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Abstract

This report introduces a novel method to characterize the diffusion-time dependence of the diffusion-weighted magnetic resonance
(MR) signal in biological tissues. The approach utilizes the theory of diffusion in disordered media where two parameters, the random
walk dimension and the spectral dimension, describe the evolution of the average propagators obtained from q-space MR experiments.
These parameters were estimated, using several schemes, on diffusion MR spectroscopy data obtained from human red blood cell ghosts
and nervous tissue autopsy samples. The experiments demonstrated that water diffusion in human tissue is anomalous, where the mean-
square displacements vary slower than linearly with diffusion time. These observations are consistent with a fractal microstructure for
human tissues. Differences observed between healthy human nervous tissue and glioblastoma samples suggest that the proposed
methodology may provide a novel, clinically useful form of diffusion MR contrast.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetic resonance (MR) imaging or spectroscopy
measurements of the translational self-diffusion of water
molecules have found widespread use in biophysical inves-
tigations of materials and biological tissues [1]. Water dif-
fusion behavior in tissue can be observed via magnetic
resonance from multiple experimental perspectives and
modeled in different mathematical fashions. Clinically, sim-
ple diffusion-weighted MRI has proven to be highly sensi-
tive to tissue microstructure changes that correlate with
acute tissue injury, particularly in ischemic brain injury
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or stroke [2]—this has proven utility for making treatment
decisions in the treatment of stroke patients [3]. MR mea-
surement of the orientational dependence of water diffusion
in nervous tissue also has proven useful for the detection of
coherent, anisotropically oriented white matter structures
in the human brain [4]. In most published studies that in-
volve diffusion MR, one observes the MR signal intensity
dependence based on the magnitude or orientation of ap-
plied diffusion sensitizing gradients. However, some studies
have suggested additional information about tissue micro-
structure can be obtained if other parameters of the exper-
iment, such as the diffusion time, were also varied [5,6].
This paper will demonstrate novel, previously unrecog-
nized information that is obtainable from q-space diffusion
MR studies of biological tissues.
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1 Note that d is an integer.
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Extracting structural information from the diffusion-
attenuated MR signal requires models of biological tissue
[7] that link biophysical features of the underlying micro-
structure to the measured diffusion-weighted MR signal.
Previous models of the biophysical relationship between
tissue microstructure and water diffusion observed experi-
mentally have assumed (or by computational necessity
required) that the tissue under investigation be described
simply with cells that are simple cylinders or spheres and
that the simple geometric constructs create multiple unique
water compartments [8–10]. Another example is the appli-
cation of the diffusion tensor model originally developed
for liquid crystals to describe the signal attenuation in
nervous tissue environments with structural anisotropy
[4]. Valuable and clinically useful information has been
obtained from these models. However, it is well-known
that neurons and glia are not uniformly sized spheres or
cylinders and that subsequent combined populations of
neurons and glia in a holistic tissue environment have a
more complicated architecture on several different length
scales than the above models were able to envision. Previ-
ous studies have demonstrated that neurons have a fractal-
like appearance [11,12], and the fractal dimension, as a
measure of complexity, can be indicative of the different
cell types [13,14]. In this paper, we report a novel mathe-
matical model of water diffusion that accounts for some
of the microstructural complexity probed by water diffus-
ing in nervous tissue on several different length scales—
the barriers to water diffusion presented by cellular organ-
elles and cytoskeletal proteins, by the complex shapes of
nervous tissue cells, and by the complex spatial arrange-
ments of neurons and glia in tissue.

