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Abstract. In vivo diffusion tensor data obtained with diffusion tensor magnetic
resonance imaging (DT-MRI) can be used to estimate fibre tract trajectories
in white matter in the brain. Such data can, for example, be used to visualize
and study the connectivity and continuity of neural pathways in the central and
peripheral nervous systems. This paper discusses a toy model which is used to
assess limitations on the reliability of computed trajectories imposed by MRI
noise. The analysis is based on a two-dimensional random walk model for which
a very good approximate solution is available. The suggested theoretical approach
to analyse this model is shown to be in excellent agreement with simulations.
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1. Background

Magnetic resonance imaging (MRI) is widely used in medicine and biology. One reason for
this is the ability to combine MRI with other nuclear magnetic resonance (NMR) spectroscopic
methods. One recent example is diffusion tensor MRI (DT-MRI) in which an NMR spectroscopic
measurement of an effective diffusion tensor of water protons is performed in every voxel within
an imaged volume [1, 2]. A unique characteristic of the diffusion tensor field as measured in
DT-MRI is that it reflects structural and architectural features of the tissue.

These features of the diffusion tensor often change significantly due to disease processes
so that DT-MRI has been used to characterize a large number of diseases, among which are
ischaemia [3]–[6] multiple sclerosis [7], and Alzheimer’s disease [8]. But more relevant for this
work is that it is the first non-invasive imaging modality able to provide estimates of fibre-tract
trajectories in soft fibrous tissues as exemplified by brain white matter [1], [9]–[13].

This ability stems from the fact that the white matter in brain consists of the axonal fibre
bundles in which the diffusion of water tends to be highly anisotropic. Consequently, the diffusion
process cannot be described adequately by a single diffusion constant but requires at least a
second-rank diffusion tensor (i.e., a 3 × 3 symmetric matrix), D, whose components can be
estimated from MRI data.

Intrinsic quantitative parameters can be extracted from DT-MRI data that characterize
distinct features describing the size, shape, orientation or pattern of root-mean-squared (rms)
displacement profiles within the imaged volume. Directional information can be obtained from
the eigenvectors of D, which define the orientations of local principal axes. Colour maps that
indicate the local fibre-tract orientation are created by combining information contained in
the eigenvector associated with the largest eigenvalue, or principal diffusivity, together with
a measure of diffusion anisotropy [14]–[16].

Fibre-tract trajectories can be constructed from tensor data by generating streamlines that
follow the local direction of maximum apparent diffusivity [1], [9]–[13], [17]–[23]. While the
details and implementations of these DT-MRI fibre tractography methods differ, they are all
based on the same assumption that the eigenvector associated with the largest eigenvalue within
a voxel points in the direction of the fibre tract [1]. The tract trajectory is then determined by
following these local direction vectors from point to point [13, 19].

However, background noise in diffusion-weighted images from which the diffusion tensor
is estimated, places inherent physical limits on the accuracy and reliability of any fibre tract-
following technique. This appears in the form of fluctuations in the fibre-field direction, which
can cause the computed tracts to meander off course. This artifact has been demonstrated in
simulations of tract following [13, 24, 25]. To date, there is no theory that relates the extent to
which such errors depend on measured variables in the MRI experiment, such as the S/N ratio
of the diffusion-weighted images or the diameter of the fibre tract.

In this paper we develop a highly idealized model, describing the effect of NMR noise
on tract trajectory-following routines. One simplification entails replacing a curved fibre tract
(figure 1(a)) by a right cylinder of radius R as in figure 1(b). The tract-following should, in the
ideal noise-free case, produce a trajectory that lies along the centre of the fibre. In our idealization
that represents the fibre tract by a cylinder, this means that the trajectory, in the absence of noise,
lies along the cylinder axis. The model ignores the curvature of the axis and it only provides a
rough estimate of the effects of background noise.
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2. Description of fibre tract trajectories

A fibre trajectory can be represented as a three-dimensional space curve, i.e., as a vector r(s)
parametrized by the distance along the fibre, s. The equation relating r(s) to the unit tangent
vector at s, t(s), is [26]

dr(s)
ds

= t(s). (1)

Let the diffusion tensor at a given value of s be denoted by D(s).

