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Abstract—One aim of this work is to investigate the feasibility
of using a hierarchy of models to describe diffusion tensor mag-
netic resonance (MR) data in fixed tissue. Parsimonious model se-
lection criteria are used to choose among different models of dif-
fusion within tissue. Using this information, we assess whether we
can perform simultaneous tissue segmentation and classification.
Both numerical phantoms and diffusion weighted imaging (DWI)
data obtained from excised pig spinal cord are used to test and
validate this model selection framework. Three hierarchical ap-
proaches are used for parsimonious model selection: the Schwarz
criterion (SC), the -test -test ( ), proposed by Hext, and the

-test -test ( ), adapted from Snedecor. The approach
is more robust than the others for selecting between isotropic and
general anisotropic (full tensor) models. However, due to its high
sensitivity to the variance estimate and bias in sorting eigenvalues,
the and SC are preferred for segmenting models with trans-
verse isotropy (cylindrical symmetry). Additionally, the SC method
is easier to implement than the and methods and
has better performance. As such, this approach can be efficiently
used for evaluating large MRI data sets. In addition, the proposed
voxel-by-voxel segmentation framework is not susceptible to arti-
facts caused by the inhomogeneity of the variance in neighboring
voxels with different degrees of anisotropy, which might contam-
inate segmentation results obtained with the techniques based on
voxel averaging.

Index Terms—Diffusion tensor, diffusion tensor imaging (DTI),
diffusion tensor magnetic resonance imaging (DT-MRI), hierar-
chical, magnetic resonance imaging (MRI), model selection, par-
simonious, segmentation, tissue classification.

I. INTRODUCTION

DIFFUSION tensor magnetic resonance imaging (DT-MRI)
[1] is a noninvasive imaging technique for quantitative

analysis of intrinsic features of tissues. DT-MRI has been ap-
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plied to study the structural organization of skeletal muscles [2],
brain [3], spinal cord [4], peripheral nerves [5], intervertebral
discs [6], and heart muscle [7], [8]. Based on its extensive use,
it is increasingly important to develop new tools for efficient
and accurate tissue analysis and segmentation of DT-MRI data,
since better characterization of organization of different tissue
types may enhance our understanding structure/function rela-
tionships in organs. In addition, quantitative tissue segmenta-
tion may advance intrasubject comparisons between tissue com-
partments. Most DT-MRI work to date has focused on char-
acterizing the trace of the diffusion tensor (Tr), the fractional
anisotropy (FA), and the fiber orientation of tissue. Compara-
tively little has been done to identify the underlying microstruc-
ture and microstructural models appropriate for each voxel.

Automated tissue segmentation and classification are among
the most challenging tasks in DT image analysis. Segmenta-
tion separates acquired data into objects, while tissue classifi-
cation generates meaningful regions of interest. Here, we ex-
amine whether parsimonious model selection criteria applied to
a hierarchy of diffusion models can simultaneously segment and
classify tissues based on their underlying diffusion properties.

A hierarchy of diffusion models and a statistical hypothesis
testing framework were used in the context of the first magnetic
resonance (MR) measurement of the translational diffusion
tensor [1] to determine whether proton diffusion was isotropic
in water and anisotropic in a skeletal muscle phantom. Because
this study used diffusion spectroscopy sequences with data
obtained at high signal-to-noise ratios (SNRs), it was not clear
whether such statistical approaches would work at the SNR of
clinical or animal images or would behave reliably from voxel
to voxel within an image volume. Subsequently, it was used
for diffusion models with different degrees of symmetry to
characterize different modes of diffusion transport in tissue [9],
[10].

Other parsimonious model selection methods have recently
been used to analyze DT-MRI data. Alexander et al. [12] used
a parsimonious modeling framework to test the adequacy of the
tensor model applied to human brain tissues. Kroenke et al. [12]
used a Bayesian model selection approach to analyze different
diffusion models in fixed baboon brain. In this work, we test the
appropriateness and relative efficiency of four predefined diffu-
sion models: isotropic, general anisotropic, prolate, and oblate.
We also compare and contrast three methods for parsimonious
model selection, which employ the Schwarz criterion (SC) [13],
the -test [14], [15], and the -test [14].