Anomalous diffusion is a well-known phenomenon in
statistical physics in which the mean squared displacement
of the diffusing particles has a nonlinear scaling behavior
with time. This process occurs in systems exhibiting fractal
behavior [15], such as percolation clusters [16,15,17,18],
where there are restrictions to diffusion at different length
scales. There have been several NMR studies in which
the anomalous behavior of water diffusion in nonbiological
materials have been quantified accurately [19–21]. q-space
MR experiments provide a noninvasive means to compute
an ensemble average propagator associated with the diffu-
sion process [7,22–24]. Because the length scales that can be
probed using pulsed field gradient (PFG) experiments coin-
cide with those that restrict the molecular motion of water
in tissue, it may be possible to create a novel MR contrast
mechanism based on the evolution of these average propa-
gators as a function of diffusion time. In this paper our goal
was to demonstrate the feasibility of estimating the scaling
exponents that characterize anomalous diffusion in disor-
dered media from q-space MR measurements. To investi-
gate this point and understand how well such an
approach characterizes the time evolution of average prop-
agators, we show experimental findings from q-space spec-
troscopy data obtained from three unique human tissue
samples.
2. Theory

The diffusion process in disordered media and systems
exhibiting fractal behavior is anomalous. This is the case
when the mean-square displacement (MSD) of the diffusing
particles has a diffusion time (t) dependence characterized
by the power-law

MSD ¼ hr2i / t2=dw ð1Þ
with dw „ 2, where dw is the walk (or path or trail) dimen-
sion quantifying the fractal dimension of the paths fol-
lowed by the randomly moving particles. The MSD, Ær2æ,
is related to the square of the characteristic length associat-
ed with the diffusion process. When dw = 2, the diffusion
process is ‘‘normal’’ whereas in the case when dw > 2, the
distances traveled by the particles have a slower-than-linear
time dependence. This kind of a process is called subdiffu-
sion. The opposite case (dw < 2) corresponds to a faster-
than-normal diffusion process which is called superdiffu-
sion. Various systems that give rise to these different behav-
iors are discussed in [15].

Another scaling exponent that characterizes the scaling
behavior of the density of states function for the Laplacian
operator is called the spectral (fracton) dimension and will
be denoted by ds. The return-to-origin probability (RTOP)
[25] for diffusing particles obeys a power-law characterized
by ds via the expression [15]

RTOP ¼ P ðr ¼ 0; tÞ / t�ds=2; ð2Þ
where P(r, t) is the probability for the particles to move a
distance r in time t. For normal diffusion ds = d, where d

is the embedding dimension.1 In fractals, the fractal dimen-
sion df, is related to the walk and spectral dimensions
through the relationship

d f ¼
dwds

2
: ð3Þ

A reasonable form of the propagator P(r, t) that incor-
porates these scaling relations is given by [15,26]

Pðr; tÞ / rdf�d

tds=2
U

r
t1=dw

� �
; ð4Þ

where the argument of the function U ensures the scaling
relation given in Eq. (1). The numerator rdf�d is related
to the scaling of the ‘‘mass’’ of the fractal with distance
and the denominator tds=2 is necessary for the time indepen-
dence of the total probability. One can immediately show
that the radial moments of P(r, t) have the scaling behavior

hrmi ¼ 4p
Z

P ðr; tÞr2þm dr; ð5Þ

/ tm=dw : ð6Þ
Consequently, 1/dw characterizes all moments of the distribu-
tion and is called a ‘‘gap exponent’’. However, more generally,
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the moments of the distribution can be characterized by a
hierarchy of exponents [26] in which case Eq. (4) is not valid.

In a one-dimensional PFG experiment, an ensemble
averaged water displacement probability function P 1ðz;DÞ
is related to the MR signal attenuation E(q,D) through
the relationship

P 1ðz;DÞ ¼
Z 1

�1
Eðq;DÞe�2piqz dq; ð7Þ

where D is the separation time of the two diffusion gradi-
ents and q = cdG/2p, where c is the gyromagnetic ratio, d
is the diffusion pulse duration assumed to be much smaller
than D, and G is the magnitude of the diffusion gradient
whose direction defines the z-axis. Therefore, the water dis-
placement probabilities can be computed from the signal
attenuations via a discrete Fourier transform. Note that
P 1ðz;DÞ is the projection of the three-dimensional average
propagator, P ðr;DÞ onto the z-axis. In isotropic space, this
projection is given simply by

