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The purpose of this chapter is to review how molecular
diffusion can be measured using nuclear magnetic reso-
nance (NMR). The concept of molecular diffusion is

introduced, and various methods to measure it are mo-

tivated from the basic equatlons governing diffusive
transport. The. measurement of molecular diffusion
using NMR is presented. The effect of molecular diffu-
sion on the NMR signal is described, and each paradig-
matic pulse sequence used to measure diffusion with
NMR is introduced In the following chapters, these
pulse sequences will be described in more detail, espe-
cially in the context of NMR imaging (see Chapter 2).
Finally, we discuss specific problems encountered
when studying diffusion in: biological tissues. These
problems will be analyzed more thoroughly in Chapters
7 and 8.

THE MOLECULAR DIFFUSION PROCESS
Diffusive transport is readily observed in steady-_

state, non-equilibrium systems, such as in cells. Here,

a concentration difference is established between two

compartments, and a macroscopic diffusive flux can_

be observed between them. Fick’s law describes how
the molecular flux. den51ty J, depends on the molecular
concentration gradlent vC (1):

= —-DVC ' 1]

The diffusion coefficient, D, is a proportionality con-
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stant that can be determined experimentally from the
ratio of the flux and the concentration gradient, mea-
sured using either physical or chemical methods (2).
By combining the equation of conservation of mass,

= - [2]

with Fick’s law, one obtains the diffusion equation:

%Q = —-WVJ = V(DVC). i3]
t .
For a constant (spatially unlform) diffusivity, solu-
tions are readily obtained for various paradigmatic ini-
tial concentration profiles and boundary conditions.
For example, the solution of the diffusion equation in
an unbounded medium for particles satisfying the ini-
tial condition C(r, 0) = 8(r — ro) is (2):

o 1V (== roer — ro)
€Y ='<,/4th> e"p( ~aDr | ) L4]

The diffusion equation suggests other well-known
inethods to determine D employing radioactive or fluo-
rescent tracers. Here, the concentration profiles of the
tracer ars\r:omtored over time, and its dlfoSlVlty is

_ inferred from them (1). Microscopic displacements can

be seen with tracers on the scale of millimeters. Spa-
tially resolved methods can also be used, such as in-
frared spectroscopy or Rayleigh scattering (3), allow-
ing resolution in the micrometer range. Such tracer

‘techniques have been successfully applied in biological \

systems, such as the brain (4,5). However, because of

the inherent invasiveness of using exogenous tracers, .

such techniques cannot be used in vivo with humans.
An alternative approach to measuring diffusivity is
to monitor the diffusion process itself, i.e., the random
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motions of an ensemble of particles. Einstein (6).
showed that the diffusion coefficient measured in the
nonequilibrium concentration cell experiments de-
scribed above is the same quantity that appears in the
variance of the conditional probability distribution,
P(r | ro, t), the probability of finding a molecule at a

position r at a time ¢, which was initially at a position
ro. For free diffusion, this conditional probability dis-.

tribution obeys the same diffusion equation as the par-
ticle concentration given. It follows that

Ax - rop(x —r) =6Dt . [3]

The Einstein equation, which relates D to the root
‘mean square of the diffusion distance (Fig. 1), suggests
that by measuring the second moment of the condi-

tional probability distribution of the diffusing species,
one could infer the diffusivity directly. This approach

is amenable to measurements using NMR methods. '

In fact, NMR provides the only existing method with
which to characterize molecular displacements over
distances larger than the mean free path. This justifies
the considerable success of diffusion NMR in physics
and chemistry. In some cases, when it is desirable to
monitor individual molecular pathways (for instance in
terms of mean elementary diffusion steps) NMR must
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FIG. 1. Diffusion distancé\\:/ersus diffusion time in human
brain. The diffusion distante (root mean square displace-
ment) of diffusing water molecules is plotted against the
square root of the diffusién time, T4. This diffusion dis-
tance was calculated acce rding to Einstein’s relation (Eq.
[5]) from diffusion coefﬁcients measured at 1.5T for differ-
ent diffusion times in”human brain in vivo. The plot is
linear, as is expected for free diffusion. The sliope gives
the diffusion coefficient. In white matter, molecuiar dis-
placements and diffusion were evaluated both parallei to
(z) and perpendicular to (x) the myelin fiber direction to
take into account diffusion anisotropy.

1 N.B. One must replace the diffusion constant by a diffusion ten-
sor in Eq. [5] when inferring molecular displacements in tissues in
which diffusion exhibiting anisotropic diffusion, i.e., the molecular
mobility appears to be different in the x, y, or Z directions (1).
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be replaced by other techniques, although some infor-
mation can be derived from relaxation NMR studies.
The relaxation times Ty and T2 depend to some extent
on diffusion-driven molecular mobility, as can be seen
in the Bloom-Purcell-Bloembergen equations (7,8).
However, T, and T, are influenced by many other pro-
cesses besides diffusion, so that this approach is ex-
tremely indirect. It may be inferred that T, or T2 are
generally not suitable for estimating diffusivity. In bio-
logical tissues, the diffusion mechanism that predomi-
nates for relaxation is rotational, not translational dif-
fusion. One may thus expect to see that T; or T2, and
diffusive relaxation are different in tissues.

