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Abstract

Wemodel diffusion in white matter fascicles as a problem of diffusion in an array of identical thick-walled cylindrical tubes immersed in an

outer medium and arranged periodically in a regular lattice. The diffusing molecules have different diffusion coefficients and concentrations (or

densities) within the tubes’ inner core, membrane, myelin sheath, and within the outer medium. For an impermeable myelin sheath, diffusing

molecules within the inner core are completely restricted, while molecules in the outer medium are hindered due to the tortuosity of the array of

impenetrable tubes.
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1. Introduction

Diffusion tensor imaging (DTI) is a powerful noninva-

sive tool to assess developing, normal and pathological

white matter in the brain in vivo [1,2]. White matter has an

underlying fibrous structure giving rise to an observed

anisotropy in the apparent diffusion coefficient (ADC), that

is, different ADCs parallel and perpendicular to the fibers.

The exact relationship between the apparent diffusion

tensor (ADT) and tissue microstructure and composition

is not known. In order to probe the dependencies of the

ADT on tissue structure and composition, we develop

analytical results for the long-time (times much longer than

diffusion time across the fibers) ADC and ADT in a

simplified model of brain white matter, consisting of a

periodic pack of parallel cylindrical permeable multilayered

tubes. Specifically, we compute ADCs both parallel and

perpendicular to the axis of symmetry as well as the ADT,

and relate these quantities to microstructure and composi-

tional parameters.
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Recently, Hwang et al. [3] employed the finite-

difference method on histological images for simulating

restricted diffusion with a view towards assessing neural

injury and regeneration in myelinated axons. The literature

had been reviewed well by Hwang et al. [3] who stated

that the thickness of the myelin sheath had been ignored in

all studies prior to theirs. They validated their finite-

difference scheme against known analytic solutions for

diffusion in a cylindrical pore and in a hexagonal array of

cylinders which do not possess thick skins. Specifically,

Hwang et al. compared their simulation for cases (a) of a

cylindrical pore surrounded by an impermeable medium

and (b) hexagonal arrays of permeable cylinders using the

results of Perrins et al. [4] for uncoated cylinders.

Anatomical sections (Fig. 1) of white matter reveal that

the myelin sheath is thick as shown schematically in Fig.

2. To model myelin, we incorporate a finite coating

thickness having transport properties represented by

myelin’s fluid concentration and diffusion coefficient.

Numerical studies, such as that by Hwang et al. [3],

would benefit from the solutions provided here in which

analytical results for the thick-walled tube pack are

provided. Below we present results for square and

hexagonal packs of coated cylinders that could serve as a

test system for validating such numerical calculations.
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2. Model calculations

Chin et al. [3] concluded that the sensitivity of ADC to difference in T2 in different compartments is small, allowing us to

consider the steady-state diffusion coefficient in a composite media.

Diffusion currents are driven by gradients in the Gibbs chemical potential,

l ¼ l0 þ RT ln C þ RT ln a: ð1Þ

Here, R is the gas constant, T is the temperature, C is the concentration of the substance that is diffusing, a is the activity

coefficient, and l0 is the chemical potential of the substance in its standard state. l0 is independent of position; we will assume

either the substance is ideal (ln au0) or ln a does not vary with position, and the temperature is uniform throughout. To be

explicit, the particle current density is given by the constitutive relation

j rð Þ ¼ � D
RT

C rð Þql rð Þ
¼ � DqC rð Þ: ð2Þ

We use the analogy between Eq. (2) and the corresponding constitutive relations between electric currents (displacement

or conduction) and electric potential gradient via dielectric constant or electrical conductivity. We can apply the solutions for

electrical conductivity or dielectric constants for composite media made up of coated cylinders [5,6] by replacing the electrical

potential, V(r, h), by a chemical potential l (r, h)=l0+RT ln[C(r, h)] (we lump position-independent RT ln a with l0). For the

corresponding diffusion problem, the conductivities or dielectric constants of each region are replaced by the product of the

diffusion coefficient and the concentration of the corresponding region. The additional factor of concentration plays an

important role in the tortuosity factor of the effective diffusion coefficient [7,8].

We use a subscript bcQ to denote the core, bsQ to denote the sheath and bbQ to denote extra-axonal (bath) material. The

equilibrium concentration and diffusion coefficients of the molecules under investigation inside the core are Cc0 and Dc, those

inside the myelin sheath are Cs0 and Ds, and those outside are Cb0 and Db. Note that in Eq. (1), Cc(r)=C(r, h), etc., denotes
perturbations to the equilibrium concentrations Cc0, etc., due to an externally imposed concentration or chemical potential

gradient, which can be likened to an electric field, Eext, that is used in the corresponding problem of electrical conductivity or

dielectric constant of composite media [4 –6].