P 1ðz;DÞ ¼ 2p
Z 1

z
P ðr;DÞr dr: ð8Þ

It is straightforward to show that the radial moments of
the isotropic three dimensional density P ðr;DÞ are propor-
tional to the moments of P 1ðz;DÞ. Therefore, the scaling
behavior of the MSD values computed from both of these
functions are characterized by the same exponent dw. In
order to estimate the MSD, one may use the relationship

hz2i ¼
Z 1

�1
P 1ðz;DÞz2 dz ð9Þ

¼ � 1

2p2
lim
q!0

o log Eðq;DÞ
oq2

� �
¼ 2DðDÞD; ð10Þ

where D(D) is a diffusion-time dependent diffusion coeffi-
cient [27].

Note that a comparison of Eq. (8) with Eq. (5) implies
that P 1ð0;DÞ is proportional to Ær�1æ. Therefore, it follows
from Eq. (6) that if one assumes the three-dimensional
probability density to be of the form in Eq. (4), then the
z = 0 value of the projected propagator obeys the scaling
behavior P 1ð0;DÞ / D�1=dw . In fact, inserting Eq. (4) into
Eq. (8) would imply the following scaling relation for the
projected probability density:

P 1ðz;DÞ /
1

D1=dw
W

z

D1=dw

� �
: ð11Þ

Therefore, the scaling behavior of the one-dimensional
projection of the propagator is fully characterized by the
walk dimension2if Eq. (4) holds for the three-dimensional
propagator.
2 The function W(f) is related to the function U(q) via the integral

WðfÞ /
Z 1

f
UðqÞqd f�2 dq:

Therefore, df—hence ds—affects the form of the function W(f), but not its
scaling.
In this work, we will assume a slightly different form for
the projected probability density where we ‘‘relax’’ the scal-
ing condition on P 1ð0;DÞ and write

P 1ðz;DÞ /
zd 0

f
�1

Dd 0s=2
W

z

D1=dw

� �
; ð12Þ

where d 0s is an effective spectral dimension, describing the
scaling of the integral of the probabilities over an infinite
plane that goes through the origin,3 i.e.

P 1ðz ¼ 0;DÞ ¼
Z 1

�1
Eðq;DÞdq; ð13Þ

/ D�d 0s=2; ð14Þ
and d 0f is given by d 0f ¼ dwd 0s=2.

The estimation of the spectral dimension, ds is also pos-
sible using PFG experiments and requires the estimation of
the RTOP values. However, since the probability density at
the origin is not readily available from the projected prop-
agator, one has to consider the three-dimensional propaga-
tor, which is related to the signal attenuations via a three-
dimensional Fourier transform. In isotropic space the
RTOP values can be computed from the MR signal atten-
uation using the relationship

