noise inherent in all MR images, there
is an uncertainty associated with every estimate of fiber
orientation. In tractography, accumulated uncertainties in
fiber orientation have clear potential for leading to errone-
ous reconstructions of pathways. Some approaches have

attempted to allow for the uncertainty in fiber orientation
(9,13), or have attempted to reduce the uncertainty in fiber
orientation either through regularization approaches
(10,14) or through generating continuous approximations
to the sampled tensor field and applying smoothing factors
(15,16).

Similarly, in fiber orientation display methods, a single
fiber orientation is depicted for each image voxel, with no
indication of the uncertainty in fiber orientation. This
problem, of course, is not unique to display of eigenvector
data from DT-MRI, but is common to all displays of vec-
torial data — such as those obtained from meteorological
stations or from Doppler radars. The interpretation of vec-
torial data would be more effective if this uncertainty
could be displayed together with the original data. Witten-
brink et al. (17) discussed this issue in some depth and
described various glyphs for visualizing uncertainty in
vector fields. Basser (18) later described an approach for
constructing such a glyph or a “cone of uncertainty” in the
estimate of eigenvectors obtained from DT-MRI, i.e., a cone
whose cone angle is equal to the uncertainty (i.e., a given
confidence interval) in the estimate of the orientation of
the principal eigenvector. However, this method was
based on matrix perturbation analysis of synthetic data. No
attempts to determine the uncertainty of estimates of fiber
orientation in vivo from real data have yet been reported.

The bootstrap method (19) is a nonparametric procedure
that enables one to estimate the uncertainty of a given
statistic, or its probability density function (PDF). It does
so by randomly selecting individual measurements (in this
case individual diffusion-weighted images), with replace-
ment, from a set of repeated measurements, thus generat-
ing many bootstrap samples. Each bootstrap sample pro-
vides a random estimate of a given statistic. Hence, by
generating a sufficient number of the bootstrap replicates
one obtains a measure of uncertainty or, in some cases, the
PDF of the given statistic. For the purposes of explanation,
suppose that we have a pool of data from which we draw
n samples and input them into a model to compute a
parameter of interest, !. An approximate sampling distri-
bution for ! can be obtained by repeating the following
procedure Nb times, (where Nb stands for “number of
bootstraps”):

1) From the pool of data, draw a sample of n input
parameters for input to the model, with replacement.
We shall refer to this sample as the j th “bootstrap
sample.”

2) Compute the parameter of interest from the bootstrap
sample, which we refer to as the j th bootstrap esti-
mate !j.

The collection of Nb bootstrap estimates (!j, j " 1…Nb)
all represent possible estimates of ! based on configura-
tions of the observed data, and can therefore be used to
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approximate the form of the true distribution of the param-
eter estimate. It is therefore possible, from the distribution,
to determine confidence intervals for the parameter of
interest, !.

Recently, Pajevic and Basser (20) proposed a nonpara-
metric method for statistical analysis of DT-MRI data
based on the bootstrap method. In this implementation of
the bootstrap, a set of n diffusion-weighted images is col-
lected as part of a DT-MRI imaging experiment. From this
pool of n images, a subset of NDWI images, (where NDWI #
n), is drawn and used to compute the diffusion tensor in
each voxel. If the acquisition of the NDWI images is re-
peated NR times (i.e., n " NDWI $ NR), then there are
%NR&NDWI possible configurations of the NDWI images that
can be used to compute estimates of the diffusion tensor
within each voxel, i.e., for each of the NDWI images used to
compute the diffusion tensor there are NR to choose from.
Pajevic and Basser (20) used this approach to derive dis-
tributions of the elements of the diffusion tensor, its eig-
envalues, its trace, and measures of anisotropy. This ap-
plication of the bootstrap procedure has also been used by
other groups to compare the performance of DT-MRI ac-
quisition schemes (21) and tractography algorithms (22)
and is clearly a useful tool in terms of characterization of
noise in DT-MRI data.

