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Diffusion tensor MRI tractography aims to reconstruct nonin-
vasively the 3D trajectories of white matter fasciculi within the
brain, providing neuroscientists and clinicians with a potentially
useful tool for mapping brain architecture. While this technique
is widely used to visualize white matter pathways, the associ-
ated uncertainty in fiber orientation and artifacts have, to date,
not been visualized in conjunction with the trajectory data. In
this work, the bootstrap method was used to determine the
distributions of diffusion indices such as trace and anisotropy,
together with the uncertainty in fiber orientation. A novel visual-
ization scheme was developed to encode this information at each
point along reconstructed trajectories. By integrating these
schemes into a graphical user interface, a new tool which we call
PASTA (Pointwise Assessment of Streamline Tractography At-
tributes) was created to facilitate identification of artifacts in trac-
tography that would otherwise go undetected. Magn Reson Med
53:1462–1467, 2005. Published 2005 Wiley-Liss, Inc.†
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In diffusion tensor MRI (DT-MRI), a set of diffusion-weighted
(DW) images is collected and used to form estimates of the
self-diffusion tensor in each voxel of the imaged volume (1).
From the diffusion tensor, one obtains estimates of mean
diffusivity, diffusion anisotropy, and fiber orientation. This
information has been used in various attempts to infer con-
nectivity within the brain using a variety of algorithms that
are generically referred to as tractography (e.g., 2–6). To date,
tractography research has focused predominantly on obtain-
ing images that show the trajectories of individual white
matter fasciculi. The reconstructed trajectories are repre-
sented either as streamlines (e.g., 2,3) or illuminated stream-
tubes (e.g., 7,8). However, in such representations, which we
term here “trajectory-only” visualizations, there is no indica-
tion of either the possible variability of diffusion quantities
along the tract or the reliability of the tract reconstruction

In this work, we describe an integrated approach not
only to visualizing the trajectory of white matter fasciculi
but also to indicating how diffusion indices, including
mean diffusivity and anisotropy indices, vary along the

tract. Furthermore, we show how to visualize uncertainty
in fiber orientation at each point along the reconstructed
tract and the distribution of diffusion indices at each ver-
tex. This visualization proves to be extremely useful in
identifying artifacts in the data that would otherwise go
unnoticed in trajectory-only visualizations. As we effec-
tively perform a pointwise assessment of streamline trac-
tography attributes, we refer to this whole approach as
PASTA.

METHODS

Acquisition

Diffusion-weighted magnetic resonance imaging data were
acquired from healthy volunteers on a 1.5-T GE Signa LX
system (General Electric, Milwaukee, WI, USA) with 40
mT/m gradients. The acquisition was gated to the cardiac
cycle using a peripheral gating device placed on the subjects’
forefinger. A multislice peripherally gated EPI acquisition
sequence was used, providing nearly isotropic resolution
(1.7 � 1.7 � 1.7 mm) and coverage of the whole head.
Eighty-four contiguous axial slice locations with isotropic
resolution were acquired using the dual-gradient scheme
(9,10). The basic acquisition using this scheme consists of 1
image with no gradients applied and then 6 images in which
gradients are applied along the vector directions [�1, �1, 0],
[�1, �1, 0], [�1, 0, �1], [�1, 0, �1], [0, �1, �1], [0, �1, �1].
This acquisition sequence was repeated 16 times, resulting in
112 images per slice location. We refer to the data set con-
sisting of all 112 DW images per slice location as the “super-
set.” Following motion/distortion correction (11), the diffu-
sion tensor was computed in each voxel and diagonalized to
compute the eigenvectors and eigenvalues. The fractional
anisotropy (12) was then computed in each voxel and, to-
gether with the principal eigenvector, used to create a color-
encoded fiber orientation map (13).