RTOP ¼ 4p
Z 1

0

Eðq;DÞq2 dq: ð15Þ
3. Methods

We have performed q-space spectroscopy experiments
on three different samples. One of the samples was cerebral
cortex from a normal person. The second sample was a hu-
man glioblastoma multiforme tumor (or grade-4 astrocyto-
ma). Finally, the third sample was a human erythrocyte
ghost model [28] prepared as described in [29]. The exper-
iments were performed using a 14.1-T Bruker Avance spec-
trometer equipped with a gradient coil system that is
capable of producing 3 T/m gradients along each of the
three orthogonal directions. A diffusion-weighted stimu-
lated echo pulse sequence was used that made it possible
to span very long diffusion times. The spectroscopy data
from the brain samples were acquired with TR/TE values
of 4 s/11 ms. The echo was sampled with 2048 points. A to-
tal of 129 q-values were used for each diffusion time, where
all three gradients were applied simultaneously yielding
gradient strengths of up to 4892.5 mT/m. This sampling
corresponded to a q-space resolution of 2 lm. The gradient
duration (d) was 2.4 ms, and we repeated the q-space mea-
surements 12 times varying the gradient pulse separation
3 When one assumes the three-dimensional propagator to obey the
scaling behavior in Eq. (4), it is possible to see by comparing Eqs. (12) and
(11) that d 0w ¼ dw; d 0f ¼ 1, and d 0s ¼ 2=dw. Another interesting case occurs
when the three-dimensional propagator is separable, i.e. when it is possible
to write P(r, t) = P1(x, t)P1(y, t)P1(z, t). In this case, ds is just three times d 0s.
However, for more general forms of the propagators, these relations do
not hold.
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(D) between 12 and 613 ms on a logarithmic scale. A slight-
ly different protocol was used to scan the erythrocyte ghost
sample since the signal attenuated more rapidly with
increasing gradient strengths. TR was set to 5 s, the maxi-
mum gradient strength used was 4194 mT/m and d was
2 ms, giving rise to a q-space resolution of 2.8 lm. The q-
axis was sampled on 65 points. All other parameters were
identical to the acquisitions performed on the brain
samples.

4. Results

We have employed several methods to estimate the scal-
ing exponents dw and ds from excised tissue samples. Since,
the MSD is proportional to the derivative of the logarithm
of the signal at the origin of q-space (see Eq. (10)), the sim-
plest method to estimate MSD is to compute a two point
difference of logE(q,D) near the origin. Then a double log-
arithmic plot of MSD vs. D is expected to be a straight line
with slope 2/dw. However, it is important to do this in a
consistent and acceptable manner for all time points, other-
wise a bias from the nonlinearity of logE(q,D) as a function
of q2 will be introduced. In this work, we present results ob-
tained using several methods. In the first estimation, we
chose one of the points to be the q = 0 data point, whereas
the second data point was taken to be the one correspond-
ing to a fixed q-value of 3.905 mm�1. Fig. 1 shows the fits
obtained using this constant-q method. We have also com-
puted the MSD values by fixing the b-value of the second
data point to 1000 s/mm2. When data was not available
at these locations, a cubic spline interpolation was used.

Note that dw values can also be estimated from the aver-
age propagators computed from the Fourier transform giv-
en in Eq. (7) together with the integration in Eq. (9). The
accuracy of the integral may be improved by using interpo-
lated data in the displacement domain [30], which can be
achieved by extrapolating the data points in q-space. Such
an extrapolation scheme is obtained using a functional fit
as described in the Appendix A.

A final estimation method aimed to minimize the effect
of bias due to noise. This approach was based on the obser-
Fig. 1. Dependence of the mean squared displacements on diffusion time.
The Æz2æ values in this plot were computed using the constant-q method.
vation that the entire data set can be visualized on a D–q

plane. For small values of q, one expects a quadratic
dependence of logE(q,D) on q. Therefore, the contours of
the signal values on the D–q plane, near the D-axis are
described by setting q2Æz2æ value to a constant. Since Æz2 æ
is expected to obey Eq. (1), an equivalent expression is
q2D2=dw ¼ constant. Taking the logarithm of both sides
yields

log q ¼ C � 1

dw

log D; ð16Þ

where C is a constant. Therefore, dw can be estimated from
the slope of the constant-E contours in the small-q region
of the D–q plane. Fig. 2 depicts this method on the data
set collected from the tumor sample. In this figure, the
grayscale background shows the entire data set, where a
histogram equalization was performed to increase the con-
trast. The curves depict the iso-attenuation contours com-
puted using the ‘‘CONTOUR’’ routine of IDL (Research
Systems Inc., Boulder, Colorado). As expected, these
curves are linear near the D-axis on the D–q plane. The first
few points in the low-q regime of 12 different contours were
used in fitting a line, and the mean value of the 12 slopes
was reported as the dw value.