To make use of the relation in equation (1), one needs to specify a second relation between
r(s) and t(s). For this purpose we adopt the hypothesis advanced in [2] that the normalized
eigenvector ε1 corresponding to the largest eigenvalue of D(s) lies parallel to the local fibre-tract
direction. Several groups have confirmed the hypothesis to within acceptable error for heart tissue
[27, 28]. A mathematical form of the hypothesis is written as

t(s) = ε1 [r(s)] , (2)

which is substituted into equation (1) to yield a system of three equations for r(s) subject to
an initial condition r(0) = r0. In practice, the resulting equations cannot be solved in closed
form, and therefore require a numerical solution [13, 19]. An additional difficulty in solving
equation (1) is the fact that the diffusion tensor eigenvectors are antipodally symmetric, so that
both ε1 and −ε1 are equally valid solutions. This problem is solved by tracking in two opposite
directions from a given starting point and choosing the sign that preserves the direction of the
eigenvector in the previous step.

3. Analysis of the idealized model

The computed direction vector for the trajectory at any point will equal the true vector, i.e., the
vector in the absence of noise, plus a random vector. Since the noise-corrupted trajectory is the
sum of the true vectors plus the sum of the random vectors, the computed trajectory will always
deviate from the true trajectory. A natural question is then how long a trajectory can be followed
before the deviation becomes significant. To answer this question we derive pertinent results
for a first-passage time problem. A good introduction to this class of problems can be found
elsewhere [29]. In the present instance, we define the first-passage problem as that of finding
the number of steps needed for the random walk to reach the circumference of the idealized
right-circular cylinder boundary. It is also possible to transform this result into the problem of
finding the distribution of the time, rather than the step number at which the random walk reaches
the circumference for the first time.

Figure 1 illustrates how the fibre-tracking problem can be cast as a random walk on a circle of
radius R. First, the actual tracked fibres (figure 1(a)) are approximated by right-circular cylinders
(figure 1(b)), or more correctly, by three-dimensional tubes. Note that this approximation works
well if we assume that the radius of curvature of the given tube is much larger than the single
tracking step size, L (see figure 1(b)) and thus fibre tracts are viewed as right-circular cylinders.
The fibre tract will be said to be followed accurately over the range (0, smax) provided that the
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Figure 1. (a) A fibre tract obtained using the methodology in [13] which follows
the principal direction of the tensor associated with the largest principal diffusivity.
These tracts represent motor fibre pathways leading from the spinal cord, through
the pons, up to the motor areas in the cortex of the brain. This tract is displayed
against two MRI slices, one coronal (the plane parallel to ones face) and one
axial (the plane perpendicular to body axis). (b) An idealized representation of
the tracts as cylinders. Note that cylinders can curve in space; our assumption
is that locally, at the level of a few tracking steps they appear as right-circular
cylinders. (c) Assuming the locally cylindrical fibre shape, the fibre tracking of
the noisy tensor field can be described as a random walk [30] on a disc with
radius R. We later show that this can be approximated with a diffusion process
with extrapolated absorbing boundary Re.

measured tract vector never falls outside the cylinder of radius R in that range. If the cylinder is
viewed head-on then the projection of each vector on the circle can be viewed as a single step
of a random walk as shown in figure 1(c). This rephrases the analysis in terms of a first-passage
time problem in which the time is replaced by the distance s.

Each step is a projection of a three-dimensional vector of fixed length, L, hence the length
of each projected step is a random variable that takes on values between 0 and L. The result of
simulating the noise properties of the three-dimensional eigenvectors (random walks) obtained
from DT-MRI indicated that to a good approximation the distribution of the projected length is
Gaussian and that of the turn angle is uniformly distributed over (−π, π). Figure 2 shows results
of simulations and their fits to the Gaussian distribution. It shows that for typical experimental
settings it is safe to assume that the step lengths of the two-dimensional random walk are normally
distributed. The standard deviations, σ, for different experimental settings are indicated in each
graph of figure 2. Since the problem possesses cylindrical symmetry, we only show a one-
dimensional slice, in the x direction, but the results were confirmed for an arbitrary direction, as
well as the fact that the turn angle was uniformly distributed.

