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To characterize anisotropic water diffusion in brain white mat-
ter, a theoretical framework is proposed that combines hin-
dered and restricted models of water diffusion (CHARMED) and
an experimental methodology that embodies features of diffu-
sion tensor and q-space MRI. This model contains a hindered
extra-axonal compartment, whose diffusion properties are
characterized by an effective diffusion tensor, and an intra-
axonal compartment, whose diffusion properties are character-
ized by a restricted model of diffusion within cylinders. The
hindered model primarily explains the Gaussian signal attenu-
ation observed at low b values; the restricted non-Gaussian
model does so at high b. Both high and low b data obtained
along different directions are required to estimate various mi-
crostructural parameters of the composite model, such as the
nerve fiber orientation(s), the T2-weighted extra- and intra-ax-
onal volume fractions, and principal diffusivities. The proposed
model provides a description of restricted diffusion in 3D given
by a 3D probability distribution (average propagator), which is
obtained by 3D Fourier transformation of the estimated signal
attenuation profile. The new model is tested using synthetic
phantoms and validated on excised spinal cord tissue. This
framework shows promise in determining the orientations of
two or more fiber compartments more precisely and accurately
than with diffusion tensor imaging. Magn Reson Med 52:
965–978, 2004. Published 2004 Wiley-Liss, Inc.†
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The advent of diffusion magnetic resonance imaging (MRI)
methods has advanced the field of neuroimaging, particu-
larly the radiologic assessment of white matter patency,
microstructure, architectural organization, and orientation
(1–4).

Neuronal tissue in general and white matter in partic-
ular are heterogeneous on a microscopic scale. Axons
are ordered in fascicles surrounded by a complex extra-
axonal environment containing astrocytes, glia, and
ordered and randomly oriented extracellular matrix
molecules. This heterogeneity makes it difficult to char-

acterize white matter radiologically since each compart-
ment can, in principle, contribute to the measured MRI
signal. Despite this heterogeneity, diffusion properties
in coherent white matter pathways exhibit diffusion
anisotropy with highest apparent diffusivity measured
along the fiber axes and the lowest perpendicular to
them. It is still not clear whether the observed diffusion
anisotropy arises from the intra-axonal compartment
(primarily restricted diffusion) or the extra-axonal com-
partment (primarily hindered diffusion) or some combi-
nation thereof.

Several modeling and/or experimental approaches have
been proposed to describe and/or characterize anisotropic
diffusion observed in brain white matter. The first inte-
grated experimental and modeling framework proposed to
describe diffusion anisotropy was DTI (4), which is based
on a Gaussian model of the random displacements of water
molecules in an excited volume. The effective diffusion
tensor estimated using this method represents a powder
average over all individual microdomains and microenvi-
ronments within a voxel (5). So, while the macroscopic
diffusion tensor, D, reflects the architectural features in
tissues with a coherently organized microstructure (e.g.,
diffusion anisotropy, fiber orientation), D only represents a
consensus average from individual compartments in re-
gions with a heterogeneous fiber architecture, for example,
where fibers cross (see (6) for a more detailed explanation)
(5–7).

A number of detailed numerical models have been ad-
vanced to explain the macroscopic diffusion attenuation
behavior observed in gray and white matter (8). These
models use Monte Carlo simulations in tissue domains
with assumed microstructure and architecture.

More recently, advances in imaging gradient hardware
have allowed high b-value diffusion weighted imaging
(DWI) data to be acquired, revealing “non-mono-exponen-
tial” behavior of the signal attenuation (9–11), especially
in white matter. This finding has prompted some to extend
the original DTI model to contain two or more diffusion
tensors, which can be estimated from DWI data (9,12–14).
In these works, it is assumed that the “fast” (or rapidly
decaying) diffusion component can be associated with the
extracellular space, and the “slow” (or slowly decaying)
diffusion component can be associated with the intracel-
lular space. However, if this slowly diffusing component
arises from restricted diffusion (a non-Gaussian process),
fitting the overall signal decay to a bi- or multiexponential
tensor model, which assumes Gaussian diffusion, is inap-
propriate (15,16).

Other attempts to describe DWI data obtained from
white matter employ q-space methods, originally pro-
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posed by Callaghan (17) and Cory and Garroway (18). In
this approach, no specific model of water diffusion is
assumed. Instead, features of the measured displacement
probability distribution are extracted by a Fourier trans-
formation of the signal attenuation profile with respect to
q (the reciprocal wavenumber defined as ��g/2� where � is
the gyromagnetic ratio, � is the diffusion gradient duration,
and g is the diffusion gradient amplitude). Biologic and
clinical examples include applications in ischemia (19), in
studying normal white matter structure (12,20–22) and
diseased neuronal and human brain tissues (20–22).

A primary contribution of the q-space methodology is
the demonstration that the slow diffusing components ob-
served at high q (or b) values result from restricted diffu-
sion, probably in the intra-axonal compartment (16).
While existing q-space MR methods may provide, under
certain experimental conditions, a displacement profile
along a specific measured direction (23) or a 3D displace-
ment distribution function (12,17), they do not provide
microstructural parameters such as the intra-axonal and
extra-axonal fractions or their principal diffusivities and
directions. A mathematical model of the water diffusion
process in tissues is needed in order to extract this infor-
mation.

Here we propose a hybrid modeling framework that
embodies analytical models of both hindered and re-
stricted diffusion in white matter (composite hindered and
restricted model of diffusion, CHARMED) and an experi-
mental methodology that combines aspects of diffusion
tensor MRI and q-space MRI. We propose a model of white
matter that contains a hindered extra-axonal region, whose
diffusion properties are characterized by an effective dif-
fusion tensor, and a restricted model of diffusion in the
intra-axonal space. We combine these descriptions and
show how to use DWI data to estimate various microstruc-
tural parameters of this model, such as fiber orientation,
the T2-weighted fractions of extra and intra-axonal spaces,
and intra-axonal diffusivity, as well as the net displace-
ment distribution produced by water diffusing in both
compartments.

THEORY

General Description

The model of water diffusion in white matter ascribes the
MR signal attenuation to two processes: hindered water
diffusion in the extra-axonal space and restricted water
diffusion in the intra-axonal space (Fig. 1). Because ex-
change between the two compartments should be ex-
tremely slow in relation to the experimental time scale, we
use the “slow exchange” limit5 (24). Then, the net mea-
sured signal attenuation, E(q,�), is given by the weighted
sum of the two contributions:

E�q, �� � fh � Eh�q, �� � fr � Er�q, ��. [1]

Above, fh and fr are the T2-weighted volume fractions of
the hindered and restricted compartments, respectively, �
is the diffusion time, and Eh(q,�) and Er(q,�) are the nor-
malized MR echo signals from the hindered and restricted
compartments, respectively.

