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We consider a general double pulsed field gradient experiment with arbitrary experimental
parameters and calculate an exact expression for the NMR signal attenuation from restricted
geometries, which is valid at long wavelengths, i.e., when the product of the gyromagnetic ratio of
the spins, the pulsed gradients’ duration, and their magnitude is small compared to the reciprocal of
the pore size. It is possible to observe microscopic anisotropy within the pore space induced by the
boundaries of the pore, which can be used to differentiate restricted from free or
multicompartmental diffusion and to estimate a characteristic pore dimension in the former case.
Explicit solutions for diffusion taking place between parallel plates as well as in cylindrical and
spherical pores are provided. In coherently packed cylindrical pores, it is possible to measure
simultaneously the cylinders’ orientation and diameter using small gradient strengths. The presence
of orientational heterogeneity of cylinders is addressed, and a scheme for differentiating
microscopic from ensemble anisotropy is proposed. �DOI: 10.1063/1.2905765�

I. INTRODUCTION

Diffusion of spin bearing molecules in porous media ob-
servably affects the nuclear magnetic resonance �NMR� sig-
nal. Inferring microstructural features of the pore from the
diffusion NMR signal attenuation has proven to be of para-
mount value in a variety of applications from oil-well log-
ging and dynamics of polymers to the diagnosis and moni-
toring of many diseases in the human body. The most
commonly used NMR method with which to observe diffu-
sion in porous media employs the pulsed field gradient
�PFG� experiments,1 where a pair of pulsed magnetic field
gradients is applied to encode displacements between the
application of these two pulses.

Although the PFG experiments have been useful in char-
acterizing pore microstructure, many additional features, par-
ticularly those related to different length scales of porous
media, can be gleaned if different pulse sequences are em-
ployed. One such alternative is the multi-PFG experiment,
which involves the application of repeated pairs of diffusion
gradients as proposed in Ref. 2. Variants of this pulse se-
quence have been considered for and found useful in various
applications.3–10 The simplest version of such sequences em-
ploys only two pairs of gradients; a spin-echo version of this
double-PFG sequence is shown in Fig. 1�a�. Here, each
pulsed-gradient spin-echo �PGSE� block, comprising a pair
of diffusion gradients of duration �, sensitizes the signal to
motion that occurs during an interval �. The movements of
molecules during the two encoding intervals are correlated11

when the mixing time tm is finite. G1 and G2 denote the
diffusion gradients of the first and second encoding blocks,
respectively. Figure 1�b� shows another double-PGSE ex-

periment, which results from the simultaneous application of
the second and third gradients of the sequence in Fig. 1�a�.

The acquisition and analysis schemes for double-PFG
data depend on the structure to be examined. For example, in
Ref. 12, the authors introduce a two-dimensional technique,
where the strength of the first and second gradients is inde-
pendently varied. When the diffusion process can be charac-
terized locally by a diffusion tensor, then a two-dimensional
Laplace transform can be employed to generate maps of dif-
fusion coefficients depicting the correlations of motion dur-
ing the two encoding periods. This approach has been ap-
plied to plant tissue,13 as well as various phases of liquid
crystals.14–16

The double-PFG experiments have received increasing
attention recently due to the realization that such experi-
ments are sensitive to restricted diffusion even at diffusion
wavelengths that are long compared to the pore dimensions.
Note that by diffusion wavelength we mean the quantity �
= ���G�−1, where � denotes the gyromagnetic ratio of the
spins and G is the gradient magnitude. The long diffusion
wavelength regime ��2�a2, where a is a characteristic pore
size� is sometimes referred to as the small-q regime,
�2�qa�2�1, where q denotes the wave number, defined
through the relationship q=1 / �2���=��G / �2��.

The sensitivity of the double-PFG experiments to re-
stricted diffusion in this regime is a very desirable property,
which makes it possible to probe small pores using relatively
small diffusion gradient strengths. Recent findings17–19 sug-
gest that the dependence of the signal intensity on the angle
between the two gradients, G1 and G2, may make it possible
to determine the sizes of biological cells using moderate gra-
dient strengths. Although such an angular dependence was
predicted by Mitra,4 his treatment considered only special
limiting cases of the double-PFG experiment ��G1�= �G2�, �a�Electronic mail: evren@helix.nih.gov.
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→�, �=0, and tm=0 or tm→��, which are difficult to
achieve in practice. Moreover, when even one of these con-
ditions is not fully met, systematic errors in the estimations
of the microstructural features are unavoidable. In this ar-
ticle, we provide solutions for the NMR signal intensity for
arbitrary parameters of the double-PFG experiment, which is
valid when the long diffusion wavelength condition,
���Ga�2�1, is met.

In a recent publication, we investigated the diffraction-
like nonmonotonicity of the NMR signal in multi-PFG
experiments.9 Specifically, we showed that, when an even
number of diffusion gradient pulse pairs is used, the NMR
signal is expected to become negative at exactly half the
wave number necessary to observe the nonmonotonicity in
single-PFG experiments.20 Apart from the beneficial reduc-
tion of the necessary gradient strength, this zero-crossing
also makes it possible to determine an average pore size even
when the specimen under investigation contains pores with a
broad distribution of sizes. Despite these advantages, the ob-
servation of diffractionlike features from small pores can still
be difficult because of the strict requirement on the wave
number. The treatment presented here may be useful in such
cases.

II. FREE DIFFUSION

We shall start by considering free �Gaussian� diffusion.
The exact form of the signal attenuation obtained via arbi-
trary gradient waveforms is given by the expression21

Efree = exp�− �2D0�
0

T

dt��
0

t

G�t��dt��2	 , �1�

where D0 is the bulk diffusivity and G�t� is the effective
time-dependent gradient waveform, which starts at t=0 and
ends at t=T. Evaluating this expression for the effective
pulse sequence of Fig. 1�a�, we obtain

Ea
free = e−�2D0�2��−�/3��G1

2+G2
2�, �2�

where G1= �G1� and G2= �G2�. Similarly, for the experiment
of Fig. 1�b�, we get

Eb
free = e−�2D0�2���−�/3��G1

2+G2
2�−��/3�G1G2 cos 	�, �3�

where 	 is the angle between G1 and G2. The derivations of
the signal attenuation expressions above is similar to the

derivation of the well-known Stejskal-Tanner expression,
which can be found in Ref. 21. In fact, when either G1 or G2

is set to zero in the expressions for both experiments, the
signal attenuation is given by the Stejskal-Tanner relation as
expected.

