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ABSTRACT In MRI, macroscopic boundaries lead to a diffusion-related increase in signal intensity near them—an effect
commonly referred to as edge-enhancement. In diffusion-weighted imaging protocols where the signal attenuation due to dif-
fusion results predominantly from the application of magnetic field gradients, edge-enhancement will depend on the orientation
of these diffusion gradients. The resulting diffusion anisotropy can be exploited to map the direction normal to the macroscopic
boundary. Simulations suggest that the hypothesized anisotropy may be within observable limits even when the voxel contains
no boundary itself—hence, the name remote-anisotropy. Moreover, for certain experimental parameters there may be signifi-
cant phase cancellations within the voxel that may lead to an edge detraction effect. When this is avoided, the eigenvector
corresponding to the smallest eigenvalue of the diffusion tensor obtained from diffusion-tensor imaging can be used to create
surface-normal maps conveniently. Experiments performed on simple geometric constructs as well as real tissue demonstrate
the feasibility of using the edge-enhancement mechanism to map orientations orthogonal to macroscopic surfaces, which may
be used to assess the integrity of tissue and organ boundaries noninvasively.

INTRODUCTION

Diffusion-weighted (DW) MRI has traditionally been used to

observe diffusion in restricted domains whose characteristic

dimensions are much smaller than the voxel size. The ori-

entational dependence (anisotropy) of the MR signal has

been used most widely in observing the white-matter in the

central nervous system that is composed of axons whose

diameters are in the 0.5–10-mm range. Anisotropy observed

in such MRI acquisitions is believed to be due primarily to

the influence of cell membranes on the diffusing molecules

(1,2). Due to the coarse resolution of typical MRI scans, an

image voxel contains thousands of axons; hence, the ob-

served anisotropy is a product of the cumulative effect of the

membranes of thousands of cells. Local average orientations

of the axonal cells can be estimated from the directions of

highest diffusional mobility (3,4).

Random motion of molecules in liquid and gas phases tend

to attenuate the MR signal significantly. When the spin-

bearing particles are located in the proximity of restricting

walls, their motion is hindered; this manifests itself in the

detected MR signal. Specifically in imaging studies, when the

voxel dimension is smaller than the characteristic dimensions

of the restricting geometry, it was shown that, even when

the spin density is constant, voxels close to the boundaries

suffer less attenuation (5) in constant-gradient experiments

leading to the edge-enhancement effect. This effect was ob-

served in thin glass-capillaries (6,7) and can be attributed to

diffusion-related lineshape distortion (8). However, diffusive

attenuation was shown to be a more likely cause of edge-

enhancement (9)—particularly so in spin-echo experiments

(10). The presence of constant-field-gradients in spin-echo

experiments was studied further (11) using the eigenstates of

the Torrey equation (12) and subsequently, predictions were

made for the shapes of the edge-enhancement profiles in fre-

quency as well as phase-encoding schemes (13). In Callaghan

and Codd (14), the authors employed a matrix product for-

malism (15) to estimate the image intensity in restricted ge-

ometries for general pulse sequences. A similar random walk

approach was taken to study the free induction decay and

spin-echo signal intensities in constant-field-gradient exper-

iments (16). In Stepišnik et al. (17), a cumulant expansion

approach was used to address the problem.

In DW acquisitions, where the effects of diffusion on the

MR signal intensity are controlled typically via the applica-

tion of a pair of magnetic field gradient pulses (18), edge-

enhancement was predicted to vary with the strengths and

directions of these gradient pulses (19). Consequently, the

DW signal may be sensitive to structures whose sizes are

comparable to or greater than the voxel dimensions. We

predict that the DW signal may be anisotropic even when the

imaged voxel contains no structure. An example to this re-

mote-anisotropy effect is the voxel of interest that contains

nothing but cerebrospinal fluid located in the proximity of the

cortical surface of the brain. In this article, we study one- and

two-infinite-plate geometries that are expected to represent

many situations of interest well. Unlike most studies that em-

ploy an eigenfunction expansion for the diffusion propagator,

the solutions for magnetization density and signal intensity

are obtained using the method of images, which is adequate

for the length scales associated with the problem. Our simu-

lations suggest that anisotropy due to edge enhancement can be
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Address reprint requests to E. Özarslan, Tel.: 301-435-3868; E-mail:

evren@helix.nih.gov.

Editor: Mark Girvin.