The methods to measure diffusion at Microscopic |
length scales are limited. Laser and neutron scattering
techniques are both unsuitable for in vivo human stud-
ies. Owing to the high degree of photon scattering in
turbid tissues, light scattering is not an efficient means
to probe diffusivity in vivo, except, perhaps, superfi-
cially (9). Moreover, it is limited in spatial resolution
to a few microns by the wavelength of the laser beam.
used. Neutron scattering allows a spatial resolution in
the nanometer range, which is highly desirable for
probing biological tissues at the molecular scale; but
its obvious main limitation, for any in vivo application
is that it requires neutron bgams. To conclude this sec-
tion, we are fortunate that NMR is available as a tool
for the completely noninvasive investigation of molec-
ular displacements in the micren range (and possibly
the sub-micron range) encompassing the size of most
biological tissue structures.

DIFFUSION AND NMR
The Basic Principles

The effect of diffusion on the NMR signal can be
understood from a simple bipolar pulsed gradient ex-
periment (Fig. 2). The purpose of these gradient pulses
is to magnetically label spins carried by molecules. Let
us denote G as the gradient strength, & as the gradient
duration, and A as the time interval between the pulse
onsets (following Stejskal and Tanner’s terminology)
(10). The first gradient pulse induces a phase shift ¢1
of the spin transverse magnetization, which depends
on the spin position (spin labeling). If the gradient is
along z: 4

, |
b =y jo Grudt = vGo2: 61

where z; is the spin position supposed to be constant
during the short duration & of the gradient pulse y is
the gyromagnetic ratio. After the 180° rf pulse, &1 is
transformed into — ¢;. Similarly, the second pulse will
produce a phase shift ¢- (spin unlabeling):
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where z, is the spin position during the second pulse.
The net dephasing, 8(¢), is therefore:

One immediately sees that for ‘‘static’ spins z; = zz,
so that the bipolar gradient pair produces no net de-

the time interval A between the pulses, and which will
affect the transverse magnetization. We also see that

the spin-echo sequence does not matter, it is the time
_elapsed between them that affects the net phase. We
measure the total magnetization—the vector sum of
the magnetic moments of the individual nuclei, which
may have different motion histories:

M 2} exp (id(¢)). [91

- This sum can be evaluated once the net phase distribu-
ion is known. Assuming free diffusion in a homoge-
nous domain, the probability of finding a spin at posi-
_tion z, is a constant. If P(z, z1, A)dz2 is the conditional

@l{ Pulsed Gradients
(Stejskal-Tanner)

b= v2G28? (A-5/3)

3(¢) = ¢ — ¢ = YG8(z1 — z2)- [8] ]

phasing. For “moving’’ spins, however, there is a-net*
dephasing that will depend on the spin history during:

the position of the two gradient pulses in each half of .
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& Sﬁingle Echo
- b= y2G?TE®/12

Multi-Echo
b= y2G?TE¥12 n?

FiG. 2. Effect of diffusion for different
gradient pulse schemes. The spin-echo

“signal attenuation due to diffusion de-
pends largely on the gradient pulse
scheme used. The gradient contribution
is characterized by a gradient factor b,
such that the signal attenuation is
exp(— bD), where D is the diffusion coef-
ficient. The largest effect is produced by
a constant gradient pulse, G, in a single
echo sequence. However, the Stejskal-
Tanner scheme, i.e., gradient pulses of
short duration 3, separated by a time in-
terval D, is better suited for imaging and
has a better defined diffusion time.

probability of finding a spin initially at z; between posi-
tions z, and z, + dz; after a time interval A, the ampli-
tude attenuatlon is:

Mo f f_w eXP(lVGS(zl—Zz)) [10]

X P(z2 I 21, A) dzidzs

For free diffusion in one dimension, the condmonal
probability is given by:

- _ 2
P(z: | z1,4) = (ZIDAZZ)) [11]

1 .
Ja=Da °*P ( 4
where D.is. the dlffusmn coefficient. Combining Egs.
[10] and [11], we obtain:

% = exp(—(yG8? DA) [12]

Either Eq. t12] or its logarithm,

In (%) = ~(yG8)* AD [13]

relates the measured signal attenuation to the diffusiv-

ity, and is the basis for diffusion measurement using
NMR.
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FIG. 3. Effect of diffusion on spin-echo signal amplitude.
The logarithm of the signal intensity obtained in white
matter was plotted against the gradient factor b, ac-
cording to Eq. [15]. The plot is linear, and the slope is
equal to the diffusion coefficient (D = 0.60 = 0.01 X
10~3mm?s). (Data obtained at 4.7T in the In Vivo NMR
Center, NIH, in collaboration with C. T. W. Moonen and
P. C. M. van Zijl.) ' '

According to Eq. [13], we may estimate the diffusion
coefficient (or diffusion distances) by varying G or &
and measuring the slope of the logarithm of the signal
intensity versus (G8)* (Fig. 3). Two problems still re-
main with this simplified approach. First, 5 may not be
negligible as compared to 4, so that diffusion occurring
during the application of the gradient pulses can no
longer be ignored. This is the case for commercial MRI
units in which the maximum available gradient strength
is generally limited, so that long gradient durations are
required to produce observable diffusion effects. Sec-
ond, there may be additional gradient pulses, including

~ imaging pulses and background residual gradients that
also affect the measured magnetization. To address
these problems, we must solve the Bloch-Torrey equa-
tion (11), for a general pulse sequence.