The problem of estimating the distribution of the number of steps in which the fibre tract
can be followed accurately is therefore equivalent to that of finding the probability distribution of
the number of steps required for a random walker in two dimensions, initially at the origin of the
circle, to reach the circular boundary at radius R. We have found a very accurate approximation
to the solution in terms of a similar problem for two-dimensional Brownian motion.
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Figure 2. Simulated data (open circles) and best Gaussian fits to these data
for nine probability densities for the x component of ε1, the eigenvector
corresponding to the largest eigenvalue. The numbers in square brackets indicate
the x-axis range. The noise-free ε1 points in the z direction. The components of
ε1 have been normalized to 1 and their values can never fall outside the interval
[−1, 1]. The simulations are for a tensor oriented along the z-axis and AD is the
anisotropy factor defined in terms of the three eigenvalues as AD = 2λ1/(λ2 + λ3).

The simulations were generated from a total of one million noisy tensors using
typical experimental settings for DT-MRI. The distributions were fit to two types
of Gaussian distributions with (σ1) and without (σ2 or σ) allowance for a nonzero
baseline. Only in the case of small anisotropy and low SNR was this offset required
to fit the data correctly. In typical fibre-tracking data, SNR is almost always higher
than 15 and for the white matter fibres AD is typically >2, usually in the range
(2,10).
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The type of random walk used in the present study is sometimes referred to as a Pearson
random walk [30, 31], which plays an important role in crystallographic applications [32, 33].
To date, only properties of the probability density for the end-to-end distance of the random
walker in an infinite plane have been analysed; there are no comparable results available for the
corresponding first-passage time problem. Because of this stumbling block we have developed
an approximation which we show to be in excellent agreement with simulated data, and depends
on the dimensionless ratio rs = R/σ.

In brief, we replace the full problem of the Pearson random walk by a standard two-
dimensional diffusion problem with absorbing boundary condition. By adopting the diffusion
approximation, we implicitly assume that the probability to find the walker at the boundary is zero.
However, this is not the case in the original problem since there is always a finite probability
that the walker arrives at the boundary in a single jump. This problem can be overcome by
extrapolating the absorbing boundary beyond R and setting it to Re > R which requires that the
solution to the diffusion equation vanishes at r = Re (see figure 1(c)). Results of our analysis
are expressed in terms of the average length of the projection of a three-dimensional vector
of fixed length (L) on the circle. We denote this average projected length as 〈l〉, which is
related to the standard deviation, σ, of the random walk by 〈l〉 = (π/2)1/2σ. We expect the
diffusion approximation to be useful when 〈l〉 � Re. Let ϑ be the relative difference between
the extrapolated and the real radius:

ϑ = Re

R
− 1. (3)

We choose the value of Re that best fits the solution to the simulated data. The probability that the
projected vectors have not left the circle in m steps will be denoted by Sm which can be regarded
as the probability that the tract has been successfully followed when m steps have been made.
Our approximation consists of replacing a rather complicated iteration equation by an isotropic
diffusion equation using an absorbing boundary condition at Re. Initially the diffusing particle is
found at r = 0. In this way, we find an approximation to this probability that closely reproduces
the simulated data and can be expressed as the infinite series:

Sm = 2

1 + ϑ

∞∑
n=1

J1

( αn

1 + ϑ

) [
αnJ

2
1 (αn)

]−1
exp

[
− m

τc(n)

]
, m � 1. (4)

Here J1(u) is a Bessel function of order 1, αn are the successive roots of J0(α) = 0, [34] and
τc(n) is the characteristic length/time defined as τc(n) = π(Re/αn〈l〉)2.

Since the parameter m appears only in the exponential in equation (4) the series
representation of Sm allows us to calculate moments of the number of steps required to leave the
circle. For example, the average number of steps before passing through the circumference of
the circle is

〈m〉 =
∞∑

m=0

Sm = 2

1 + ϑ

∞∑
n=1

J1

( αn

1 + ϑ

) [
αnJ

2
1 (αn)

]−1
[

1 − exp

(
− m

τc(n)

)]−1

(5)
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Figure 3. A comparison of the diffusion theory-based approximation for the
survival probability (solid line) in equation (4) with Monte Carlo simulations
(shaded circles) for four different values of rs as indicated in the figures. The
graphs above indicate the percentage difference between the simulations and the
theoretical prediction. Only five terms of the series for Sm were used to generate
the theoretical curve and 30 million random walkers were used to obtain the
Monte Carlo estimate. The ϑ values used for small ratios, rs(<2), are obtained
from a slightly more precise empirical formula ϑ = 0.67/r1.08

s .