� 2008 by the Biophysical Society

0006-3495/08/04/2809/10 $2.00

Biophysical Journal Volume 94 April 2008 2809–2818 2809



exploited to estimate the directions perpendicular to nearby

boundaries. Experiments performed on simple geometric con-

structs and a rat brain sample verify this prediction.

THEORY

We consider the pulsed gradient spin echo (PGSE) experiment (18) shown in

Fig. 1. We assume the diffusion pulse durations (d) and the time between the

application of the second diffusion gradient and the echo center (waiting

time, tw) to be small. Note that the effects of finite waiting times will be

discussed in detail in the Appendix. Moreover, we ignore the diffusion-

related effects of imaging gradients. The magnetization density at the echo

time induced by this pulse sequence is given by Sukstanskii et al. (20),

Mðz; q;DÞ ¼
Z

dz0rðz0ÞPðz0; z;DÞei2pqðz�z0Þ; (1)

where r(z) is the initial spin distribution; q ¼ gdGz/2p is the component of

the wave vector along the z-direction; g is the gyromagnetic ratio, and Gz

is the z-component of the gradient vector. P(z0, z, D) is the propagator

indicating the probability of particles initially at location z0 ending up at

position z after time D. Here, diffusion is thought to be restricted along the

z-direction but free along other directions.

The total signal that is observed in a voxel will depend on the image

acquisition and reconstruction schemes (slice excitation profile, point spread

function, . . . etc.) as well as the magnetization density profile given in Eq. 1.

As an ideal case, we can assume that all spins inside the voxel will contribute

to the total signal equally. In this case, the signal attenuation in a voxel lo-

cated between the points z1 and z2 can be estimated by integrating the

magnetization density over the voxel:

Eð½z1; z2�; q;DÞ ¼
R z2

z1
dz Mðz; q;DÞR z2

z1
dz rðzÞ : (2)

When the gradient is applied along an arbitrary direction, this attenuation

needs to be multiplied by the attenuation due to the components of the

gradients along the x and y directions.

We have derived the signal intensity in two simple geometries (see Fig. 2)

that are expected to represent real macroscopic boundaries well. These fol-

low.

Single infinite plate

When the voxel dimensions are significantly smaller than the separation

between the restricting boundaries, and when the voxel is situated close to

one of the boundaries, the magnetization in the voxel is influenced only by

the nearby boundary. In this case, diffusion can be thought to be taking place

in the proximity of a single infinite plate located at z ¼ 0 (Fig. 2 a). The

propagator can be obtained by using the method of images to be (21)

Pðz0; z; uÞ ¼
1ffiffiffiffi
p
p

u
e
�ðz�z0Þ2=u

2

1 e
�ðz1z0Þ2=u

2
� �

; (3)

where u is a characteristic diffusion length given by

u ¼ ð4D0DÞ1=2
; (4)

and D0 is the free diffusion coefficient.

Furthermore, it is convenient to introduce the dimensionless position and

wave-number variables

z ¼ z

u
; and k ¼ pqu: (5)

The resulting magnetization density is calculated using Eq. 1:

Mðz; kÞ ¼ r

2
e
�k

2

e
i4kz

1� erfðz 1 ikÞ½ �
�

1 1� erfð�z 1 ikÞ½ �Þ: (6)

Finally, the signal from the voxel is calculated by integrating the magneti-

zation density over the voxel as in Eq. 2, and is given by

Eð½z1; z2�; kÞ ¼ e
�k

2 Fðz2Þ � Fðz1Þ
2ðz2 � z1Þ

; (7)

where z1 and z2 are the dimensionless coordinates of the voxel’s boundaries

corresponding to z1 and z2, respectively, and

FðzÞ ¼ z 1
1ffiffiffiffi
p
p e

�ðz�ikÞ2
1

e
i4kz

i4k
1� erfðz 1 ikÞ½ �

� z � i k 1
1

4k

� �� 	
erfð�z 1 ikÞ: (8)

Two infinite parallel plates

Next, we consider the case of diffusion taking place between two infinite

impermeable parallel plates separated by a distance L as shown in Fig. 2 b. In

addition to the definitions in Eqs. 4 and 5, we introduce the dimensionless

length of the spacing to be

l ¼ L=u: (9)

The method of images is used to provide the small-time representation of the

propagator and makes it possible to achieve an accurate approximation by

retaining only a few terms of the infinite series (22):

Pðz0; z; uÞ ¼
1ffiffiffiffi
p
p

u
+
N

n¼�N

e
�ð2nl1z0�zÞ2

1 e
�ð2nl1z1z0Þ

2
h i

: (10)

FIGURE 1 A schematic of the PGSE sequence. The shaded boxes show

the RF pulses while the blank boxes depict the gradients. The diffusion

pulses have duration d, which is assumed to be small. The diffusion time is

given by D. The waiting time, i.e., the time between the application of the

second diffusion gradient pulse and the echo center, is denoted by tw.

