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Abstract 

The six-dimensional orthogonal tensor representation of the rotation about an axis in three 

dimensions was first proposed by (Mehrabadi et al. 1995). In this brief note, a simple and 

coherent approach is presented to construct the six-dimensional orthogonal tensor 

representation of the rotation of any parametrization in three dimensions and to prove its 

orthogonality.   

 

INTRODUCTION 

The essence of the Euler’s theorem regarding the representation of a 3�3 rotation 

(orthogonal) matrix, Q , generated from a rotation about an axis along a unit vector, 

Tppp ],,[ 321≡p (the superscript T denotes matrix or vector transposition), with an 

angle, θ , is encapsulated in the following expression, see (Mehrabadi et al. 1995) and 

references therein: 

)exp())cos(()sin( PPPIQ θ=θ−+θ+= 21 ,                            (1) 

where P  is a skew-symmetric matrix made up of the components of the unit vector, p ,  
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  In their extension of the Euler’s theorem to the six dimensional matrix case, 

(Mehrabadi et al. 1995) relied upon the matrix exponential of a 6�6 skew-symmetric 

matrix to establish the orthogonality of the six-dimensional matrix analogue of the 

rotation matrix, Q , which was denoted by Q̂ in (Mehrabadi et al. 1995).  
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  In this brief note, a simple construction of the six-dimensional matrix analogue of 

the rotation matrix Q and the proof of its orthogonality are presented. 

  

METHODS  

  Let us define Q  to be a 3�3 orthogonal matrix, i.e., IQQQQ == TT , given by 
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D  to be a 3�3 nonsingular symmetric matrix given by  
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and �  to be another  3�3 nonsingular symmetric matrix given by  
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Then, the effect of rotating D  by Q  through a similarity transformation, which results in 

� , can be given simply as: 

DQQ�
T= .                                                                                                        (6) 

We should note that the off-diagonal elements of �  are generally nonzero except when 

each column vector of Q  is an eigenvector of D .  

  Equation (6) can be vectorized using the following convention: 



 

 

 

ACCEPTED MANUSCRIPT 

 

 4 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

==

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

λ
λ
λ
λ
λ
λ

≡

xz

yz

xy

zz

yy

xx

D

D

D

D
D

D

HdH�
~~~~

6

5

4

3

2

1

,                                           (7) 

where H~  is a six dimensional matrix made up of the elements of Q . This convention, 

however, does not preserve the Euclidean vector norm and the Frobenius matrix norm. 

In other words,  the Euclidean vector norm and the Frobenius matrix norm do not 

coincide under this convention, i.e., 

)(
~~

����
TT Tr≠⋅ ,                                                                                                          (8) 

where )(⋅Tr  denotes the matrix trace operation. 

  Fortunately, the Euclidean vector norm and the Frobenius matrix norm can be easily 

made to coincide under a slightly different but important convention of vectorization due 

to (Mehrabadi and Cowin 1990) and (Rychlewski 1984), (hereafter Mehrabahdi-Cowin- 

Rychlewski convention or MCR convention for short), i.e.: 
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Under the MCR convention, Eq. (7) can be rearranged as: 

Hd� = ,                                                                                                                         (10) 

where the six dimensional matrix, H , can be expressed as: 
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  To show that H  is orthogonal, i.e., THH =−1 , the key step is to realize that 1−H  

can be easily constructed by rearranging Eq.(6), namely: 

TQQ�D = .                                                                                                                 (12) 

Vectorizing Eq.(12) using the MCR convention again, we have 

�Rd = ,                                                                                                                         (13) 

where the six dimensional matrix, R , which is the inverse of H ,  is given by: 
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Based on Eq.(11) and Eq.(14), it is clear that THH =−1 .  

  For most applications, Eq.(11) can be constructed simply and directly from the 

components of Q , regardless of the parametrization of Q ; that is, Q  may be 

represented as in Eq.(1) or may be expressed in terms of the Euler angles.  

 

DISCUSSION 

The goal of this work is to convey the simplicity of the idea, of the construction and of 

the proof of the six-dimensional orthogonal tensor representation of the rotation in three 
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dimensions to interested readers. In brief, the orthogonality of the six-dimensional 

orthogonal tensor representation of the rotation is a direct consequence of the 

invariance of a rotation-based similarity-transformed tensor in two different norms—the 

Euclidean norm and the Frobenius norm. It should be clear that the construction can be 

easily extended to orthogonal matrices in higher dimensions using a higher dimensional 

generalization of the MCR convention.  

  In practice, it may be more convenient to construct the six-dimensional orthogonal 

tensor representation of the rotation in three dimensions directly from the elements of 

the three dimensional rotation matrix regardless of the parametrization used to 

represent the rotation matrix. In other cases, the matrix exponential formalism as 

presented in (Mehrabadi et al. 1995) may be of value, e.g., (Balendran and Nemat-

Nasser 1995).  

  The relevance of the MCR convention and of the six dimensional orthogonal tensor 

representation of the rotation in three dimensions can be gleaned from recent 

publications ranging from elasticity to imaging, (Basser and Pajevic 2007; Moakher 

2006; Moakher and Norris 2006). Specifically, we note that the analysis of optimal 

experimental designs and the propagation of errors (Koay et al. 2007; Koay et al. 2008) 

through the nonlinear least squares objective function (Koay et al. 2006) in diffusion 

tensor imaging (Basser et al. 1994) will be greatly facilitated under the MCR convention.  

  We should note that the similarity transformation through an orthogonal matrix used 

in the construction of the six-dimension orthogonal tensor representation is a well 

known technique for transforming tensors or for diagonalizing tensors. This technique is 
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very useful in many areas of research, e.g. (Golub and Van Loan 1996; Koay et al. 

2006). Finally, we hope this brief note prepare interested readers to appreciate the 

simplicity of the idea and the construction behind the six-dimension orthogonal tensor 

representation of the rotation in three dimensions as well as the elegance of the matrix 

exponential formalism of (Mehrabadi et al. 1995).  
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