Tractography

To perform tractography, as well as to be able to obtain
repeated estimates of the tensor field at subvoxel locations,
a continuous representation of the diffusion tensor field
was established using the B-spline approach described by
Pajevic et al. (14). This approach provides an extremely
rapid method for obtaining subvoxel estimates of the dif-
fusion tensor field. Using the color-encoded maps, voxels
lying within a fasciculus of interest were identified and
fiber tracking was initiated from these “seedpoints” using
a tractography algorithm akin to that of Basser et al. (4)
with a step size of 0.5 mm. Tracking was terminated when
the fractional anisotropy (FA) fell below 0.20. Note that,
since we ultimately aimed to visualize uncertainty in fiber
orientation, in contrast with the approach of Basser et al.
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(4), the tensor field was not smoothed. As these trajectories
were reconstructed from the superset volume, we refer to
them as the superset trajectories.

Deriving Vertex-Specific Indices

The various data that were encoded onto the tracts can be
classified into two groups: (i) scalar invariant diffusion
indices and (ii) uncertainty measures.

Scalar Invariant Diffusion Indices

At each vertex of the reconstructed superset trajectory (i.e.,
at each 0.5-mm step), the diffusion tensor was estimated
and several scalar indices were computed including trace,
FA (12), and the indices of tensor linearity, planarity, and
sphericity developed by Westin et al. (15).

Uncertainty Measures

To derive uncertainty measures, we used the bootstrap
method in a manner similar to that described elsewhere (16).
The superset acquisition consisted of 16 repetitions of each
of the 7 images acquired with the dual-gradient scheme.
From these 112 images, subset volumes were created by
sampling (with replacement) 6 images from each of the 7
bins, creating a DT-MRI volume with 42 images per slice.
One thousand such volumes were created in this way. By
establishing a continuous representation of the tensor field
for each bootstrapped volume (14), the principal eigenvector
at each vertex of the superset trajectory was computed. From
the 1000 estimates of the principal eigenvector thus obtained,
the 95% cone of uncertainty was computed according to the
dyadic approach described previously (16).

Trajectory Visualization

The superset trajectories were visualized in MATLAB using
illuminated tubes as described elsewhere (8). Finally, we
initiated tracking from the seedpoint for each bootstrapped
volume, thereby obtaining 1000 trajectory estimates from a
particular seedpoint. These were represented both as stream-
lines and as translucent streamtubes such that the density of
bootstrapped trajectories passing through a region was re-
flected by the opacity of the resultant visualization.

Visualizing Parameters along the Trajectories

The vertex-specific measures were encoded onto the tra-
jectories in two ways. In the first method, the trajectories
were represented using polygonal cylinders whose long
axes were coincident with the tangent to the reconstructed
trajectory with appropriate lighting added to enhance the
3D visualization. At each vertex, the facets of the polygo-
nal cylinder were colored according to the index of inter-
est. In the second method, an approach closely related to
the hyperstreamline approach of Delmarcelle and Hes-
selink (17) was used. In this approach, the major axis of the
hyperstreamline is coincident with the principal eigenvec-
tor, while the width of the tube varies in proportion to the
second and third eigenvalues. Similarly, in our approach,
the width of the tube varies in proportion to the diffusion
indices of interest, such as the 95% cone of uncertainty.

Testing Distributions for Normality

It has been shown previously that the eigenvalues of the
diffusion tensor (and consequently the trace, since it is a
linear sum of the three eigenvalues) have a Gaussian dis-
tribution if the only source of perturbation in the diffu-
sion-weighted images used to estimate the diffusion tensor
is Gaussian random noise (23). Consequently, any devia-
tion from normality indicates an additional source of per-
turbation in the data. We therefore compared the distribu-
tions of the three eigenvalues and of the trace of the tensor
(obtained from the 1000 bootstrap estimates) at each vertex
using the Kolmogorov–Smirnoff test (KS test). Essentially,
the KS test takes each value of the experimental distribu-
tion (in our case, 1000 bootstrapped samples) and com-
pares the proportion less than this with the number ex-
pected if the data had come from the standard normal
distribution. We refer to the maximal difference between
the experimental and the normal distribution as the KS
statistic. The KS test was performed using the function
kstest in MATLAB (The Mathworks, Natick, MA, USA)
with an � value of 0.05.