FIGURE 2 Two geometries considered in the article. (a) The voxel is

situated at a distance z1 away from a single infinite plate whose normal is

along the z-direction, and the gradient vector makes an angle u with the

infinite plate. (b) A second plate is placed at the proximity of the voxel,

where the spacing between the two plates is L. In both cases, the height of the

voxel is (z2 – z1).
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Using Eq. 1, the magnetization density is obtained to be

Mðz; k; uÞ ¼ e
�k

2

2lu
+
N

n¼�N

e
i4nkl

erfðð2n 1 1Þl� z 1 ikÞf

�erfð2nl� z 1 ikÞ1 e
i4kz

erfðð2n 1 1Þl½
1 z 1 ikÞ � erfð2nl 1 z 1 ikÞ�g: (11)

The signal attenuation expected in a voxel located between z1 and z2 is

given by

Eð½z1; z2�; kÞ ¼
e
�k

2

2ðz2 � z1Þ
+
N

n¼�N

e
i4nkl

Anðz2Þ � Anðz1Þ½ �;

(12)

where

RESULTS

Simulations

Simulations of the PGSE experiment were performed on the

two geometries described above. We confirmed that when

the separation of the two parallel plates is taken to be large,

the results are the same as those from the one-sided plate, as

expected. Moreover, thanks to the form of the propagator

obtained via the method of images, it is sufficient to keep

only a few terms of the infinite series in Eqs. 11 and 12.

Although we observed that only three terms (n ¼ �1, 0, 1)

were sufficient to obtain very high accuracy, and the contri-

bution from all other terms were negligible, we retained the

terms with �5 # n # 5 in the simulations.

Fig. 3 shows the predicted magnetization density profiles

(divided by the initial spin density) as a function of the dis-

tance from the infinite plate located at z ¼ 0. In both simula-

tions, k was taken to be 1.5 and u was 40 mm. From the

simulation of the first geometry (single infinite plate), it is clear

that the effect of one plate extends to a dimensionless distance

of ;1.5. Therefore, in the parallel plate simulations, the di-

mensionless separation was chosen to be l¼ 2.5, which is less

than twice this value so that the effects of the two plates are not

isolated from each other. Note that, because of the asymmetry

of the problem, the local magnetization is in general complex-

valued. In the one-sided geometry, as we go from left to right,

the absolute value of the magnetization density goes slightly

below its eventual free diffusion value, which means the signal

at that location is attenuated more than the case in which no

restrictions were present. However, this edge-detraction effect

is small and occurs at a very small region in space.

To understand the anisotropy of the diffusion signal, in Fig.

4 we plot the diffusion-attenuated MR signal as a function of

the angle between the gradient direction and the infinite plates

(u) for various locations of the imaging voxel. The dimen-

sionless voxel size (z2 – z1) was taken to be 2.5 and 1.25 for the

one- and two-infinite-plate geometries, respectively. A sig-

nificant level of anisotropy is observed when the voxels are

situated sufficiently close to the restricting walls. Note that

when u is 0� and 180�, the signal takes its free diffusion value.

In the single-plate geometry, when z1 was taken to be 1.0, the

signal at 90� and 270� is lower than the free diffusion intensity.

This is a consequence of the above-mentioned edge detraction

effect, where phase cancellations due to the integration of the

complex-valued magnetization over the voxel introduce ad-

ditional loss of signal. However, note that this effect is small

and occurs when the voxel is away from the infinite plate.

