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Robust Strategies for Automated
AFM Force Curve Analysis—II:
Adhesion-Influenced Indentation
of Soft, Elastic Materials
In the first of this two-part discourse on the extraction of elastic properties from atomic
force microscopy (AFM) data, a scheme for automating the analysis of force-distance
curves was introduced and experimentally validated for the Hertzian (i.e., linearly elastic
and noninteractive probe-sample pairs) indentation of soft, inhomogeneous materials. In
the presence of probe-sample adhesive interactions, which are common especially during
retraction of the rigid tip from soft materials, the Hertzian models are no longer ad-
equate. A number of theories (e.g., Johnson–Kendall–Roberts and Derjaguin–Muller–
Toporov), covering the full range of sample compliance relative to adhesive force and tip
radius, are available for analysis of such data. We incorporated Pietrement and Troyon’s
approximation (2000, “General Equations Describing Elastic Indentation Depth and
Normal Contact Stiffness Versus Load,” J. Colloid Interface Sci., 226(1), pp. 166–171) of
the Maugis–Dugdale model into the automated procedure. The scheme developed for the
processing of Hertzian data was extended to allow for adhesive contact by applying the
Pietrement–Troyon equation. Retraction force-displacement data from the indentation of
polyvinyl alcohol gels were processed using the customized software. Many of the retrac-
tion curves exhibited strong adhesive interactions that were absent in extension. We
compared the values of Young’s modulus extracted from the retraction data to the values
obtained from the extension data and from macroscopic uniaxial compression tests. Ap-
plication of adhesive contact models and the automated scheme to the retraction curves
yielded average values of Young’s modulus close to those obtained with Hertzian models
for the extension curves. The Pietrement–Troyon equation provided a good fit to the data
as indicated by small values of the mean-square error. The Maugis–Dugdale theory is
capable of accurately modeling adhesive contact between a rigid spherical indenter and
a soft, elastic sample. Pietrement and Troyon’s empirical equation greatly simplifies the
theory and renders it compatible with the general automation strategies that we devel-
oped for Hertzian analysis. Our comprehensive algorithm for automated extraction of
Young’s moduli from AFM indentation data has been expanded to recognize the presence
of either adhesive or Hertzian behavior and apply the appropriate contact model.
�DOI: 10.1115/1.2800826�

Keywords: adhesive contact, atomic force microscopy, contact mechanics, elasticity,
indentation
ntroduction

In the first paper of this two-part series on automated analysis
f atomic force microscopy �AFM� indentation data �1�, we pre-
ented a comprehensive algorithm for extracting Young’s moduli
ased on Hertzian contact mechanics. The Hertz theory and its
ubsequent expansions to include different geometries were used
o model the contact between two elastic solids with no surface
orces. The Hertzian models do not account for adhesive interac-
ions between tip and sample and hence are inadequate in the
resence of surface forces. In the context of AFM nanoindenta-
ion, the existence of surface forces causes the load-indentation
ehavior to deviate from the ideal Hertzian relationship.

Adhesive contact mechanics theories were pioneered by
ohnson et al. �2� �Johnson–Kendall–Roberts or JKR theory�, who
odified the classical Hertz theory of contact between spherical

odies to account for the influence of surface energy. An alterna-
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tive and apparently contradictory theory was formulated by Der-
jaguin et al. �3� �Derjaguin–Muller–Toporov or DMT theory�. The
seeming inconsistency was resolved by Tabor �4�, who identified
the applicability of the two theories to opposite extremes of the
relationship between adhesive force and sample compliance; the
JKR theory appertains to cases of strong adhesive forces and large
tip radii relative to sample compliance, while the DMT theory is
appropriate for weak adhesive forces and small tip radii relative to
sample compliance �a more quantitative explanation can be found
in Appendix A�. Muller et al. �5� and Greenwood �6� used the
Lennard–Jones potential in their numerical analyses of interac-
tions in the intermediate regime. Maugis �7� was able to obtain
closed-form solutions of the relationship between force, contact
radius, and indentation in the intermediate regime by employing a
Dugdale potential, which approximates the Lennard–Jones poten-
tial by a square well of constant attractive force. The Maugis–
Dugdale �MD� model was made more tractable in application to
actual indentation data by Carpick et al. �8�, who developed a
general equation relating force and contact radius �Carpick–
Ogletree–Salmeron or COS equation� that closely approximates

the MD model. Utilizing the same approach, Pietrement
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nd Troyon �9� generated a force-indentation relationship
Pietrement–Troyon or PT equation� that deviates from the MD
odel by 1% or less. The COS and PT equations therefore pro-

ide the means to effectively employ the MD model to experi-
ental data.
In this work, we incorporate the PT equation for adhesive con-

act between a rigid spherical indenter and an elastic sample into
he automated scheme introduced in the prior paper �1�. The vari-
us theories will first be presented, followed by a description of
he strategies employed to integrate analysis of adhesive interac-
ions into the existing scheme. We devote a portion of the paper to
he detailed discussion of salient features of each model with re-
pect to force-displacement data; such information is lacking in
he literature but of great importance in applying the theories to
xperimental data. Values of Young’s moduli are then compared
or AFM indentation datasets processed with either the Hertzian
odel or the MD model. Polyvinyl alcohol �PVA� gel was se-

ected as the model system for our studies on the basis of its
eversibility, the ability to modulate its elastic modulus by system-
tically varying its composition, and its chemical neutrality.