Equations Governing the Diffusive Transport of
Magnetization

The Bloch equations (12) with diffusion (11) relate
the applied magnetic field vector, B = (B., By, By) to
the net (nuclear) magnetization vector, M= (M. M,,
M,) in the laboratory frame of reference:

1
M_ o ixB-l0o =~ 0 |M+M| o
Jt T>
. UT,
00

+ V(DVM). [14]

Above, v is the gyromagnetic ratio, T; and T are the
longitudinal and transverse relaxation times, and My is’
the equilibrium magnetization in the direction of the
static applied magnetic field, Bo.

For a 90°-180° spin-echo sequence, the spins are
subjected to an impressed static magnetic field super-
posed with a linear gradient in the z direction (7):

B(r, 1) = (0, 0, *G(f) + Bo)” (5]

" where r is the displacement vector, and

G(?) = (G«1), Gy(1), G0N (16]

Then, the Bloch equations (12) for the complex-valued
transverse magnetization, m:

m(r, t) = M,(r,t) + i My(r, 1) [17]
can be recast as a transport equation for m (11):

om . m )
o = Tiwem — g = zyr-G(t)m‘ + V*(QVm) [18/]
where the Larmor relation, yBo = wo, Was used.

To eliminate the attenuation due to transverse relax-
ation and signal modulation by Larmor precession, the
following substitution is used:

. | ' 1
m(r, t) = P(r, t) €Xp (—(zwo + -,1:;> t) [19]

so that
- — iy Gy + V(DY) [20]
For a spin-echo sequence, one can further simplify the
transport equation by separating ¥(r, t) into an imagi-
nary part, which represents the solution to Eq. [20]

without diffusion, and a real, time-dependent part that
represents the attenuation due to diffusion:

Y(r, 1) = M(1) exp(—irk(?) 21}
where -
k() = yth(t’) ar'. 2]
0
The resulting equation for M(¢) is:
M o vDY exp(—irk() 231

—M(2) k()" Dk(?)

which has a solution for an anisotropic medium with
uniform diffusivity:

V?M(;t\)f = M(©) exp («— f(: k(u)” Dk(u) ‘du) [24] *




Above, M(0) is the amplitude of the initial transverse
magnetization (at ¢ - 0%) Just after the 90° pulse is ap-
plied.

For an isotropic medium the echo intensity, M(TE),
in a spin-echo experiment is then given by:

TE
M(IE) = exp (—D k(¢ )k(t") dt’). [25]
M, o

This relation is valid for a spin-echo gradient pulse
combination. If refocusing 180° rf pulses are used in
the sequence, the sign of G is inverted for all gradient
pulses following the 180° pulse. When only the diffu-
sion sensitizing gradient pulses are present and § < A,
Eq. [25] simpilifies to Eq. [12], as expected. Evaluating
Eq. [25] becomes more complicated when many gra-
dient pulses are involved, as in MR imaging. A useful
quantity that characterizes the sensitivity of NMR se-
quences to diffusion is the “gradlent factor,”’ b, (13)
defined as (14,15): :

TE

b= [ keyk@)de. 6]
J0

The signal attenuation is then reduced to a simpler
expression:

M(TE

——(AF) = exp(-=bD). [27]
One must remember that Eq. [25] is strictly valid for
diffusion, in infinite, homogeneous, and isotropic
media. Then, no cross-terms exist between gradient
pulses, i.e., the contributions to the measured NMR
signal from each gradient axis are uncoupled, and may
be determined separately (14). If diffusion is restricted

" by impermeable barriers, or if it is anisotropic, the sig-
nal attenuation must be calculated differently. As we -
will see, in anisotropic media, additional cross-terms,
must be taken into account in both diffusion spectros-

copy and imaging (16).

NMR Diffusion Experiments: The Different
Approaches -

Several NMR diffusion sequences based on funda-
mental principles have been proposed in the literature,
all of which are more or less compatible with NMR
imaging. A more extensive analysis of the effects of
diffusion in these sequences when used in the imaging
mode will be given in the following chapters.