III. RESTRICTED DIFFUSION IN ISOTROPIC PORES

We have obtained an expression, similar to Eq. �1�, valid
for restricted diffusion taking place in D-dimensional isotro-
pic pores with nonrelaxing walls. The derivation is based on
the realization that a matrix product approach,22 originally
designed to compute numerically the NMR signal attenua-
tions obtained using generalized gradient waveforms, along
with a discretization scheme for it,9 can be used as analytical
tools. The details of this derivation can be found in the Ap-
pendix. Note that the geometries considered here are infinite
parallel plates separated by a distance 2a, and cylinders and
spheres of radius a for the cases of D=1,2, and 3, respec-
tively. Then the signal attenuation, for small values of ��Ga,
when the gradients are applied perpendicular to the restrict-
ing walls of the geometry, is given by

Erest 
 1 − 2�2a2�
n=1

�

sDn�
0

T

dte
DntG�t� · FDn�t� , �4�

with the following definitions:

FDn�t� = �
t

T

G�t��e−
Dnt�dt�, �5�

sDn =
1

�Dn
2 ��Dn

2 − D + 1�
, �6�

where sDn satisfy the relationship

�
n=1

�

sDn =
1

2�2 + D�
, �7�

and finally


Dn =
�Dn

2 D0

a2 , �8�

where �1n= �n−1 /2��, and �2n and �3n are, respectively, the
roots of the derivatives of the first order Bessel and spherical

FIG. 1. �a� A general double-PGSE
pulse sequence is shown on the top
row. This pulse sequence features two
distinct PGSE blocks separated from
each other by the mixing time tm. The
pulse separation associated with each
of the PGSE encodings is �, where
each diffusion gradient is assumed to
have the same pulse length �. The re-
sulting effective gradient waveform is
shown on the bottom. �b� A similar ex-
periment with the two middle gradi-
ents superposed. The mixing time is
not defined for this pulse sequence.
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Bessel functions, i.e., they satisfy the expressions J1���2n�
=0 and j1���3n�=0. The subscripts D will be dropped hence-
forth for brevity.

Evaluating Eq. �4� for the effective gradient waveforms
of Fig. 1, we obtain

Ea
rest 
 1 − �A�G1

2 + G2
2� + BG1G2 cos 	� , �9�

and

Eb
rest 
 1 − �A�G1

2 + G2
2� + B�G1G2 cos 	� , �10�

with the definitions

A = 2�2a2�
n=1

�

sn

��2�


n
−

1


n
2 �2 − 2e−
n� + e−
n��−�� − 2e−
n�

+ e−
n��+��� , �11�

B = 2�2a2�
n=1

�
sn


n
2 �e−
n�tm−�� − 2e−
ntm + e−
n�tm+��

− 2e−
n��+tm−�� + 4e−
n��+tm� − 2e−
n��+tm+��

+ e−
n�2�+tm−�� − 2e−
n�2�+tm� + e−
n�2�+tm+��� , �12�

and

B� = 2�2a2�
n=1

�

sn

� �2�


n
−

1


n
2 �2 − 2e−
n� + 2e−
n��−�� − 4e−
n�

+ 2e−
n��+�� − e−
n�2�−��

+ 2e−
n2� − e−
n�2�+��� . �13�

The long wavelength behavior of the NMR signal at-
tenuation from the constant gradient spin-echo experiments
for the same geometries has already been considered by
Neuman.23 The expressions in Eqs. �17�, �18�, and �20� of
Neuman’s article can be reproduced from our results by the
substitutions �=� along with either G1=0 or G2=0. Signal
attenuation due to diffusion inside spherical geometries ob-
served via single-PFG experiments is provided in Ref. 24,
which can be shown to be consistent with our expression
through the substitutions D=3 and either G1=0 or G2=0. As
mentioned in the Introduction, Mitra studied the quadratic
term of the signal from double-PFG experiments when �
=0, �→�, and G1=G2.4 He demonstrated that, under these
conditions, and by further assuming that the mixing times are
long, the quadratic term has no angular dependence. Simi-
larly, for the case tm=0, the signal attenuation is proportional
to 1+2 cos2�	 /2�, or equivalently 2+cos 	. Both of these
findings are simply special cases of our results as well.

Comparing the signal attenuation expressions for free
diffusion with those for restricted diffusion suggests several
interesting distinctions. In the case of free diffusion, the sig-

nal attenuation is independent of the mixing time, which is
not the case when restrictions are present. Second, the free
diffusion signal decay for the pulse sequence of Fig. 1�b�
suggests that the signal intensity depends on the angle be-
tween the gradient vectors, whereas the first pulse sequence
leads to a signal decay, which is independent of the gradient
directions. However, the angular dependence of the pulse
sequence of Fig. 1�b�, in the case of free diffusion, is merely
an effect of the finite pulse duration, and as such it is not a
fundamental feature of the double-PFG experiment in the
case of free diffusion. This peculiar behavior is essentially
due to the way “cross terms” play out when the two pulses
overlap. Although it can be neglected when the ��� condi-
tion is met, it is significant when � is close to �. For ex-
ample, when �=�, and taking �G1�= �G2�, the logarithm of
the signal attenuation is proportional to 4−cos 	. Note that
the restricted diffusion signal decay has a similar angular
dependence �though in the opposite sense� in both pulse se-
quences. Consequently, we will now consider only the pulse
sequence illustrated in Fig. 1�a�. In this case, an angular de-
pendence of the signal intensity becomes a characteristic fea-
ture of restricted diffusion and in turn makes it possible to
distinguish restricted diffusion from Gaussian diffusion by
varying only the angle between the two gradient vectors.

We note that, as pointed out in Ref. 4 the same pulse
sequence would lead to 	-independent signal decays when
the diffusion process is multi-Gaussian, which would occur
when there are two distinct Gaussian compartments. Both
restricted diffusion and multi-Gaussian processes may lead
to similar echo attenuations when single-PFG experiments
are performed.