heory

Comparison of Contact Mechanics Models. The original
ertz theory and the aforementioned adhesive theories apply to

pherical bodies under contact. The specific case of the indenta-
ion of a compliant surface by a rigid probe allows the relation-
hips to be simplified. These simplified equations for the Hertz,
KR, DMT, and MD models, including the COS and PT approxi-
ations, are presented in Appendix A. The first column in Fig. 1

hows schematically the phases of importance in the Hertzian in-
entation process along with the general force-displacement curve
t each phase. In the Hertz contact model given by Eqs. �A2� and
A3�, both indentation depth d and applied force Fn are zero at the
oint of initial contact �during tip extension toward the sample
urface� or the point of separation �also called the pull-off point
or tip retraction from the sample surface�. When adhesive �attrac-
ive� interactions are present, contact occurs under the influence of
uch forces. These nonzero interaction forces cause deflection of
he cantilever toward the sample surface �Fn�0 in the adopted
onvention shown in Fig. 1, where concave bending is positive�.
ormally, the terms “attractive force” and “adhesive force” are
sed to differentiate between the external forces during tip exten-
ion and tip retraction, respectively �10�. We will dispense with
he convention here and refer to both as adhesive forces.

The chief difference between the JKR and DMT theories given
y Eqs. �A4�–�A7� and Eqs. �A8�–�A10�, respectively, is the rela-
ion between the contact area and the applied force. In the DMT
heory, the contact area becomes zero when the maximum adhe-
ive force Fad is balanced by the cantilever restoring force �11�.
his occurs at the point of initial contact when the tip approaches

he sample and at the pull-off point when the tip is retracted �see
ig. 1, second row from top�. In the JKR theory, when Fn=−Fad,

he contact area is nonzero, resulting in abrupt contact or separa-
ion. In fact, the contact area is never zero in the JKR model, as
learly seen in Eq. �A5�.

Another important distinction between the JKR and DMT theo-
ies can be discerned by comparing the indentation relationships
iven by Eqs. �A4� and �A8�. In the JKR theory, the indentation at
he point of contact or separation is negative, as shown by Eq.
A7� �12�. A negative indentation can be interpreted as deforma-
ion of the sample surface toward the probe �i.e., opposite in di-
ection to the deformation due to Hertzian indentation�, as seen in
ig. 1 �JKR, second row from top�. The JKR theory is therefore
uitable for modeling interactions between the tip and a much
ore compliant sample, in which the adhesive force is strong

nough to overcome the sample stiffness and cause the surface to
e drawn toward the tip. In the DMT model, the indentation �
anishes at the point of contact or separation �i.e., �=0 at contact

rea a=0�. Hence, the model represents the other extreme of

ournal of Biomechanical Engineering

aded 07 Dec 2007 to 128.231.88.6. Redistribution subject to ASME
sample compliance and applies to the indentation of relatively stiff
samples. The DMT force-indentation relationship, derived by
combining Eqs. �A8�–�A10�, is essentially the Hertz relationship
with the addition of the adhesive force term given by Eq. �A10�.
We note that the point of zero indentation in the JKR theory
corresponds to an applied force of Fn=−�8 /9�Fad, where Fad is the
maximum adhesive force obtained by setting �=0 in Eq. �A4�,
substituting the definition of the contact area given by Eq. �A5�,
and solving for Fn. Hence, the point of zero indentation occurs
after contact �during extension� or before separation �during
retraction�.

The MD theory, represented in its entirety by Eqs.
�A11�–�A17�, spans the intermediate regime between the JKR and
DMT models; some amount of negative indentation is permitted,
depending on the compliance of the sample. The model is tedious
to apply in practice because the lack of a direct relationship be-
tween force and indentation requires numerical iterations for mul-

Fig. 1 Schematic of force-displacement behavior as predicted
by the Hertzian, DMT, JKR, and MD theories. Force-
displacement plots are shown for the approach portion of the
cycle. The sign convention is as follows: piezo displacement z
toward the sample surface is positive, convex bending of the
cantilever „deflection d in direction of piezo motion… is nega-
tive, and convex deformation of the sample surface � „initial
contact or pull-off in the JKR and MD theories… is also negative.
tiple fitting parameters. The empirical COS and PT equations fa-
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ilitate direct fitting of indentation data to the MD model by
stablishing direct relationships between the applied force and ei-
her the contact radius or indentation. The COS equation repre-
ents the former relation and is given by Eq. �A18�. For typical
FM indentation data, the PT equation given by Eq. �A20� may
e used.