Constant Field Gradient Spin-echo Method

The effect of diffusion and other molecular transla-
tional motions on spin-echo signals in the presence of
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a constant background magnetic field inhomogeneity
has already been described in Hahn’s paper (17), and
later analyzed by Carr and Purcell (18). If this inhomo-
geneity is a simple linear gradient Gy, or if such a gra-
dient is purposely applied, the echo. attenuation can
easily be derived from Eq. [25] (Fig. 2) (18,19):

M, 12n (28]

M(nTE) ( —(yGo)* DT E3)

— g =exp|l——5—|,
where TE is the echo time, and 7 is the echo number
in a multiple echo experiment. This technique gives
the highest accuracy for the diffusion coefficient (20),
provided that the relaxation time T, of the medium is
not too short to allow enough diffusion attenuation to
occur during TE. However, the diffusion time of this .

_ experiment is not well characterized. As spins diffuse

for the duration of the sequence, i.e., TE, the effect
of their displacement on the signal attenuation is a
function of time, resulting in an *‘effective’’ diffusion
time of only 2TE/3, as it can be seen by comparing
Egs. [28] and [12], where we assumed that § = A =
TER and n = 1.

Bipolar Gradient Pulse Spin-echo Technique

This technique, suggested by Stejskal and Tanner
(10), is the most widely used sequence to measure dif-
fusion by NMR. Equation [12] only gives an approxi-
mation of the echo attenuation, since the duration é of
each pulse may not be negligible as compared to the
pulse interval A. The exact solution can be obtained
from Eq. [25] (Fig. 2):

: -]]“—;; =Aexp(——(‘yG3)2 (A — 8/3) D). ‘ [29]

The residual background gradients G, that are con-

stantly present during the sequence may also be taken

into account; so that the signal attenuation is (10):

~

MM‘“=CXP( ‘YZD(flz(tz—tl/3)G0 *
+82(A-8[3)G* - 8(t >+ 1.2+ 8(t + 1) [30]

+28%3 - 2ty tz) GG()))

where #, is the time between the 90° pulse and the onset

- of the first gradient pulse, and £, is the time between

the end of the second gradient pulse and the top of
the echo. The terms confaining G, may represent a
significant contribution that can be difficult to evalu-
ate. Equation [30] reduces to Eq. [12]if 6 <€ A4, and G,

- <€ G (negligible background gradients). The diffusion

time can be formally defined as (A — §/3) (10), but it
is physically meaningful only when 6 < 4.
A classical source of error is to determine the diffu-
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FIG. 4. Minimum measurable diffusion coefficient as a
function of Tz and gradient strength. The minimum diffu-
sion coefficient measurabie from a spin-echo sequence
was calculated as a function of maximum gradient

strength available (G = 40 mT/m or G = 50 mT/M) and Tz.

in two different cases. The assumptions are that diffusion
related echo attenuation must be at least 20% and that
TE is equal to Tz, to maintain sufficiently high signal-to-
noise ratio and good accuracy on diffusion. Best sensitiv-
ity is obtained for the constant gradient scheme (6 =4
= TE/2). It would be impossible to measure diffusion in
brain (TE = 100 ms, D = 1 x 10~3mm?s) with short
gradient pulses (6 = A/10), unless muchlarger gradients
are used.

sion coefficient by this method when k(TE) # 0. This
produces an artifactual echo attenuation due to incom-
plete spin refocusing, which could be misinterpreted as
arising from diffusion. In this sequence, any mismatch
befween the two gradient pulses (amplitude, G1, Ga,
and/or duration 8;, 8,) resulting in the condition that

G161 # G258, will result in incomplete spin refocusing. -

Unfortunately, this mismatch naturally arises in the
presence of background gradients or eddy currents.
Tweaking gradients may ameliorate the problem.
Nevertheless, careful hardware calibration is essential
in diffusion NMR experiments.

To access the precision of this method, let us calcu-
late the smallest diffusion coefficient one can measure
using Eq. [29} given hardware limitations (maximum
gradient strength achievable) and experimental con-
straints (diffusion time with respect to T,). If we accept
a2 20% minimum signal attenuation and a 30% maximum
signal loss from transverse relaxation to obtain reason-
able accuracy for D, we find that the minimum measur-
able diffusion coefficient Dimin is more than 16 times
the diffusion coefficient of free water (Fig. 4):

Dain = 37 x 1073 mm?/s [31]a

with 8 = A/10, A = Tz, T, = 100 ms, and G = 10
mT/m. However, Dmin is about L the diffusion coeffi-
cient of water when different parameters are used:

Doin = 0.4 X 1073 mm?s [311b

with 8 = A (equivalent to a constant gradient), A =
T,/2, T = 100 ms, and G = 10 mT/m. Thus, T2 is the
main limiting factor of the accuracy of this method for a
given available gradient power. The problem is further
complicated by the fact that media with low diffusion
coefficients generally have low T,s owing to their low
mobility. The accuracy of D, which can reach 1%, de-
creases with the signal-to-noise ratio. Tissues with
short T3s, as in the body, require short TEs that may
not allow sufficient time to produce enough signal at-
tenuation by diffusion. A solution to this problem is to
use a scheme like the stimulated-echo sequence, which
increases the effective diffusion time without signal at-
tenuation by T relaxation.