Graphical User Interface

To facilitate ease of visualization, a graphical user interface
(GUI) was developed to allow rapid toggling between mea-
sures of interest, as well as toggling between colored stream-
tubes and hyperstreamline visualizations. Furthermore, the
GUI allowed simultaneous plotting of the various measures
of interest as a function of arc length along the trajectory.

RESULTS AND DISCUSSION

The key features of the PASTA GUI are presented in Fig. 1,
in which a streamtube representing a reconstructed trajec-
tory passing through the body of the corpus callosum has
been encoded for fractional anisotropy. Note the heteroge-
neity of the index along the trajectory. Color coding the
anisotropy along tracts has been previously reported else-
where (7). The streamtubes color-encoded for trace were
found to be extremely informative. Since the trace has
been shown to be fairly uniform throughout the paren-
chyma (10), streamtubes color-encoded for trace should
have a uniform color as long as they remain within the
parenchyma. However, in regions where the tracts pass
close to CSF-filled spaces, the trace becomes elevated,
suggesting partial volume contamination with CSF. An
example is presented in Fig. 2, which shows fibers
launched in the body of the corpus callosum and internal
capsule. As the fibers of the corpus callosum pass close to
the lateral ventricles, their color changes, indicating par-
tial volume contamination. These regions are readily iden-
tifiable as “hot spots” on the color-encoded streamtube
(Fig. 2f) and also by the large peaks in the profile (Fig. 2b).

Figure 2e shows the same trajectory encoded for the
95% cone of uncertainty in fiber orientation using a hy-
perstreamline representation, while Fig. 2g shows the
bootstrapped trajectories. To a certain extent, the “flare” of
the bootstrapped trajectories is seen to be dependent on
the cone of uncertainty at each point (although the effect of
architectural milieu on bootstrapped trajectories discussed
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elsewhere (19) is also an important determinant of the
reproducibility of bootstrapped trajectories).

Several lessons can be learned from the profiles in Fig. 2.
First, we can see that a large amount of CSF contamination
(i.e., the two large peaks identified by the asterisks) does
not necessarily mean that the uncertainty in fiber orienta-
tion will be greatly elevated. Certainly, it has been shown
that suppressing CSF contamination (through the use of
the FLAIR technique, for example) can lead to an increase
in the measured anisotropy (20) and it has previously been
shown that the cone of uncertainty is dependent on an-
isotropy (16). However, Fig. 2b and c together indicate that
regions with large CSF contamination do not necessarily
have larger uncertainty in fiber orientation than neighbor-
ing “uncontaminated ” regions. What can be seen, how-
ever, is that a much more important determinant of the
uncertainty in fiber orientation is the relationship between
the linearity and planarity of the diffusion tensor, as mea-
sured using Westin’s indices (15). There is a large spike in
the profile of the cone of uncertainty (indicated by �) and
this is coincident with the maximal value of Cp (the mea-
sure of planarity). In fact, it appears that the cone of un-

certainty increases whenever Cp is comparable with, or
exceeds, CL (the measure of linearity). Another example is
the second local maxima indicated by �. This relationship
between planarity and the cone of uncertainty is rather
intuitive given that, for an oblate tensor (i.e., when the
tensor has negatively skewed eigenvalues), the principal
diffusion direction is poorly defined. However, we note
that many groups (including ourselves) have published
tracking results obtained with termination criteria that are
based solely on the fractional anisotropy (and sometimes
on the angle turned between successive propagation
steps). Typically, the tracking is terminated when the frac-
tional anisotropy falls below a certain threshold (e.g., 0.2).
The rationale for this is that at values of FA below this
threshold, the estimates of fiber orientation become unre-
liable. Conversely, this inherently implies that in regions
where FA is high, estimates of fiber orientation are reli-
able. Note, however, that the FA in a region of high cone of
uncertainty (� in Fig. 2a) is not particularly low (FA �
0.493). This result should therefore serve as a warning to
any groups that utilize a simple FA threshold for termina-
tion of tracking and indicates the limitation of indices

FIG. 1. Key features of the
graphical user interface for point-
wise assessment of streamline
tractography attributes (PASTA).
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such as FA that do not reflect the skewness or higher
moments of the eigenvalues.