We consider both a square pack and a hexagonal pack of cylinders (Fig. 3). In both the cases, the cylinder centers are

separated by a distance L, the radius of the inner cylinder is rc and that of the outer is rs, and thus the sheath thickness is given

by Dt=rs�rc. Only the ratios of these lengths will appear in the answer.
Fig. 1. Histology showing bundles of axons in a section of primate white matter (cross section of corpus callosum). Water diffuses faster parallel to the fibers

than perpendicular to them.
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Fig. 2. A schematic diagram of a myelinated axon. The axonal membrane contains short active regions, nodes of Ranvier, which are joined by long passive

segments insulated by myelin. The outer radius of the axon is rs; its inner radius rc.
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Mathematical details will be presented elsewhere. The effective concentration Ceff is:

Ceff ¼ 1� fð ÞCb0 þ f
r2c
r2s

Cc0 þ f 1� r2c
r2s

� �
Cs0: ð3Þ

The effective properties for coated cylinders depend on geometrical structure factors [4–6] and factors c2l�1 that depend on

the properties of the constituents:

c2l � 1 ¼ DbCb0 � DsCs0ð Þ DsCs0 � DcCc0ð Þr2 2l�1ð Þ
c þ DbCb0 þ DsCs0ð Þ DcCc0 þ DsCs0ð Þr2 2l�1ð Þ

s

DbCb0 þ DsCs0ð Þ DsCs0 � DcCc0ð Þr2 2l�1ð Þ
c þ DbCb0 � DsCs0ð Þ DcCc0 þ DsCs0ð Þr2 2l�1ð Þ

s

: ð4Þ

The longitudinal effective diffusion coefficient Dl,eff is given by the volume averages:

Dl;effCeff ¼ 1� fð ÞDbCb0 þ f
r2c
r2s

DcCc0 þ f 1� r2c
r2s

� �
DsCs0; ð5Þ

for all packing geometries.

A reasonable measure of diffusion anisotropy can be given by the ratio Dl,eff /Dt,eff, and this ratio is independent of Ceff.

bADCN , the mean ADC, and the degree of anisotropy, Dl,eff /Dt,eff, are two useful parameters routinely used in characterizing

white matter.
L

L

Fig. 3. Nearest neighbors around the central cylinder of a portion of a hexagonal array of coated cylinders. To remove clutter, only one cylinder is depicted as

coated; only the outer radius is shown for the others. Centers of cylinders are separated by a distance L, hence f ¼ 2ffiffi
3

p pr2s
L2

; where rs is the outer radius.
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In square and hexagonally symmetric packs, the symmetry dictates that the diffusion tensor be described by two principal

diffusion coefficients—one parallel to the axis of the cylinders and the other perpendicular to it, lying in the transverse plane

(i.e., diffusion is isotropic in the transverse plane and two transverse components of the tensor are identical).

For a square array, f=prs
2/L2 is the fraction of volume occupied by the coated cylinders. To the lowest order in multipolar

concentration, we obtain the Maxwell-Garnett formula:

Dt;effCeff ¼ DbCb0 1� 2f

c1 þ f

�
:

�
ð6Þ

A truncation to third order gives,

Dt;effCeff ¼ DbCb0 1� 2f c1 þ f � 0:305828f 4c5
c3c5 � 1:402960f 8

��1
 #"

ð7Þ

While for the square lattice geometry, the maximum value of f is p/4c0.785, published values of the intracellular space

based on iontophoretic measurements are typically higher, approximately 0.82. In order to treat the physiological range of axon

spacing, we must consider hexagonal (and possibly other) packing geometries that afford higher packing densities.

For a hexagonal array,

f ¼ 2pr2sffiffiffi
3

p
L2

: ð8Þ

Thus, the maximum packing density is about f=0.907. To the lowest order in multipolar expansion, we obtain again the

Maxwell-Garnett formula, Eq. (6), which is the same as that for a square array. In fact, the Maxwell-Garnett formula holds for

all structures, including for disordered systems and is accurate for small f, that is, in the dilute limit. Next, the same degree of

truncation in recursion relations as employed in Eq. (7) gives for hexagonal pack:

Dt;effCeff ¼ DbCb0 1� 2f c1 þ f � 0:07542f 6c7
c5c7 � 1:06028f 12

��1
 #"

ð9Þ

In the absence of a sheath, we recover Eq. (13) of Perrins et al. [4].

In the usual permeability approximation, one takes the limit of thin skin such that Dt=rs�rcY0 with Ds/(Dt)Yj, giving a

jump condition.

All the results for longitudinal and transverse diffusion coefficients are easily generalized for the thin myelin case by the use

of an appropriate limit.

A thick myelin sheath is nearly impermeable and acts as a diffusion barrier. For the nearly impermeable myelin case, the

effective transverse diffusion coefficient times the effective concentration Dt,effCeff does not depend on properties of the core.

This is intuitively obvious: if the diffusion in the sheath is practically zero, it acts as a barrier and Dt,effCeff is dominated by

diffusion outside the sheath. The core contribution then drops out (is shielded out); however, the effective concentration Ceff

involves the properties of the core.

In the extreme limit, when CcDc=CsDs=0, all transport comes from the bath molecules, but they have a tortuous path to

follow in the transverse direction. The Maxwell-Garnett form for transverse diffusivity is Dt,eff=Db/(1+f ), whereas Dl,eff=Db.