Decoupling Diffusive Motions in the Restricted
Compartment

One important simplification of the proposed model is that
Er(q,�) above can further be decomposed into contribu-
tions arising from spins diffusing parallel and perpendic-
ular to the axon’s axis. To see this, we first apply the
relationship between Er(q,�) and the average propagator,
P� s(R, �), at diffusion time, � (17,25):

Er�q, �� ���� P� s�R, ��e2�iq�R dR where q �
�g�

2�
. [2]

Above, R is the net displacement vector for a spin, � is the
proton gyromagnetic ratio, g is the vector whose magni-

5The corresponding fast exchange limit can be written as a volume fraction
weighted expression, E(q, �) � Eh(q, �)fh � Er(q, �)fr.

FIG. 1. The modeling framework showing the two
modes of diffusion in white matter, hindered out-
side the cylinders and restricted within the cylin-
ders. Diffusion in the hindered part is characterized
by a diffusion tensor. Diffusion in the restricted part
can be decomposed into diffusivities parallel and
perpendicular to the cylinder’s axis (D// and D�). In
the same manner, the reciprocal wavenumber vec-
tor, q, can be decomposed into q// and q� with
respect to the fiber axis. The spherical coordinate
system as shown on the right is used to relate
measured quantities in the laboratory frame to
computed quantities in the “fiber” frame of refer-
ence.
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tude is the strength of the applied diffusion gradient and
whose direction is along the axis of the applied diffusion
gradient, � is the width of the diffusion pulse gradient, and
� is the diffusion time.

Second, we note that solutions to the diffusion equation
in restricted cylinders and sheets (17,26–30) factor into
products of x-, y-, and z-dependent terms when viewed in
the principal coordinate frame of reference. In these sys-
tems, displacements perpendicular to restricted bound-
aries do not affect displacements parallel to them. This
point is developed in detail in Appendix D.

P� s�R, �� � P� ��R�, ��P� //�R//, ��, [3]

where R is the net displacement vector, and P� //(R, �) and
P� �(R, �) are the displacement probability propagators for
motion in the parallel and perpendicular directions, re-
spectively.

Next, we note that any R can be decomposed into dis-
placement vectors parallel to the axon’s axis and perpen-
dicular to it, i.e., R � R// 	 R�. Also, any q that we apply
in the laboratory frame can likewise be written as a sum of
vectors parallel and perpendicular to the axon’s axis: i.e.,
q � q// 	 q�. We define the MR signals arising from motion
solely in the perpendicular and parallel directions, respec-
tively, E�(q�) and E//(q//), as6

E��q�� ��� P� ��R�, ��e2�iq��R� dR� and

E//�q//� �� P� //�R//, ��e2�iq//�R// dR// [4]

and then we see in Appendix A that Eq. [2] can be written
compactly as

Er�q, �� � E��q�, ��E//�q//, ��. [5]

Thus, statistical independence of displacements along the
axial and radial directions within the axon implies that
Er(q,�) can be expressed as the product of MR signals
arising from displacements parallel and perpendicular to
the axon’s main axis.

The Form of E//(q//,�) in the Restricted Compartment

For displacements parallel to the axis of the fiber we as-
sume free 1D Gaussian diffusion, having diffusivity, D//,

P//�R//, �� �
1

�4�D//�� �
�

3�
e
�R//�2/�4D//��
��/3���. [6]

Fourier transformation of Eq. [6] (as in Eq. [2]) leads to
Stejskal’s familiar equation,

E//�q//, �� � e
4�2�q//�2��
��/3��D//. [7]

Equation [7] specifies the form of E//(q//,�) in Eq. [5] above.

The Form of E�(q�,�) in the Restricted Compartment

Expressions for E�(q�,�) for diffusion in a restricted cyl-
inder of radius R can be found in Codd and Callaghan’s
recent works (30). These, however, apply when the narrow
pulse or pulse-field gradient approximation holds (i.e., � �
0 and � �� �). An approximation that is more mathemat-
ically tractable and that more faithfully represents exper-
imental conditions in clinical and biologic DWI applica-
tions in which � � � is that the diffusion gradient wave-
form is a constant. Thus, we use an asymptotic form of
E�(q�,�) for restricted diffusion in a cylinder proposed by
Neuman (29) under the assumption of a constant field
gradient,

E��G�, 2
� � e
�R4�2G�
2 /D���7/96��2

�99/112��R2/D���. [8]

Above, D� is the intra-axonal diffusivity perpendicular to
the fiber axis (which can be different from D// in Eq. [6]),
and 2
 is the echo time (TE) of the acquisition. This ex-
pression can be rewritten in terms of q�,

E��q�, 2
� � e
�4�2R4�q��2/D�
��7/96��2
�99/112��R2/D�
��. [9]

In contrast to Callaghan’s formula, which may give the
diffraction pattern in the signal decay formed by the re-
stricted barriers of the cylinders, Neuman’s formula yields
only a multiexponential signal decay. This is expected
since gradient pulses that are “fat” or wide blur the dif-
fraction pattern. An alternative model to Eq. [9] that can
account for the finite width of the diffusion gradient pulse
is given by van Gelderen et al. (31). Finally, to obtain an
expression for Er(q,�) in Eq. [5], we substitute Eqs. [7] and
[9],

Er�q, ��

� e
4�2�q//�2��
��/3��D// � e
�4�2R4�q��2/D�
��7/96��2
�99/112��R2/D�
��.

[10]

Equation [10] specifies the form of the restricted compart-
ment for an array of bundles of radius R.

The Form of Eh(q,�) in the Hindered Compartment

We assume that diffusion in the extra-axonal compart-
ment, which consists of astrocytes, glia, and extracellular
matrix, is hindered and, thus, that this compartment has a
3D Gaussian displacement distribution. In general, this
diffusion process is assumed to be anisotropic and char-
acterized by an effective diffusion tensor, D (32),

Eh�q, �� � e
4�2��
��/3��qTDq, [11]

where qT is the matrix transpose of q. We further assume
that anisotropic diffusion in the hindered compartment is
caused by reflections from and increased tortuosity pro-

6The double integral indicates that we perform the integration over the tube
cross section, while the single integral is performed along the axon’s axis.
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duced by axons (and possibly neurofilaments and proteins
in the extracellular space oriented parallel to them). There-
fore, we would expect that the principal axes of D are
coincident with the parallel and perpendicular axes of the
restricted compartment in the case of a single bundle of
uniformly oriented fibers.7 We test this hypothesis exper-
imentally below.