Essential Reference Points in Force-Displacement Curves.
he AFM does not allow direct measurements of force and inden-

ation depth. Despite the common use of the terms “force-
isplacement curve” and “force curve,” AFM nanoindentation
ata are usually in the form of cantilever deflection �d� as a func-
ion of the position of the fixed end or base of the cantilever �z�.
ence, reference points are necessary to convert the raw values to
alues of force and indentation. In the first paper of this two-part
eries �1�, methods requiring the identification of the contact point
ere proposed as being more capable than contact point indepen-
ent methods of handling diverse types of data. When adhesive
nteractions are present, reference points become crucial in the
roper evaluation of adhesive and elastic behavior contained in
he data. Because discussion of this detail is generally lacking in
he literature, we describe here the essential reference points re-
uired to recast the force-indentation relationships into forms use-
ul for analyzing AFM data; strategies for identifying these points
ill be presented in the next section. The applied force is directly

elated to the cantilever deflection through the spring constant of
he cantilever �kc� by

Fn = kc�d − d1� �1�
here d1 is the zero-deflection position of the cantilever. From our
revious paper �1�, the indentation is defined by

� = �z − z0� − �d − d0� = �z − d� − �z0 − d0� = w − w0 �2�
here the reference point �z0 ,d0� is the point of zero indentation.
he transformed variable w=z−d and its value at the reference
oint w0 are introduced for simplification. Note the distinction
etween the point of zero external force �z1 ,d1� and the indenta-
ion reference point �z0 ,d0�; the two points are coincident only in
ertzian mechanics. All reference points can be expressed in

erms of z or w.

Fig. 2 Comparison of force-displacem
tact models „DMT, JKR, and MD…. Ind
contact in the DMT model „indicated b
MD models „indicated by �… to allow
ward the tip. Equally important in the
indentation „indicated by �…, which
indentation depth from the force-disp
point of zero applied force „i.e., zero c
curs at positive indentation depth.
In the DMT model, both indentation depth and contact radius

06 / Vol. 129, DECEMBER 2007
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are zero at the point of contact �z0 ,d0� and increase with the
externally applied load following Eq. �A8�. In physical terms, the
cantilever is permitted to deflect toward the sample surface prior
to contact, reaching its maximum negative deflection or maximum
attractive force at the point of contact �see Fig. 2�. At the onset of
contact in the JKR and �to a lesser extent� MD models, the tip and
sample surface are instantaneously drawn together, resulting in a
nonzero contact radius and negative indentation depth. The con-
tact point in the JKR and MD models is denoted by �z� ,d�� in Fig.
2. As in the DMT theory, contact occurs at the maximum attrac-
tive force Fad.

It should be noted that quantitative methods based on adhesive
interactions between the indenter tip and the sample have been
developed by a number of researchers including Scheffer et al.
�13�, Eaton et al. �14�, and Sun et al. �15�. For example, the
approach of Sun et al., based on various adhesion theories, allows
for the extraction of E based on contact radii at different depths of
indentation. However, the PT equation is the most amenable to
automation because its application to AFM indentation data re-
quires only the identification of the three reference points shown
in Fig. 2�b�.

Cao et al. �16� used a depth-sensing nanoindentation system in
their tests of polydimethylsiloxane and applied the JKR model
and the PT equation to the fitting of the force-indentation data.
Compared to the AFM, depth-sensing systems provide superior
load control and displacement accuracy but lack the precise
sample positioning and imaging capabilities afforded by the AFM
�17�. In the study by Cao and colleagues, the contact point was
assumed to be the point of zero indentation. Implicit in the as-
sumption is that there is no deformation of the sample toward the
tip �as in the DMT model� and that a contact area arises instanta-
neously upon contact between the tip and the sample surface. In
our approach, we incorporate methods to treat the contact point
and point of zero indentation separately in accordance with the
MD theory; the provision for negative indentations is important
for indentation behavior approaching the JKR limit.

Description of Algorithm for Automated Fitting of Indenta-
tion Data Using the Pietrement–Troyon Equation. We now dis-
cuss in depth the strategies employed to incorporate the key pro-

t behavior in the three adhesive con-
tation is always zero at the point of
…, but can be negative in the JKR and
deflection of the sample surface to-

R and MD models is the point of zero
he reference point used to calculate
ement data. In all three theories, the
tilever deflection, indicated by �… oc-
en
en

y �
for
JK
is t
lac
an
cesses required to automatically fit indentation data using the PT
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quation. An automated routine capable of accurately analyzing
FM indentation data regardless of whether adhesive interactions

re present must be able to distinguish between datasets that ex-
ibit Hertzian and adhesive behavior. Identifying adhesive contact
rom force-displacement curves is straightforward because of the
ronounced negative deflection of the cantilever near the onset of
nitial contact. The following procedure is utilized to establish the
xistence of such interactions:

1. Marching along the dataset, the initial portion �noncontact
region� is fitted with a line while the latter portion is fitted
with a power function of the form

d = d�i� + b�z − z�i��3/2 �3�

where b is the lone fitting parameter, i is the current itera-
tion, and the exponent of 3 /2 is characteristic of Hertzian
indentation with a rigid sphere �18,19�. Hence, �z�i� ,d�i��
takes on all values between the first �i=1� and last points. In
the adopted convention, the last point refers to the point of
maximum indentation, regardless of whether extension or
retraction data are considered.