In Fig. 5, we show the angular variation of the expected

signal attenuations for various levels of diffusion-weighting

(k-values) in semilogarithmic plots. The dimensionless voxel

sizes were taken to be 5 and 1 for the one- and two-parallel-

plate geometries, respectively. The voxels were assumed to be

AnðzÞ ¼
1ffiffiffiffi
p
p e�ð2nl�z 1 ikÞ2 � e�ðð2n11Þl�z 1 ikÞ2
h i

1 ð2nl� z 1 ikÞerfð2nl� z 1 ikÞ

� ðð2n 1 1Þl� z 1 ikÞerfðð2n 1 1Þl� z 1 ikÞ1 i

4k
e�i4ð2n11Þkl

erfðð2n 1 1Þl
n

1 z � ikÞ1 e�i8nkl
erfð�2nl� z 1 ikÞ1 ei4kz

erfð2nl 1 z 1 ikÞ � erfðð2n 1 1Þl 1 z 1 ikÞ½ �
o
: (13)

FIGURE 3 The magnetization density profiles as

a function of the distance from the infinite plate

located at z ¼ 0. The left panel illustrates the

magnetization density expected from a single

infinite plate (see Fig. 2 a). The right panel depicts

the same for two parallel plates (see Fig. 2 b)

separated from each other by a dimensionless

distance l ¼ 2.5. The acquisition parameters

were taken to be: k ¼ 1.5, u ¼ 40 mm, and tw ¼
d ¼ 0. In both cases, the magnetization density is

normalized via a division by the initial spin density

yielding a dimensionless quantity.
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adjacent to the infinite plates at z ¼ 0. We define a ¼ E(u ¼
90�)/E(u ¼ 0�) to be a simple measure of anisotropy. Detect-

able levels of anisotropy were observed in both geometries

even at low k-values. However, anisotropy rapidly increases

with increasing gradient strength.

To understand the scope of the edge-detraction effect, we

focus on the single infinite plate geometry and compute the

anisotropy as a function of the location of the voxel and the

voxel size for various values of k. Fig. 6 illustrates the anisot-

ropy values. When a is .1, the anisotropy is due to the edge-

enhancement effect; these regions are shown in grayscale where

the brighter regions correspond to larger values of anisotropy.

The paradoxical anisotropy (a , 1) due to the edge-detraction

effect is shown in color. When the voxel is situated reasonably

close to the boundary, i.e., when z1 is small, anisotropy is cer-

tainly due to edge enhancement. The paradoxical anisotropy is

most pronounced at higher values of the wave-number (k) be-

cause phase wraparound occurs at shorter distances. These re-

sults help us conclude that for lower diffusion gradient strengths

and when the voxel is located close to the restrictions, one can

assume that maximum signal will be obtained when the diffu-

sion gradients are perpendicular to the macroscopic surfaces.

The observation that the gradient orientation associated with

the highest value of the signal corresponds to the surface-

normal lends itself to a novel application of diffusion-tensor

imaging (DTI): we expect that the eigenvector corresponding

to the smallest eigenvalue of the diffusion tensor should be

parallel to the surface-normal.

Experiments

To test whether the predicted anisotropy due to macroscopic

boundaries is experimentally realizable, we performed a se-

ries of acquisitions on simple geometric constructs as well as

a rat brain. All images were acquired using a 7T vertical bore

magnet with an Avance imaging console (Bruker, Ettlingen,

Germany).

A cylindrical-shaped object with a rectangular void was

constructed in-house from Ultem 1000 material (Boedeker

Plastics, Shiner, TX), whose susceptibility is similar to that of

water. The smallest spacing between two parallel faces of the

rectangular void was 4 mm. The resolution of the image was

78 3 312.5 mm2 in plane, and the slice thickness was 1.5 mm.

Other acquisition parameters were bmax ¼ 1100 s/mm2, D ¼
150 ms, d¼ 3 ms, TE¼ 167.4 ms, TR¼ 3 s, and tw¼ 7.1 ms.

A total of 37 images with different gradient directions and

strengths were used. The direction-encoded color maps (23)

computed from the eigenvector of the tensor corresponding

to its smallest eigenvalue are shown on the first row of Fig. 7.

Clearly, the eigenvectors in the voxels near the edges are

coherently oriented perpendicular to the surfaces. In Fig. 8,

we plot the angular dependence of the MR signal intensity

observed in a representative voxel, which is depicted with a

yellow circle in the middle image of the top row in Fig. 7.

Also shown in Fig. 8 is the simulated signal intensity. It is not

possible to determine the exact position of the voxel with

respect to the surface. We have found empirically that rea-

sonable consistency with data is achieved when it is assumed

that 44% of the voxel contains water. It is clear that the ob-

served anisotropy is qualitatively consistent with the simu-

lations.