Figure 2 shows the dependence of the signal from
spherical pores on the angle between G1 and G2. As can be
seen in Fig. 2�a�, there is significant angular variation of the
signal at short mixing times. This apparent anisotropy is a
manifestation of the influence of the pore boundaries on the
diffusing molecules, which becomes observable at short mix-
ing times, i.e., when there is significant correlation in the
movements of spins during the separate encoding periods.
Panel �b� of the same figure illustrates the signal intensity
with varying � values. It is clear that the angular dependence
tends to disappear as � gets shorter. However, for small
pores, i.e., when a is small, the long � requirement is easy to
fulfill. Similar behavior is observed when the diffusion gra-
dient pulse width ��� gets longer as demonstrated in Fig.
2�c�. Note that since we are primarily interested in the long
wavelength behavior, i.e., the case of small ��Ga, applying
relatively short pulses is likely to be feasible. Finally, in the
last panel of Fig. 2, we illustrate the angular variation in the
NMR signal with different values for the gradient strength.
From a theoretical point of view, smaller gradients are pre-
ferred to fulfill the ���Ga�2�1 condition, violation of which
could make the higher order terms significant, potentially
leading to a bias in the pore size estimates. However, Fig.
2�d� suggests that larger gradients will lead to sharper signal
profiles. This is particularly desirable for accurate resolution
of the angular variation when the signal-to-noise ratio �SNR�
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is limited. Therefore, an optimal value for the gradient
strength—which will depend on the SNR as well as the pore
size—should exist.

In Fig. 3�a� we investigate the effects of variations in
pore size within the specimen by averaging the signal attenu-
ations from 10000 spheres whose radii are distributed ac-
cording to a Rician distribution whose resulting mean and
standard deviation values are denoted by a0 and a, respec-
tively. Here, a Rician distribution is used to ensure that the
radii will be positive even for relatively large values of a.
For each level of polydispersity, characterized by the a

value, we estimated an apparent pore size by fitting the sig-
nal values to the theoretical expression. The percentage er-
rors were 0.00, 0.72, 1.6, and 2.5 for the cases of a=0,
a=0.2a, a=0.3a, and a=0.5a, respectively. These find-
ings suggest that the proposed method is robust to the het-
erogeneity of the specimen, making it possible to estimate an
average pore size meaningfully by using double-PFG
experiments.

To understand the robustness of the signal on polydisper-
sity, in Fig. 3�b� we plot the signal for three values of 	 as a
function of the pore size. Clearly, around the mean value of
a0, the signal curves are linear although some nonlinearity is
visible when the gradients are in the opposite direction.
Therefore, a pore size distribution, symmetric around the
mean, with reasonably small standard deviations can be ex-
pected to yield accurate estimates of the average pore size as
the effects of larger pores would be canceled by those due to
small pores. However, most distributions of interest, like the

Rician distributions we employed, are nonsymmetric. There-
fore, the exact nature of the deviations in the pore size esti-
mates from the mean pore size depends on the particular
distribution as well as the dependence of the signal on pore
size.

IV. DIFFUSION IN ANISOTROPIC PORES

Although we have provided results for isotropic pores,
anisotropic environments can also be modeled using the
same framework. For simplicity, we shall start by consider-
ing a specimen of coherently packed, infinitely long cylin-
ders oriented along the direction u. Then the gradient vectors
G1 and G2 can be decomposed into components parallel and
perpendicular to u. This enables the evaluation of the signal
intensity as a product of the signal attenuations from free
diffusion and restricted diffusion with D=2

Ea
cyl�u� = Ea

free�g1,g2� � Ea
rest�G1 − g1u,G2 − g2u� , �14�

where gi=Gi ·u. The echo attenuation at long wavelengths is
given by

Ea
cyl�u� 
 e−�2D0�2��−�/3��g1

2+g2
2�

� �C + Ag1
2 + Ag2

2 + Bg1g2� , �15�

where

C = 1 − A�G1
2 + G2

2� − BG1G2 cos 	 . �16�

FIG. 2. Dependence of the NMR signal intensity from spherical pores on the angle between the gradients used in the two encoding blocks of a double-PFG
experiment. The parameters used in the simulations were �a� ���G1a�2= ���G2a�2=0.1, �=0.001a2 /D0, �=a2 /D0; �b� ���G1a�2= ���G2a�2=0.1, �
=0.001a2 /D0, tm=0.002a2 /D0; �c� ���G1a�2= ���G2a�2=0.1, �=a2 /D0, tm=0.002a2 /D0; and �d� �=0.001a2 /D0, �=a2 /D0, tm=0.002a2 /D0.
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In Fig. 4�b�, we show the simulated signal attenuation
when one of the gradients is applied along the direction per-
pendicular to the cylinder’s surface as a function of the ori-
entation of the second gradient. The geometry and gradient
orientations are illustrated in Fig. 4�a�. The � dependence of
each curve, when �=90°, is indicative of the ensemble an-
isotropy due to the coherence in the cylinders’ orientations.
The fact that different curves corresponding to different azi-
muthal angles ��� do not coincide at �=90° is a consequence
of the microscopic anisotropy induced by restricted diffu-
sion. Therefore, using double-PFG experiments, it is possible
to probe ensemble �i.e., global� and microscopic anisotropy
simultaneously. Note that while the orientation of the cylin-
ders can be estimated using simple models like a diffusion
tensor description of the quadratic term of the signal attenu-
ation in a single-PFG experiment,25 such a model would not
account for restricted diffusion, making it impossible to es-
timate the diameters of the cylinders at long wavelengths.

A. General treatment of ensemble anisotropy

We shall now consider the case of variability in the cyl-
inders’ orientations. A general orientation distribution func-
tion f�u� can be defined in terms of a Laplace series, i.e.,

f�u� = �
l=0,2,4,. . .

�

�
m=−l

l

f lmYlm�u� , �17�

where Ylm�u� are spherical harmonics. The resulting NMR
signal attenuation is given by

Ea
cyl�f�u�� = �

l=0,2,4,. . .