2. At each iteration, an aggregate mean-square error �MSE� is
calculated, with the contribution from the nonlinear fit given
greater weight to offset the typically low MSE values from
the zero-force, noncontact region. In most cases, multiplying
the MSE of the nonlinear fit by a factor of 2 is sufficient.
However, if the noncontact region comprises a dispropor-
tionately large segment of the data, a larger factor �e.g., 10�
is necessary to identify the best fit to the contact region. The
linear fit associated with the lowest aggregate MSE is used
as a preliminary check for the presence of adhesive
forces—a negative slope using either factor indicates that
such interactions are potentially present. If the slopes using
both factors are positive, Hertzian analysis is applied. The
�z�i� ,d�i�� pair corresponding to the lowest MSE is denoted
�z*,d*�. An example of the two-part fit of a typical retraction
curve is shown in Fig. 3 �Dataset “a”�.

3. For a negative slope, the global minimum of the d versus z
data is found. The position of this point is identified by its
index i=�. The minimum value of d is therefore designated
by d���.

4. The data from i=1,2 ,3 , . . . ,� is fitted with both a force law
based on the Lennard–Jones potential �detailed in Appendix
B� and a linear function. The MSE of each fit is computed.

5. If adhesive interactions are present, the force law provides a
significantly better fit of the data than does the linear fit �see
Example “b” in Fig. 3�. In the absence of adhesive forces,
d��� is attributed to intrinsic noise in the data, and the linear
function will be the superior fit. In this case, the procedure
again reverts to Hertzian analysis.

6. For adhesive contact, the external force reference d1 from
Eq. �1� is obtained from the Lennard–Jones fit as described
in Appendix B. The postcontact force reference point �z1 ,d1�
is found by a linear search in the interval bounded by
�z��� ,d���� and the last point.

We use �z1 ,d1� to estimate the axial strain �zz using the Hertzian
echanics relation �20�

�zz =
2�1/2

�R1/2�1 − ��
�4�

hile use of the Hertzian relationship and approximation of the
ertz contact point by �z1 ,d1� introduce errors in the computation,
e use this approach to merely establish a rough threshold for

inear stress-strain behavior. Some prior knowledge of the sample
echanical properties is beneficial since the linear regime is ma-

erial dependent. Based on the specified strain limit, the portion of
he data exceeding the threshold is excluded from the analysis.
In tip retraction, the minimum cannot simply be regarded as the

ournal of Biomechanical Engineering
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pull-off point since multiple release points can arise due to events
such as the unfolding of large molecules adsorbed to the tip and
sample surfaces or the unbinding of multiple receptor-ligand pairs,
leading to a “sawtooth” pattern in the d versus z curve �21�. In
such cases, the MD theory is applicable from the initial release
point �z� ,d��, as indicated in the typical example shown in Fig. 3
�Dataset “c”�. This point may be difficult to locate accurately due
to signal noise, but is generally in the vicinity of �z*,d*�. Within
the interval bounded by �z*,d*� and �z1 ,d1�, the point correspond-
ing to the smallest value of d, or the largest adhesive force, is
taken to be the pull-off point �z� ,d��. Once the reference points
�z� ,d�� and �z1 ,d1� from Fig. 2�b� have been identified, the adhe-
sive force can be calculated using Eq. �1� to be Fad=−kc �d1
−d�� and compared to the maximum applied force Fmax to deter-
mine whether the adhesive component can be neglected. Using the
guideline set by Johnson and Greenwood �22�, for �Fad /Fmax�
�0.05, Hertzian analysis is invoked.

Unlike �z� ,d�� and �z1 ,d1�, the location of the indentation ref-
erence point �z0 ,d0� is not readily established from conspicuous
features of the force curve except in the limiting cases—it is con-
gruent with the point of contact or separation in the DMT theory
and corresponds to the point at which the applied force is equal to

Fig. 3 „a… A typical retraction force curve fitted with a power
function of 3/2 power „solid curve… and a line „dashed curve…
joining the first point of the noncontact region and the first
point of the power function. The negative slope of the line is
indicative of significant adhesive interactions. For clarity, every
fifth data point is shown. „b… Portion of a sample dataset „mag-
nified 2Ã… showing a force law based on the LJ potential „solid
curve… fitted to the noncontact segment of the data. The simple
linear fit „dashed line… is also shown to demonstrate its com-
paratively poor fit when adhesive interactions are present. For
clarity, every fourth point is shown. „c… Example of adhesive
interactions during tip retraction that do not follow the LJ force
law. The actual pull-off point „w� ,d�… is clearly not the mini-
mum, but rather the initial release point „not clear in the figure
due to the small number of points plotted…. The minimum in this
case is the final release point. Note, however, that the force law
still provides a superior fit of the data in the noncontact region
than a linear function, and hence is still capable of identifying
the presence of adhesive interactions. For clarity, every fourth
data point is shown.
−�8 /9�Fad in the JKR theory. In the intermediate regime governed