A hollow cylinder, with a 3.5-mm spacing, was con-

structed in-house also from Ultem 1000. The parameters of

the imaging protocol were almost the same with the follow-

ing differences: in-plane resolution¼ 117 3 117 mm2, TE¼
163 ms, TR¼ 2 s, tw¼ 5.8 ms, and a total of 54 images were

FIGURE 4 The signal values as a function of the

angle between the infinite plate and the gradient

direction (u) for a single infinite plate (left) and two

parallel plates (right). All parameters of the simu-

lations were kept the same with those in Fig. 3. The

length of the voxel along the z-direction (z2 – z1 value)

was taken to be 2.5 and 1.25 for the one-sided plate

and two-plate geometries, respectively.

FIGURE 5 The signal values as a function of the

angle between the infinite plate and the gradient

direction (u) for a single infinite plate (left) and two

parallel plates (right) for various levels of diffusion

weighting (k varied between 1 and 3). All param-

eters of the simulations were kept the same with

those in Fig. 3. The voxel was taken to start at z¼ 0

and its length along the z-direction (z2 – z1 value)

was taken to be 5 and 1 for the one- and two-plate

geometries, respectively.
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acquired. The direction-encoded color maps computed from

the third eigenvalue of the tensor accurately revealed the

normal vectors on concave as well as convex surfaces as

shown in the second row of Fig. 7.

Another hollow cylinder sample[Q1] (Fig. 9) was con-

structed by inserting a glass rod of diameter 4.10 mm into an

NMR tube of inner diameter 4.22 mm (Shigemi, Allison

Park, PA). The resolution of the images was 47 mm in plane

and the slice thickness was 4 mm. Other imaging parameters

were: bmax¼ 1300 s/mm2, D¼ 51 ms, d¼ 3 ms, TE¼ 64 ms,

TR¼ 1.88 s, tw¼ 5.8 ms, and the total number of images was

63. The estimated components of the diffusion tensor along

with the fractional anisotropy (FA) and mean diffusivity

(MD) images (24) are shown on the left. FA and MD values

were 0.44 6 0.11 and 1.41 6 0.12 mm2/ms across the water-

filled region. The eigenvector associated with the smallest

eigenvalue of the diffusion tensor and the corresponding

color map are shown on the right. The angular deviations of

FIGURE 6 The anisotropy (a¼ E([z1, z2], k, u¼ 90�)/Efree) map displayed as a function of the distance from the infinite plate (z1) and the voxel size (z2 – z1)

for different levels of diffusion-weighting (left to right; k between 1 and 2.5).

FIGURE 7 Direction-encoded color maps computed by

using the eigenvector of the tensor associated with the

smallest of its eigenvectors for the parallel plates (top row)

and the hollow cylinder geometries (bottom row). Note

that, in both geometries, the spacing between the restricting

walls is so large that diffusion taking place in the proximity

of one of the walls is not affected by the other wall.
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the eigenvectors from the expected orientations (estimated

from the location of the voxel with respect to the center of the

cylinder) were 1.8 6 1.6�.

The cortical region of a fixed rat brain was dissected and

scanned in a 15-mm NMR tube with 150 mm2 in-plane res-

olution and 0.75-mm slice thickness. A total of 37 images

were collected where the imaging parameters were the same

as those in the imaging of the first sample with the following

modifications: TE ¼ 161.1 ms, TR ¼ 3.8 s, and tw ¼ 5.3 ms.

The left column of Fig. 10 shows the non-DW image (the S0

map) and the FA map both obtained from a diffusion tensor

fit to the data. The orientation maps computed from the ei-

genvectors associated with the largest and smallest eigen-

values are also shown (middle and right columns). Note that

we are interested in the outer interface indicated by white

arrows on the third eigenvector color map. The other surfaces

were compromised due to the dissection process and conse-

quently failed to give meaningful results. However, the third

eigenvectors clearly indicate a distinct rim around the cortical

surface where the orientation of these eigenvectors is radial.