Stimulated Echo Technique

A stimulated echo is generated from a sequence con-
sisting of three radiofrequency (rf) pulses separated by

time intervals 71 and 72 (Fig. 5) (17). The remarkable.

feature of this sequence results from the magnetization
evolution during the period 72 between the second and
the third rf pulse. After the end of the second 1f pulse,.’ -
part of the transverse magnetization (exactly half in the
case where 90° pulses are used) is stored as longitudinal
magnetization, which becomes insensitive to field in-
homogeneities and which decays according to Ti. As
T, is usually much longer than T> in biological tissues,
longer evolution times can be achieved than with a
spin-echo sequence without the usual signal penalty
due to T, decay. The third rf pulse returns the stored
magnetization to the transverse plane at time 7 after
the third pulse. The amplitude of the stimulated echo
is, in the case where the three rf pulses are 90° pulses
1a7):

M _1 _T _2n
M, "2 exp( Tl) e)gp( T2>' [32]

This property is particularly useful for diffusion mea-
surements where long diffusion times are required.
Gradient pulses must be inserted within the first and
the third periods of the stimulated echo sequence (Fig.
5). The diffusion time then includes 7, and thus can
be much longer than with a spin-echo sequence. The
Stejskal-Tanner relation (Eq. [25]) still applies, pro-
vided that the period.7; is included in A (21). The longer
diffusion time is useful in studying very slow diffusion
rates or in compensating for unavailability of large gra-
dients. Unfortunately, there is a signal reduction by
one-half when compared to the spin-echo signal, since
only half of the magnetization generated at the end of
the 7, period contributes to the echo intensity. The
stimulated echo scheme has been proposed for diffu-
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FIG. 5. Diffusion-stimulated echo sequence. A stimulated echo résults from the spin excitation
by three rf pulses separated by time intervals vy and 2. During 72, relaxation is driven by T and
not by T. Since most often T4 > T», 7. may be very long without signal-to-noise ratio penality,
. by contrast with TE in a spin-echo sequence. Diffusion effects can be enhanced by placing
gradient pulses within the 71 periods, where transverse magnetization is sensitive to field inhomo-

geneltles

sion imaging methods (22). Due to signal-to-noise con-

siderations, it appears that this sequence is useful pri-
marily in the presence of tissues with short T,s or when
the spin-echo sequence cannot be used (23).

Gradient Echo Technique

The effect-of diffusion on the amplitude of a gradient
echo formed by a bipolar gradient pulse pair of re-

- versed polarlty does not differ from that of a spin echo
sequence. It is straightforward to use Eq. [25] in this
. case; it gives the same expression as Eq. [29}. How-

ever, a dramatic deviation from Eq. [29] can be se¢h
if the gradient echo is part of a steady-state free preces:

sion (SSFP) sequence, where some degree of phase

coherence is propagated throughout successive cycles,
especially when low flip angles are used. Due to multi-
ple echo paths that are then formed, a SSFP train can

. be considered for diffusion as a mixture of different

schemes, i.e., gradient echo, spin echo, stimulated
echo, and higher order echoes, with different diffusion
times and different diffusion weightings. Kaiser et al.

. (24) have provided a detailed theoretical analysis of

this problem. In the imaging domain, some work has
been done, mainly using the CE-FAST scheme
(25-28), with the hope that the speed of the SSFP tech-
niques would decrease motion artifacts. Indeed, the

+ effects of involuntary macroscopic motion are just as

important as in spin-echo sequences, although ghosting
is significantly reduced, because any motion related
phase shift will propagate through all acquisition cy-

cles. Moreover, the effects of diffusion and relaxation
are no longer nicely separable in a multiplicative man-
ner, as with spin echoes, so that diffusion measure-
ments are always contaminated by relaxation effects
(26,29).

Diffusion Measurements with B; Field Gradients

Diffusion gradients can also be developed by the rf
(Bl) field produced by a NMR rf coil (30,31). It has
been suggested that this method of producing diffusion

‘gradients overcomes the hardware problems encoun-

tered when using strong static magnetic field (B,) gra-
dients. The idea is that an rf field gradient pulse G, =

‘dBy/dr of duration 8, as induced by a surface coil ori-

ented perpendicularly to the main transmit/receive
NMR coil, will flip the magnetization within the sample
by an angle Q.which depends on position r:

dB,
Q=81 [33]

This flip angle dispersion, which should be made linear,
is canceled after a time interval 4 using a symmetric rf -
pulse. As in the case of the B, gradient pulse sequence,

.moving spins will be incompletely refocused by the -

sequence, which results, here, in a loss of longitudinal
magnetization. This longitudinal magnetization loss,
M,/M,, can be probed using either an observed pulse
(30) or an imaging sequence (31). This signal loss will
depend on the diffusion coefficient and relaxation (T,).

With rf gradients, extremely short switching times can
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be achieved, since there are no eddy currents. Further-
more, substantial gradient strength may be produced,
depending on the output available from the rf transmit-
ter, allowing measurements of very low diffusion coef-
ficients. Unfortunately, such strong and long rf field
pulses may result in high power deposition that may
be incompatible with clinical use. Furthermore, the

coil itself is subject to power dissipation problems that .

may alter its performance (tuning/matching, linearity)
during the experiment.