DECEMBER 2007, Vol. 129 / 907
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y the MD theory, we make use of the relationship between the
pplied force at zero indentation and the parameter � by setting
q. �A20� to zero and manipulating to yield

� Fn

Fad
�

�=0
= �Fn/Fad�0 = ��1 + ��S3/�4−2�� − ��2 − 1 �5�

here S and � are defined by Eqs. �A24� and �A25�, respectively.
t can be verified that the ratio �Fn /Fad�0 is exactly −1 for the
MT case ��=0� and reaches a maximum value of −0.86 at �
0.27 before decreasing to −8 /9 for the JKR case ��=1�.
Our strategy for finding �z0 ,d0� is to iteratively search for the

alue of � that yields the best fit of the data to Eq. �A20�. In the
nterest of minimizing computation expense, it is important to
onsider the means by which the goodness of fit or MSE at each
teration is evaluated. The PT equation given by Eq. �A20�, when
xpressed in the AFM-specific form by substituting Eq. �2� for �
nd Eq. �1� for Fn, essentially casts z as a function of d. Hence, it
s advantageous to reverse the roles of z and d as the independent
nd measured quantities, respectively, and use the measured val-
es of d to calculate fitted values of z:

z = z0 + d − d0 +
a0���

2

R
�	� + 
1 + kc�d − d1�/Fad

1 + �
�4/3

− S	� + 
1 + kc�d − d1�/Fad

1 + �
�2/3�� �6�

The most direct approach to the data-fitting problem is to de-
ermine the values of �Fn /Fad�0, d0, z0, and a0 at each iteration of

by making use of known relations at the reference points. Note
hat the quantities �Fn /Fad�0, �, and d0 are related through Eqs. �1�
nd �5�, while Eq. �A20� can be evaluated at Fn=−Fad and at Fn
0 to provide two additional equations for the two remaining
nknowns z0 and a0. We reject this approach because it attempts
o fit the data at only the three reference points rather than con-
idering the complete dataset. There are two remaining ap-
roaches to generate the values of �Fn /Fad�0, �, and d0:

a. Each successive point �w�i� ,d�i�� is assumed to be the in-
dentation reference point. Equation �1� is then used to
calculate �Fn /Fad�0, which allows substitution of Eqs.
�A24� and �A25� into Eq. �5� to generate the correspond-
ing value of � and leaves a0 as the lone fitting parameter
in Eq. �6�. Although this approach decreases complexity
and computation time by eliminating z0 as a fitting pa-
rameter, it is susceptible to large errors due to the low
signal-to-noise ratios common in the vicinity of the
contact/separation point �see sample Dataset “b” in Fig.
3�.

b. The preferred method is to iteratively increment the value
of � from 0 to 1 �we use a step size of 0.01�. Equation �5�
is applied at each iteration to calculate �Fn /Fad�0 and Eq.
�1� is then used to find d0. Regression analysis is per-
formed to determine values of the parameters z0 and a0 in
Eq. �6�.

Once the optimal location of �z0 ,d0� is found, Eq. �A22� is used
o calculate the quantity ā0 and the fitting parameter a0

2 /R yields
he value of a0. To determine the interfacial energy, Eq. �A23� is
sed to find F̄ad, which is then substituted with Fad into Eq. �A16�
o calculate 	. The elastic constant of the indented material K is
hen obtained from Eq. �A15�. With K known, Young’s modulus is
alculated using Eq. �A1�. The complete algorithm described in
his section is represented by the flowchart in Fig. 4.

aterials and Methods
The experimental details were described in our prior paper �1�.

esting of tissue-engineered cartilage will not be discussed here

ecause no adhesive interactions were observed in the indentation

08 / Vol. 129, DECEMBER 2007

aded 07 Dec 2007 to 128.231.88.6. Redistribution subject to ASME
of those samples. Briefly, PVA gel was cast into films �for AFM
probing� or cylinders �for macroscopic compression testing� by
varying the polymer content at constant cross-link density. The
gels were cross-linked with glutaraldehyde at pH 
1.5, with an
appropriate amount of cross-linker to ensure that all polymer
chains were attached to a continuous network structure. All
samples were fully swollen in water prior to testing.

A Texture Analyser bench top materials testing system �Stable
Micro Systems, Surrey, UK� was used to perform dislacement-
controlled compression of the gel cylinders �ramp speed of
1 mm /s or strain rate of 0.1/s until a preset load is achieved�.
Measurements were made at constant volume, with no detectable
barreling. For all samples �at least three of each concentration�,
the shear modulus was determined from rubber elasticity theory
�1,23,24�.