Again, taking into account that q � q// 	 q�, we simplify
the quadratic form in Eq. [11], as in Appendix C. Inserting
Eq. [C2] into Eq. [11] gives8

Eh�q, �� � e
4�2��
��/3����q��2��	�q//�2�//�, [12]

which can be rewritten as

Eh�q, �� � e
4�2��
��/3���q��2�� � e
4�2��
��/3���q//�2�//. [13]

Interestingly, just as for Eq [5] above describing diffusion
in the intra-axonal compartment, one can infer that in the
principal frame of the hindered compartment diffusive
motion parallel and perpendicular to the principal direc-
tions of the axon are also statistically independent.

Composite Model for One Restricted and One Hindered
Compartment

Referring to Eqs. [1], [10], and [12] the composite model of
the net MR signal is a weighted sum of contributions from
the restricted and hindered compartments,

E�q, �� � fh � e
4�2��
��/3����q��2��	�q//�2�//�

� fr � e
4�2�q//�2��
��/3��D//
�4�2R4�q��2/D�
��7/96��2
�99/112��R2/D�
��.

[14]

Composite Model for Multiple Restricted and Hindered
Compartments

It is straightforward to extend Eq. [1] to consider multi-
ple restricted and hindered compartments,

E�q, �� � �
i�1

M

fh
i � Eh

i �q, �� � �
j�1

N

fr
j � Er

j�q, ��. [15]

Here, M is the number of distinct hindered compartments
and N is the number of distinct restricted compartments,
which are not necessarily the same. In Eq. [15] it is still
assumed that during the period of the MR experiment,
there is no exchange between compartments.

It has been shown previously that E(q) has a character-
istic quadratic decay behavior in the low-q regime (33),

E�q, �� � 1 � 4�2qTDq�� �
�

3�. [16]

Moreover, it has been shown that at low-q values, D rep-
resents a powder average of all diffusion tensors in the
various hindered subcompartments (7), and thus, it should
be sufficient to characterize the hindered compartment in
Eq. [15] by a single hindered compartment with a single
effective diffusion tensor (i.e., M � 1 above),

E�q, �� � fh � Eh�q, �� � �
j�1

N

fr
j � Er

j�q, ��. [17]

Here it is useful to assume the most general form of the
diffusion tensor describing the hindered compartment
given in Eq. [11].

Johnson Noise

In these experiments, where the attenuation caused by
diffusion can be substantial, the signal caused by back-
ground or Johnson noise must be modeled,

E�q, �� � ���
i�1

M

fh
i � Eh

i �q, �� � �
j�1

N

fr
j � Er

j�q, ���2

� �2.

[18]

Here we account for the fact that the MR signal we measure
is in the presence of rectified Gaussian noise. The variable
� is the background noise level that is estimated as an
additional free parameter as in Refs. (34,35).

Relating the Laboratory and Principal Frames of Reference

Finally, we need to relate the vector q applied in the
laboratory frame of reference to q// and q�, vectors in
the directions parallel and perpendicular to the axis of
the axon, respectively. These formulae are given in
Appendix B.

METHODS

Simulated Data

Simulated signal decay data were generated using the
models described above. The signal decay was produced
using Eq. [15], which combines multiple hindered and
restricted compartments. Noise was added in quadrature
and then rectified, as explained in Ref. (35). Simulated
signal decay for a single fiber model was obtained by
simulating one hindered and one restricted component
(M � N � 1 in Eq. [15]). The signal decay for the two-fiber
model was produced by combining two sets of hindered
and restricted compartments (M � N � 2 in Eq. [15]). Input
parameters for the signal decay simulation were popula-
tion fraction of each of the compartments, orientation of
the restricted fiber(s) in a standard spherical coordinates
system, the parallel and perpendicular diffusion coeffi-
cients of the hindered compartment(s) (�// and ��), and the
parallel and perpendicular diffusion coefficients of the
restricted component (D// and D�). The signal decay was
simulated using several gradient direction schemes (Fig.
2a).

7In other words, the largest eigenvector of D is coincident with the axis of the
restricted cylinders and the other two eigenvectors lie in a plane perpendic-
ular to that direction.
8A facsimile of Eq. [13] was used by Boss and Stejskal (15) to model restricted
diffusion between parallel plates, knowing beforehand that this form would be
inadequate to describe restricted diffusion.
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Experimental Data

Excised spinal cords were scanned on a 7-T spectrometer
(Bruker BioSpin. Inc.), equipped with a Micro2.5 gradient
system with maximal gradient strength of 100 G/cm in
three orthogonal directions. A spinal cord was freshly
excised from a previously sacrificed pig. A section of the
cervical spinal cord (2 cm) was cut in half; the two pieces
were placed in the apparatus shown in Fig. 2b.

Diffusion experiments were performed using the pulsed
gradient spin echo sequence with the following parame-
ters: TR � 2000 msec, TE � 200 msec, � � 150 msec, � �
40 msec. The field of view was 5 cm, matrix size was 64 �
64, and slice thickness was 15 mm, which was sufficient to
include both sections of the crossed spinal cord specimen
(see Fig. 2b). Pulsed gradients were incremented from 0 to
5.25 G/cm in 16 equal steps and measured in 31 noncol-
linear gradient directions (see Fig. 2a). The maximal b
value in these experiments was approximately 44000 sec/
mm2 and the maximal q value was 89.4 mm
1. Total
number of images was 496; the acquisition time per direc-
tion was �35 min and the total experimental time was
about 18 hr.

Fitting Procedure

CHARMED presented in Eq. [15] was used to estimate
microstructural parameters from diffusion data (simulated
and experimental) using a nonlinear regression routine
(employing the Levenberg–Marquardt minimization algo-
rithm) in Matlab (The Mathworks). Four combinations of
compartmental configurations were used.

1. One hindered and zero restricted compartments (M �
1; N � 0 in Eq. [15]) were used to fit a single fiber at low b
values (standard diffusion tensor analysis of b � 2500
sec/mm2). The number of free parameters for this combi-
nation was 7.

2. One hindered and zero restricted compartments (M �
N � 1 in Eq. [15]) were used to fit a single fiber including
high b values. The number of free parameters for this
combination was 12.