Here we present a method to determine the cone of
uncertainty directly from diffusion imaging data in vivo
using the bootstrap method. We show how to determine
confidence intervals in fiber orientation and how to repre-
sent this in an iconic map of the cone of uncertainty,
allowing both fiber orientation and uncertainty to be visu-
alized concurrently.

MATERIALS AND METHODS

Data Acquisition

Two complete volumes of DT-MRI data were acquired
from a healthy volunteer on a GE Signa LX system (General
Electric, Milwaukee, WI), with actively shielded magnetic
field gradients (maximum amplitude 40 mT m-1). A stan-
dard quadrature birdcage head coil was used for both RF
transmission and NMR signal reception.

Each volume was acquired using a multislice peripher-
ally gated EPI sequence, optimized for precise measure-
ment of the diffusion tensor in parenchyma, from a healthy
volunteer, from 60 contiguous near-axial slice locations
with isotropic (2.5 $ 2.5 $ 2.5 mm) resolution. The echo
time was 107 ms while the effective repetition time was
15 R-R intervals. The duration of the diffusion encoding
gradients was 17.3 ms, giving a maximum diffusion
weighting of 1300 s mm-2. At each slice location, seven
images were acquired with no diffusion gradients applied,
together with 64 diffusion-weighted images in which gra-
dient directions were uniformly distributed in space. Full
details are given elsewhere (23).

A vacuum device and surgical tape were used to mini-
mize head motion. Subtraction of corresponding images
from the two datasets verified that motion between the two
scans was negligible. The subject’s consent was obtained,
according to the declaration of Helsinki, and the scanning
protocol was approved by the local Ethical Committee.

Analysis

To generate the jth bootstrap sample for a particular slice,
one of the two images acquired with each b-matrix was
randomly selected (with replacement) to produce a dataset
consisting of 71 diffusion-weighted images. Log-linear re-
gression was used to estimate the tensor in each voxel (24)
and the principal eigenvector, !1, was determined. This
procedure was repeated 1000 times to generate
1000 bootstrap estimates of !1.

Following Basser and Pajevic (25), in each voxel we then
calculated the mean dyadic tensor, 'ε1
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and ε1i
j is the ith component of the jth bootstrap estimate of

the principal eigenvector.
Note that for each individual dyadic tensor, there is only

one nonzero eigenvalue. The eigenvector of the dyad that
is associated with this eigenvalue is parallel to the eigen-
vector from which the dyad is formed. Thus, the dyadic
formalism provides a convenient method for averaging
eigenvectors which handles the problem of antipodal sym-
metry, i.e., the eigenvector is only defined up to its orien-
tation along a particular axis. The principal eigenvector,
)! 1 of the average dyad, 'ε1

j ε1
jT(, was then determined, to-

gether with its three eigenvalues, assigned here as *1, *2,
and *3.

The coherence, +, of the 1000 estimates, εj
1, was sub-

sequently characterized in each voxel using :

+ ! "1 " &*2 # *3

2*1
# [2]

which is formed from the dispersion measure proposed by
Basser and Pajevic (25). This measure takes values from
zero (when all the εj

1 are uniformly distributed over the
unit-sphere, and *1 " *2 " *3) to unity (when all the εj

1 are
collinear and *2 " *3 " 0).

Next, for each voxel the minimum angle subtended be-
tween each bootstrap estimate, !1

i, and the average prin-
cipal eigenvector, )! 1, was determined from

!j ! acos%ε1
j ! )! 1& [3]