Nanoindentation of samples was performed using a commercial
AFM �Bioscope I with a Nanoscope IIIA controller, Veeco Instru-
ments, Santa Barbara, CA� seated atop an inverted optical micro-
scope. General purpose, oxide-sharpened silicon nitride tips were
modified by gluing either a 9.6 
m diameter polystyrene bead or
a 5.5 
m diameter glass bead near the tip. Multiple force curves

Fig. 4 Flowchart representing the comprehensive algorithm
for processing AFM indentation data. Details on Hertzian analy-
sis can be found in the previous paper †1‡.
for each PVA film were collected using the “force-volume” mode
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Downlo
f the AFM as described previously �1�. Each complete dataset
onsisted of 256 �16�16 raster scan� or 1024 �32�32 raster
can� sets of extension-retraction curves. Software developed in
ATLAB �Mathworks, Natick, MA� and based on the algorithms
escribed here and in the previous paper was used to automati-
ally extract values of Young’s modulus in extension and retrac-
ion. In all analyses, the data beyond an axial strain of roughly
0–25% were discarded.

esults and Discussion
Young’s moduli from macroscopic compression and AFM ex-

ension data were presented previously �1� and are reproduced in
able 1 as well as in Fig. 5. For small adhesive force relative to

ndentation depth and applied force, the adhesive effects can be
onsidered negligible and the indentation can be attributed solely
o the externally applied load. This appeared to be the case in the
xtension curves, where attractive interactions were undetectably
mall and allowed all such data to be analyzed using Hertzian
nalysis. Data for retraction curves are also presented in Table 1
nd Fig. 5. Regardless of whether the Hertzian or MD theory was
pplied in analyzing the retraction data, the agreement between
he average extracted values of E in extension and retraction were
enerally good. The largest difference was found in the 9% gels,

Table 1 Comparison of Young’s moduli from
curves

Polymer
content

�%�

Macro.
Ea

�kPa�
E �Ext.�a

�kPa�
E

�

3 0.74±0.06 0.72±0.13 0.7

6 21.51±0.59 17.93±4.62 19.2

9 62.05±2.61 60.01±1.59 52.4

12 115.50±1.86 113.66±6.06 108.

aExpressed as the mean±standard deviation
bOutliers excluded from calculation for 6% gel.

ig. 5 Results of macroscopic compression and AFM indenta-
ion tests on PVA gels. Due to the large difference in sample
ize between AFM and macroscopic measurements, error bars
how standard deviation rather than standard error. Extend and
etract curves were analyzed for each AFM dataset and all

atasets were restricted to È25% strain.

ournal of Biomechanical Engineering
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where the average modulus in retraction was 12.6% smaller than
the extension value. Average Young’s moduli also compared fa-
vorably with the macroscopic results. The differences when com-
paring E in extension and retraction within an individual set of
curves ranged from an average of 10.2% to 16.2%. This was ex-
pected as a consequence of the varying degrees of hysteresis
present in each set of extension-retraction curves and is indepen-
dent of the existence of adhesive effects. The statistical signifi-
cance of the difference between extension and retraction data was
evaluated using paired t tests, with the results reported in Table 1.
Based on the results, there was significant difference between ex-
tension and retraction data in all the samples, indicating that hys-
teresis affects the mechanics of tip retraction regardless of the
presence of adhesion. Although it may appear that analysis of
retraction data serves mainly as a means of obtaining a quantita-
tive measure of the level of hysteresis, it may be necessary in
cases where the extension curve is intractable due to high levels of
noise.

In the analysis of indentation data, strains were limited to ap-
proximately 20–25%. As reported in the previous paper, we found
that when points representing axial strains close to 50% were
included in the analysis, some strain hardening as indicated by
increases in extracted Young’s moduli and the residuals resulted.
It is important to point out that the adhesive theories, which have
their basis on the Hertz theory, are predicated on the assumption
of linear stress-strain behavior. Regardless of the existence of sig-
nificance adhesion, it is advisable to establish an estimate of the
linear strain limit by performing preliminary indentations to dif-
ferent depths and establishing a base line of cantilever deflection.
This can prevent unnecessary truncation of data to exclude non-
linear points that deviate from linear behavior.