0278-0062/$25.00 © 2007 IEEE
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II. THEORY

A. Diffusion Tensor Imaging

The relationship between observed echo attenuation [1], [16],
[17], caused by applying diffusion sensitizing gradients along
various directions, and the diffusion tensor can be character-
ized by

(1)

where “:” stands for the tensor dot product, is the ob-
served signal, is a signal in the absence of the diffusion-
weighting gradient, and is a matrix whose components are
given by

(2)

where is the magnitude of the diffusion gradient pulse ap-
plied in th direction with duration , and is the
diffusion time. In (1), is a symmetric (3 3) second-order
diffusion tensor that has a form

(3)

Diagonal elements of the diffusion tensor are proportional
to the diffusion rate in the collinear directions, while correla-
tions in displacements along orthogonal directions are repre-
sented by off-diagonal elements. The six independent elements
of are sufficient to describe Gaussian molecular diffusivity in
three dimensions. Furthermore, given that is symmetric and
positive definite, it can be characterized bythe three orthonormal
eigenvectors, , and , associated with three positive eigen-
values, , and . In the matrix form it is represented by

(4)

where is the matrix whose columns are the orthonormal
eigenvectors and is the diagonal matrix containing their
corresponding eigenvalues. It was first suggested in [18] that
in fibrous anisotropic media the eigenvector associated with
the largest eigenvalue coincides with the tissue’s dominant
fiber-tract axis, while the two remaining eigenvectors, and

, define the transverse plane. For the general anisotropic
model, a typical observation is that .

It also has long been assumed that some anisotropic tissues,
like skeletal muscle [2] and nerve white matter [19], are cylindri-
cally symmetric having a prolate diffusion ellipsoid, i.e.,

. Cylindrical symmetry associated with an oblate diffu-
sion ellipsoid entails . The diffusion tensors for
both these transversely isotropic models can be written as [20]

(5)

where is the unit
vector parallel to the axis of symmetry. For the prolate model,

corresponds to , which is parallel to the long axis of the
prolate diffusion ellipsoid. This was considered previously in
[21] and [22]. However, we show how the same equation de-
scribing transverse isotropy can be applied for estimating both
the prolabe and oblate tensor models for the oblate model, where

corresponds to , which is parallel to the axis of symmetry
of the “pancake” shaped diffusion ellipsoid. Above, is the
3 3 identity matrix. For the oblate model, we have

. For the prolate model, we have
.

In contrast to an anisotropic medium, only one scalar diffu-
sion coefficient is necessary to describe isotropy. Then (1)
reduces to

(6)

where , and is an apparent diffusion
coefficient (ADC). The isotropic diffusion tensor has the form

(7)

Equation (7) is also a special case of (5) in which and
. In this section, we have established a hierarchy of nested

models of diffusion given by (3), (5), and (7).
1) Parameters Estimation for the Different Models: A non-

linear least square (NLS) minimization method, proposed by
Koay et al. [23] is used to estimate each diffusion tensor whose
initial guess is obtained from the linear least squares minimiza-
tion. In the NLS method, (1) takes the form

(8)

where the design matrix consists of a list of -matrix elements
for a series of trials

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(9)
and consists of six independent parameters of the estimated
diffusion tensor and the estimated log of the signal in the
absence of the diffusion-weighting gradient, . For the
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general anisotropic (ga) model is written as a (7 1) column
vector

(10)

Since the diffusion tensors for the transversely isotropic models
can be estimated from four parameters (5) for cylindrically sym-
metric oblate and prolate models the number of free pa-
rameters we estimate is reduced from 7 [as in (10)] to 5 [24]

(11)

where the initial guesses of are obtained from the pre-
viously estimated diffusion tensor, using the following assign-
ments (mathematical support for (13) can be found in [25]).

Oblate

(12)

Prolate

(13)

The final have the same form as (10).
For the isotropic model , the number of unknown param-

eters is 2

(14)

We use the following initial guess for the isotropic case:
and the design matrix is reduced to

, where the first column is a list of averaged diagonal elements
of the corresponding -matrices and the second column consists
of .

Once the elements of are estimated for all four models, we
can derive the corresponding residual sum of squares (RSS) for
each model as

(15)

where 1,
, and is the th row of the design

matrix, .

1general anisotropic (ga); prolate (p); oblate (o); isotropic models (I)

The unbiased estimate of the residual mean square error for
the full tensor model, , on degrees-of-freedom, is
defined as

(16)

The unbiased estimate of the covariance matrix for the full
tensor model, , is obtained from

(17)

where is a Jacobian matrix of first-order derivatives of
with respect to the free parameters evaluated

using the optimally estimated free parameters.
With these definitions, we are interested to know whether

one could select the model that most faithfully describes the ac-
quired data, which uses the fewest unknown parameters.