3. Two hindered and zero restricted compartments (M �
2; N � 0 in Eq. [15]) were used to fit two crossing fibers at
low b values (23). The number of free parameters in this
case was 13.

4. One hindered and two restricted compartments (M �
1; N � 2 in Eq. [15]) were used to fit two crossing fibers

including the high b value data. The number of free pa-
rameters in this case was 15.

Initial conditions for the low b value diffusion tensor
based fitting (see combinations 1 and 3 above) were arbi-
trary and the same for all input data. Initial conditions for
the high b value data (see combinations 2 and 4) were
obtained from the diffusion tensor fitting (combination 1
above), which was performed prior to any of the other
combinations. Thus, the direction(s) of the fiber(s) as de-
rived from the low b value DTI analysis were taken as
initial conditions for the restricted diffusion part.

Estimated parameters included the population fractions
of the hindered and restricted multiple compartments, the
eigenvectors and eigenvalues of the hindered part (as in
conventional DTI), as well as D// of the restricted compo-
nent, and the orientation of the restricted part in spherical
coordinates. The noise floor, �, was also estimated in each
fit. Two parameters were kept fixed through the fitting
procedure: the fiber diameter distribution and the diffu-
sion coefficient perpendicular to the long axis of the fibers
(D�). The fiber diameter distribution (incorporated into
Eq. [9]) is typical for axons in spinal cord. The diffusion
coefficient of the molecules perpendicular to the fibers was
taken as 1 � 10
5 cm2/sec. Once all parameters were
estimated, we resampled E(q) (by inverting Eq. [15]) on a
uniform grid in q-space and obtained the 3D FFT, which
corresponds to the 3D average propagator, P� s(R, �) (30).
The 3D FFT matrices were then used to produce iso-
probability surface plots or contours.

RESULTS

Simulated Data

The iso-probability plots reveal 3D shapes that are distinct
from the familiar diffusion ellipsoid characteristic of 3D
free anisotropic diffusion. Figure 3 shows the 3D FFT
iso-probability plot of a single fiber having single restricted
and hindered diffusion compartment aligned 30° below
the x direction. The 3D FFT (i.e., the displacement distri-
bution function) for the complete signal decay deviates
significantly from the ellipsoidal shape. This deviation is
reflected in the iso-probability plot of the total signal decay
showing at least two distinct shapes (Fig. 3a). The decom-
position of the signal decay using CHARMED provides the
Gaussian part (hindered part, Fig. 3b) having the shape of

FIG. 2. (a) The diffusion gradient direction schemes
used in simulations. Note that the 31-direction
scheme was also used experimentally on the excised
spinal cord. (b) A diagram of the experimental phan-
tom used to generate images of crossing fibers. Two
segments of freshly excised pig spinal cord were
placed in a plastic tube so that one lies along the
z-axis of the magnet and the other 45° off the x-axis.
In regions where the two segments of the spinal cord
crossed, we could simulate crossing fibers by mak-
ing the slice thickness large enough to encompass
both fiber populations.
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an ellipsoid, and the non-Gaussian part (restricted part,
Fig. 3c) having the shape of a toothpick. The 3D FFT
iso-probability plot of the restricted part is much sharper
and narrower than the hindered part. As CHARMED seem
to provide higher angular definition of the fiber alignment,
we conducted a series of Monte Carlo simulations aimed at
estimating the bias and precision of the fiber alignment in
3D. For that purpose we resampled data (500 times) using
the model (combination 1) for one fiber aligned along the
x-axis. The data were resampled twice: once with b value
of up to 14000 sec/mm2 with 16 data points per direction
(30 directions) and once with b value of up to 1000 sec/
mm2 with 16 data points per directions (again in 30 direc-
tions). For each sampling cycle we calculated the align-
ment of the fiber both using DTI model and both using
CHARMED with one hindered and one restricted compart-
ment. Using the 500 measurements we calculated the an-
gle in which 95% of the measurement lies within (36). We
found that for the DTI model the angle is 30.1° and that for
the combined hindered-restricted model it is 10.1°.

The ability of the model to decompose the two compo-
nents of the signal decay was tested for a single fiber as a
function of the gradient sampling direction scheme. For
that purpose we generated signal decay data for a fiber
having a single hindered and single restricted compart-
ment aligned 30° below the x-axis for diffusion gradient
sampling schemes having 6, 15, 20, and 31 directions. The

3D FFT iso-probability shape associated with the re-
stricted component is, as expected, narrower and more
pointed than the hindered diffusion ellipsoid for all mea-
sured directions (Fig. 4). Visually, no major differences are
seen among the different gradient schemes; indeed, fitting
the signal decay at any measured direction produced sim-
ilar results to the values used to produce the signal decay.
However, the residuals to the fit for the 6-gradient direc-
tion scheme are almost threefold larger than those for the
31-direction scheme.

Separation of the hindered and restricted parts of the
signal decay should be straightforward in the case of a
single fiber due to the similar cylindrical geometry of both
compartments. Yet, when two (or more) fiber bundles have
different orientations, identifying them should be more
difficult. Thus, we first tested the model’s ability to sepa-
rate two crossing fibers oriented at 90° with respect to each
other. The corresponding diffusion signal decay was gen-
erated by simulating two fibers, each having its own hin-
dered and restricted compartments (M � N � 2 in Eq. [15]).
The simulated data were then fitted using two combina-
tions of Eq. [15]: (a) two hindered compartments (i.e., a
double tensor model) and (b) two restricted compartments
and one hindered compartment. Figure 5 shows the 3D
FFT iso-probability plots of the different models as a func-
tion of the number of sampling directions. The double
tensor model was unable to produce the original 3D align-

FIG. 3. (a) Displacement iso-probability plot obtained by taking the 3D FFT of the simulated signal decay for a single fiber aligned 30° below
the x-axis. Simulations were performed using the following parameters for the hindered compartment: fh � 0.7, �h � -30°, �h �90°, �1 �
0.8 � 10
5 cm2/sec, �2 � �3 � 0.35 � 10
5 cm2/sec, and fr � 0.3, �r � -30°, �r �90°, D// � 1 � 10
5 cm2/sec for the restricted
compartment. The noise floor in the simulations was 0.03. (b) Displacement iso-probability plot for the hindered compartment alone. (c)
Displacement iso-probability plot for the restricted part alone.