Figure 3a shows an additional trajectory encoded for the
95% cone of uncertainty using the hyperstreamline ap-
proach, while Fig. 3b shows the superset trajectory to-
gether with the bootstrapped trajectories. Note again that
the dispersion of the bootstrapped tracts in Fig. 3b is
related to the width of the hyperstreamlines in Fig. 3a. At
� in Fig. 3a, the hyperstreamline flares out, which is re-
flected by a large number of bootstrapped tracts projecting
away from the superset trajectory. At �, the hyperstream-

line flares to a lesser extent and, likewise, fewer boot-
strapped tracts deviate from the superset trajectory than at
�. The hyperstreamline visualization in Fig. 3a clearly
provides a more succinct and readily interpreted visual-
ization than Fig. 3b.

Figure 4 shows the 95% cone of uncertainty hyper-
streamlines for a number of tracts launched in the corpus
callosum. Note that only the compact portion of the corpus
callosum has low uncertainty. As the tracts reach the cor-
tex, the streamtubes “trumpet” out, indicating lower repro-
ducibility in fiber orientation.

FIG. 2. Demonstration of pointwise assessment of streamline tractography attributes for a seedpoint placed in the body of the corpus
callosum. Profiles are shown for the following: (a) Fractional anisotropy; (b) trace (in units of 10�9mm2 s�1); (c) 95% cone of uncertainty (in
degrees); (d) Westin’s measures of sphericity (Cs), planarity (Cp), and linearity (CL). Note that the profiles display the arc length from left to
right, but that the fibers are displayed with the point moving from right to left. In (e), the streamline trajectory is represented as a
hyperstreamline, where both the color and the width of the hyperstreamline encode the 95% cone of uncertainty. The vertices indicated by
� and � correspond to the points on the profile indicated by the same labels in (a–d). In (f), the streamline trajectory is represented as a
simple streamtube, with each vertex encoded by the trace. The asterisks indicate the “hot-spots” (regions of high trace) that are also
highlighted in (b). (g) shows the streamline trajectories obtained on each bootstrap iteration.

FIG. 3. (a) Hyperstreamline representation
of the 95% cone of uncertainty, together
with (b) bootstrapped trajectories. Note that
at �, the 95% cone of uncertainty is sub-
stantially smaller than at �. The correspond-
ing points are indicated on the boot-
strapped trajectories in (b). The red stream-
tube that passes through the center of the
bootstrap trajectories is the trajectory com-
puted from the superset.
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Figure 5 shows how examining the distribution of dif-
fusion indices can help to indicate potential artifacts. The
trajectory shown in this figure is the same as in Figs. 1 and
2. In this example, the profile of the Kolmogorov–Smirnoff
statistic (Fig. 5a), obtained from testing the distribution of
the principal eigenvalue for normality, was used to iden-
tify those regions with non-Gaussian behavior (i.e., those
where the KS statistic exceeded the critical value repre-
sented by the horizontal dashed line) (Fig. 5d). The figure
shows the global maximum and in this region, we observe

that the distribution of the largest eigenvalue is bimodal
(Fig. 5e). Given that we only fit a single diffusion tensor to
the data set, and expect a unimodal Gaussian distribution
for trace (18), this result suggests that the spatial location
of the vertex has been populated by different tissue types
during the acquisition of the bootstrap data. Looking care-
fully at the nearby location of the spikes in the trace profile
(Fig. 5b), it is not hard to imagine the source of the bimodal
distribution. The most likely event is that there is some
residual motion occurring during the collection of the

FIG. 4. Hyperstreamline representation of
the 95% cone of uncertainty for multiple
tracts passing through the corpus callosum.
Note the low uncertainty in the body of the
corpus callosum and the “trumpeting” of the
hyperstreamlines as they approach the
cortex.