Note that since the samples were made from the same batch, the
variability in adhesive interactions from sample to sample was
likely due to differences in the surface properties of the tips. The
absence of significant adhesion in the 3% and 9% gels suggests
that the polymer concentration does not affect the adhesion prop-
erties. With the choice of neutral PVA as the model system, we
sought to eliminate excessive adhesion in order to ensure com-
plete release of the tip following each indentation. The limited
range in vertical travel z of the AFM used in the study, coupled
with cantilevers of low bending stiffness, introduced the possibil-
ity of the tip being adhered to the sample even at maximum re-
traction. When probing samples that exhibit adhesive behavior, it
is therefore important to verify the existence of noncontact re-
gions in both extension and retraction force curves. The degree of
accuracy in applying the PT equation to AFM indentation data
then becomes largely a function of correctly identifying the refer-
ence points shown in Fig. 2. Even with disparate adhesive inter-

mpression and AFM extension and retraction

AFM �spherical tip�

t.�a

�
Avg. �
�Ret.�

E �Ret.�/
E �Ext.�b

Paired t test
�0.05 level�

.10 --- 1.02±0.12 t�511�=2.41
tcritical=1.96

3.42 0.175 1.03±0.16 t�511�=5.69
tcritical=1.96

1.98 --- 0.86±0.05 t�1279�=158.28
tcritical=1.96

9.17 0.050 0.96±0.10 t�254�=7.59
tcritical=1.97
co

�Re
kPa

4±0

2±

3±

98±
actions and low signal-to-noise ratios near the pull-off point, our
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pproach was capable of successfully finding the reference points.
ome sample fits of retraction curves with the PT equation are
hown in Fig. 6.

The dimensionless parameter � in the PT equation represents
he extent to which the adhesive interactions approach those pre-
icted by the JKR ��=1� and DMT ��=0� theories. It is also
aluable as a secondary check of the accuracy of the PT equation
n modeling the indentation mechanics. For stiff materials and low
nterfacial energies, � is expected to approach the DMT limit of 0
hile soft materials with a propensity to deform toward the tip
ield values of � that approach unity. These features are borne out
n the indentation of the PVA gels, with �
0.05 for the stiffest
els �12% polymer content� and �
0.18 for the more compliant
els �6% polymer content�.

onclusions
We have successfully incorporated adhesive contact mechanics

nto the automated procedure we first introduced for Hertzian
nalysis of AFM data from the indentation of soft, chemically
ross-linked gels. The PT approximation of the MD theory has
een shown to be readily adaptable to the automation algorithm.
he accuracy of the PT equation was demonstrated by the excel-

ent agreement between the results from macroscopic compression
nd nanoindentation of PVA gels. The comprehensive scheme is
apable of automatically detecting the presence of adhesive inter-
ctions and applying the appropriate contact mechanics model to

Fig. 6 Four representative retraction curves „every fifth to
adhesive interactions. For the fitting, all datasets were restri
lines. Also shown are the contact points „indicated by �… and
he processing of AFM datasets. This capability should prove to

10 / Vol. 129, DECEMBER 2007

aded 07 Dec 2007 to 128.231.88.6. Redistribution subject to ASME
be a valuable tool for the high-throughput processing of large
collections of AFM datasets and may be particularly important in
the probing of highly inhomogeneous materials.
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Appendix A: Equations Representing the Various Con-
tact Models

The equations here are presented using the notation of Pietre-
ment and Troyon �9�, with subscripts �H�, �JKR�, �DMT�, and ���
used to differentiate between the Hertz, JKR, DMT, and PT mod-
els, where ambiguity is not an issue, the subscripts can be
dropped. The elastic constant K of the sample is defined by

K = 4E/3�1 − �2� �A1�
where E and � are Young’s modulus and Poisson’s ratio of the
sample, respectively. The Hertz model gives the following rela-
tionships between force, indentation, and contact radius a �18�:

� = a�H�
2 /R �A2�

a�H� = �FnR/K�1/3 �A3�

where � is the indentation, R is the radius of the probe, and Fn is

hth point is plotted and indicated by �… showing disparate
to È25% strain. Fitted curves are represented by the solid

ints of zero indentation „indicated by �….
eig
cted

po
the applied normal force.
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The JKR model can be expressed by the following equations
2,9�:

� =
a�JKR�

2

R
−

4

3

a�JKR�Fad�JKR�

RK
�A4�

a�JKR� = 	R

K
�
Fad�JKR� + 
Fn + Fad�JKR��2�1/3

�A5�

Fad�JKR� = �3/2��	R �A6�

here Fad is the characteristic adhesive or pull-off force between
he two surfaces and 	 is the interfacial energy. Note that interfa-
ial energy has units of energy per unit area �e.g., J /m2�. At the
oint of contact or separation, when Fn=−Fad, the indentation is

�0�JKR� = −
1

3

Fad�JKR�
2/3

K2/3R1/3 �A7�

he DMT theory gives �3,9�

� = a�DMT�
2 /R �A8�

a�DMT� = 	R

K
�Fn + Fad�DMT���1/3

�A9�

Fad�DMT� = 2�	R �A10�

The MD theory makes use of the nondimensional parameter �
iven by �7,9�

� = 2
0� R

�K2	
�1/3

�A11�

here 
0 is the maximum attractive force in the Lennard–Jones
otential and the Dugdale approximation. It is assumed that 
0
xerts an influence over an area of radius c that is greater than the
ctual contact radius a. Regions of applicability of the DMT and
KR models are defined by ��0.1 �i.e., weak adhesive force and
mall tip radius relative to sample compliance� and ��5 �strong
dhesive force and large tip radius relative to sample compliance�,
espectively. Note that � is directly related to the parameter 
 first
ntroduced by Tabor �4� to define the ranges of applicability of the
KR and DMT theories by �=1.16
 �22�. In the intermediate
egime 0.1���5, the MD equations are �7,9�

�ā2

2
��m2 − 2�tan−1 
m2 − 1 + 
m2 − 1�

+
4�2ā

3
�
m2 − 1 tan−1 
m2 − 1 − m + 1� = 1 �A12�

F̄n = ā3 − �ā2�
m2 − 1 + m2 tan−1 
m2 − 1� �A13�

�̄ = ā2 −
4�ā

3

m2 − 1 �A14�

here m=c /a and the contact radius, applied and adhesive force,
nd indentation have the nondimensionalized forms

ā = a� K

�	R2�1/3

�A15�

F̄ =
F

�	R
�A16�

�̄ = �� K2

�2	2R
�1/3

�A17�

The COS and PT equations are empirical approximations of the
D theory. The COS equation relates the contact radius to the
xternal force and is given by �8,9�

ournal of Biomechanical Engineering

aded 07 Dec 2007 to 128.231.88.6. Redistribution subject to ASME
a

a0���
= �� + 
1 + Fn/Fad���

1 + �
�2/3

�A18�

where a0��� is the contact radius at zero applied force and � is a
nondimensional parameter related to � by

� = − 0.924 ln�1 − 1.02�� �A19�
The limits of � are 0 for the DMT case and 1 for the JKR case.
The PT equation relates indentation depth to the external force
�9�:

� =
a0���

2

R
	�� + 
1 + Fn/Fad���

1 + �
�4/3

− S����� + 
1 + Fn/Fad���

1 + �
�2����/3� �A20�

The relationship between � and � is now given by

� = − 0.913 ln�1 − 1.018�� �A21�
and the terms a0���, Fad���, ����, and S��� are functions of � given
by

ā0��� = − 0.451�4 + 1.417�3 − 1.365�2 + 0.950� + 1.264

�A22�

F̄ad��� = 0.267�2 − 0.767� + 2.000 �A23�

S��� = − 2.160�0.019 + 2.7531�0.064 + 0.073�1.919 �A24�

���� = 0.516�4 − 0.683�3 + 0.235�2 + 0.429� �A25�

where the nondimensionalized forms of a0��� and Fad��� are de-
fined by Eqs. �A15� and �A16�.

Appendix B: Fitting of Noncontact Data With the
Lennard–Jones Potential

In AFM indentation data representing the attraction between a
spherical probe and a flat surface, the portion of the data prior to
initial contact or immediately following separation is oftentimes
assumed to be governed by a force law similar to the Lennard–
Jones �LJ� potential �22�. Formally, the LJ function governing the
interaction between two rigid spheres is of the form

V�r� = 4�	�D

r
�12

− �D

r
�6� �B1�

where V is the potential, r is the separation distance, � is the well
depth, and D is the diameter of the spheres. Note that attractive
forces are represented by negative potentials and that repulsive
forces become dominant as the separation distance approaches
zero. The latter feature of the LJ potential is ignored in the fitting
of indentation data. Abandoning the formal representations, d is
substituted for the potential V, and 4� and D are replaced by
generalized constants A and B, respectively.

It is necessary to transform the AFM data �d versus w� to the
numerical form required by Eq. �B1�. First, because increasing w
corresponds to decreasing separation, the separation can be ex-
pressed nondimensionally by

r = 1 + C
w��� − w

w��� �B2�

where C is a scale factor that controls the rate at which the po-
tential drops to its minimum value and � refers to the point at
which d is a minimum. Note that the separation at maximum
attractive force has been set to unity for simplicity. A second
transformation is performed to force d to conform to the behavior
dictated by the LJ potential �i.e., at large separation, the potential

is essentially zero�. This is easily achieved by shifting the vector
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f d values by a reference value �dref� equal to the maximum value
f d in the range d�1� to d���. The force law is given by

d�r� = A	�B

r
�12

− �B

r
�6� + dref �B3�

o find the constants A and B, the equation �d /�r=0 is solved at
he minimum separation distance r=1 to give B= �1 /2�1/6. Equa-
ion �B3� is then be solved for A at the minimum d���, to yield
=−4�d���−dref�.
We iteratively fit Eq. �B3� to subsets of data points from

w�i� ,d�i�� to �w��� ,d����, where i is increased from 1 to � and the
cale factor C is the sole fitting parameter. Points prior to
w�i� ,d�i�� are fit to the line d=d�i�. The value of d�i� corresponding
o the best least-squares fit of the data is the zero-force reference
1 in Eq. �1�. Figures 4 and 5 show the results of fitting the force
aw to sample datasets.
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