FIG. 4. The displacement iso-probability plots of a single fiber aligned at 30° below the x-axis as a function of the number of gradient
directions (6, 15, 20, and 31 directions). The simulated signal decay was produced using Eq. [15] with one hindered and one restricted
compartment. Parameters in the hindered compartment were fh � 0.7, �h � -30°, �h �90°, �// � �1 � 0.8 � 10
5 cm2/sec, �� � �2 � �3 �
0.35 � 10
5 cm2/sec. Parameters in the restricted compartment were: fr � 0.3, �r � -30°, �r �90°, D// � 1 � 10
5 cm2/sec. The noise floor
in the simulations was 0.03. The contributions from the hindered and restricted compartments are shown separately as is their combined
contribution, which is obtained from the 3D FFT of the entire signal decay.
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ment of the fibers although the error in the fit was small for
all gradient schemes (see Table 1). By contrast, the combi-
nation of two restricted and one hindered compartments
gave satisfactory results only for gradient schemes of 31,
20, and 15 directions. However, when using the 6-direc-
tion gradient scheme, the combined model predicted in-
correct results for both compartments. The mean residuals
and error of the fitting procedure was more than 10 times

higher in the 6-direction scheme than in the 31-direction
scheme (see Table 1).

As the model combining one hindered and two re-
stricted compartments gave the best results in the case of
two fibers crossing at 90°, we challenged it using two fiber
populations crossing at a smaller angle (30°). The data
were generated similarly to the previous case by simulat-
ing two fibers; each having one restricted and one hin-

FIG. 5. The displacement iso-probability plots for two fibers crossing at an angle of 90° as a function of number of gradient directions (6,
15, 20, and 31 directions). The simulated signal decay was produced using Eq. [15] with two hindered and two restricted compartments.
The hindered compartment parameters were fh1 � fh2 � 0.35, �h1 �90°, �h1 �90°, �h2 � 135°, �h2 �90°, �// � �1 � 0.8 � 10
5 cm2/sec,
�� � �2 � �3 � 0.3 � 10
5 cm2/sec. The restricted compartment parameters were fr1 � fr2 � 0.15, �r1 �90°, �r1 �90°, �r2 � 135°, �r2

�90°, D// � 1 � 10
5 cm2/sec. The noise floor in the simulations was 0.03. (a) Fitting of the simulated data to Eq. [15] with one hindered
and two restricted compartments. The contributions from the hindered and restricted compartments are shown separately as is their
combined contribution, which is obtained from the 3D FFT of the entire signal decay. (b) Displacement iso-probability profile obtained by
fitting signal decay to Eq. [15] with two hindered component only using only low b value data.

Table 1
Fitting of a Two Fiber System Crossing at 90° as Function of Number of Simulated Gradient Directions

One hindered 	 two restricted model Two hindered (dual tensor)

No. directions
Simulation

values

Fitted values
No. directions

Simulation
values

Fitted values

31 20 6 31 20 6

fh 0.7 0.7 0.68 0.53 fh1 0.5 0.49 0.49 0.64
�//

1 0.8 0.55 0.63 1.06 fh2 0.5 0.51 0.51 0.28
��

1 0.3 0.41 0.42 0.43 �//h1
1 0.8 0.88 0.79 0.85

fr1 0.15 0.15 0.14 0.28 ��h1
1 0.3 0.50 0.55 0.33

fr2 0.15 0.15 0.19 0.13 �//h2
1 0.8 0.50 0.35 0.27

�r1 135 136 135 152 ��h2
1 0.3 0.18 0.21 0.06

�r1 90 89 95 66 �h1 135 72 2 164
�r2 45 44 45 116 �h1 90 109 5 92
�r2 90 92 88 26 �h2 45 4 
3 8
D//

1 1 0.89 0.84 0.81 �h2 90 77 97 187
Noise floor 0.03 0.03 0.024 0.005
Fit error2 — 7.58 12.5 32.8 Fit error — 18.1 21.5 25.3

1�// is the biggest eigenvalue (�1) and �� is the average of �2 and �3 given in �10
5 cm2/sec.
2Fit error is calculated by the sum of the z scores of each of the fitted parameters.
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dered compartment. Only when using the 31-gradient di-
rection scheme was it possible to separate the two fiber
populations accurately (see Fig. 6 and Table 2). The error
in the fit increased significantly as the number of sampled
directions decreased (see Table 2). This error is also man-
ifested in the shape of 3D FFT iso-probability plots given
with gradient schemes of 6 and 15 directions, which do
not resemble the one obtained using 31 directions.

Further exploring the limits of the model, we estimated
the effect of noise on the fitting procedure. For this pur-
pose we generated signals for two crossing fibers aligned at
45° with respect to each other. The data were generated for
various values of the noise floor (0.03, 0.09, 0.12, and

0.18). As the noise floor increased, the accuracy of the fit
was reduced dramatically (see Fig. 7). When the noise floor
was higher than 0.09, i.e., the SNR was below 11, the
fitting procedure failed to produce even approximately
accurate results (see Fig. 7).

Experimental Data

The phantom presented in Fig. 2b was used to provide
experimental data of single and crossing fiber bundles
(segments of pig spinal cord). The spinal cord segments
crossed at 45° to each other. The collected data (up to b
value of 44000 sec/mm2) was fitted using the four combi-
nations of the model given under Methods. Typical fits of
data are depicted in Fig. 8, showing the quality of the
experimental data and the fits. In Fig. 8 the data were fitted
using combination 2 (see Methods).

The diffusion tensor model (one hindered component
only) gave accurate results in areas where there was a
single fiber bundle (see Fig. 9 and Table 3). In areas of
crossing fibers, the diffusion tensor model provided the
mean orientations of the two fiber bundles (Fig. 9). Sur-
prisingly, the fractional anisotropy calculated from the
diffusion tensor in this regime was not significantly lower
in the area of the crossing fiber (see Table 3). The dual
tensor model, which a priori has the chance of separating
two-fiber orientations, failed to detect the two fiber popu-
lations. The dual tensor model (two hindered components)
gave reasonable results (data not shown) in only 3 of 33
pixels in the region of crossing fibers. In all other pixels,
this model predicted two identical fibers aligned in the
mean of two fiber bundles similar to the conventional
diffusion tensor model result. It should be noted that with
the standard diffusion tensor model and the dual tensor
model, the data were analyzed only at the low b value
range (b � 3000 sec/mm2).