FIG. 5. Illustration of the use of
PASTA to examine distributions
of bootstrapped values at each
vertex of a reconstructed stream-
line. (a) Profile of fractional anisot-
ropy. (b) Profile of trace. (c) Profile
of 95% cone of uncertainty. (d)
Profile of the test statistic ob-
tained with the Kolmogorov–
Smirnoff (KS) test for normality of
the distribution of the principal
eigenvalue. The horizontal dashed
line indicates the critical value for
the KS, for a two-tailed test with
an � value of 0.05. (e) Graphical
comparison of the cumulative
density function (CDF) for the
Gaussian distribution that best
fits the data with the empiric dis-
tribution of the primary eigen-
value. (f) Histogram of the boot-
strapped estimates of the princi-
pal eigenvalue at the streamline
vertex. A clear bimodal distribu-
tion is observed. The vertical line
in (a–d) corresponds to the vertex
where the largest KS statistic is
observed.
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bootstrap data set that has not been completely corrected
by our motion correction algorithm (11). Examination of
distributions in this way therefore serves as a sensitive
way of checking data for residual motion. Note that there is
only a minor “ripple” in the cone of uncertainty profile at
this location (Fig. 5c), which indicates that the uncor-
rected motion cannot necessarily be identified from the
cone of uncertainty data alone.

We note that an alternative method to the bootstrap
method for estimating the orientational uncertainty in fi-
ber orientation has recently been proposed (21). With well-
behaved data (i.e., in which the only source of perturba-
tion is Johnson RF noise), this approach can be shown to
provide estimates of uncertainty that are comparable with
those obtained from the bootstrap. However, the approach
used in the current work, by definition, incorporates all
sources of perturbations in the estimates of uncertainty
and, more importantly, confers the additional advantages
of being able to examine the distributions of parameters for
deviations from idealized behavior (see Fig. 5) and to
identify CSF partial volume artifacts.

Finally, as we have previously suggested (16), the boot-
strap could be used to compare the efficiency of different
tensor smoothing and regularization techniques (e.g.,
14,22,23), which aim to eliminate (noise-induced) varia-
tions in estimates of fiber orientation while preserving true
anatomic variations. In the current framework, the hyper-
streamline visualization approach would allow one to vi-
sualize the efficiency of these approaches more readily as
both anatomic and uncertainty information is viewed con-
currently. As such, our PASTA and Poupon’s “spaghetti
plate” (22) form a nice complement!

CONCLUSION

In this work we have developed a novel visualization ap-
proach that enhances the interpretability of DT-MRI tractog-
raphy reconstructions. This approach enables, for the first
time, the visualization of relevant diffusion characteristics
(i.e., trace, Westin indices) along specific white matter trajec-
tories within the brain. This visualization is useful as it
provides a much more informative anatomic context that that
offered by 2D planar representations. This is especially true
for tracts that follow a tortuous 3D trajectory. In addition to
these general diffusion characteristics, the associated cone of
uncertainty in fiber orientation can also be visualized, allow-
ing the user to determine how much confidence to assign to
the tract reconstruction at each point.

Fiber tracking using DT-MRI has recently received wide
attention in the medical community, as it can potentially
provide (noninvasively) maps of the “wiring ” of the brain
and therefore has promise in many fields including psychi-
atry and neurology. However, because tractography represen-
tations have been limited primarily to trajectory-only visual-
izations, there is a real danger of mistaking artifact for archi-
tecture. The approach reported in the current work aims to
ameliorate this problem by providing clinicians and scien-
tists with a much more informed position from which to
view and interpret tract reconstructions from DT-MRI.
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