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Abstract. Diffusion tensor imaging has become an important research
and clinical tool, owing to its unique ability to infer microstructural
properties of living tissue. Increased use has led to a demand for sta-
tistical tools to analyze diffusion tensor data and perform, for exam-
ple, confidence estimates, ROI analysis, and group comparisons. A first
step towards developing a statistical framework is establishing the ba-
sic notion of distance between tensors. We investigate the properties of
two previously proposed metrics that define a Riemannian manifold: the
affine-invariant and Euclidean metrics. We find that the Euclidean met-
ric is more appropriate for intra-voxel comparisons, and suggest that a
context-dependent metric may be required for inter-voxel comparisons.

1 Introduction

In diffusion tensor magnetic resonance imaging (DTI), a diffusion tensor is de-
rived in each voxel [1]. This tensor represents the intrinsic diffusion transport
properties within a volume element. Diffusion tensor statistics require comparing
tensors and, hence, a definition of distance between them. The general notion
of distance involves a connected Riemannian manifold, containing all tensors.
Over this manifold, distance is defined as the geodesic, i.e., the shortest path on
the manifold. Completely describing the manifold is a metric, G(D) = {gij(D)},
which defines the infinitesimal distance: ds2 = dDT G(D)dD [2], where D is a
vector of coordinates for a chosen representation of a diffusion tensor. To define
the geometric distance between tensors, a metric and a local coordinate system
are chosen. Any positive-definite and symmetric metric is admissible. By select-
ing the metric we define the topology of the set of all tensors. Therefore, if more
than one metric is admissible, selecting among them as well as determining which
representation-metric combination would best characterize the distance between
tensors, are challenging issues. For this we need additional information and con-
straints, derived, if possible, from the topology of the space, or found by other
means, such as empirical observation.

The conventional approach uses the canonical tensor representation and
places diffusion tensors on a Euclidean manifold, with a constant metric, re-
sulting in ds2 = tr((dD)T dD) [3, 4]. The geodesic between any two tensors, D1

and D2, with this metric, is simply a straight line, or the Euclidean distance

DistEuc(D1, D2) = ||D1 −D2|| . (1)



The Euclidean metric is rotation invariant, and is defined for the entire space
of symmetric matrices. A different approach restricts the metric to be affine-
invariant, and to operate only on tensors belonging to the space of positive
definite symmetric matrices, S+ [5–9]. A Riemannian metric that satisfies these
requirements has an infinitesimal distance ds2 = tr((D−1dD)2) [10]. The corre-
sponding geodesic is found by integration [10]:

DistAff (D1, D2) =
√

tr
(
log2(D−1

1 D2)
)

=

√√√√
m∑

i=1

log2(ηi) , (2)

where ηi are the m eigenvalues of the matrix D−1
1 D2. This metric is not depen-

dent on the choice of the tensor representation.
In this paper we investigate the two constraints imposed by the use of the

affine-invariant metric, and examine their relevance to the analysis of diffusion
tensors. The positiveness requirement seems plausible, for we know that a neg-
ative diffusivity is not physical; negative diffusivities can generally be explained
by background noise or other artifacts [11, 12]. The affine-invariance constraint
originates from the use of tensors as mathematical operators (for instance de-
formation and rotation matrices [10, 13]). In order to investigate the physical
meaning of the affine-invariant constraint let us consider the simpler case of
isotropic diffusion which has many of the same properties as the 6D diffusion
tensor space.

2 Isotropic Diffusion as a Special Case

The diffusion tensor provides a measure of diffusion in a 3D space. It is es-
pecially important when dealing with an anisotropic medium, when different
apparent diffusion coefficients (ADCs) are associated with different orientations.
The diffusion equation dictates that (for a Gaussian process) the orientational
variability of the ADC be fully described by the diffusion tensor [14]. We first
consider isotropic diffusion, where the diffusivity in all directions is equal and the
diffusion tensor is an isotropic tensor with three equal eigenvalues: Diso = λI.
The eigenvalue λ describes the entire 3D diffusion process, and is the ADC [15].
Since isotropic tensors are a specific kind of diffusion tensor, the distance mea-
sured between them has to be the same as the one applied to all tensors. Using
the affine-invariant geodesic for isotropic tensors we get:

DistAff (Diso
1 , Diso

2 ) =
√

tr (log2((λ1I)−1λ2I)) = |log (λ2/λ1)| , (3)

where λ1 and λ2 are the ADCs for the isotropic tensors D1 and D2, respectively.
This geodesic can also be derived from the infinitesimal distance function, ds =
dλ/λ. Similarly, the Euclidean distance between isotropic tensors is simply

DistEuc(Diso
1 , Diso

2 ) = |λ2 − λ1| , (4)

with the infinitesimal distance function ds = dλ. We note that for isotropic
tensors, the affine-invariant metric is identical to the “Log-Euclidean” metric
[16].



2.1 Jeffreys and Cartesian Quantities

We recognize that the distance functions in Eqs. (4) and (3) respectively coin-
cide with the definition of “Cartesian” and “Jeffreys” quantities, terms coined by
Tarantola [17, 18] for families of physical measurable quantities. Jeffreys quan-
tities are always positive and sensitive to coordinate choice or scale. Tarantola
suggests that being scale sensitive, a proper distance function for a Jeffreys quan-
tity must be scale invariant. Therefore the finite distance between points X1 and
X2 of a Jeffreys quantity is

DistJef (X1, X2) = k |log(X2/X1)| . (5)

This scale invariant metric is sensitive to the measured physical quality instead
of the measured physical quantity. As such, Tarantola finds these quantities to
be ubiquitous and suitable to describe a variety of physical phenomena, e.g.,
musical notes, heat/cold and stiffness. Moreover, he claims that most quantities
used in physics are either Jeffreys quantities or simply related to them [17]. If
X is a Jeffreys quantity, then x = log(X/X0),where X0 is any fixed value of X,
is a Cartesian quantity, and has the finite distance function

Distcrt(x1, x2) = k|x2 − x1| . (6)

Identifying whether a quantity is Jeffreys or Cartesian influences the statistical
framework needed to compare measurements of that quantity. In particular, the
Cartesian barycenter is associated with the arithmetic mean, given by

µcrt =
1
n

n∑

i=1

xn , (7)

while the Jeffreys barycenter is associated with the geometric mean, given by

µJef =

(
n∏

i=1

Xi

)1/n

= exp

(
1
n

n∑

i=1

logXi

)
. (8)

A comparison of Eq. (3) with Eq. (5) and Eq. (4) with Eq. (6) clearly shows
that the difference between the metrics stems from how the ADC quantity is
interpreted: for a Jeffreys quantity, the affine-invariant metric is appropriate; for
a Cartesian quantity, a Euclidean metric is appropriate.

2.2 The Diffusion Weighted Signal

Studying the properties of the diffusion weighted (DW) signal helps us determine
whether the ADC is a Jeffreys or a Cartesian quantity. The DW signal is obtained
by a pulse field (PFG) MR experiment, an MR protocol that makes the MR
signal sensitive to the displacement of water molecules along a certain orientation
[19]. The DW signal is the magnitude of a complex quantity so it is always
positive, limited by the highest integer value allowed. We expect the signal to



carry information regarding diffusion, but the intensity of the signal is known to
be proportional to the number of molecules [20]. The exact ratio is determined by
various machine and scan dependent parameters [21]. For instance, a completely
homogenous object scanned with a range of voxel sizes, on different MRI scanners
(with different magnetic field and gradient strengths) and different pulse timings
will yield a variety of signal intensities, although the object itself, and its diffusion
properties, remain the same. This means that the scale of the signal amplitude
measurement is arbitrary and clearly does not imply any physical qualities of
the measured object. The DW signal is therefore positive and scale sensitive,
which makes it a Jeffreys quantity.