In this case of no myelin, one can use the results from Perrins et al. [4] of uncoated cylinders. The diffusion tensor can still

be anisotropic, even in the absence of a myelin sheath. Let us illustrate this using the lowest order of the so-called Maxwell-

Garnett form, Eq. (6), for transverse diffusivity:

Dl;eff

Dt;eff
¼ðCbDbð1� f ÞþCcDc f ÞðCcDcð1� f ÞþCbDbð1þ f ÞÞ

CbDb CbDbð1� fð Þ þ CcDc 1þ fð ÞÞ

Note that in Eq. (10) above, the anisotropy vanishes when CbDb=CcDc, but the system will be anisotropic even when

Db=Dc, but CbpCc.
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Fig. 5. Degree of diffusion anisotropy Dl,eff /D t,eff as a function of the

myelin sheath radius rs develops from its minimum value of rc to that

allowed by hexagonal close pack. Here, rc=6 Am, Db=2�10�9 m2/s,

Cb0=0.95, Dc=7.5�10�10 m2/s, Cc0=0.88, Ds=3.�10�11 m2/s, Cs0=0.5,

and L=18.2 Am.
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3. Results and discussions

Analytical solutions for the ADT and quantities derived

from it, such as the mean ADC, bADCN , and the degree of

diffusion anisotropy, can be used to explore the effects of

small changes in model parameters associated with normal

conditions as well as a number of developmental and

disease processes known to affect myelinated axon structure

and function.

Many studies suggest the existence of diffusion anisot-

ropy in white matter prior to the appearance of myelin

[9,10]. That there can be anisotropy even in the absence of a

myelin sheath is obvious. For example, when cylinders with

high values of CcDc (containing highly diffusive molecules)

are inserted in a bath with small values of CbDb (containing

poorly diffusive molecules), the longitudinal transport can

be high; while the transport perpendicular to the cylinder

axes will be low, as the molecules within the cylinders have

to diffuse through the bath in the transverse direction but not

in the longitudinal direction. This phenomenon can be

likened to resistors in series (transverse direction) and

resistors in parallel (longitudinal direction).

When present, myelin is the major barrier to diffusion

and cause of anisotropy. In normal white matter develop-

ment, the thickness of the myelin sheath increases. We can

mimic this process heuristically by considering the case in

which the normalized thickness of the myelin sheath,

(rs�rc)/rc, grows from zero to a finite value. Fig. 4 shows

the mean bADCN as a function of the radius of the myelin

sheath. As myelin thickness increases, the mean ADC

progressively drops, a change that is in qualitative agree-

ment with the findings of Neil et al. [9]. In Fig. 5, the

anisotropy ratio is plotted vs. the radius of the myelin

sheath. Some diffusion anisotropy is observed when no

myelin is present, but the fact that anisotropy increases with

increasing myelin thickness supports the hypothesis that,

although not the only determinant of diffusion anisotropy in

white matter, myelin can significantly contribute to it.

In DT-MRI, one measures an attenuation in the magne-

tization due to random phases that the spins acquire during
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Fig. 4. Mean diffusion coefficientbADCN ¼ 2Dt;eff þ Dl;eff

	 

=3 as a

function of the myelin sheath radius rs develops from its minimum value

of rc to that allowed by hexagonal close pack. Here, rc=6 Am, Db=2�10�9

m2/s, Cb0=0.95, Dc=7.5�10�10 m2/s, Cc0=0.88, Ds=3.�10�11 m2/s,

Cs0=0.5, and L=18.2 Am.
its random motion. In the lowest order of approximation, the

attenuation exponent depends on the mean square displace-

ment. Here, we have considered only the long-time limit of

diffusion coefficient, which is the mean square displacement

divided by time. For hindered motion or permeable myelin,

one can use the diffusion coefficient times time to recover

the mean square displacement. However, for fully restricted

motion of axonal fluid molecules, as in the case of an

impermeable myelin, the mean square displacement is

bounded, and the long-time diffusion coefficient of restrict-

ed axonal fluid molecules becomes zero. Thus, the mean

square displacement is nonrecoverable from the long-time

diffusion coefficient. The implications for DT-MRI have

been studied in a recent paper [11]. To characterize water

diffusion in brain white matter, Assaf et al. [11] proposed a

framework that incorporates both hindered and restricted

models of water diffusion and an experimental methodology

that embodies features of diffusion tensor and q-space MRI.

They propose a model of white matter diffusion anisotropy

that contains a hindered extra-axonal compartment, whose

diffusion properties are characterized by an effective

diffusion tensor, and an intra-axonal compartment, whose

diffusion properties are characterized by a restricted model

of diffusion within cylinders. The hindered model primarily

explains the Gaussian signal attenuation behavior observed

at low b (or q) values; the restricted non-Gaussian model

does so at high b (or q).
4. Conclusion

Here, we have presented a simplified, but self-consistent

modeling framework for predicting the long-time ADCs of

water parallel and perpendicular to a pack of myelinated

axons. Values assumed for white matter suggest that the

orientationally averaged ADC (mean ADC) and diffusion

anisotropy ratio are fairly insensitive to intracellular

dimensions and diffusion properties, and are primarily
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affected by changes in the outer diameter of the axons, the

extracellular volume fraction, and inter-axonal spacing.
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