B. Hierarchical Approaches to Parsimonious Model Selection

In this work we investigate three schemes for parsimonious
model selection: SC [13], [10], [14], and [15], [11].
The logical schematic for the SC, and methods are
shown in Fig. 1(a)–(c), respectively.

The first step for all three approaches is to ensure that the esti-
mated full diffusion tensor passes a goodness-of-fit test with
the confidence level of 95%. If is admissible, the next step is to
differentiate between the isotropic and anisotropic models. We
test the null hypothesis that assumes that the diffusion tensor is
isotropic, i.e., that the experimental data can be more economi-
cally described by a model with two free parameters (14), rather
than the full diffusion tensor model with seven unknowns (10).

The first method we consider is the SC, also commonly
known as the Bayesian information criterion (BIC). This
method works by imposing penalties for models with a larger
number of free parameters and a larger mean squared residual
error. It is defined as

(18)

where represents the model type (isotropic, general
anisotropic, prolate, or oblate), is the number of experi-
mental data points, and is the number of free parameters for
the th model.

The remaining two model selection methods we consider are
based upon sequential hypothesis tests. The second method is
the hierarchical model selection approach, which is based
on the -test [14]

(19)

where and are the numbers of the free pa-
rameters in the general anisotropic and isotropic models, re-
spectively; is the number of experimental data points; and

, and are the sums of the squares of the acquired
signals, and the fitted signals for the anisotropic and isotropic
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Fig. 1. Schematic hierarchical model selection for (a) SC; (b) F � t; and (c)
F � F approaches.

models, respectively. The approach uses a multivariate
-test [15] performed according to (20)

(20)

where and are the residual sum of squares for the
isotropic and general anisotropic models, respectively. Large
values for , given above, indicate that the isotropic model
can be rejected.

If the anisotropic model is accepted, we further investigate
whether it is more economical to represent diffusion as being

transversely isotropic or cylindrically symmetric, i.e., having
either an oblate or prolate-shaped diffusion ellipsoid with one
axis of symmetry. The null hypothesis that two eigenvalues are
equal, can be evaluated using a number of statistical tests.

To evaluate this hypothesis, in the approach we modify
Hext’s -test [14] whose -statistic is of the form

(21)

where and for the oblate model, and
for the prolate model, is the estimate of covariance (17),
and is the estimate of the orthonormal eigenvector associ-
ated with the corresponding eigenvalue estimate, for the full
tensor model.

In the third approach, following scheme [1], we use
an -test again to test whether the reduced model for transverse
isotropy having five free parameters is more efficient than the
full seven parameter tensor model. In this case, the test statistic
is given by (22)

(22)

where is the residual sum of squares for the reduced
model (prolate or oblate for which ) and is the
residual sum of squares for the general anisotropic model with

.
From Fig. 1(c) it can be seen that the approach applies

the same scheme, as above, if the isotropic model is accepted.

III. METHODS

A. Simulations

To evaluate the various parsimonious model selection ap-
proaches, synthetic phantoms [Fig. 2(a)] were generated in
MATLAB (The MathWorks, Inc., Natick, MA) by setting
the SNR to 15, 25, and 33 matches SNR in the
excised pig spinal cord DTI data), for a fixed signal intensity,

. The parameters for the general anisotropic and
prolate models were chosen to simulate white matter, while the
isotropic model parameters simulated gray matter, with values
typical for living brain tissue [3]. The oblate model was set
to parameters between white and gray matter. The trace of
Tr for the general anisotropic model was set to
mm /s and the FA was set to mm /s,

mm /s, mm /s), for the
prolate model mm /s and , for
the oblate model mm /s and ,
and for the isotropic model mm /s and

. Normally distributed random noise was added to the
signal intensity in each voxel; the diffusion weighted images
were calculated and scaled, as shown in (23). This model
assumes that noise is added to the real and imaginary channels
independently, and that the MR signal is rectified [26], [27].
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Fig. 2 (a) Noise-free synthetic phantom; Model map results assuming FA =

0:8 in prolate and FA = 0:55 in oblate and general anisotropy regions, respec-
tively, with SNR = 33 for (b) SC (c) F � t and (d) F � F methods.

The -matrix was calculated with the imaging parameters
described in Section III-B.

(23)

where

and and are normally distributed random numbers
with mean zero and standard deviation .

The hierarchical methods for parsimonious model selection
were applied to the set of 50 reconstructed diffusion-weighted
images with four unweighed images.