FIG. 6. The displacement iso-probability plots for two fibers crossing at an angle of 30° as a function of number of gradient directions (6,
15, 20, and 31 directions). The simulated signal decay was produced using Eq. [15] with two hindered and two restricted components. The
hindered component parameters were fh1 � fh2 � 0.35, �h1 � 30°, �h1 �90°, � h2 � 60°, �h2 �90°, �// � �1 � 0.8 �m2/msec, �� � �2 �
�3 � 0.3 � 10
5 cm2/sec. The restricted component parameters were fr1 � fr2 � 0.15, �r1 � 30°, �r1 �90°, �r2 � 60°, �r2 �90°, D// � 1 �
10
5 cm2/sec. The noise floor in the simulations was 0.03. Displacement iso-probability plots are shown for the hindered compartment only,
the restricted compartment alone, and a combination of the two.

Table 2
Fitting of a Two Fiber System Crossing at 30° as Function of
Number of Simulated Gradient Directions

One hindered 	 two restricted model

# Directions
Simulation

values

Fitted values

31 20 6

fh 0.7 0.69 0.70 0.69
�//

1 0.8 0.81 0.67 0.57
��

1 0.3 0.31 0.31 0.28
fr1 0.15 0.14 0.13 0.13
fr2 0.15 0.17 0.17 0.18
�r1 30 26 39 45
�r1 90 89 91 77
�r2 60 58 62 53
�r2 90 29 87 63
D//

1 1 0.85 1.28 3.00
Noise floor 0.03 0.023 0.031 0.023
� residuals — 5.33 6.53 26.0

1�// is the biggest eigenvalue (�1) and �� is the average of �2 and �3

given in �10
5 cm2/sec.
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FIG. 7. The displacement iso-probability plots for two fibers crossing at an angle of 45° between them as function of the noise floor. The
signal decay was produced using Eq. [15] with two hindered and two restricted compartments. The hindered compartment parameters were
fh1 � fh2 � 0.35, �h1 � 25°, �h1 �90°, �h2 � 70°, �h2 �90°, �// � �1 � 0.8 � 10
5 cm2/sec, �� � �2 � �3 � 0.3 � 10
5 cm2/sec. The
restricted component parameters were fr1 � fr2 � 0.15, �r1 � 25°, �r1 �90°, �r2 � 70°, �r2 �90°, D// � 1 � 10
5 cm2/sec. The noise floor
was incremented from 0.03 to 0.12. The simulated signal decay was fitted using Eq. [15] with one hindered component and two restricted
components. Displacement iso-probability plots are shown for the hindered compartment only, the restricted compartment alone, and a
combination of the two.

FIG. 8. Typical experimental data
taken from one pixel in an area of
homogeneous white matter of a pig
spinal cord. Data are shown in red
and the fit by the model (using one
hindered and one restricted com-
ponents) is shown in blue.
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In pixels containing a single fiber bundle we also ap-
plied CHARMED with single hindered and restricted com-
partments, where we used the entire signal decay up to the
maximal b value. Here, the correspondence between the
orientations of the hindered and restricted fiber orienta-

tions that were computed and that were known from the
actual fibers (See Fig. 10 and Table 3) was almost one to
one. The other extracted parameters (diffusion eigenval-
ues) were typical of dead neuronal tissue. Due to the
success of this model in separating crossing fibers in the

FIG. 9. The displacement iso-probability plots calculated for each
pixel in the spinal cord phantom shown in Fig. 2b. The iso-proba-
bility plots are calculated from fitting the experimental signal decay
(at low b values) to Eq. [15] with only one hindered component
(identical to conventional diffusion tensor analysis). The red line
represents borders of the region containing fibers aligned with the
z-axis; the blue line represents borders of the region containing
fibers aligned 45° below the z-axis. The ellipsoids are oriented along
the dominant fiber directions in the nonoverlapping regions, but not
in the region where fibers cross. For numerical results from the fits,
see Table 3.

Table 3
Fitting Results of Spinal Cord Phantom Data

Model

45° fiber 90° fiber Crossing pixels

1h1r1 1h1 1h1r1 1h1
1h2r1

1h1

45° fiber 90° fiber

fh 0.75 � 0.05 — 0.63 � 0.06 — 0.68 � 0.04 —
�1

2 0.54 � 0.15 0.34 � 0.07 0.88 � 0.24 0.44 � 0.10 1.48 � 0.10 0.34 � 0.05
�2

2 0.13 � 0.05 0.14 � 0.03 0.19 � 0.05 0.12 � 0.03 0.51 � 0.14 0.13 � 0.02
�3

2 0.07 � 0.04 0.10 � 0.03 0.09 � 0.03 0.09 � 0.02 0.11 � 0.05 0.10 � 0.02
�h 80 � 5 79 � 5 86 � 7 88 � 6 10 � 2 82 � 6
�h 49 � 7 50 � 7 87 � 5 88 � 5 89 � 4 74 � 6
fr 0.21 � 0.03 — 0.36 � 0.05 — 0.08 � 0.03 0.23 � 0.05 —
�r 77 � 6 — 88 � 5 — 73 � 22 83 � 6 —
�r 47 � 6 — 92 � 7 — 44 � 11 104 � 4 —
Noise 0.10 � 0.02 — 0.11 � 0.03 — 0.09 � 0.04 —
FA 0.78 � 0.12 0.60 � 0.10 0.80 � 0.07 0.72 � 0.09 0.78 � 0.05 0.58 � 0.08
N 42 42 45 45 27 27

11h model is a single hindered component (i.e., diffusion tensor analysis), 1h 1r is a combination of one hindered and one restricted
component, and 1h 2r is a model having combination of one hindered and two restricted components.
2�1 represents �// whereas �2 and �3 represents �� given in �10
5 cm2/sec.

FIG. 10. The displacement iso-probability plots calculated for each
pixel in the spinal cord phantom shown in Fig. 2b. In areas where
only one fiber population was present, the iso-probability plots were
calculated after fitting the entire experimental signal decay to Eq.
[15] with one hindered component and one restricted component. In
areas of crossing fibers the iso-probability plots were calculated
after fitting the experimental signal decay to Eq. [15] with one
hindered component and two restricted components. The red line
represents the borders of the fiber aligned with the z-axis and the
blue line represents the borders of the fiber aligned 45° below the
z-axis. For numerical results from the fits, see Table 3.

.

974 Assaf et al.



simulations (see above), in regions of crossing fibers we
also tested the combination of two restricted and one hin-
dered compartment. Indeed, this model was able to extract
the orientations there (see Fig. 10). The measured fiber
orientations were only slightly different from the true val-
ues (numerical data given in Table 3).