DIFFUSION IN BIOLOGICAL SYSTEMS: EFFECTS
OF MICRODYNAMICS AND MICROSTRUCTURE

Biological tissues differ largely from the condition
of an ‘‘infinite, homogeneous medium’’ that we have

considered so far. They are heterogeneous, containing

multiple subcompartments (microstructure). Depend-
ing on the permeability of the barriers that divide these
compartments, we have to consider exchange and

transport between them (rnicrodynamics). A classic

treatment of the NMR signal may not properly reflect
tissue structure or properties. Diffusion coefficients
may be meaningless under these conditions if the mea-
" surement time scale or the measurement direction is
not providéd. The ‘main difficulty is that the medium
structure is generally not known in detail, so that mod-
eling is required. In particular, one must be cautious
to use Fick’s law and derived relations (Egs. (11-13D).
The conditional probability distribution governing the
diffusion process may now deviate from a Gaussian
distribution appropriate for free diffusion (Eq. [1n.

Most successful analyses start from the conditional’

probability distribution, taking into account the me-
dium’s structure and particular boundary conditions.
We consider the simplest NMR sequence, the bipolar
gradient spin echo sequence, in which the pulse dura-
tion & is negligible with respect to pulse separation A.

Equation [8], where now P(z1), the probability to find

a spin initially at position z;, has been incorporated,
may be used as a starting point:

B . _

- J f exp(iyGd(z, — 22))

' T ' 4]
x P(z2| z1, A)P(21) dz1dz2

Another approach, suggested by Callaghan, and
used by Cory et al. (32), is to invert this problem—to
determine the probability distribution of the molecular
displacements, P(z, A), from the NMR data. By rewrit-
ing Eq. [36] in a more suggestive form:

M(yG3) _
Mo

we can see immediately that P(z, A) is the Fourier

| " exp(iyGo2)P(z, A) dz [35]

transform of the measured magnetization intensity. In
measuring the displacement distribution, we make no
a priori assumption that diffusion is free, and thus char-
acterized by a Gaussian distribution with a single diffu-
sion coefficient. Although apparent diffusion coeffi-
cients may be easier to use and understand, they may
not always be meaningful, thisis particularly true when
there is'complete restriction.

Restricted Diffusion

Diffusion is restricted when boundaries.in the me-
dium prevent molecules from moving freely across
them (33-38). The observation of restriction must be
related to the experimental parameters. When mea-

" surement times are very short, most molecules do not

have enough time to reach boundaries, so that they.

_ behave as though they were diffusing freely. As the

diffusion time increases, however, a larger fraction of
molecules will strike the boundaries, and their dis-
‘placement distribution will deviate from its behavior
in an unbounded medium. The diffusion distance, -
@) calculated for free diffusion using Einstein’s re-
lation <22y = /2DTa (Eq. [5]) deviates from linearity
with réspect to ~/Ta, finally leveling-off as the diffusion:

~ distance reaches the size of the restricting compart-

ment (Fig. 6). The effects of restriction will thus appear
in the NMR signal when mean diffusion distances are
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FIG. 6. Restricted diffusion and diffusion time. The diffu-
sion distance is plotted against the square root of the
diffusion time using Einstein’s relation (Eq. [5]), similar
to Fig. 1, for water in vitro and for phosphocreatine in
vivo in rat muscle using *'P spectroscopy. The leveling-
off of the curve for phosphocreatine suggests that diffu-
sion of this molecular species in muscle cell is restricted.
The size of this restricted volume can be roughly esti- -
mated to 20 um. (From Moonen et al., ref. 47, with per- ..
mission.) ‘




of the order of the characteristic length of the restricted
compartment. These effects will depend on the type of
restriction (impermeable or permeable barriers, attrac-
tive centers, etc.), the shape of the restricting volumes
(spherical, cylindrical, planar, etc.), and the type of

' NMR experiment (constant or pulsed gradients), so
‘that there is no single analytlcal expression to describe
every configuration.

A simple example is represented by molecules dif-
fusing between two impermeable parallel walls sepa-
rated by a distance a (33). If the theoretical, free diffu-
sion distance greatly exceeds a, the echo attenuation
in the case of the bipolar gradient pulse experiment
significantly deviates from an exponential decay and
becomes independent of the diffusion time (33), imply-
ing that molecules are trapped in the direction of the
applied gradient: :

- M(yG8) _ [sin(yGéal2)Y
: : My \ (/Geald) )
For a constant gradient Gy, the attenuation is (34,36):

M(yG9) ) _
M,

(36]

exp(—(TE — 17a%56 D)a*(yGo)*/120 D)
(37]

represented by restricted diffusion in a spherical cavity

of radius Ro. In the limit where the theoretical, free
- diffusion distance largely exceeds Ry, the attenuation
is again independent of the diffusion time (33,36), so
that the measured apparent diffusion coefﬁment de-
creases as the diffusion time is increased:

M(yGé RoyGd)? |
Mo _ (- Eg)
- corresponding to an asymptotic apparent diffusion
- coefficient Dasymp = Ro?/(A5) with the factor 5 re-

of the sphere. For a constant gradient Go, one obtains:
- MMy = )

exp(— (TE — 581 Ry*/1,260 D)8Ro* (vGo)*/175 D) -
[39]

_Whatever the geometry of the restrictive medium, the
- deviation from linearity in the semilog plot of the signal
_attenuation versus b is crucial to determine whether
diffusion is restricted, although other causes, such as
diffusion in inhomogeneous systems, may produce the
same effect. The ultimate test is to show that the mea-
sured diffusion coefficient D, or the signal attenuation

studies can, in principle, lead to the determination of
the compartmental geometry and size of the restricting
boundaries, but expenments are generally less ambi-

Another interesting but more complicated case is .

placed by 3 when diffusion is confined to the surface ‘

varies with the diffusion time, T, as it is changed. Such
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tious. If one wants to avoid restricted diffusion effects,
one must decrease the diffusion time T4(4), so that
the diffusion distance /z%) during T,(A) remains less
than the characteristic length, R of the restricted re-
gion. Unfortunately, the diffusion effect under these
conditions becomes small, as can be seen from Eq.
[29]. In order to produce more diffusion attenuation,
one can use several pairs of gradient pulses. With this

‘configuration (Fig. 7), the diffusion time remains A4,

the interval between two pulses of the same pair, but
the b factor is » times larger than with a single pair,
where 7 is the number of pulse pairs:

% = exp(—(yG8)*(4 — 8/3) Dn) [40]
0

while the b factor is, however, \/ﬁ times smaller than
with a single pair.

Permeable Barriers

When the restrictive barriers become permeable to
diffusing molecules, the qualitative features of the ob-
served displacement distribution change. The mathe-
matical treatment of diffusion in systems partitioned
by permeable barriers is far from simple. An example
was given by Tanner (39) in the case of equally spaced,
plane barriers having a permeability constant k. For
short diffusion times, the apparent diffusion coefficient
is the free diffusion coefficient Dy. As the diffusion
time is increased, the apparent diffusion coefficient de-

" creases, as expected for restricted diffusion, but it satu-

rates at D,gymp, which depends on permeability (Fig.
8): .

Do

{0 = Dolxa) [41]

D asymp

where a is the barrier spacing, which can be estimated

from the equivalent frée diffusion distance that would

be covered for a diffusion time ~/ Tz, such that

D(T2) =
to estimate the barrier permeability « (40). This ap-
proach, however, is oversimplified, given that the geo-
metrical arrangement of the medium is generally un-
known. In particular, this formalism does not apply
to the case in which the system consists of spherical
cavities separated by permeable barriers.

- Anisotropic Diffﬁsion

Diffusion is a three-dimensional process. However,
molecular mobility may not be the same in all direc-
tions. This anisotropy may be due to the physical ar-
rangement of the medium (liquid crystal) or to the pres-
ence of obstacles that limit diffusion (restricted

(Do + Dasymp)/2. It then becomes possible
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180 | ' Echo
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FIG. 7. Alterna'ted gradient pulse sequence. To decrease restricted diffusion effects, one may ..
use an alternating gradient pulse train. The diffusion time is, in this case, reduced to that defined
by a single gradient pulse pair, i.e., (4 — 8/3). The b factor, however, is \/ﬁ times iess than when

using an equivalent single pair.
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FIG. 8. Restriction by permeable barriers. When diffusion is reduced (restricted) by permeable
barriers, the dependence of the diffusion coefficient on the diffusion time is modulated by the
permeability of the restrictive barriers. In particular, the measured diffusion coefficient decreases
with diffusion time, Tq, but saturates at a level, Dasymp- The size of the restrictive volume can be
estimated from the freely diffusion distance that would be covered by free diffusing molecules
during \/ﬁ, where /T4 is defined by the diffusion time corresponding to Dieasured = (Dasymp +

" Do)/2.




diffusion). It should be pointed out that diffusion can
be both anisotropic and unrestricted. This behavior is

well known in nematic liquid crystals (41) and can be

found in the water lamellar phase of amphiphilic lyo-
tropic systems (42) in which anisotropic diffusion mea-
surements then could allow the determination of the
transbilayer permeation rate. Moreover, structures
that exhibit anisotropic diffusion at the molecular level
can be isotropic at the microscopic level, resulting in
a ‘‘powder average’ effect that is difficult to sort out.
The plot of log(M) versus b may not be linear in this
case (42). This deviation from linearity can be ascribed,
however, to anisotropy and not to restricted diffusion,
because the diffusion measurements are independent
of the diffusion time.

In anisotropic diffusion, the effective diffusion coef-
ficient is replaced by an effective diffusion tensor ).