B. Excised Pig Spinal Cord DTI Experiments

In addition to simulations, we demonstrate our results on ex-
perimental MRI data obtained from an excised pig spinal cord
fixed with 4% paraformaldehyde solution. Prior to MR data col-
lection, the spinal cord was washed in phosphate-buffered saline
(PBS) to avoid signal loss due to fixative-related -shortening
[28]. The sample was imaged in a 15-mm NMR tube containing
MR-compatible perfluoropolyether oil (“Fomblin”), using a
Micro2.5 microscopyprobe (15-mm solenoid coil) with 1450
mT/m 3-axis gradients. A diffusion-weighted spin echo pulse
sequence was used with repetition time ms,
echo time ms, kHz, field-of-view

Fig. 3. Q-Q Plot of prolate model residuals in (a) phantom and (b) pig spinal
cord versus standard normal.

mm, with seven con-
tinuous 1 mm thick slices. Four DWIs per slice were acquired
without applying the diffusion sensitizing gradients
s/mm ), followed by the acquisition of 46 diffusion-weighted
images with diffusion gradient strength mT/m
yielding approximate -values of 1000 s/mm . The number
of averages (NEX) was 2. Each of these diffusion-weighted
scans were collected with the diffusion gradients applied along
a different direction determined from the second-order tessel-
lations of an icosahedron on the surface of a unit hemisphere.
The diffusion gradient duration was 5 ms, and the gradient
separation was 20 ms. The total imaging time was less
than 13 h. At each voxel location in the raw image, the apparent
diffusion tensor was estimated. Tensor-derived parameters,
such as the principal directions, and , and the corre-
sponding principal diffusivities, and , were estimated
and passed to the parsimonious model selection algorithm.

IV. RESULTS

Systematic study of the residuals is performed to assess their
distribution within different voxels. Fig. 3 shows a represen-
tative - plot of the residuals, indicating that they are nor-
mally distributed. Since the residuals from the phantom and the
excised pig spinal cord experiments are normally distributed
(Fig. 3), and the variance of each measurement is unchanging
(homoscedasticity), the use of the hypothesis testing framework
given below is well grounded. The confidence interval for all
tests was set to 95%.

A. Simulations

Fig. 2(b)–(d) shows graphically the model selection results
obtained with the SC, and approaches, at .
Performance for the model selection framework at SNRs equal
to 15, 25, and 33 are shown in Fig. 4(a), (b), and (d), respec-
tively. The true positive and the false negative counts are cal-
culated within the area of the predicted model, while the false
positive counts are obtained from the outside regions. The SC,

, and results are similar for the isotropic and gen-
eral anisotropic models at all SNRs. The isotropic model se-
lection showed consistent results for the true positive and the
false negative counts with the averages of 96% and 4% success,
respectively. The general anisotropic model performed better
with the true positive counts 99.3% success. While the differ-
ences between oblate and prolate models for the SC and
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Fig. 4. Performance comparison at (a) SNR = 15, (b) SNR = 25, and (c)
SNR = 33, where SC is represented by the blue bar, F � t by the green bar,
and F � F by the red bar. The true positive and the false negative counts are
calculated within the area of the predicted model, while the false positive counts
are obtained from the outside regions. In each box the first group of three bars
shows the performance of the isotropic model, second group—for the general
anisotropic model and the other two groups show the performance of the oblate
and prolate models, respectively.

TABLE I
ACCURACY OF A CLASSIFICATION (%) OBTAINED

WITH SC APPROACH AT SNR = 33

approaches were not significant for the true positive and false
negative results and their overall errors were around 7% at all
SNRs, the approach showed poor performance in identi-
fying the oblate and prolate models with an average error in the
range from 21% to 26%. These results for are shown
as confusion matrices in Tables I–III. Here, each column of the
confusion matrix represents the true model, and each row rep-
resents the results of the parsimonious model classification.

Subsequently, we tested this approach with the fractional
anisotropy varying from 0.1 to 0.9. The obtained results were
consistent with the described above at , and

for the SC, and approaches, respectively.