�

�
m=−l

l

f lm

� �CIlm
0,0 + AIlm

2,0 + AIlm
0,2 + BIlm

1,1� , �18�

where Ilm
p,q is given by the following integral over the sphere:

Ilm
p,q = �

S

duYlm�u�g1
pg2

qe−�2D0�2��−�/3��g1
2+g2

2�. �19�

Although the analytic evaluation of this integral is possible,
it is quite tedious and the result involves many sums and
Wigner matrices. Consequently, in our implementation, we
adopted a numerical scheme and employed an iterated
Gaussian quadrature algorithm with 96 transformation
points.

Figure 4�c� shows the NMR signal attenuation when the
cylinders have an angular dispersion, where the associated
orientation distribution function is characterized by a second
order Cartesian tensor whose largest eigenvalue is ten times
its other two eigenvalues. The corresponding f lm coefficients
were computed using the relationships provided in Ref. 26.
The principal eigenvector, i.e., the average orientation of the
cylinders, was oriented along the z axis. Note that the simu-
lations of Fig. 4�b� are just a special case of ensemble aniso-
tropy when the orientation distribution function is a delta
function. A comparison of panels �b� and �c� of Fig. 4 sug-
gests that the angular dispersion of the cylinders leads to a

substantial suppression of ensemble anisotropy as demon-
strated by the flattening of the � dependence. The � depen-
dence, however, is affected less significantly.

In Fig. 4�d�, we show our simulation results from a bi-
modal orientation distribution function. This distribution was
generated from an eight-order spherical tensor whose com-
ponents, determined using the techniques in Ref. 27, will not
be included for brevity. As the inset in Fig. 4�d� shows, two
bundles of cylinders were used, whose average orientations
are along the y and z axes. Note that the curves are qualita-
tively different from those of panels �b� and �c�, suggesting
the possibility of the resolution of fiber crossings using
double-PFG experiments at long diffusion wavelengths.

Notably, when � is equal to 90°, i.e., when G2 spans the
plane of the distinct mean fiber orientations, the � depen-
dence of the signal almost disappears. To understand this
insensitivity on � when �=90°, we consider the case of
two coherent and equally populated bundles, which are ori-
ented along the y and z axes. Further assuming that
�2D0�2��−� /3�G2

2�1, a straightforward application of Eq.
�15� yields the expression

FIG. 3. In all simulations ���G1a�2= ���G2a�2=0.1, tm=0.002a2 /D0, �
=a2 /D0, and �=0.001a2 /D0. �a� Dependence of the NMR signal intensity
from spherical pores on the angle between the gradients used in the two
encoding blocks of a double-PFG experiment. The specimen was assumed
to contain 10 000 spheres whose radii were distributed with a Rician distri-
bution of mean value a0 and standard deviation a. �b� The dependence of
the signal intensity from a single sphere on the radius of the sphere.
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E 
 1 − AG1
2 − �A + �2D0�2�� − �/3��

G2
2

2
�20�

for the signal attenuation, which is independent of �. The
very slight variation of the signal that we observed in Fig.
4�d� at �=90° is due to the orientational incoherence within
the individual bundles. Note that the above expression is
valid only when the two fiber bundles are perpendicular to
each other.

B. Isotropically distributed pores: A special case and
a “component” of general distributions

Finally, we will discuss the case when all the fibers are
isotropically distributed, which can be seen as a special case
of the treatment of the previous subsection. However, be-
cause an irreducible representation of the orientation distri-
bution function is employed, it can also be envisioned as the
“isotropic component” of a possibly anisotropic orientation
distribution. Therefore, the anisotropy predicted here can be
attributed only to microscopic anisotropy even in the pres-
ence of ensemble anisotropy.

Note that regardless of the orientation distribution func-
tion, the first component of the spherical tensor representing
it is given by f00= �4��−1/2, which is a consequence of the
normalization condition. In fact, this is the only nonzero co-
efficient when isotropic distributions are concerned. There-
fore, the NMR signal attenuation is given by

Ea
iso�f�u�� =

1
�4�

�CI00
0,0 + AI00

2,0 + AI00
0,2 + BI00

1,1� . �21�

Since the integrand in the definition of I00
p,q is given in terms

of dot products, it is rotationally invariant. Therefore, with-
out loss of generality, the gradient vectors can be taken to be
G1

T=G1�1,0 ,0� and G2
T=G2�cos 	 , sin 	 ,0�. This makes the

evaluation of I00
p,q simple, which is given by

I00
p,q = �4��

k=0

�

�
r=0

k

�
�− �2D0�2�� − �/3��k

�k − r�!r!

�2r + q�!
�2k + p + q + 1�!!

�G1
2k−2r+pG2

2r+q

� �
j=0,2,4. . .

2r+q
�j − 1�!!�2k + p + q − j − 1�!!

j!�2r + q − j�!

��cos2r+q−j 	��sinj 	� . �22�

Figure 5�a� shows the NMR signal attenuation from iso-
tropically distributed cylinders. As pointed out above, only
one mechanism of anisotropy influences the quadratic term,
i.e., anisotropy due to microscopic restrictions. The angular
variation of the signal is less than that predicted for coher-
ently oriented cylinders. It is also meaningful to compare

FIG. 4. In all simulations the following parameters were used: �=0.001a2 /D0, �=a2 /D0, tm=0.002a2 /D0, and ���G1a�2= ���G2a�2=0.1. �a� The gradient
orientations and the orientation of the cylinder, which is taken to be along the z axis. The direction of the first gradient is fixed along the x axis. The orientation
of G2 is specified by the polar angle � and the azimuthal angle �. Note that with these definitions, the cosine of the angle between the two gradients is
cos 	=sin � cos �. The NMR signal attenuation from �b� cylinders coherently oriented along the z axis, �c� cylinders with some angular dispersion where the
mean orientation is along the z axis, and �d� cylinders with two distinct populations where the average orientation of one group is along the y axis, that of the
other group is along the z axis. The surfaces displayed as insets in panels �c� and �d� illustrate the orientation distribution functions of the cylinders simulated.
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these plots with Fig. 2�a�, which shows the signal intensity
with identical experimental parameters from spherical
pores—another specimen that possesses only microscopic
anisotropy. Qualitatively, the behavior is identical. However,
because the molecules within isotropically distributed cylin-
ders are not fully restricted, they suffer more signal loss.