There are four main approaches to computing bootstrap
confidence intervals — normal approximation, percentile,
bias-corrected percentile, and percentile-t (26). As the
bootstrap procedure produces a large sample from the
sampling distribution of a statistic, the most straightfor-
ward approach for determining confidence intervals is tak-
ing quantiles. It has been shown that this method generates
intervals with correct asymptotic coverage (26). To com-
pute confidence intervals for the estimates of fiber orien-
tation, we therefore employed the percentile method. The
usual procedure is to order the set of bootstrap estimates,
!, and determine the lower bound for the (1-,) $
100 confidence interval as the ((,/2) $ Nb)th value and the
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upper bound as the ((1-(,/2)) $ Nb)th value. However,
since in this case the values of !j are computed from Eq. [3]
and are therefore always greater than zero, the distribution
is by definition “one-tailed.” Hence, the value of ! at the
950th position in the list of 1000 represents the 95%
confidence interval. In each voxel, by constructing a cone
with a cone angle corresponding to this confidence inter-
val, with a long axis coincident with the mean eigenvector,
)! 1, a glyph was created which allowed both fiber orienta-
tion and uncertainty to be visualized concurrently.

To examine the relationship between uncertainty in fi-
ber orientation and anisotropy, we created a scatterplot of
the 95% confidence interval in fiber orientation vs. anisot-
ropy, plotting the data for every voxel in the entire 60-slice
volume. The measure used to quantify anisotropy was
“Clinear,” proposed by Westin et al. (27). This measure is a
component of the barycentric coordinate system that de-
scribes the geometry of the diffusion tensor in terms of its
“cigar-like” (Clinear), “disk-like” shape (Cplanar), and
“spherical” (Cspherical) coordinates.

Clinear is defined as:

Clinear !
-1 " -3

-1 # -2 # -3
, [4]

where -1, -2, and -3, are the rank-sorted eigenvalues of the
diffusion tensor.

RESULTS

Figure 1 shows the orientational coherence, +, of the
1000 bootstrap estimates of !1 formed according to Eq. [2],
for a range of slice locations in the brain. The image inten-
sity is directly proportional to +. Note that in central aniso-

tropic structures the coherence is large, i.e., the uncer-
tainty in the principal eigenvector estimates is small. 95%
confidence interval are given in Table 1 for the splenium,
body, and genu of corpus callosum, the cerebral pe-
duncles, the internal capsule, and the frontal white matter.

Figure 2 shows cones of uncertainty (at the 95% confi-
dence level) in a region at the level of the splenium of the
corpus callosum. Note that where the underlying fibers
merge or cross and the voxel-averaged anisotropy becomes
low (the zoomed region), the uncertainty in ε1 becomes
large.

Figure 3 shows the 95% confidence interval in fiber
orientation vs. Clinear. Note that even at high anisotropy,
the smallest 95% confidence interval in fiber orientation is
approximately 2.5° and at values of Clinear lower than
approximately 0.15 the uncertainty in fiber orientation
rises sharply.

DISCUSSION

We have shown how to determine uncertainty in estimates
of fiber orientation obtained by DT-MRI, how to determine

FIG. 1. Coherence, +, of 1000 bootstrap estimates of the principal eigenvector, !1, in each voxel for 10 different slice locations.

Table 1
95% Confidence Intervals in Fiber Orientation Estimates in
Different White Matter Regions

Brain region
95%

Confidence
interval

Splenium . 2.9°
Body of corpus callosum . 3.5°
Genu of corpus callosum . 4.8°
Cerebral peduncles . 3.2°
Internal capsule . 8.2°
Frontal white matter . 10°
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confidence intervals, and how to visualize both fiber ori-
entation and uncertainty concurrently. Since this tech-
nique provides an objective measure of reproducibility of
fiber orientation, it could be used to provide objective
comparison of the performance of different DT-MRI data
acquisition strategies in terms of their reproducibility of
fiber orientation.

This technique could also be used to compare the effi-
cacy of different tensor smoothing and regularization tech-
niques (10,14–16) which aim to eliminate variations in
estimates of eigenvectors due to noise while preserving
true anatomical variations. The optimal scheme would be
that which resulted in the smallest cone of uncertainty
while, at the same time, introducing minimum perturba-
tion of the most probable fiber orientation (i.e., the most
likely fiber orientation in the unsmoothed/unregularized
data).