and the corresponding second moment is

〈
m2

〉 =
∞∑

m=0

(2m + 1)Sm = 2

1 + ϑ

∞∑
n=1

J1

( αn

1 + ϑ

) [
αnJ

2
1 (αn)

]−1

×
[

1 + exp

(
− m

τc(n)

)] [
1 − exp

(
− m

τc(n)

)]−2

. (6)

A comparison of these expressions for Sm and the moments with results of simulations is given
in figure 3. The results of the comparison could hardly be more satisfactory. Note that the plotted
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errors are relative errors. The large percentage errors that occur for rs = 1 are in the region
in which Sm ≈ 0 and therefore do not significantly influence the calculation of moments. The
optimal value of Re to be used depends on the ratio rs = R/σ. We found empirically that ϑ in
equation (3) is approximately equal to ϑ = 0.6/rs. If one is to use this formula in practice, the
estimates for R and σ can be derived using a combination of experimental data together with data-
based simulations. As an example, if one is to track a fibre with R = 2 mm using data acquired
on a grid with 2 × 2 × 2 mm (hence the fibre is only two voxels thick) and if we assume that its
anisotropy is going to be AD = 5 throughout the length of the fibre, then the expected tracking
length would be (〈m〉 ± σm): 5 ± 2 cm, 42 ± 30 cm, 164 ± 120 cm, respectively for SNRs of 5,
15, and 30. In practice, tracking will generally be less reliable than this, due to other sources of
noise and the effects of the fibre tract curvature (biased departure from the desired trajectory)
but these estimates can serve as upper bounds on how long one can expect to track a fibre.

4. Discussion

In this paper we have suggested an ideal model, based on the theory of first-passage times for
random walks, to quantitate the errors in trajectory-following of fibre tracts by DT-MRI. One of
the more interesting results emerging from our simulations is a suggestion that deviation from
the true trajectory, or the random walk on a disc, is very well-described using the diffusion limit
even for surprisingly small ratios of R and σ. One reason for this is that the maximum of the
Gaussian distribution occurs at r = 0, which is roughly equivalent to the necessary condition
for the central-limit theorem to hold. It is difficult to give a rigorous argument to justify this
conclusion.

It must be borne in mind that we have idealized the fibre tract to be a straight line, and phrased
the problem as being that of finding the statistical characteristics of the number of steps taken
by a random deviation vector (i.e., the difference between the true trajectory and the estimated
one) before it reaches a preset distance. The problem is therefore equivalent to one in the theory
of first-passage times, which seeks distribution of the number of steps taken by a random walk
consisting of random step lengths to escape from a circle. We conjecture that since actual fibres
are curved, the first passage time/distance will be smaller than our estimates which we treat
as upper bounds on how long one can expect to track a fibre successfully. However, when the
radius of curvature of the given fibre is much larger than the single tracking step size L, this
approximation works well.

The problem studied is also idealized in other respect, ignoring several known complexities
and artifacts that may be present [11, 13]. It is known that background noise in DT-MRI data can
cause the eigenvalues to be mis-classified when sorted by magnitude in each voxel [35]. This
can cause a mis-classification of the corresponding eigenvectors [36]. While the mis-sorting
of eigenvalues is relatively rare in coherent white matter tracts at a high SNR, it occurs more
frequently in less coherently organized white matter regions. When this occurs, ε1 [r(s)] no
longer points along the true fibre direction, which, in turn, causes the computed trajectory to
veer off course i.e., may cause a 90◦ deviation and a consequent jump to an adjacent tract. This
type of error is not encompassed in our present analysis. To give a more complete analysis of
all of the errors possible in DT-MRI would require a heavy investment in both experiment and
simulations. Nevertheless, we believe that our present analysis is a first step in the process and
provides order-of-magnitude estimates of expected errors in trajectory-following, at least in the
high-SNR regime.
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It is worthwhile noting the strong dependence of 〈m〉 on SNR over a range of values of this
quantity widely used in MRI applications. This point has not been made by other groups.
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