In this situation, Eq. [25] is no longer valid and the

diffusion equations must be rewritten using a tensor
formulation. In this case the term k(r)yk(#) D is re-
placed by the quadratic form, k(1)Dk(¢) (10). Equa-
tion [24] is used in place of Eq. [25], and Egs. [26]
and [27] must also be changed accordingly. The echo
attenuation then becomes (16):

' 3 3 :
MI(JE) = exp (— > by D,-j) [42]
A ;

i=1j=1

where by is a b-matrix, and Dy is an effective diffusion
tensor (16). Its diagonal terms, Dxx, Dyy, and D, re-
flect correlations between molecular displacements in
the same directions, whereas its off-diagonal terms,
D,y, Dy, Dy, reflect correlations between molecular
displacements in orthogonal directions. For instance,
when observing diffusion in a lattice of semi-permeable

spect to the x and y axes, macroscopic displacements
along x will appear to be correlated to displacements
along y. .
~ In general, we must assume that both diagonal and
off-diagonal terms in the diffusion tensor do not vanish,
unless we know a priori that the gradient (laboratory
coordinate) directions coincide with the principal di-
ctions of the material—a condition which is rarely’
satisfied, especially in NMR imaging applications. Re-
ferring to Eq. [42], if diffusion gradients are applied
simultaneously along the x, y, and z axes, the measured
attenuation will now be a mixture of terms containing
both diagonal and off-diagonal elements of the diffu-
sion tensor. The specific problems associated with
‘measurement and assessment of anisotropic diffusion
data will be analyzed in greater detail in Chapter 8.

iffusion in Multiple Compartment Systems

_Most diffusion measurements in biological tissues
re of an ““‘apparent’’ diffusion coefficient. It is gener-

parallel layers that are oriented obliquely with re-
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ally assumed that there is a unique diffusion coefficient
in each measurement volume (voxel in imaging). We
should now check to see if this assumption is valid,
since most tissues consist of multiple subcompart-
ments, including at least intracellular and extracellular
compartments. Assuming that measurement times are
short, so that diffusion is unrestricted in each subcom-
partment i, and that there is no exchange, the signal
attenuation is: ‘

. N

MOIE - S pexo(-bD) 143

i=1

where p; is. the density of molecules diffusing in com-
partment i, D; is the associated diffusion coefficient,
and N is the number of subcompartmients. In this case,
the “‘apparent” diffusion coefficient that would be
measured would depend on the range used for the b

* values and would not reflect properly the diffusion in

the voxel. Measurements with low b values would then
be more sensitive to fast diffusion components. The
ideal approach would be to separate all subcompart-
ments by fitting the data with a multiexponential decay.
Unfortunately, the values for D; are often low and not
very different from each other, so that large b values
and high signal-to-noise ratios would be required. Fur-
thermoré, one would have to consider relaxation ef-
fects if compartments have different relaxation rates
43).

A different situation occurs when measurement
times are longer. First, restricted diffusion may appear
in the smallest subcompartments. Second, molecular
exchanges may be seen between communicating com-
partments, so that the analytical treatment becomes
difficult. Applying the central limit theorem for N com-
partments in the case of long diffusion times, one can
justify the use of a single apparent diffusion constant
D,: ‘

Da = E Di Di [44]

This approach is also consistent with NMR dispersion
studies (44) that suggest that cell membranes can be
ignored on the NMR time scale. In intermediate situa-
tions, one must take into account the geometrical ar-
rangement and the diffusion coefficients of each com-
partment, as well as their rates of exchange (45). A
comprehensive analysis of the diffusion attenuation -
curves obtained with different diffusion times may lead

“to an accurate description of the medium micro- -

structure.

Diffusion of Metabolites

Recent progress made in in vivo Fourier NMR spec-
troscopy allows the extension of diffusion measure-
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ments to molecules other than water. NMR can resolve
different nuclear species, because they have different
Larmor frequencies. For different nuclear species,
such as 3'P, F, 2H, or °C, one can make use of their
- chemical shift to determine independent diffusion coef-
ficients of compounds in complex mixtures (46). Diffu-
sion of phosphocreatine, for instance, can be studied
by 3'P spectroscopy (47,48). Phosphocreatine is a true
intracellular space probe (in contrast to water which
diffuses across cell membranes), that exhibits true
restricted diffusion (Fig. 6). Phosphocreatine (or N-
acetylaspartate in neurons) may be used to provide
information about the intracellular milieu, such as in-
tercellular viscosity or geometry. Monitoring exchange
of metabolites or drugs thiough cell membranes could
also benefit from similar techniques designed to mea-
sure molecular flow (49). It is worth mentioning that,
for nuclear species with spin > Y or for coupled spin
systems, multiple quantum experiments would be less
demanding on gradient hardware for diffusion mea-
surements, because the effective gradient amplitudes
that apply are increased by the power of the coherence
~order n. With n = 2, one thus expects a fourfold in-
crease in the diffusion effect. Examples of such studies
have been obtained with 2*Na (50) and in coupled spin
systems (51) and have been used recently in vivo for
lactic acid (52). The feasibility of measurements of me-
tabolite diffusion in vivo using 'H-NMR spectroscopy
has recently been shown in animals (53) and in the
human brain (54), as will be shown in Chapter 3.
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