1. Angular signal profile at very long diffusion
times

Unlike the case of spherical pores, the loss of signal
from isotropically distributed cylinders can be enhanced sig-
nificantly by increasing the diffusion time. As depicted in
Fig. 5�b�, at very long diffusion times, the signal when the
two gradients are approximately parallel decreases less and
eventually approaches the case of antiparallel gradients—
consistent with the case of infinitesimally small a as reported
in Ref. 4.

In this section, we will elaborate on this qualitatively
different angular dependence predicted for very large values
of �. For this purpose, we consider a special yet instructive
case of the experiment, where the following conditions are
met: tm=�→0, G=G1=G2, T0=D0� /a2�1, �=��Ga�1,
and define the dimensionless constant �=�2�2G2D0�=�2T0.

Note that � can assume any value as it is the product of a
small quantity ��2� and a large quantity �T0�. In fact, our goal
in this section is to describe the behavior of the angular sig-
nal profile when one moves from the ��1 to ��1 regime.

When the above conditions are met, the attenuations due
to restricted and free diffusion are given by the relations

Ea
rest�u� = 1 −

�2�2a2

4
��G1��2 + �G2��2 + G1� · G2�� ,

�23a�

Ea
free�u� = e−�2�2D0��g1

2+g2
2�, �23b�

where Gi�=Gi−giu is the component of the ith gradient
�i=1,2� perpendicular to the cylinder’s axis. Note that in the
above expressions we are considering the signal from a
single tube whose axis is specified by the unit vector u
whose polar and azimuthal coordinates will be denoted by �
and �, respectively.

We first consider the cases 	=0 and 	=�. Because the
dot products of G1 with G2 are given by +G2 and -G2, we
will refer to these two cases by the superscripts “�” and
“�,” respectively. Since the cylinders are isotropically dis-
tributed, without loss of generality, the first diffusion gradi-
ent can be taken to be along the z direction, i.e., G1=Gz.
Then G2

�= �Gz. It is straightforward to show that g1

= �g2
�=G cos �, G1�= �G2�

� , and �G1��= �G2�
� �=G sin �.

These lead to a simple expression for the signal attenuation
from a single cylinder given by

Ea
���,�� = e−2� cos2 ��1 −

���2

4
sin2 �	 , �24�

where �+=3 and �−=1. Averaging over all cylinder orienta-
tions yields

Ea
� = �

0

1

e−2��2�1 −
���2

4
�1 − �2�d� . �25�

Next, we consider the case of 	=90°, which will be
denoted by the superscript “�.” Similar to the cases in the
preceding paragraph, without loss of generality, we can take
the two gradient vectors to be G1=Gx and G2=Gy. It can be
shown that g1=G sin � cos �, g2=G sin � sin �, �G1��2
=G2�1−sin2 � cos2 ��, �G2��2=G2�1−sin2 � sin2 ��, and
G1� ·G2�=−G2sin2 � sin � cos �. Using Eqs. �23a� and
�23b�, the signal attenuation from a single tube is given by

Ea
���,�� = e−� sin2 �

��1 −
�2

4
�2 − sin2 � �1 + sin � cos ��� .

�26�

This equation can be integrated over the sphere to yield

Ea
� = �

0

1

e−��1−�2��1 −
�2

4
�1 + �2�d� . �27�

Although Eqs. �25� and �27� can be evaluated analyti-
cally, the results are not included as we can infer the desired
information directly from these equations. Note that in these

FIG. 5. NMR signal attenuation from cylinders isotropically distributed in
space, obtained using a double-PFG experiment. In both simulations, the
following parameters were used: ���G1a�2= ���G2a�2=0.1 and �
=0.001a2 /D0. �a� NMR signal attenuation with varying values of mixing
time, where �=a2 /D0. �b� NMR signal attenuation with varying values of
�, where tm=0.002a2 /D0.
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equations, the exponential terms are due to free diffusion
along the tubes’ orientations while the factors in square
brackets are due to restricted diffusion. Because of the �2

�1 condition, the effect of restricted diffusion on the differ-
ences between the resulting signal attenuations correspond-
ing to the three different 	 values considered is limited.
When the diffusion time is not very long so that � is small,
the effect of free diffusion can be neglected. However, as � is
increased, the differences due to free diffusion attenuation
become more and more significant, eventually making the
differences due to terms in square brackets negligible. Since
the free diffusion expressions are identical in the 	=0 and
	=180° cases, as the value of � is increased, we start seeing
similar values for Ea

+ and Ea
−. However, note that the free

diffusion factor in Eq. �27� is different from the one in Eq.
�25�, giving rise to the more rapid collapse of the signal as �
is increased at 	=90°.

These results are not surprising considering that when
the diffusion time is very long so that � is large, those cyl-
inders whose orientation vectors have a significant compo-
nent along either of the two diffusion gradients do not con-
tribute to the aggregate signal significantly. Since more of the
tubes will be in this situation when 	=90°, the correspond-
ing signal is lower than the signal at 	=0° or 	=180°.

V. DISCUSSION

The form of the NMR signal attenuation given in Eq. �4�
can be used to understand the effects of restricted diffusion
in any NMR imaging and spectroscopy pulse sequence that
employs gradients that are small enough—a requirement
which is common to standard sequences but also desirable
when one is interested in characterizing geometric features of
small pores or in biological and clinical applications. In this
work, we focused on the double-PFG experiments only.

We would like to stress that, using the solutions pre-
sented above, an apparent or average pore dimension can be
estimated even when the pores are not perfectly spherical or
cylindrical. If the diffusion time is long enough for the mol-
ecules to travel across the longest distance present in the pore
and if the pores are randomly oriented, it is appropriate to
use the solutions for spherical pores. Otherwise, the results
obtained for distribution of cylinders can be expected to
yield more meaningful results.