Note that the rat cortex is an ideal tissue to test the predicted

remote anisotropy effect because most fibers are arranged

radially (4,25) in this region. Therefore, the first eigenvectors

are expected to be radial inside the tissue near the boundaries

(the color map obtained from the first eigenvector confirms

this expectation), which precludes the third eigenvector being

oriented radially. Therefore, the existence of the radial rim in

the right image suggests that the pixels that form this rim are

primarily located outside the brain. We would like to note

that when there is partial voluming between the cerebral

cortex and the surrounding cerebrospinal fluid, the boundary-

induced anisotropy may complicate the interpretation of

radial anisotropy observed in various species during devel-

opment (25–27).

DISCUSSION

In this article, we have investigated the effects of macro-

scopic boundaries on the pulsed-field-gradient signal from

a theoretical as well as experimental standpoint. We have

considered two simple geometries that are expected to rep-

resent most cases of interest well. In the first geometry, water

molecules are reflected by an impermeable single infinite

plate, whereas in the second, the water molecules are trapped

between two infinite walls separated by a distance larger

than the voxel size. The propagators are obtained using the

method of images (28) that provided the exact solution for

the first geometry whereas for the second, the solution was

obtained in the form of an infinite series. Unlike in the case of

the eigenfunction expansion of the propagator (29), only a

few terms of this infinite series (Eq. 12) are sufficient to

obtain a very accurate approximation to the exact result.

However, as the spacing between the two infinite plates get

smaller, or for longer diffusion times, more terms in this

series will be necessary for accurate results. As the spacing

approaches microscopic length scales, the eigenfunction

expansion will be more efficient.

We showed that for most experimental parameters, the

DW signal intensity is greatest when the applied diffusion

gradients are perpendicular to the boundaries. However, in

some cases there may be a slight anisotropy in the opposite

sense—an effect we refer to as edge-detraction. This coun-

terintuitive and previously unrecognized effect is due to

phase cancellations within the voxel, which is also respon-

FIGURE 8 Data from a representative voxel of the parallel plates image (see

the yellow circle in Fig. 7) and the simulations performed with values consistent

with the experiment (k¼ 1.46). It was assumed that 44% of the voxel remains

on the side of the plate that contains water, i.e., z1 ¼ 0 and z2 ¼ 1.

FIGURE 9 The components of the diffusion tensor es-

timated from the second hollow cylinder sample along

with the fractional anisotropy (FA) and mean diffusivity

(MD) images (left panel). FA and MD values were 0.44 6

0.11 and 1.41 6 0.12 mm2/ms across the water-filled

region, respectively. At the center of the right panel is the

direction-encoded color map (23) generated by using the

third eigenvector of the diffusion tensor. Also shown are

these eigenvectors computed from the medial axis of the

hollow cylinder. Every other eigenvector on the medial

axis is displayed for clarity. The angular deviations of the

eigenvectors from the expected orientations were 1.8 6

1.6�.
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sible for the diffractionlike nonmonotonic dependence of the

signal on the diffusion gradient strength (30,31). When the

edge-detraction effect is avoided, the directions perpendicu-

lar to the boundaries can be mapped conveniently using the

eigenvector of the diffusion tensor associated with the

smallest of the eigenvalues. Note that the directional ambi-

guity of the eigenvectors can be overcome by choosing the

polarity of the eigenvector so that it will point into the domain

of high mean diffusivity.

We have employed the relatively simple DTI model to

estimate surface-normals, although our theoretical analysis

clearly predicts non-Gaussian diffusion. This is because the

information that we are after was relatively easy to extract.

The orientational dependence of the signal is what we are

seeking to model, and as discussed in more detail above, the

gradient direction that yields the highest signal intensity is

hypothesized to be parallel to the surface-normal. The DTI

model assumes a similar orientational dependence of the

signal, where the eigenvector associated with the smallest

eigenvalue yields the direction of highest signal intensity.

When one is after other characteristics of the nearby surfaces,

it may be necessary to fit the full functional form of the

predicted signal to the data. Also, models aimed at mapping

more than one fiber orientation, such as q-space imaging (32)

or the diffusion orientation transform (4), were not needed as,

in our application, it is unlikely to encounter corners that

would lead to more than one surface-normal at a single voxel.

For the same reason, anisotropy was not quantified using

relatively sophisticated measures (33). Note that even when

such a structure is encountered, the average orientation sug-

gested by DTI may be sufficiently descriptive.