The dw values estimated using these methods are pre-
sented in Table 1. Constant-q, constant-b, integration,
and integration from extrapolated data methods all yielded
fits with correlation coefficients above 0.999. The increased
standard deviations indicate that the quality of the fits for
the constant-E method was a bit poorer. However, for all
three samples, the mean value obtained using this method
was consistent with those obtained from the other
approaches. The scaling laws in the healthy and tumor hu-
man tissue samples clearly indicated subdiffusive behavior,
and the scaling of the characteristic length was faster in the
tumor tissue. For the erythrocyte ghost sample, dw values
obtained using different schemes varied around the value
Fig. 2. Iso-attenuation curves on a logq vs. logD plane overlaid on an
‘‘image’’ of the entire data set from the tumor sample. The curves depict
the constant values of the MR signal and are used in the estimation of dw

(see Eq. (16)).



Table 1
dw, ds, and d 0s values estimated from three samples using various methods

Estimation method Gray-matter Tumor Erythrocyte ghost

dw Constant-q 2.371 ± 0.014 2.189 ± 0.029 2.036 ± 0.005
dw Constant-b 2.353 ± 0.013 2.188 ± 0.031 1.939 ± 0.017
dw Constant-E 2.376 ± 0.285 2.217 ± 0.369 2.021 ± 0.061
dw Integration 2.374 ± 0.014 2.183 ± 0.031 1.948 ± 0.033
dw Integration with extrapolation 2.394 ± 0.015 2.195 ± 0.028 2.038 ± 0.005
dw Fitting Eq. (17) 2.353 ± 0.041 2.183 ± 0.030 2.008 ± 0.013
ds Integration 3.166 ± .210 1.909 ± .091 4.852 ± .233
ds Integration with extrapolation 3.408 ± .283 2.140 ± .144 4.879 ± .269
d 0s Integration 0.991 ± .008 1.018 ± .009 1.312 ± .036
d 0s Integration with extrapolation 1.018 ± .010 1.105 ± .012 1.353 ± .039

Fig. 3. Signal attenuation values with increasing diffusion times. The solid
lines indicate the curves obtained by fitting Eq. (17).
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of 2.0. Most likely, diffusion process in this sample was
nonfractal. This is an expected result as the water mole-
cules encounter only the cellular membranes that restrict
the water molecular motion at only one length scale.

Another alternative to the dw estimation is to fit a curve
to the signal values directly. This method may be preferable
since it may allow one to incorporate the effects of the finite
pulse width. There are a number of attempts in the litera-
ture to relate the MR echo intensity to the scaling exponent
dw [31–35]. Among these, in Ref. [34], the following rela-
tionship for PFG experiments was provided that takes
the finite pulse width into account4:

Eðq;DÞ ¼ exp � 4p2c2G2a
3ðjþ 1Þðjþ 2Þ

�

� 1

2
ðDþ dÞjþ2 þ 1

2
ðD� dÞjþ2 � Djþ2 � djþ2

� �	
; ð17Þ

where a is a generalized diffusion coefficient and j = 2/dw.
We have applied a Levenberg–Marquardt fitting procedure
to the data values at q = 3.905 mm�1. The fitting was very
sensitive to the initial values of the parameters to be esti-
mated. However, when the initial values are chosen to be
close to the values obtained from other techniques, the esti-
mates of dw from the fits were consistent with the other esti-
mates (see Table 1). Fig. 3 shows these fits.