B. Excised Pig Spinal Cord DTI Experiment

Fig. 5 shows (a) the -weighted amplitude image, the ori-
entationally invariant (b) Tr, and (c) FA. The -weighted am-

TABLE II
ACCURACY OF A CLASSIFICATION (%) OBTAINED

WITH F � t APPROACH AT SNR = 33

TABLE III
ACCURACY OF A CLASSIFICATION (%) OBTAINED

WITH F � F APPROACH AT SNR = 33

Fig. 5. Excised pig spinal cord images: (a) T -weighted amplitude; (b) Trace
in mm /s; (c) FA; (d) DTI colormap: green—left to right direction, red—up and
down direction, blue—through the plane.

plitude image, the Tr and FA maps delineate white and gray
matter groups consistent with previous works [29]. Addition-
ally, regions appearing bright in the amplitude image appear
dark in the FA maps. Fig. 5(d) is the direction-encoded color
map [30]. White matter fiber groups are also easily discernible
in this image. The bluish color in white matter groups indi-
cates fibers pointing into the page, consistent with their known
anatomy.

To assess the results obtained using the SC Fig. 6(a),
[Fig. 6(b)], and [Fig. 6(c)] parsimonious model selec-
tion methods, we compared our results with the typical DTI
maps, i.e., Tr, FA, and color maps [Fig. 5(b)–(d)], respectively.
Fig. 7(a) was obtained using the recently developed diffusion
orientation transform (DOT) technique [31]. In this image, the
orientation profiles computed using the DOT are overlaid on
generalized anisotropy (GA) maps displayed using a gray col-
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Fig. 6. Parsimonious model maps for excised pig spinal cord using: a) SC, b) F � t and c) F � F approaches.

Fig. 7. (a) Diffusion orientation transform (DOT) map: the orientation profiles are overlaid on generalized anisotropy (GA) maps, where blue color represents
surfaces of probability profiles and GA is displayed in gray scale. The three insets (4 voxels each) are selected to show detailed 3-D of probability profiles in
different regions; (b) Parsimonious model map obtained with the SC method. The inset 1 shows the parallel aligned peanut shaped surfaces orientated through the
plane (top and side views), which corresponds to the prolate model region in the SC map (red color); The inset 2 shows the complicated orientational characteristics,
i.e., voxels with more than one fiber direction, which corresponds to the oblate region in the SC map (orange color). The inset 3 shows deformed peanuts, which
could reflect the presence of more than one fiber orientation. This inset corresponds to the general anisotropic model in the SC map (turquoise color).

ormap on the background. The blue color represents surfaces
of probability profiles. It is obvious that the coherently oriented
and highly anisotropic fibers of white matter appear to be ori-
ented along the direction normal to the image plane (inset 1 in
Fig. 7); these regions also have high GA values. In contrast,
in most regions of the spinal cord gray matter, there is a great
deal of directional heterogeneity in the preference of water dif-
fusion. However, much of the fiber directions appear to be on

the image plane suggesting an oblate diffusion profile (inset 2
in Fig. 7), where voxels with more complicated patterns are ex-
pected to yield general anisotropy in our model selection frame-
work [inset 3 in Fig. 7(a)]. As can be seen from Fig. 6, the SC
and approaches consistently selected the prolate model
in the areas corresponding to white matter, while the ap-
proach frequently failed. Furthermore, although the FA map of
the excised pig spinal cord appears to be uniform throughout
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the entire white matter region, the Tr map revealed less uni-
formity in this region. This indicates that some of the regions
have more complex structures than the voxels with fibers aligned
along one direction. Thus, we may assume that the voxels in
the white matter region, which were not selected as prolate,
might correspond to the structures with more than one fiber
orientation [e.g., SC method inset 3 in Fig. 7(b)]. Moreover,
more complicated orientational fiber directions in gray matter
[e.g., inset 2 in Fig. 7(a)] overlap with the voxels identified as
oblate by our model selection frameworks [e.g., SC method inset
2 in Fig. 7(b)]. Although the sharpened displacement profiles
produced by the DOT [Fig. 7(a)] appear unidirectional in the
medial sections of the spinal cord gray matter, the generalized
anisotropy (GA) [32] image provided in the background sug-
gests that these orientational features are not as pronounced;
this suggests that the variations due to noise were comparable to
the overall anisotropy due to diffusional preference. As a result,
these voxels are identified as general anisotropic according to
our model selection method.