Unlike in the more traditional applications of DTI, such as

in mapping fiber orientations, the estimated orientation is less

sensitive to noise when one is using the third eigenvector of

the diffusion tensor. When the signal/noise ratio is low, one

encounters the noise floor along orientations with high dif-

fusivity. Therefore, at low signal/noise ratio, even when the

signal from the majority of the gradient orientations may be

below the noise floor, one may still detect the orientations

associated with the signal increase. This is particularly useful

in our application, because the signal that we are interested

in originates from freely diffusing molecules, and hence is

rapidly decaying.

In this work, we made a number of simplifying assump-

tions about the restricting walls. Namely, we assumed in our

formalism that the interfaces are impermeable and flat. The

curvature of the boundaries can be ignored when the voxel

size is significantly smaller than the radius of curvature of the

nearby surface. This was the case in all experiments per-

formed. Permeability of the interfaces is expected to influence

the magnetization density, hence the anisotropy. However,

considering the findings in the literature (5,20), we expect to

have qualitatively similar results when the boundaries are

permeable, although the level of predicted anisotropy may

decrease.

Surface-normal estimation is also possible using a single

structural scan. In this case, one needs to detect the edges

in the image very accurately. Subsequently, by quantifying

the local characteristics of the boundaries, one can estimate

the surface-normal. Sophisticated computational techniques

have been proposed to estimate the differential characteristics

of surfaces from a single three-dimensional image (34) and

applied to extract the cortical surfaces of the brain (35–38)

and the ventricles of the heart (39). Comparing this approach

with ours, it is clear that ours is more advantageous in that it

uses the information from only one voxel, but has the dis-

advantage that the diffusion-weighted scans are typically of

lower resolution than structural MRI scans. Given that it is

possible to obtain reasonable surface-normal maps using a

relatively simple method like DTI, which requires only seven

DW images, it may be possible to obtain more accurate

surface-normal maps using the technique introduced. Also

note that our method is expected to perform better when the

contrast between free water and tissue is limited, because it

would be difficult to obtain accurate edge-maps when there is

not significant contrast.

The technique we have proposed may be applicable in

characterizing any boundary that serves as a barrier to the

displacement of MR-traceable molecules. Specifically, the

technique will be most useful in cases where a noninvasive

measurement is required, or when the restricting barriers are

otherwise nonobservable by MR. Examples for possible

applications, with water molecules as the traced molecule,

may include the characterization of sulci and gyri in the brain,

intraocular surfaces (including the inner surface of the retina,

and the lens), the bladder, etc. In all cases, this could be

relevant for the study of development as well as the study of

pathologies. Other nonclinical applications, using the dis-

placement of water molecules, may include the characteri-

zation of the surfaces in plant stems, as well as fruits (40).

Potential applications that involve nonhydrogen MRI may

include sodium MRI of the kidney (41), or hyperpolarized

noble gas imaging of the lungs (42). In both cases, the in-

tegrity of membranes and the substructures are critical for

FIGURE 10 On the left are the non-diffusion-weighted image (S0) and

the fractional anisotropy (FA) map computed from the diffusion tensors. The

center image shows the orientations of the principal eigenvectors where the

rightmost image depicts the orientations of the eigenvector corresponding

to the smallest of the three eigenvalues. This map clearly illustrates the

directions normal to the cortical surface of the rat brain.
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assessing the organ’s function. Diffusion tensor imaging can

aid in resolving structures that are otherwise invisible, e.g.,

when the concentrations and relaxation rates of the particles

in the interfaces are similar to those in the nearby fluid. Fi-

nally, for research purposes, this technique can be applied to

study cell membranes using the newly available ultra-high

field MRI scanners (e.g., 17T and higher) that allow micro-

scopic imaging with sufficient signal/noise ratios (43,44).

Other challenges that we are hoping to address in the near

future include segmenting the voxels that contain informa-

tion about the nearby boundaries, investigating the applica-

bility of multicompartmental models when there is partial

voluming between the tissue and otherwise freely diffusing

nuclei, and devising optimal acquisition schemes that will

improve the quality of the surface-normal mapping.

CONCLUSION

We have shown that the effect of macroscopic boundaries on

nearby diffusing nuclei may lead to diffusional anisotropy

due to the distortion of the magnetization density, which may

be in the form of an edge-enhancement as well as an edge-

detraction—a previously unrealized phenomenon. The an-

isotropy induced by the nearby walls can be observed even in

voxels that are free of any structure restricting the motion of

molecules. Further, this anisotropy is predicted to be within

observable limits. The existence of a detectable anisotropy in

the one-sided geometry of the infinite plate demonstrates the

feasibility of the approach in virtually all relevant, imper-

meable, sufficiently smooth, macroscopic boundaries. This

alternate source of diffusion anisotropy can be exploited to

infer information regarding the structure of nearby walls such

as the direction of their surface-normal. Because many

structures in the human body (most organs of the gastroin-

testinal tract, lungs, vessels, . . . etc.) possess macroscopic

boundaries, DW imaging may be useful in examining a host

of organs and diseases.