The ds values were estimated from the slope of the lines
fitted to the RTOP values plotted as a function of D on a
double logarithmic plot. The computation of the RTOP
values involved the evaluation of the integral in Eq. (15)
using a five-point Newton–Cotes formula. In order to re-
duce the effect of the finite window size in q-space, the fit-
ting was repeated for the RTOP values obtained from the
extrapolated data (see Appendix A). The same scheme
was applied to estimate the d 0s values where the integral
in Eq. (13) was computed using the same Newton–Cotes
procedure. Fig. 4 shows the fits obtained for both ds and
d 0s estimations when extrapolation was not performed.
Higher quality fits were obtained in the estimation of d 0s
with correlation coefficients greater than 0.99. Although
4 Note that as d=D! 0, this relationship reduces to E(q,D) = exp(�2p2-

q2Æz2 æ), which is consistent with Eq. (10).
the correlation coefficients were still larger than 0.97 for
the RTOP fits, a visual examination of the points and the
fitted lines suggests that the deviations from the expected
power-law behavior might be due to systematic factors—
most notably in the erythrocyte ghost sample. It is typical
for real life systems to exhibit a power-law behavior only
for a limited range of length or time scales [12] or obey dif-
ferent power-laws at different scales [36]. This may contrib-
ute to a reduction in the quality of fits as well as the
deviation of the estimated ds value from its ‘‘normal’’ value
of 3 in the erythrocyte ghost sample. The ds and d 0s values
obtained from these fits are included in Table 1. The esti-
mated ds values provided sharper contrast between differ-
ent samples, which may be in part due to the factors
described above.

Using Eq. (7), one dimensional projections of the aver-
age probabilities were computed. The reconstructed propa-
gators are shown on the left column of Fig. 5. Note that the
speculated scaling behavior of the average propagators in
Eq. (12) implies that when the Pðz;DÞDd 0s=2=zd 0

f
�1 values

(for positive z) are plotted as a function of z=D1=dw all aver-
age propagators should collapse onto the same curve. This
‘collapse’ of the probability density values is clearly ob-
served as shown on the right column of Fig. 5. However,
a slight divergence in the curves corresponding to long dif-
fusion times was observed towards the right of the figures.
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Fig. 4. Diffusion time dependence of the return-to-origin probabilities (a)
and the probability of the particles to end up on the xy-plane (b). The
slopes of the fitted lines are related to ds and d 0s, respectively.
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Note that only every other time point was included in these
plots for the sake of clarity.

5. Discussion

In this work, we demonstrated that a simple model
describing anomalous diffusion in disordered media can
be employed with success to characterize the diffusion-time
dependence of the MR signal attenuation curves obtained
from excised biological tissue. Because it is determined by
the signal at low q-values, the scaling exponent dw is sensi-
tive to the large displacement and short time regimes of dif-
fusion. In the context of fractals, it represents the fractal
dimension for the trajectories followed by randomly mov-
ing particles. On the contrary, the exponent ds is influenced
by the long time return-to-origin-probabilities. When ran-
dom motion is assumed to be taking place in a fractal
space, it quantifies the scaling behavior of the number of
visited sites by the random walker [37]. These estimated
scaling exponents have great potential as new features that
may be sensitive to microscopic alterations of the tissue
resulting from development, aging and various pathologies.
Our experiments on three different tissue samples demon-
strated such a difference. Note, however, that the extent
of the study was limited making it difficult to make mean-
ingful inferences about how the tissue state was reflected on
the scaling exponents and this was not the intended goal of
the study. Rather, the important point in this pilot study is
that the proposed methodology did characterize the time
evolution of the average propagators well as reflected in
the quality of the fits, the consistency of several estimation
methods, and the collapse of the average propagators onto
single master curves. These findings demonstrate the ade-
quacy and the potential utility of the approach.

Note that potential obstacles to the success of the pres-
ent study included the finite diffusion gradient pulse dura-
tion, d, i.e. violating the narrow pulse approximation,
and associating the diffusion time with the diffusion pulse
separation D. These issues did not appear to create a signif-
icant deviation from the expected scaling behavior, which
is valid in the d� D regime. Another issue that one should
be aware of is the assumption about the isotropy of the
propagator. Although, from a practical point of view, the
method can be applied to one-dimensional q-space data
from anisotropic structures as well, the employed model
is valid essentially for isotropic structures. It is likely that
in anisotropic samples, the estimates of the scaling expo-
nents will depend on the gradient direction. Particularly,
one would expect the spectral dimension to have a more
significant dependence on the gradient orientation since it
is affected by the signal values at high q-values.