Both Figs. 1 and 2 show low uncertainty in fiber orien-
tation estimates in the splenium of the corpus callosum, a
structure that is much favored in the tractography litera-
ture. It is perhaps unsurprising, therefore, that results ap-

FIG. 2. Cones of uncertainty (showing the
95% confidence angle) at the level of the
splenium of the corpus callosum. a: Frac-
tional anisotropy. b: Cones of uncertainty in
the region indicated by the dashed lines in a.
This region is further magnified in c. The
zoomed area highlights a region where fibers
cross and the uncertainty in !1 is large.

FIG. 3. Plot of 95% confidence interval in fiber orientation vs. Clinear.
The data for each voxel in the entire 60-slice volume are plotted on
a pair-wise basis.
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pear to be consistent across different tractography algo-
rithms in this region. However, in the regions where fibers
cross or merge and the anisotropy becomes low (the
zoomed region in Fig. 2), the uncertainty in fiber orienta-
tion is seen to be high. Tractography results obtained for
tracts that pass through such regions are likely to be very
irreproducible and it would therefore be interesting to
perform repeatability studies of tract reconstructions both
with the same algorithm and between different algorithms
for tracts in these regions, again using the bootstrap
method as first reported by Lazar et al. (22).

The plot presented in Fig. 3 shows, for the first time, the
relationship between uncertainty in fiber orientation and
anisotropy obtained in vivo. Plots such as this could be
used to provide a more informed choice of anisotropy
threshold for the termination of tracking in DT-MRI trac-
tography algorithms. Such thresholds are usually selected
arbitrarily on an ad hoc basis, assuming that tissue with
anisotropy lower than the threshold will have an unac-
ceptable uncertainty in fiber orientation.

We note that although the sorting of the eigenvalues
necessary to compute Clinear (Eq. [4]) introduces bias in the
presence of noise (28), we chose it over more commonly
used measures such as fractional anisotropy and relative
anisotropy (29) since these latter measures make no dis-
tinction between prolate and oblate tensors. In principle,
when using these latter measures a prolate tensor and an
oblate tensor can have the same anisotropy. In the oblate
tensor, however, even if the anisotropy was high, the fiber
orientation is poorly defined, which would result in a large
95% confidence interval.

In principle, the information about uncertainties in fiber
orientation obtained by the method presented here could
be incorporated into tractography algorithms to make
probabilistic tract maps. Parker et al. (13) recently sug-
gested a tractography algorithm that incorporated uncer-
tainty in fiber orientation in order to make probabilistic
connectivity maps. However, this assumed an ad hoc sig-
moidal-shaped relationship between uncertainty in fiber
orientation and anisotropy. The relationship between un-
certainty in fiber orientation and anisotropy obtained here
(Fig. 3) is somewhat different from that proposed by Parker
et al. (13). Use of experimentally determined uncertainties,
such as presented here, in combination with methods such
as that suggested by Parker et al. (13) and also Koch et al.
(11) should make such probabilistic maps obtained from
DT-MRI more meaningful.

Xu et al. (30) have recently suggested a method for
coregistering DT-MRI datasets in which knowledge of the
probability density function (PDF) of the principal eigen-
vector within each voxel is required. In the absence of this
knowledge, the authors employed a neighborhood sam-
pling strategy in which the orientations of principal eig-
envectors in a specific volume surrounding the voxel are
used to construct an approximation to the PDF. Use of the
strategy described in the present work provides a prefera-
ble way to determine the PDF for a particular voxel, as it
constructs it directly using only data contained within the
voxel itself.

We would like to stress that the results presented here
are specific to our particular acquisition scheme. However,
the method described here is quite general and is not

specific to any particular acquisition scheme or model-
based analysis. Given sufficient time, and cooperation of
the volunteer, this approach could, in principle, be used to
determine the reproducibility of orientational information
obtained from alternative (higher-order) modeling ap-
proaches (31) — or model-free approaches (32).

Finally, we would like to stress that we have described
a method for determining the precision of DT-MRI esti-
mates of fiber orientation in vivo. It is important to note
that this technique does not provide assessment of the
accuracy of the estimates, for which comparison with a
gold-standard is essential.
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