APPENDIX

The effect of tw on the magnetization density

In the formalism above, we have set the waiting time, tw, to 0. However, the

spins continue to mix after the application of the second gradient pulse.

Consequently, the magnetization density at the echo time depends on tw as

well. Note that when the voxel contains the entire pore volume, although the

magnetization density is changing, the total signal is constant because the

spins are still contributing to the result the same way regardless of their

location. The fact that we are collecting the signal from a section of the pore

volume necessitates the inclusion of tw in a complete analysis.

The normalized magnetization density for finite waiting times is given by

Mðz; q;D 1 twÞ ¼
Z

dz0rðz0Þ
Z

dz1e
i2pqðz1�z0Þ

3 Pðz0; z1;DÞPðz1; z; twÞ: (14)

Although desirable from a computational point-of-view, an analytical solu-

tion based on the method of images is quite difficult in this case. Therefore,

we resort to the form of the propagator obtained using the eigenfunction

expansion (29)

Pðz0; z; tÞ ¼
1

lu
1 1 +

N

k¼1

TkðtÞcos
kpz0

l

� �
cos

kpz

l

� �� 	
;

(15)

where

TkðtÞ ¼ 2e
�ðkpt=2luÞ2

; (16)

with z, k, and l as before and t may take the values of u¼ (4D0D)1/2 and w¼
(4D0tw)1/2.

Inserting Eq. 15 into Eq. 14 twice, and carrying out the integrations, the

normalized magnetization density is given after some algebra by

FIGURE 11 The absolute values of the magne-

tization density profiles for various values of tw.

Although both panels depict the results from two

parallel plates, the spacing on the left panel is

chosen to be so large (l ¼ 8) that for reasonably

short values of tw, the movements of the spins are

influenced by at most one of the infinite plates. All

parameters used in the right panel (except tw) are

the same as those used in generating the right panel

of Fig. 3.

Mðz; k; u 1 wÞ
r

¼ jCðkÞj2 1 +
N

k¼1

TkðuÞjUkðkÞj2 1 CðkÞ+
N

l¼1

TlðwÞUlðkÞ�cos
lpz

l

� �

1
1

2
+
N

k¼1

+
N

l¼1

TkðuÞTlðwÞUkðkÞ Uk�lðkÞ�1 Uk1lðkÞ�½ �cos
lpz

l

� �
; (17)
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where

CðkÞ ¼ sinðklÞ
kl

e
�ikl

; (18)

and

UkðkÞ ¼ i2kl
1� ð�1Þke

�i2kl

ðpkÞ2 � ð2klÞ2
: (19)

The total signal expected from a voxel can be evaluated using Eq. 2, which is

simple because the only spatial dependence in Eq. 17 is in the arguments of

the cosine terms. For the sake of brevity we do not include the result of this

operation.

Fig. 11 shows the absolute value of the magnetization density profiles

computed using Eq. 17 for various tw durations. Since we did not present the

solution for the one-sided geometry, on the left panel we show the results

when the separation of the two plates was chosen to be large. In this case, for

relatively short waiting times, the motions of the spins are not influenced by

both plates. Therefore, the results on one-half of the plot are expected to

apply to the single-infinite-plate geometry. The right panel depicts the

magnetization when the separation of the two plates was chosen to be

identical to that in Fig. 3. Therefore, for the smallest tw value, the magne-

tization density profile is almost identical to the absolute value curve in the

right panel of Fig. 3.

The simulations confirm that finite waiting times lead to a smoothing of

the magnetization density profiles due to additional mixing of the spins

during the tw interval. Note that for very long waiting times, the spins

completely lose their motional memories resulting in a homogeneous

magnetization distribution similar to the case of free diffusion. Despite the

significant changes in the magnetization profiles with changing waiting

times, which may result in a decrease in anisotropy, this decrease is expected

to be small because the voxel size is in general quite large compared to the

characteristic distance traveled by the particles during the tw interval.
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