As a Jeffreys quantity, the DW signal has a related Cartesian quantity [17],
which we can find: we set the non-DW signal, S0, as the origin, and compare
any other signals obtained, Si by taking their logarithms:

DistJef (S0, Si) = |log(Si/S0)| . (9)

Interestingly Eq. (9) is known to be proportional to the ADC (up to the scale
factor b) [19]:

λ = −b−1log(Si/S0) .

This means that λ, the ADC, is the Cartesian quantity associated with the
distance between the ratio of measured signals and, therefore, a scale invariant
metric for comparing DW signals.

2.3 The ADC as a Physical Quality

Although the discussion above suggests that the ADC and the Trace of the
diffusion tensor are Cartesian quantities whose metrics are given by Eq. (6),
it may be worthwhile to investigate this further. Determining if the properties
of the ADC satisfy the requirements of a Jeffreys quantity will help refine this
argument.

The ADC as a physical quantity is non-negative. However, noise or systematic
artifacts can result in ADC measurements with negative values when Si > S0.
Moreover, the value of a zero ADC, while hard to achieve physically, is still
admissible. It means that on average, a particle does not move from its original
position during any finite diffusion time. However, ADC < 0 causes the distance
(5) to be undefined, and ADC of zero causes it to diverge.

The Einstein equation establishes the fundamental defining relationship be-
tween the ADC and the mean-squared displacement [22]

E[(x− x0)2] = 2λt

Clearly, then, comparing ADCs acquired with the same diffusion time, t, is the
same as comparing the corresponding mean-squared displacements. Once we
determine physical units for the ADC (such as cm2/sec), we set the units of
measure for the magnitude of the distance covered by the diffusing particles
(such as cm). For example, considering the application of the Einstein equation



Fig. 1. Monte Carlo simulation of noisy DW signal (left) and its corresponding ADCs
(right). The data is distributed around an ADC of 0.8 which yields a DW signal of
449329 (dashed lines). The geometric mean of DW signals converges to the original
value, while the arithnetic mean of the ADC converges to the original value.

on three systems, in all of which diffusion is isotropic with ADC values I) 3 ∗
10−5cm2/sec (like water at body temperature), II) 3∗10−10cm2/sec (like a large
macromolecule) and III) 3 ∗ 10cm2/sec (like Helium gas) shows that water will
diffuse a mean-squared displacement of 10−2cm, the large molecule will diffuse
on average a distance of 3.5∗10−5cm, and Helium will diffuse 3.5cm. The ADC, is
therefore a scale dependent quantity, since changing its units of measure changes
the magnitude of the measured displacements. Therefore, a proper metric for
diffusivities should depend on scale.

2.4 Intra-Voxel ADC Estimation

In diffusion imaging the accuracy of the estimation is commonly increased by
performing repetitive measurements, under the assumption of a constant true
diffusion coefficient over time. As a result a number of realizations of ADCs are
obtained that are expected to differ from each other by the acquisition noise
[4]. In MRI this is the Johnson noise, which has a Rician distribution [23], and
can be synthesized using a Monte Carlo simulation [4]. We have produced a set
of noisy measurements around a selected ADC value and estimated an ADC
for each noisy measurement. We performed this analysis for different set sizes,
and for each set size we repeated the simulation 100 times. Figure 1(left) shows
the arithmetic and geometric means (obtained by Eqs (7) and (8) respectively),
along with their standard deviations, for a set of ADCs generated with an original
ADC of 0.8 and an SNR of 20. The values are shown as a function of the set size.
Clearly, as set size increases the sample mean converges towards the value 0.8,
while the geometric mean converges towards a biased value. The same analysis
performed on the noisy DW signal produces the graph in Figure 1(right), where
the geometric mean of the DW signals converges towards the expected value
(dashed line), while the arithmetic mean converges towards a biased value. The
same results are found for a range of ADC and SNR values. These findings also
support the notion that the DW signal is a Jeffreys quantity, and ADC is its
Cartesian quantity.