DISCUSSION

The model presented here attempts to combine and syn-
thesize signal intensity information collected at low and
high b (or q) values. In these two experimental regimes,
different water pools contribute to the signal decay. The
model characterizes diffusion in neuronal tissue as arising
from hindered and restricted diffusion processes. While
hindered diffusion predominates in the extra-axonal
spaces, restricted diffusion in white matter is expected to
arise from intra-axonal diffusion (37). It is important to
note that by intra-axonal diffusion we mean diffusion
within the axoplasm and not between individual layers of
the myelin sheath. Our simulations and experimental data
support the hypothesis that restricted diffusion within
axons might better delineate fiber orientation and even
help identify regions where fibers cross.

Our approach differs in important respects from other
methods that attempt to provide information about cross-
ing fibers, such as diffusion spectrum imaging (DSI) and
high angular resolution diffusion imaging (HARD). While
DSI has the advantage of not imposing any explicit model
of the diffusion process, it is more data intensive and less
informative about the underlying tissue microstructure
and organization. The current implementation of HARD
only treats data acquired over a sphere in the low b value
range, neglecting useful information at moderate and high
b values.

Theoretical Aspects

To our knowledge, this is the first modeling approach that
provides a 3D description of restricted diffusion suitable
for biologic or clinical applications. Motion in the princi-
pal and laboratory frames is related functionally so that
complex biologic structures can be studied within an im-
aging volume.

CHARMED is based on the assumption that the motions
of molecules parallel and perpendicular to the fiber are
statistically independent. This is valid only for certain
classes of restricted diffusion, for instance, for diffusion
within a tube or between parallel plates. It is not a gener-
ally true, however, and in particular is not expected to
hold if the boundaries are irregular (or fractal) or when, for
instance, there is significant partial refection at the bound-
aries. The form of Eq. [3] is valid only in the local principal
frame, which is the only frame in which these motions
parallel and perpendicular to the reflecting wall are uncor-
related. This is why it is important to formulate our diffu-
sion problem in this preferred local frame of reference
where the description of diffusive motion is simple and
tractable.

The two diffusing components (hindered and restricted)
are weighted by a population fraction factor. It is impor-
tant to distinguish the T2-weighted volume fractions of the

hindered and restricted compartments in this model from
the extracellular and intracellular volume fractions re-
ported, for example, using iontophoretic measurements
(38). The hindered compartment could include contribu-
tions from glia and astrocytes. The fh and fr reported here
also may arise from compartments with different T2’s or
even a spectrum of T2’s, so they do not necessarily reflect
true extra- and intracellular volume fractions.

Experimental Aspects

This modeling framework has important implications for
DTI tractography. In the context of this model, one hin-
dered and one restricted compartment whose principal
axes are aligned with each other should effectively de-
scribe coherently organized nerve pathways (see Figs. 4, 9,
and 10). We assume here that in homogenously oriented
white matter in which neuronal fibers are aligned approx-
imately in the same direction, both hindered and restricted
components share the same principal axes. In this circum-
stance, DTI-based methods can track fibers reliably since
the principal axes of the estimated diffusion tensor are an
excellent proxy for the principal axes of the restricted
nerve fiber. However, in regions with two or more distinct
noncollinear restricted compartments, D measured using
DTI predictably represents a powder average of diffusion
tensors from the various hindered compartments (7). In
this case, tractography might provide better results when
following the principal directions of the restricted com-
partments (see crossing fibers area in Figs. 9 and 10) rather
than the principal direction (eigenvector) associated with
the largest eigenvalue provided by DTI.

In contrast to DTI, powder averaging does not take place
in multiple restricted compartments. The contribution of
each can be separated since the motion within each fiber is
independent of the other. Indeed, this is the case seen in
our simulations where the restricted model was able to
distinguish between fibers crossing at angles as small as
30°. Moreover, using the spinal cord phantom, we were
able to show that CHARMED can distinguish between
fibers crossing at 45°, although with lower accuracy than
in our simulations (see Table 3). One of the many reasons
that can contribute to this diminished accuracy is the
minimum number of gradient directions needed to define
a fiber orientation. It might be that under the limitations of
the noise floor level and the pathologic condition of the
spinal cord, more gradient directions are needed to mea-
sure fiber orientation accurately. This point will be ex-
plored in depth in the future.

The model itself provides not only the direction of the
fibers, but also other diffusion-related parameters such as
the principal diffusivities for the various compartments
and the T2-weighted population fractions. The majority of
the signal in DTI arises from the hindered part (about 70%,
see Table 3), at least in the freshly excised pig spinal cord.
In some subtle white matter disorders, a DTI assessment
might be complemented by information from restricted
compartments. It has been shown that characterization of
the restricted diffusion can extend the diagnostic ability of
diffusion imaging (21,22). Quantitative characterization of
restricted diffusion in neuronal tissue might help one fol-
low the pathologic mechanisms that underline certain
white matter disorders.
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Using CHARMED for diffusion data obtained from hu-
man brain is more challenging. Given the variety of tissue
types and architectures in the brain, it is sensible to use a
parsimonious model selection procedure when choosing
among the various multicompartment models described
above. In this way, one can use the model that most effi-
ciently fits the diffusion decay data on a voxel-by-voxel
basis (39). Other limitations that should be explored before
clinical application to this model to the human brain
could be studied are: (1) the low SNR at high b value that
might cause insufficient signal for accurate assessment of
fiber orientations and (2) the need for high angular resolu-
tion (�20 gradient directions) might cause extremely long
acquisition times. However, 4–5 years ago it was believed
that diffusion imaging on human brain with b values above
2000 sec/mm2 was not possible or applicable. Yet, with
advances in diffusion gradient hardware it is now possible
to reach b values of 20000 and provide informative images
that are not corrupted by excessive noise. At the moment it
is true that a b value of 44000 sec/mm2 (as used in the
present paper) is not reasonable on a human scanner, but
our experience so far with human data showed that it
might be sufficient to use b values of up to 15000 sec/mm2

to obtain similar results; however, this must be further
explored.

SUMMARY AND CONCLUSION

We propose a model of water diffusion in white matter
having hindered diffusion in the extra-axonal compart-
ment and restricted diffusion in the intra-axonal compart-
ment. The form of the composite model is greatly simpli-
fied by observing that displacements in the direction per-
pendicular and parallel to the restrictive boundary can be
uncoupled. From experimental E(q) data, microstructual
parameters (e.g., D//, �//, ��) can be estimated. From the
best fit to E(q) data, a 3D displacement probability distri-
bution, p(r), can be calculated using Callaghan’s q-space
methodology.