Many different experimental designs are possible for the
analysis of double-PFG acquisitions and estimation of a pore
size from them. In all our figures, we plotted the NMR signal
attenuation versus angle curves. Estimation of a pore size is
possible by directly fitting the relevant expression to such a
single angular profile. However, when the SNR is limited,
one may have to apply gradients that do not adequately sat-
isfy the ���Ga�2�1 condition to be able to resolve the an-
gular variation of the signal. The same problem may occur
when the size of the pores turns out to be larger than pre-
dicted before the acquisition. To alleviate any bias that may
be introduced by the higher order terms in this case, data
with multiple values of gradient strengths can be acquired.
Then the slope of the �ln E� versus G2 curve at the origin can
be estimated �e.g., by fitting a fourth order polynomial,

x0G2+x1G3+x2G4, to the data� along each angle. The result-
ing profile of slopes can be used in the estimation of a
compartment size.

The small ��Ga regime considered here is the same one
used in Mitra’s work.4 The ability to probe restricted diffu-
sion in this regime is desirable in characterizing features of
small pores. However, note that among other conditions, Mi-
tra’s results assume infinitesimally short gradient pulses. This
assumption alone demands strong gradient strengths when
very small pores are to be examined, because the signal
should attenuate by an observable amount, i.e., ��Ga cannot
be extremely small due to a finite SNR. However, our for-
mulations do not assume such extreme values for any gradi-
ent timings. This ability furthers the feasibility of our ap-
proach by incorporating the duration of the gradient pulses,
reducing the requirement for large gradient magnitudes.

Note that Figs. 2�a�–2�c�, 5�a�, and 5�b� all indicate that
deviations from the idealized values for the timing param-
eters assumed in Mitra’s work lead to significant deviations
from his formulas. Therefore, our formulations are expected
to improve the accuracy of the estimations. Furthermore, be-
cause our approach provides the possibility of performing
the experiments with arbitrary timing parameters, it may be
possible to design experiments with much greater flexibility
and increase the dimensionality of the parameter space that
can be spanned in diffusion NMR acquisitions while allevi-
ating the stringent hardware requirements inherent in the
PFG experiment.

Anisotropy induced by restricting boundaries28 was ex-
ploited recently to estimate the orientations perpendicular to
the walls of macroscopic pores in single-PFG imaging stud-
ies where the voxels are smaller than the pore size.29 Aniso-
tropy predicted in the double-PFG experiments can be envi-
sioned to arise from the same phenomenon at a much smaller
length scale.

Note that different length scales can be probed by vary-
ing the diffusion time in single-PFG experiments, as was
done to quantify scaling laws in disordered media.30 Clearly,
the double-PFG method provides an alternative means to
probe multiple length scales, and is capable of elucidating
any local order that may be present. In fact, the coexistence
of ensemble anisotropy along with microscopic anisotropy,
as treated in this article, is an example of how double-PFG
can be used to observe phenomena manifested in different
length scales.

It is clear from our simulations that by observing the
dependence of the NMR signal intensity on the angle be-
tween the gradients used in the two separate blocks of the
double-PFG experiment, restricted diffusion can be observed
and distinguished from free or multicompartmental Gaussian
diffusion. Note that the origins of the upward curvature of
the single-PFG NMR signal decay versus q2 �i.e., E�q2��
curves on semilogarithmic plots observed from tissue
samples is a widely debated topic among the biological
NMR community. The ability of the double-PFG experi-
ments to discriminate multicompartmental from restricted
diffusion is expected to further our understanding of the de-
terminants of such behavior.
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VI. CONCLUSION

We have presented solutions for a general problem al-
lowing many variations in experimental parameters as well
as in the specimen under investigation. Our formalism
started with a general expression �derived in the Appendix�
that enables the evaluation of the effect of restricted diffusion
at long wavelengths. We focused our attention on double-
PFG experiments although similar analyses can be per-
formed on a myriad of pulse sequences. We presented ex-
plicit solutions for diffusion taking place between infinite
parallel plates as well as in cylindrical and spherical pores.
The dependence of the signal intensity on the angle between
the two gradients of the double-PFG experiments can be in-
terpreted as a signature of local anisotropy induced by mi-
croscopic restrictions. Because the signal is also sensitive to
ensemble anisotropy, which may be due to a coherence in the
orientations of anisotropic pores, it was necessary to extract a
term that included only microscopic anisotropy. This depen-
dence was shown to be identical for anisotropic pores with
perfectly isotropic orientation distributions. Our results can
be used to design experiments with many degrees of param-
eters and to obtain accurate information on pore microstruc-
ture from double-PFG acquisitions, including compartment
size and fiber orientation distributions—all from the long
wavelength regime �i.e., the small-q behavior� of the NMR
signal attenuation.
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APPENDIX: THE DERIVATION OF THE NMR SIGNAL
ATTENUATION FROM RESTRICTED GEOMETRIES
AT LONG DIFFUSION WAVELENGTHS

The diffusion propagator P�r ,r� , t� denotes the displace-
ment probability from the location r to r� during a time
interval t and is the solution to the diffusion equation

D0��2P�r,r�,t� =
�P

�t
, �A1�

subject to the initial condition P�r ,r� ,0�=��r−r�� and the
boundary condition n̂ ·�P��r ,r� , t��r��=0 in pores with non-
relaxing impermeable walls, where n̂ is the direction perpen-
dicular to the interface � at location r. A convenient repre-
sentation of the diffusion propagator is given by

P�r,r�,t� = �
n=0

�

e−�ntun�r�u
n
*�r�� , �A2�

where un�r� is an eigenfunction of the Laplacian operator
with the eigenvalue −�n /D0. The long diffusion-time asymp-
totics of the propagator requires one of the eigenvalues to be
0. If this eigenvalue is denoted with index 0, then u0�r�
=V−1/2, where V is the pore volume.

In this Appendix, we consider a general gradient wave-
form as shown in Fig. 6. As proposed in Ref. 31, the gradient
profile can be approximated by a train of impulses. We adopt
the discretization suggested in Ref. 9, where the time axis is
divided into M intervals of duration � and the ith impulse
�1� i�M� is assumed to be applied at time ti—the middle
point of its respective interval. Then the magnitude of the
impulse in the ith interval is taken to be

qi =
�

2�
�

ti−�/2

ti+�/2

G�t�dt , �A3�

where � is the gyromagnetic ratio of the spins, and G�t� is
the time-dependent effective gradient waveform.