V. DISCUSSION

The aim of this work is to investigate the feasibility of using
a parsimonious model selection framework to obtain the most
appropriate and economical diffusion model within each voxel
of an imaging volume. Analysis of the three proposed model
selection methods has shown that the SC approach is more ro-
bust than the and methods. The -test applied to
selecting models exhibiting transverse symmetry was less suc-
cessful than the and SC approaches, due to its high sensi-
tivity to the variance estimation and the bias owing to sorting the
eigenvalues [33], [27]. Since the method requires only one
nonlinear fit, rather than the three required for the and SC
approaches, the former may be computationally less intensive.
Currently, we are investigating the effect of variance estima-
tion improvement on the -test. Monte Carlo simulations have
shown that in the method it is unnecessary to perform the

-tests to compare isotropic and oblate/prolate models. Gener-
ally, the performance of the SC method is better than the other
two methods.

Under what circumstances can we justify the use of this hy-
pothesis testing framework for model selection? As long as the
residuals are normally distributed, and the variance of each mea-
surement is not changing (homoscedasticity) we can safely use
the -test and -test formalisms to compare one model to an-
other. In this study, the – plots and statistical tests sup-
ported the use of this sequential hypothesis testing framework
for model selection.

While the Bayesian method for model selection [12] is ele-
gant, we have developed this model testing pipeline to accom-
modate the high throughput of diffusion weighted data of de-
manding DT-MRI applications. In a typical microimaging study
512 512 64 voxels might be acquired. The advantage of
using this hypothesis testing approach is that most of the cal-
culations required for the hypothesis tests themselves have al-
ready been performed during the nonlinear estimation of the
free parameters of each model. Thus, the subsequent statistical
tests have a small computational overhead. This approach is also
easily extended to consider a larger number of nested diffusion

models. For instance, one can incorporate models having mul-
tiple compartments (such as a CSF compartment), or consider
HARDI or CHARMED models within this testing framework.
While this initial demonstration uses on diffusion tensor MRI
data, the hierarchical testing framework is not limited only to
data of this type.

The proposed segmentation methods are based on a voxel-by-
voxel analysis. Such approach prevents possible introduction
of artifacts due to averaging the neighboring voxels with dif-
ferent variances. The inhomogeneity in the variance is observed
in voxels with different degrees of anisotropy [34].

What are the prospects for extending this approach to clinical
and in vivo biological MRI applications? Provided that the con-
ditions for normally distributed residuals and stable variances
for DWI in time are met, this analysis pipeline could be used
with in vivo data as well. However, one should establish that
these conditions are satisfied before using this approach. With
the methods introduced in this work, we performed a plot study
using a clinical data set, where artifacts, such as physiological
noise, small scale motion, and eddy current distortion were ame-
liorated prior to performing statistical model selection. Prelim-
inary results (not reported here) are promising and will be the
subject of the future work.

It has been shown that the segmentation obtained from our
parsimonious model selection scheme can be used to inform an
unsupervised tissue clustering algorithm, also based on multi-
variate hypothesis testing [35], [36]. We used the parsimonious
model selection framework to identify seed regions for unsu-
pervised tissue clustering algorithms to ensure that the vari-
ance of each measurement in the seeding region is uniform (ho-
moscedasticity), and that the distribution of diffusion tensor pa-
rameters is similar, making the clustering algorithm more reli-
able.

Furthermore, model selection maps can be useful for unsu-
pervised tractography, as well. For example, voxels selected
as prolate are better candidates for seed voxels from which to
launch fibers, while the voxels identified as general anisotropic
or oblate will indicate changes in structure, thus requiring more
detailed analysis.

In addition, while FA, trace, and skewness [37] maps indi-
vidually provide useful scalar information about isotropic and
anisotropic regions, the parsimonious model selection map dis-
tills this information into a single map.

VI. CONCLUSION

The maps produced by the proposed parsimonious model se-
lection schemes provide useful information about underlying
tissue microstructure in each voxel. The simplicity and speed of
applying the - and -tests and the SC make the proposed ap-
proaches feasible for large DWI data sets routinely encountered
in high resolution microscopic DT-MRI studies or in clinical
DT-MRI applications. The results of the phantom simulations
increase our confidence in model selection schemes based upon
statistical hypothesis tests. When applied to ex vivo tissue spec-
imens, where background noise is the primary artifact and other
systematic artifacts can be remedied, this approach should work
robustly. In clinical applications, however, where other system-
atic artifacts can corrupt DWI data, this approach may be more
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problematic. When using DWI data from living tissue, tests for
Gaussianity of the distribution of residuals and a careful assess-
ment of the degree of homoscedasticity should be performed
prior to applying our model selection approaches to ensure data
integrity. Our expectation is that these model selection proce-
dures may lead to improved methods of automatic region of
interest (ROI) delineation and classification of different tissue
types in DT-MRI volume data sets.
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