Compared to the studies performed to estimate the frac-
tal dimension [38] using the fringe field NMR methods [39],
the method introduced here may be more practical. More-
over, it is, in principle, possible to extend the approach to
MR imaging of neural tissue and create maps of the dw and
ds exponents and investigate the spatial variations of these
quantities. Note that the estimation of dw is particularly
easy since it requires only two data points near q = 0. How-
ever, in order to get an accurate estimate of ds, or describe
the temporal evolution of the reconstructed propagators,
one has to have a reasonably dense sampling of q-space
and cover a large enough distance along the q-axis, which
may make the application of the method more difficult to
achieve in clinical studies. The approach used here, when
restricted to the estimation of dw, is realizable for a clinical
setting since the estimation of dw requires low q-values and
only a few number of scans. However, one should still be
cautious since the diffusion pulse duration will probably
be longer than presented here, which could introduce some
bias in the estimated dw values.

In fractal spaces, Brownian motion of particles are
restricted in all length scales. Similarly in neural tissue,
water motion is restricted at different length scales by mac-
romolecules, cytoskeleton, cell membranes, organelles and
myelin. It is of great importance to understand to what ex-
tent these factors contribute to the anomalous behavior of
diffusing particles. Ongoing research is trying to address
this point.

6. Conclusion

A simple model that describes diffusion in random disor-
dered media and fractal spaces was used to parameterize
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Fig. 5. On the left are the average propagators obtained by transforming the MR signal attenuations for different diffusion times. On the right are the
same probability values plotted in a different way based on the form of the propagator as shown in Eq. (12). The propagators for each of the normal gray-
matter, glioblastoma and erythrocyte ghost samples are included (from top to bottom). Every other time point of the entire data sets is excluded for clarity.
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the diffusion-time dependence of diffusion-weighted MR
signals. The model performed well on data obtained from
three different biological tissues with different predicted dif-
fusional characteristics. This approach has potential to be
applied in clinical studies and may aid in monitoring the
developmental as well as pathological changes to biological
tissues.
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Appendix A

Since the q-space NMR experiments have limited cover-
age in q-space, and the estimation of the spectral dimension
requires the computation of an integral on the infinite do-
main, it may be possible to improve the estimation of ds

and d 0s by extrapolating the signal attenuation curves.
Among various alternatives, we have achieved satisfactory
fits by assuming a signal attenuation of the form



Fig. 6. The signal attenuation values for the erythrocyte ghost sample and
the curves obtained by fitting the expression in Eq. (18).
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Eðq;DÞ ¼ f1e�uq2 þ f2e�ðvq2Þa þ f3ð1þ wq2Þ�g
: ð18Þ

In this function the first term is a Debye relaxation expres-
sion, whereas the second term is a Kohlrausch–Williams–
Watts function [40,41]. Finally the third term is a Rigaut-
type asymptotic fractal expression [42]. The fits obtained
from the erythrocyte ghost sample are shown in Fig. 6.
Note that the fits appear linear in the extrapolated (large-
q) region, which indicates that in this regime the function
is dominated by the third term in the above expression.
This indicates the power-law dependence of the signal
attenuation on the gradient strength. This is the expected
decay of MR signal in porous media [43].

We have employed this fit in the computation of inte-
grals as described. However, in order not to introduce
too much bias due to the particular form of the function,
the original data points were not replaced with those as
would be required by the above function. Rather, the val-
ues of the fitted function were used merely to extend the
q-values beyond the acquisition range. Although there
may be some bias due to the particular choice for the func-
tion, the employed extrapolation may provide an indica-
tion about the influence of the finite sampling on the
estimated scaling exponents.
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