It was shown that using the eigenfunction expansion of
the propagator as in Eq. �A2�, the NMR signal attenuation
can be expressed as a matrix product22

Ẽ = ST�q1�R���A�q2�R���A�q3�R��� ¯

�R���A�qM−1�R���S*�− qM� . �A4�

Note that Ẽ is an approximation to the true NMR signal
attenuation, denoted by E, where any discrepancy between
the two is due to the “time-slicing” employed in the con-
struction of the matrix product scheme. Our approach to de-
riving a general expression for the signal attenuation in-

volves evaluating Ẽ, and subsequently, taking the limit of the
resulting expression as �→0, M→�, while M�=T, similar
to what is done in path integral �functional integration�
methods.

In Eq. �A4�, S is an M-dimensional vector whose kth
component is given by the following integral over the pore
volume V:

Sk�q� = V−1/2�
V

uk�r�ei2�q·rdr . �A5�

Throughout this Appendix, the left subscript c in an expres-
sion cX�q� will denote the term proportional to �2�qa�c in a
Taylor series expansion of the quantity X around q=0, where
a is a characteristic length in the pore space. With this con-
vention, it is straightforward to show that the vector S satis-
fies the relationships

cSk�− q� = �− 1�c
cSk�q� , �A6a�

FIG. 6. The continuous line depicts a general NMR
gradient waveform. An approximation is achieved by
dividing the time axis into M intervals each of which
contains an impulse. Note that the above waveform de-
picts the effective gradients, i.e., it is formed by taking
into account the possible application of radiofrequency
pulses.
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0Sk�q� = �0k. �A6b�

Similarly, A is an M �M matrix with components

Akm�q� = �
V

u
k
*�r�um�r�ei2�q·rdr . �A7�

Clearly, A satisfies the useful relationships

A�− q� = A†�q� , �A8a�

A0m�q� = Sm�q� , �A8b�

Ak0�q� = S
k
*�− q� , �A8c�

0Akm�q� = �km. �A8d�

Finally, R is an M �M diagonal matrix with components

Rkm�t� = e−�kt�km, �A9�

where the first element of R is unity, i.e., R00=1. Note that
both A and R satisfy the semigroup property, i.e.,

A�q1�A�q2� = A�q1 + q2� , �A10a�

R�t1�R�t2� = R�t1 + t2� . �A10b�

We are primarily interested in evaluating the signal at-
tenuation value given in Eq. �A4� up to the terms of order
�4�2M2�qi��q j�a2�. For this purpose, the following relation-
ships

0A�qa�R�t�cS*�qb� = R�t�cS*�qb� , �A11a�

cS
T�qa�R�t�0A�qb� = cS

T�qa�R�t� , �A11b�

cA�qa�R�t�0S*�qb� = cS*�− qa� , �A11c�

0ST�qa�R�t�cA�qb� = cS
T�qb� �A11d�

are helpful in simplifying the form of the matrix product in
Eq. �A4�. The zeroth order term of E is given by

0E = 0ST�q1�R��M − 1���0S*�− qM� = 1. �A12�

The expression

0ST�qa�R�t�1S*�qb� = − i
2�

V
qb · rcm �A13�

is useful in evaluating the first order term given by

1Ẽ = i
2�

V
rcm · �

j=1

M

q j . �A14�

Inserting Eq. �A3� into the above expression yields

1E = i
�

V
rcm · �

0

T

G�t�dt , �A15�

where rcm is the center-of-mass of the pore. When the inte-
gral above vanishes at the echo time, no contribution to the
NMR signal is expected from the first order term.

For the second order term of the echo attenuation, one
needs the quantities

e20 = 2ST�qa�R�t�0S*�qb� = −
2�2

V
�

V

�qa · r�2dr , �A16�

and

e11 = 1ST�qa�R�t�1S*�qb�

=
4�2

V
�

V

drqa · r�
V

dr�qb · r�P�r,r�,t� . �A17�

The exact forms of e20 and e11 depend on the particular shape
of the pore under consideration. Many pores of interest can
be taken to be approximately isotropic. In fact, the pores
commonly treated in the literature,9,32 i.e., parallel plates and
cylindrical and spherical pores, are simply isotropic pores in
one, two, and three dimensions, respectively. If we take the
radii of the cylindrical and spherical pores to be a and the
separation between the two infinite plates to be 2a, then the
above integrals can be given by the unified expressions

e20 = −
2�2qa

2a2

�2 + D�
, �A18�

and

e11 = 8�2a2qa · qb�
n=1

�

sDne−
Dn�tb−ta�. �A19�

Here, D is the dimension of the isotropic pore, and


Dn =
�Dn

2 D0

a2 , �A20�

where �1n= �n−1 /2��, and �2n and �3n satisfy the expres-
sions J1���2n�=0 and j1���3n�=0, respectively. Here, J1�x� is
the first order Bessel function and j1�x� is the first order
spherical Bessel function.

The quantity sDn is given by

sDn =
1

�Dn
2 ��Dn

2 − D + 1�
. �A21�

Note that sDn satisfy the relationship

�
n=1

�

sDn =
1

2�2 + D�
, �A22�

which can be established using Laplace transform tech-
niques, or more simply by writing down the matrix product
representation of the NMR signal �up to the quadratic term�
for a single-PFG experiment in the narrow pulse regime and
setting its �→0 limit to 1.

These results can be combined to yield the following
convenient form for the quadratic term of the NMR signal
attenuation for a generalized gradient waveform:

2Ẽ = − 4�2a2�
j=1

M

�
k=1

M

q j · qk�
n=1

�

sDne−
Dn�tk−tj�. �A23�

Inserting Eq. �A3� into the above expression twice and tak-
ing the �→0 limit yields
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2E = − 2�2a2�
n=1

�

sDn�
0

T

dte
DntG�t� · FDn�t� , �A24�

where

FDn�t� = �
t

T

G�t��e−
Dnt�dt�. �A25�

Therefore, the NMR signal at long diffusion wave-
lengths can be written as E
0E+1E+2E, where the terms in
this expression are provided in Eqs. �A12�, �A15�, and
�A24�. When the integral of the effective gradient waveform
vanishes, as is the case in both versions of the double-PFG
experiment considered in this article, the first order term is
zero and the NMR signal attenuation is given by Eq. �4�.