The determination of the orientation(s) of the restricted
compartment(s) might provide improved angular resolu-
tion and fiber direction(s), which should aid tractography
studies. This was shown to be true at least for single fibers.
This combined theoretical and experimental framework
should provide new parameters that will allow us to fol-
low subtle changes occurring in white matter in disease,
development, aging, and degeneration with greater speci-
ficity and selectivity. Yet, the implementation of this ex-
perimental framework on human scanners is challenging
mainly due to signal-to-noise and scanning time limita-
tions.

APPENDIX A

This derivation shows how statistical independence of
displacements parallel and perpendicular to a restrictive
barrier leads to a simple product relationship between the
MR signals due to motion in these orthogonal directions.

Substituting R � R// 	 R� and Eq. [3] into Eq. [2] we
obtain

Er�q, �� ���� P� ��R�, ��P� //�R//, ��ei2�q��R�	R//� dR� dR//.

[A1]

The exponents above can now be separated as

Er�q, �� ���� P� ��R�, ��ei2�q�R� dR�P� //�R//, ��ei2�q�R// dR//

[A2]

and the integrals can be factored as well:

Er�q, ��

��� P� ��R�, ��ei2�q�R� dR� � P� //�R//, ��ei2�q�R// dR//.

[A3]

The first integral above describes the signal caused by 2D
motion perpendicular to the tube wall while the second
integral describes the signal caused by 1D motion parallel
to the tube axis.

Now substituting the relationship, q � q// 	 q� in [A3]
above, we obtain

Er�q, �� ��� P� ��R�, ��ei2��q//	q���R� dR�

�� P� //�R//, ��ei2��q//	q���R// dR//. [A4]

Using the additional requirements that q// �R� � q� �R// �
0, we obtain Eq. [5] above.

APPENDIX B

Computation of Components of q Parallel and
Perpendicular to the Nerve Fiber Axis

The parallel and perpendicular components of q for a
single restricted compartment are given by

�q�� � �q��1 � �sin��q�sin��N�cos��q � �N� � cos��q�cos��N��2

[B1]

or

�q��2 � �q�2�1 � �sin��q�sin��N�cos��q � �N�

� cos��q�cos��N��2� [B2]

and

�q//� � �q� � �sin��q�sin��N�cos��q � �N� � cos��q�cos��N��

[B3]

or
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�q//�2 � �q�2 � �sin��q�sin��N�cos��q � �N� � cos��q�cos��N��2.

[B4]

Above, �qand �q are the spherical coordinates as given by
Goldstein (40), indicating the pitch from the z-axis and the
angular rotation of the q vector about the z-axis in the x–y
plane, as shown in Fig. 1. �N and �N, are the spherical
coordinates of the axon or nerve fascicles, whose orienta-
tion is usually not known.

In the case in which there are two or more restricted
compartments, we can identify a particular �N

i and �N
i for

each compartment.

APPENDIX C

The quadratic form, qT D q, appearing in the cylindrically
symmetric hindered model in Eq. [11], can be simplified
by substituting q � q// 	 q�, keeping in mind that q� � q//

� 0:

qTDq � �q� � q//�
TD�q� � q//� � q�

T Dq� � q//
T Dq//	q�

T Dq//

� q//
T Dq� � q�

T Dq� � q//
T Dq//. [C1]

We see that terms such as q�
T Dq� and q//

T Dq// above repre-
sent projections of the diffusion tensor along q� and q//,
respectively. If we further assume, as we did provisionally
above, that the eigenvectors (i.e., the principal axes) of the
diffusion tensor in the hindered compartment are aligned
with the parallel and perpendicular axes of the restricted
compartment, then

qTDq � q�
T Dq� � q//

T Dq// � q� � q��� � q// � q//�//

� �q��2�� � �q//�2�//. [C2]

A similar decomposition is shown in (17) for cylindrically
symmetric anisotropic diffusion.

APPENDIX D

Justification for invoking the statistical independence of
the net displacement distribution can be seen by consid-
ering Eq. [1]. We can extend the formalism of Cheng and
Cory (41) by writing the net signal from the restricted
compartment as resulting from the composition of individ-
ual random jumps as

Er�q, ��

����· · ·��� ��0� �
i�1

N

P�Ri, 
i�Ri
1, 
i
1�ei2�q��Ri
Ri
1� dRi
1
3 ,

[D1]

where P(Ri, 
i�Ri
1, 
i
1) is the conditional probability
that a particle originally at Ri-1 at time 
i-1 will be at
position Ri at time 
I and �° is the spin density.

We can simplify the form of the exponent above,

Er�q, �� ����· · ·��� ei2�q�¥i�1
N
1 �Ri
Ri
1���0�

� �
i�1

N

P�Ri, 
i�Ri
1, 
i
1� dRi
1
3 , [D2]

and recognize it as the net displacement, R, over a time �,
that results from N individual jumps. For microscopic
diffusive motions viewed in the principal frame, jumps
along the directions parallel and perpendicular to the re-
strictive boundary are uncorrelated, a common assump-
tion made in performing Monte Carlo simulations:

P�Ri, 
i�Ri
1, 
i
1�

� P�xi, yi, 
i�xi
1, yi
1, 
i
1�P�zi, 
i�zi
1, 
i
1�. [D3]

In the case of motions within a restricted tube (where x
and y lie within the plane of the tube’s cross-section and z
lies along the tube’s axis), Eqs. [D2] and [D3] become

Er�q, �� ����· · ·��� ei2��qx ¥i�1
N �xi
xi
1�	qy ¥i�1

N �yi
yi
1��

� �
i�1

N

P�xi, yi, 
i�xi
1, yi
1, 
i
1�P�x0, y0 � 0, 0� dxi dyi�
� �� ei2�qz ¥i�1

N �zi
zi
1� �
i�1

N

P�zi, 
i�zi
1, 
i
1�P�z0 � 0� dzi�.

[D4]

The sums in the exponents are simply components of the
net displacement in the x, y, and z directions.

If we define the average propagator as in Kärger et al.
(25),

P� �R, �� � P�R, ��P�R � 0, � � 0�, [D5]

we can rewrite Eq. [D4] as

Er�q, �� � ��� P� �R�, ��0, 0�ei2�q�R� dR��
� �� P� �R	, ��0, 0�ei2�q�R	 dR	�. [D6]

So, if we make the reasonable assumption that the indi-
vidual molecular jump probabilities parallel and perpen-
dicular to the axis of the restriction are independent, it
follows that the net displacement probabilities parallel
and perpendicular to the axis of the restriction are inde-
pendent as well.
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