3 Metric Selection for Diffusion Tensors

A Jeffreys quantity is naturally extended to a Jeffreys tensor, a tensor whose
eigenvalues are Jeffreys quantities [17]. The appropriate distance measure for
these tensors is in Eq. (2) and associated with an affine-invariant metric. The
appropriate distance for a tensor of Cartesian quantities is in Eq. (1) and as-
sociated with the Euclidean metric. The diffusion tensor is a generalization of
the ADC to a higher dimensional space [24]: its eigenvalues are the ADCs along
the principal axis [1]. Knowing that the DW signal is a Jeffreys quantity, we can
review the connection between the signal and the Trace of the diffusion tensor
[15], where it was proved that

(
n∏

i=1

Si

)1/n

= S0e
−βTrace(D) (10)

for a scaler β. This equation is not restricted to isotropic tensors, and the signal
intensities can be obtained using a HARDI acquisition. From Eq. (10) it is clear
that the arithmetic average of the Log of the DW signal is proportional to
Trace(D), and as such is a linear combination of elements of the diffusion tensor
[25].

Based on our conclusions regarding intra-voxel ADC estimation, since the
eigenvalues of the diffusion tensor are Cartesian quantities, a scale invariant
metric is not appropriate as shown above in the case of isotropic tensors. Hence,
affine invariance, which encompasses scale invariance, is not a desirable property
either. An appropriate metric is the one in Eq. (1), associated with a Euclidean
metric.

3.1 The Swelling Effect

Along with positivity, reduction of the swelling effect was advertised as the main
advantage of using the affine-invariant metric for measuring the distance between
diffusion tensors [9, 16]. Swelling occurs when anisotropic tensors with different
principal axes are interpolated or averaged, resulting in a more isotropic ten-
sor with a larger determinant or volume than either tensor individually [5]. We
claim that the volume preservation requirement is not consistent with the effect
of background noise. Overall, shape, size, and orientation information is encoded
in the tensor, and noise introduces variability in all of them. The distribution of
determinants for a set of noisy realizations of the same diffusion tensor (Figure
2(left), obtained by Monte Carlo simulation as in [4]) clearly shows that the
determinant is not preserved. We further analyze the variability of the tensor
realizations by applying a manifold learning algorithm (Isomap) [26], and deter-
mine the dimensionality of the empirically fitted manifold. Using the graph of
Log of residual variance [26] shown in Figure 2(right), we obtain a dimension
of 6, indicating that Johnson noise creates variations in all tensor parameters,
including the eigenvalues, and not just the eigenvectors or orientations.
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Fig. 2. Monte Carlo simulation of tensor estimations. A noisy realization of an
anisotropic tensor with a determinant of 0.18. The noise does not preserve the de-
terminant (left). The manifold dimension for the set of tensors is 6 according to the
elbow at 6 in the graph of Log of residual variance vs Isomap dimensionality (right).

3.2 Context Dependent Metrics

The swelling effect leads us to the idea of context-dependent metrics. For ex-
ample, if we know that two anisotropic tensors, obtained in neighboring voxels,
measure diffusivities in different points along the same neuronal bundle, we are
justified in expecting that interpolation will preserve the determinant. However,
the same two tensors might be found in other contexts, such as in distant voxels
or as different realizations of a tensor in the same voxel. Each context implies a
different subset of tensors, and hence, a different underlying manifold structure.
For these different applications, an appropriate tensor representation must be
chosen and a context dependent metric used. Isomap, for instance, identifies an
underlying manifold related to anatomical variation and finds a geodesic asso-
ciated with that set of tensors [27]. Another approach [28] embeds the tensor
space within the image space, to get a location dependent induced metric.

4 Conclusions and Summary

In this paper we focus on two metrics; in future work we intend to investigate
other metrics that have been proposed for diffusion tensors. The main issue we
address is whether a scale invariant metric is appropriate for measuring the dis-
tance between diffusion coefficients or tensors. We have shown that for intravoxel
comparisons of diffusion coefficients and tensors, scale invariance is not a desir-
able property for a metric. For the intervoxel case, care must be taken, since the
distance between tensors is context dependent. A specific context may dictate
a scale invariant metric, or the use of an affine-invariant metric, but for proper
use, this context has to be defined.
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