This derivation demonstrates that the matrix product for-
malism developed by Callaghan,22 along with the discretiza-
tion scheme in Ref. 9, can be used as analytical tools for the
derivation of NMR signal intensity obtained using general-
ized gradient waveforms.

1 E. O. Stejskal and J. E. Tanner, J. Chem. Phys. 42, 288 �1965�.
2 D. G. Cory, A. N. Garroway, and J. B. Miller, Polym. Prepr. �Am. Chem.
Soc. Div. Polym. Chem.� 31, 149 �1990�.

3 P. T. Callaghan and B. Manz, J. Magn. Reson., Ser. A 106, 260 �1994�.
4 P. P. Mitra, Phys. Rev. B 51, 15074 �1995�.
5 Y. Cheng and D. G. Cory, J. Am. Chem. Soc. 121, 7935 �1999�.
6 J. Stepišnik and P. T. Callaghan, Physica B 292, 296 �2000�.
7 S. Stapf, S.-I. Han, C. Heine, and B. Blümich, Concepts Magn. Reson.

14, 172 �2002�.
8 P. T. Callaghan and M. E. Komlosh, Magn. Reson. Chem. 40, S15
�2002�.

9 E. Özarslan and P. J. Basser, J. Magn. Reson. 188, 285 �2007�.
10 M. E. Komlosh, F. Horkay, R. Z. Freidlin, U. Nevo, Y. Assaf, and P. J.

Basser, J. Magn. Reson. 189, 38 �2007� �http://dx.doi.org/10.1016/
j.jmr.2007.07.003�.

11 S. Stapf, R. A. Damion, and K. J. Packer, J. Magn. Reson. 137, 316
�1999�.

12 P. T. Callaghan and I. Furó, J. Chem. Phys. 120, 4032 �2004� �http://
dx.doi.org/10.1063/1.1642604�.

13 Y. Qiao, P. Galvosas, and P. T. Callaghan, Biophys. J. 89, 2899 �2005�
�http://dx.doi.org/10.1529/biophysj.105.064709�.

14 P. L. Hubbard, K. M. McGrath, and P. T. Callaghan, Langmuir 21, 4340
�2005�.

15 P. L. Hubbard, K. M. McGrath, and P. T. Callaghan, Langmuir 22, 3999
�2006� �http://dx.doi.org/10.1021/la052998n�.

16 P. L. Hubbard, K. M. McGrath, and P. T. Callaghan, J. Phys. Chem. B
110, 20781 �2006� �http://dx.doi.org/10.1021/jp0601872�.

17 M. A. Koch and J. Finsterbusch, Proceedings of the International Society
for Magnetic Resonance in Medicine 2005, Vol. 13, p. 840.

18 M. A. Koch and J. Finsterbusch, Proceedings of the International Society
for magnetic Resonance in Medicine 2006, Vol. 14, p. 1631.

19 C. H. Ziener, T. Weber, W. R. Bauer, and P. M. Jakob, Proceedings of the
International Society for Magnetic Resonance in Medicine 2007, Vol. 15,
p. 13.

20 P. T. Callaghan, A. Coy, D. MacGowan, K. J. Packer, and F. O. Zelaya,
Nature �London� 351, 467 �1991�.

21 P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy
�Clarendon, Oxford, 1991�.

22 P. T. Callaghan, J. Magn. Reson. 129, 74 �1997�.
23 C. H. Neuman, J. Chem. Phys. 60, 4508 �1974�.
24 J. S. Murday and R. M. Cotts, J. Chem. Phys. 48, 4938 �1968�.
25 P. J. Basser, J. Mattiello, and D. LeBihan, Biophys. J. 66, 259 �1994�.
26 E. Özarslan and T. H. Mareci, Magn. Reson. Med. 50, 955 �2003�.
27 E. Özarslan, T. M. Shepherd, B. C. Vemuri, S. J. Blackband, and T. H.

Mareci, Neuroimage 31, 1086 �2006�.
28 A. L. Sukstanskii, J. J. H. Ackerman, and D. A. Yablonskiy, Magn. Re-

son. Med. 50, 735 �2003�.
29 E. Özarslan, U. Nevo, and P. J. Basser, Biophys. J. 94, 2809 �2008�

�http://dx.doi.org/10.1529/biophysj.107.124081�.
30 E. Özarslan, P. J. Basser, T. M. Shepherd, P. E. Thelwall, B. C. Vemuri,

and S. J. Blackband, J. Magn. Reson. 183, 315 �2006�.
31 A. Caprihan, L. Z. Wang, and E. Fukushima, J. Magn. Reson., Ser. A

118, 94 �1996�.
32 S. L. Codd and P. T. Callaghan, J. Magn. Reson. 137, 358 �1999�.

154511-11 Microscopic anisotropy revealed by NMR J. Chem. Phys. 128, 154511 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1695690
http://dx.doi.org/10.1006/jmra.1994.1036
http://dx.doi.org/10.1103/PhysRevB.51.15074
http://dx.doi.org/10.1021/ja9843324
http://dx.doi.org/10.1016/S0921-4526(00)00469-5
http://dx.doi.org/10.1002/cmr.10021
http://dx.doi.org/10.1002/mrc.1122
http://dx.doi.org/10.1006/jmre.1998.1685
http://dx.doi.org/10.1063/1.1642604
http://dx.doi.org/10.1021/la0470378
http://dx.doi.org/10.1038/351467a0
http://dx.doi.org/10.1006/jmre.1997.1233
http://dx.doi.org/10.1063/1.1680931
http://dx.doi.org/10.1063/1.1668160
http://dx.doi.org/10.1002/mrm.10596
http://dx.doi.org/10.1002/mrm.10586
http://dx.doi.org/10.1002/mrm.10586
http://dx.doi.org/10.1016/j.jmr.2006.08.009
http://dx.doi.org/10.1006/jmra.1996.0013
http://dx.doi.org/10.1006/jmre.1998.1679

